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ABSTRACT

Protein-protein interaction (PPI) represents a central challenge within the biology
field, and accurately predicting the consequences of mutations in this context is
crucial for drug design and protein engineering. Deep learning (DL) has shown
promise in forecasting the effects of such mutations but is hindered by two pri-
mary constraints. First, the structures of mutant proteins are often elusive to ac-
quire. Secondly, PPI takes place dynamically, which is rarely integrated into the
DL architecture design. To address these obstacles, we present a novel framework
named Refine-PPI with two key enhancements. First, we introduce a structure re-
finement module trained by a mask mutation modeling (MMM) task on available
wild-type structures, which is then transferred to hallucinate the inaccessible mu-
tant structures. Second, we employ a new kind of geometric network, called the
probability density cloud network (PDC-Net), to capture 3D dynamic variations
and encode the atomic uncertainty associated with PPI. Comprehensive experi-
ments on SKEMPI.v2 substantiate the superiority of Refine-PPI over all existing
tools for predicting free energy change. These findings underscore the effective-
ness of our hallucination strategy and the PDC module in addressing the absence
of mutant protein structure and modeling geometric uncertainty.

1 INTRODUCTION

Proteins seldom act in isolation and typically engage in interactions with others to perform a wide
array of biological functions (Phizicky & Fields, 1995; Du et al., 2016). One illustrative instance
involves antibodies, which belong to a protein category within the immune system. They identify
and attach to proteins found on pathogen surfaces and trigger immune responses by interacting with
receptor proteins in immune cells (Lu et al., 2018). Accordingly, it is crucial to devise approaches
to modulate these interactions, and a prevalent strategy is to introduce amino acid mutations at the
interface (see Fig. 1). However, the space of possible mutations is vast, making it impractical or
prohibitive to conduct experimental tests on all viable modifications in a laboratory setting (Li et al.,
2023). Thus, computational techniques are required to guide the recognition of desirable mutations
by forecasting their mutational effects on binding strength, commonly measured by the change in
binding free energy termed ∆∆G.

The past decade has witnessed the great potential of deep learning (DL) techniques (Rives et al.,
2021; Min et al., 2022) in biological science, such as protein design (Jing et al., 2020), folding
classification (Hermosilla et al., 2020), model quality assessment (Wu et al., 2023), and function
prediction (Gligorijević et al., 2021). These DL algorithms also surpass conventional approaches
in computing ∆∆G and can be roughly divided into biophysics- and statistics-based kinds. In
particular, the former depends on sampling from energy functions and consequently faces a trade-
off between efficiency and accuracy (Schymkowitz et al., 2005; Leman et al., 2020). Meanwhile,
statistical-based methods are limited by the selection of descriptors and cannot take advantage of the
growing availability of protein structures (Alford et al., 2017).

Despite DL’s fruitful progress in identifying ∆∆G, their efficacy encounters various obstacles. First
is the absence of the mutant complex structure. Due to the long-standing consensus that protein
function is intricately related to its structure (Jumper et al., 2021), an emerging line seeks to encode
protein structures using 3D-CNNs or GNNs (Jing et al., 2020; Satorras et al., 2021), but typically
relies on experimental structures like Protein Data Bank (PDB). Their performance deteriorates
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Figure 1: Geometric deep learning is applied to optimize the antibody sequences and achieve desired
properties (e.g., better affinity and specificity).

significantly when fed low-quality or noisy protein structures (Huang et al., 2024). Regrettably,
in antibody optimization, obtaining mutant structures is an insurmountable obstacle, and the exact
conformational variations upon mutations are unknown. While groundbreaking approaches such as
Alphafold (Jumper et al., 2021) and Alphafold-Multimer (Evans et al., 2021) have brought a revo-
lution in directly inferring protein structures from amino acid sequences, they struggle to accurately
forecast the structure of antibody-antigen complexes compared to monomers (Ruffolo et al., 2023).
As an alternative, some scientists turn to energy-based protein folding tools like FoldX (Delgado
et al., 2019) to sample mutant structures, which show finite efficacy and dramatically increase over-
all computational time (Cai et al., 2023). The second limitation is the overlook of existing DL on the
fundamental thermodynamic principle. Proteins exhibit inherent dynamism, critical for biological
functions and therapeutic targeting (Miller & Phillips, 2021). Many real-world observations are not
solely dependent on a single structure but influenced by the equilibrium distribution (Ganser et al.,
2019). For example, inferring biomolecule functions involves assessing the probabilities associated
with various structures to identify metastable states.

Figure 2: Performance of Refine-PPI on
SKEMPI.v2 compared to other energy-
based or pretrained baselines.

To overcome these barriers, we introduce Refine-PPI (see
Fig. 3) with two key innovations for the mutation effect
prediction problem. First, we devise a masked muta-
tion modeling (MMM) strategy and propose to predict
the mutant structure and ∆∆G simultaneously. Refine-
PPI combines the prediction of structure and the predic-
tion of free energy change into a joint training objective
rather than relying on external software to sample mutant
structures. This offers several distinct advantages. On the
one hand, the hallucinated mutant structure exhibits sig-
nificant differences from the wild-type structure, provid-
ing crucial geometric information related to the change in
binding free energy. On the other hand, MMM not only
enables inference of the most likely equilibrium confor-
mation of the mutant structure but also encourages graph
manifold learning with the denoising objective Godwin
et al. (2021). Besides, ∆∆G implicitly conveys extra information about the structural difference
before and after the mutation. Collective training with ∆∆G would promote the efficiency of struc-
ture prediction. Second, we introduce a new kind of geometric GNN called PDC-Net to capture the
flexibility and dynamics of conformations during the binding process. Specifically, each particle in
a complex is represented as a probability density cloud (PDC) that illustrates the scale and strength
of their motion throughout the interaction procedure. Then, an aligned network is used to propa-
gate the distributions of the equilibrium of molecular systems. A comprehensive evaluation in the
SKEMPI.v2 dataset (Jankauskaitė et al., 2019) proves that our Refine-PPI outperforms all present
methodologies by a significant margin (see Fig. 1) and it is promising to generate absent mutant
structures via a multi-task training scheme.

2 PRELIMINARY AND BACKGROUND

Definition and Notations. A protein-protein complex is a multi-chain protein structure, separated
into two groups. Each group contains at least one protein chain and each chain consists of several
amino acids. The wild-type complex is represented as a 3D graph GWT, constituted of a ligand GWT

L
and a receptor GWT

R . G is composed of a batch of nodes V and edges E . V represents residues or atoms
at different resolutions, and vi ∈ V has several intrinsic attributes such as the initial ψh-dimension
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Figure 3: A. The overall pipeline of our Refine-PPI. The given wild-type structure and the masked
mutant structure are subsequently fed into weight-shared equivariant neural networks. The masked
region is reconstructed, and the mutation effect is predicted by comparing the features of two re-
sulting complexes. B. The procedure of deep learning architecture. The particles in the complex
are represented as probability density clouds (PDCs), where each atom moves according to some
geometric distributions instead of being immobile. Then, the natural parameters including mean,
variance, and co-variance are updated and propagated throughout PDC-Network.

roto-translational invariant features hi ∈ Rψ0 (e.g., atom or amino acid types, and electronegativity)
and coordinates xi ∈ R3. E determines the connectivity between these particles and is divided into
internal edges within each component as EL and ER and external edges between counterparts as ELR.
We assume n residues in the entire complex and consistent residue numbers (i.e.,

∣∣VWT
∣∣ = ∣∣VMT

∣∣ =
n). We select four backbone atoms {N,Cα,C,O} and an additional Cβ to represent each amino
acid.

Problem Statement. The mutation effect prediction is to approximate the ground-truth function
that maps from the wild-type structure GWT and mutant information (i.e., where and how some
residues mutate from one type ai ∈ {ACDEFGHIKLMNPQRSTVWY} to the other a′i) to ∆∆G.

3 METHOD

Overview. Refine-PPI (see Fig. 3) has three constituents parameterized by ρ, θ, τ , respectively.
The backbone module hρ(.) encodes the input 3D complex structure, the structure refinement mod-
ule fθ(.) hallucinates the unseen mutant structure, and the predictor gτ (.) estimates the final ∆∆G.
The whole pipeline is described below. To begin with, the wild-type structure GWT and a well-
initialized mutant structure G̃MT (the initialization details will be elucidated later) are fed into hρ(.)
to gain their corresponding features ZWT ∈ Rn×ψ1 and ˜ZMT ∈ Rn×ψ1 , respectively. Then, the
imperfect mutant structure G̃MT along with its first-round representation ˜ZMT is forwarded into fθ(.)
for several cycles and acquires the ultimate structure ĜMT with more robust coordinates x̂MT. Sub-
sequently, the hallucinated mutant structure ĜMT is encoded by hρ(.) again, and we can retrieve its
second-round updated representation ZMT ∈ Rn×ψ1 . As last, a pooling layer and gτ (.) are appended
to aggregate graph-level representations of both wild-type and mutation-type noted as HWT ∈ Rψ2

and HMT ∈ Rψ2 based on ZWT and ZMT, and output the predicted free energy change ŷ.
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Mask Mutation Modeling. As GMT is hard to attain, we rely on the accessible GWT to train fθ(.)
to restore the fragmentary structures. To this end, we introduce a mask mutation modeling (MMM)
task, which requires fθ(.) to reconstruct corrupted wild-type structures G̃WT. Here, we consider a
single-mutation circumstance for better illustration where the m-th residue mutates from am to a′m.
Then, a (l + r)-length segment around this mutation site is masked, denoted as Vmut = {vi}m+r

i=m−l,
which starts from the (m− l)-th residue and ends at the (m+ r)-th residue. We aim to recover the
structure of this masked region

{
xWT

}m+r

i=m−l given G̃WT, its representation, and the native amino

acid type am. The entire process is fθ
(

˜ZMT, G̃WT, am

)
→

{
xWT

}m+r

i=m−l.

Intuitively, how to corrupt GMT is significant, because the same corruption mechanism will be im-
posed to procure the incipient mutant structure G̃MT during inference, serving as a starting point
to deduce the final hallucinated structure ĜMT. Here, we investigate two strategies to initialize co-
ordinates of the masked regions Vmut. Firstly, we borrow ideas from denoising-based molecular
pretraining methods (Godwin et al., 2021; Feng et al., 2023) and independently add a random Gaus-
sian noise of zero mean ϵ ∼ N (0,α) to the original coordinates as x̃WT

i = xWT
i + ϵ, where α

determines the scale of the noisy deviation. This denoising objective is equivalent to learning a
special force field (Zaidi et al., 2022).

In addition, we introduce a more challenging mode to corrupt GMT and hypothesize that the mutant
regions Vmut are completely unknown. To be specific, we initialize the coordinates the masked re-
gions

{
xWT

}m+r

i=m−l according to the even distribution between the residue right before the region
(namely, vm−l−1) and the residue right after the region (namely, vm+r+1). Notably, residues imme-
diately preceding or following the region can be missing, in which case we extend the existing side
in reverse to initialize Vmut (see Fig. 7). The overall process is written as follows:

x̃i =


xm−l−1 + (i−m+ l + 1)xm+r+1−xm−l−1

l+r+2 , if ∃vm−l−1, vm+r+1,

xm+r+1 − (m+ r + 1− i) (xm+r+2 − xm+r+1) , if ∄vm−l−1,∃vm+r+1,

xm−l−1 + (i−m+ l + 1) (xm−l−1 − xm−l−2) , if ∃vm−l−1,∄vm+r+1,

(1)

Noteworthily, both initialization strategies can be easily extended to multiple mutations.

After that, the corrupted wild-type structure G̃WT is sent sequentially to hρ(.) and fθ(.) to restore the
coordinates of the mutant regions masked, resulting in x̂WT. As coordination data usually contains
noise, we take the cue from MEAN (Kong et al., 2022) and adopt the Huber loss (Huber, 1992)
instead of the common RMSD loss to avoid numerical instability. The loss function is defined by
comparing to the actual xi:

Lrefine =
∑
i∈Vmut

1

|Vmut|
lhuber(x̂i,xi). (2)

∆∆G Prediction. We impose the same strategy in MMM to initialize G̃MT based on GWT. Then
given the mutant information a′m, we utilize weight-shared hρ(.) and weight-shared fθ(.) to halluci-

nate the unknown mutant structure as p
({

xMT
}m+r

i=m−l

∣∣∣∣G̃MT, a′m, θ, ρ

)
. It is worth noting that the

resulting x̂WT does not carry gradients with no backpropagation at this phase. Later, we leverage
GWT and ĜMT to extract their corresponding representations ZWT and ZMT, separately. ZWT and ZMT

are then delivered to gτ (.) to acquire the predicted change in free energy ŷ. Supervision is realized
by the sum of two losses as L = L∆∆G(y, ŷ) + λLrefine

({
xWT

}m+r

i=m−l ,
{
x̂WT

}m+r

i=m−l

)
, where λ is

the balance hyperparameter. The whole paradigm illustrated in pseudo-code is put in Appendix 1.

Discussion. Previous studies exemplified by Google’s DeepDream (Mordvintsev et al., 2015) train
networks to recognize faces and other patterns in images, and invert and adjust arbitrary input images
to draw more strongly resemble patterns perceived by the network. The generated images are often
referred to as hallucinations because they may not faithfully represent any actual face, but what DL
models view as an ideal face. This mechanism has also demonstrated success in macromolecules,
where information stored in parameters of trained networks can be harnessed to design new protein
structures featuring new sequences (Anishchenko et al., 2021). Refine-PPI uses a similar method to
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explore whether networks trained on existing wild-type structures could be inverted to generate new
’ideal’ protein structures based on mutant information. We discover that networks have the strong
hallucination capacity to resolve the inevitable dilemma of the missing mutant structures.

3.1 PROBABILITY DENSITY CLOUD NETWORK

Figure 4: The PDC representations for a protein
pair. Particles conform to geometric distributions
like Gaussian with uncertainty in the 3D space.

Kinetics in Molecules. Cutting-edge archi-
tectures extend networks to Euclidean and
non-Euclidean domains, encompassing mani-
folds, meshes, or strings. As molecules can
be naturally represented as graphs, graph ap-
proaches become dominant in molecular mod-
eling (Schütt et al., 2018; Fuchs et al., 2020;
Liao & Smidt, 2022). Beyond addressing
GNNs’ inherent limitations (Wu et al., 2022),
they incorporate geometric principles like sym-
metry through equivariance and invariance.
However, previous approaches were primarily
designed for static and stable molecules char-
acterized by deterministic and uncertainty-free structures. Here, we propose to integrate dynamics
into geometric GNNs.

Probability Density Cloud. Atoms are never at rest, even at extremely low temperatures (Clerk-
Maxwell, 1873), and exhibit translational, rotational, or vibrational motion. In quantum mecha-
nisms, electrons do not follow well-defined paths like planets around the Sun in classical physics
but exist at specific energy levels and are described by wave functions, the mathematical functions
on the probability of finding an electron in various locations around the nucleus (Schumaker, 1986).
Physicists commonly envision an electron or other quantum particle by depicting their probability
distribution around a specific region of space within an atom or molecule, where the shape and size
of orbitals depend on the quantum numbers.

Inspired by this phenomenon, we portray particles as PDC showing regions with a higher probability
of finding them. xi are assumed to follow Gaussian asN (µi,Σi). µi ∈ R3 is the place where node
i is most likely to be located, and Σi ∈ R3×3 is an isotropic (or spherical) covariance matrix
signifying the independence upon the coordinate system. Given this premise, we can derive many
invariant geometries that emphasize molecular structural information. The primary variable is the
distance dij = ||xi − xj ||2. As xi and xj are are statistically independent, their difference follows
a normal distribution as xi − xj ∼ N (µi − µj ,Σi +Σj) (Lemons, 2003), and its squared norm
denoted as d2ij exhibits a generalized chi-squared distribution χ2(.) with a set of natural parameters,
comprising (µi − µj ,Σi +Σj). The mean and variance of χ2(.), denoted as µdij and σdij , are:

µdij = tr (Σi +Σj) + ||µi − µj ||2,
σdij = 2 tr (Σi +Σj) + 4(µi − µj)

⊤ (Σi +Σj) (µi − µj),
(3)

where tr(.) calculates the trace of a matrix. Furthermore, distributions of other geometric vari-
ables can also be induced. Let xab be the directed vector from xa to xb, and consider tri-
angle nodes (i, j, k), the angle distribution ∠xijxik can be characterized as the distribution of
arccos

(xi−xj)·(xj−xk)
|xi−xj ||xj−xk| .

PDC-Net. Our PDC idea can be generalized to any geometric architecture and here we select
EGNN (Satorras et al., 2021) as backbone. Our PDC-Net no longer accepts deterministic geometries
dij and xi, but takes distributions fdij and fxi

as ingredients. Its l-th layer, named PDC-L, takes the

set of node embeddings h(l) =
{
h
(l)
i

}n
i=1

, edge information E = {EL, ER, ELR}, and geometric

feature distributions ν(l) =
{
µ

(l)
i ,Σ

(l)
i

}n
i=1

as input, and outputs a transformation on h(l+1) and
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ν(l+1). Concisely, h(l+1),ν(l+1) = PDC-L
[
h(l),ν(l), E

]
, which is defined as follows:

mj→i = ϕe

(
h
(l)
i ,h

(l)
j , µ

(l)
dij
, σ

(l)
dij

)
, h

(l+1)
i = ϕh

h
(l)
i ,

∑
j

mj→i,

 , (4)

µ
(l+1)
i = µ

(l)
i +

1

|N (i)|
∑

j∈N (i)

(
µ

(l)
i − µ

(l)
j

)
ϕµ(mj→i), (5)

Σ
(l+1)
i = Σ

(l)
i +

1

|N (i)|
∑

j∈N (i)

(
Σ

(l)
i +Σ

(l)
j

)
ϕσ(mj→i), (6)

where ϕe, ϕh, ϕµ, ϕσ are the edge, node, mean, and variance operations respectively that are com-
monly approximated by Multilayer Perceptrons (MLPs). It is worth noting that the mean posi-
tion of each particle, denoted as µi, is updated through a weighted sum of all relative differences
(µi − µj)∀j∈N (i). Meanwhile, the variance Σi is updated by a weighted sum of all additions
(Σi +Σj)∀j∈N (i). These strategies align with the calculation of the mean and variance of the
difference between two normal random variables. We also provide another type of mechanism to
update the variance and observe a slight improvement in Appendix B.2. Regarding the initializa-
tion of Σ, we explore three different approaches, and details are elucidated in the Appendix 4.3.1.
Moreover, PDC-Net maintains the equivariance property, and the proof can be found in Appendix D.

4 RESULTS

4.1 EXPERIMENTAL SETUPS

Data Evaluation is carried out in SKEMPI.v2 (Jankauskaitė et al., 2019). It contains data on
changes in the thermodynamic parameters and kinetic rate constants after mutation for structurally
resolved PPIs. The latest version contains manually curated binding data for 7,085 mutations. The
dataset is split into 3 folds by structure, each containing unique protein complexes that do not appear
in other folds. Two folds are used for train and validation, and the remaining fold is used for test.
This yields 3 different sets of parameters and ensures that every data point in SKEMPI.v2 is tested
once. The pretraining data is derived from PDB-REDO, a database that contains refined X-ray
structures in PDB. The protein chains are clustered based on 50% sequence identity, leading to
38,413 chain clusters, which are randomly divided into the training, validation, and test sets by
95%/0.5%/4.5% respectively.

Baselines and Metrics. We evaluate PDC-Net against various categories of techniques. The initial
kind encompasses conventional empirical energy functions such as Rossetta Cartesian ∆∆G Park
et al. (2016); Alford et al. (2017) and FoldX. The second grouping comprises sequence/evolution-
based methodologies, exemplified by ESM-1v Meier et al. (2021), PSSM, MSA Transformer Rao
et al. (2021), and Tranception Notin et al. (2022). The third category includes end-to-end learn-
ing models such as DDGPred Shan et al. (2022) and another End-to-End model that adopts Graph
Transformer (GT) Luo et al. (2023) as the encoder architecture, but employs an MLP to directly fore-
cast ∆∆G. The fourth grouping encompasses unsupervised/semi-supervised learning approaches,
consisting of ESM-IF Hsu et al. (2022) and MIF Yang et al. (2022). They pretrain networks on
structural data and then employ the pretrained representations to predict ∆∆G. MIF also utilizes
GT as an encoder for comparative purposes with two variations: MIF-∆logit uses the disparity in
log-probabilities of amino acid types to attain ∆∆G, and MIF-Network predicts ∆∆G based on
acquired representations. Besides, B-factors is the network that anticipates the B-factor of residues
and incorporates the projected B-factor in lieu of entropy for ∆∆G prediction. Lastly, Rotamer
Density Estimator (RDE) Luo et al. (2023) uses a flow-based generative model to estimate the prob-
ability distribution of rotamers and uses entropy to measure flexibility with two variants containing
RDE-Linear and RDE-Network. PPIFormer (Bushuiev et al., 2023) is pretrained on a newly col-
lected non-redundant 3D PPI interface dataset PPIRef through the mask language modeling (MLM)
technique. More details are in the Appendix A.

Five metrics are used: Pearson and Spearman correlation coefficients, minimized RMSE, minimized
MAE (mean absolute error), and AUROC (area under the receiver operating characteristic). Calcu-
lating AUROC involves classifying mutations according to the direction of their ∆∆G values. In
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Table 1: Evaluation of ∆∆G prediction on the SKEMPI.v2 dataset.

Method Pretrain Per-Structure Overall
Pearson Spearman Pearson Spearman RMSE MAE AUROC

Energy Function-based
Rosetta – 0.3284 0.2988 0.3113 0.3468 1.6173 1.1311 0.6562
FoldX – 0.3789 0.3693 0.3120 0.4071 1.9080 1.3089 0.6582
Supervised-based
DDGPred ✗ 0.3750 0.3407 0.6580 0.4687 1.4998 1.0821 0.6992
End-to-End ✗ 0.3873 0.3587 0.6373 0.4882 1.6198 1.1761 0.7172
Sequence-based
ESM-1v ✓ 0.0073 -0.0118 0.1921 0.1572 1.9609 1.3683 0.5414
PSSM ✓ 0.0826 0.0822 0.0159 0.0666 1.9978 1.3895 0.5260
MSA Transf. ✓ 0.1031 0.0868 0.1173 0.1313 1.9835 1.3816 0.5768
Tranception ✓ 0.1348 0.1236 0.1141 0.1402 2.0382 1.3883 0.5885
Unsupervised or Semi-supervised-based
B-factor ✓ 0.2042 0.1686 0.2390 0.2625 2.0411 1.4402 0.6044
ESM-IF ✓ 0.2241 0.2019 0.3194 0.2806 1.8860 1.2857 0.5899
MIF-∆logit ✓ 0.1585 0.1166 0.2918 0.2192 1.9092 1.3301 0.5749
MIF-Net. ✓ 0.3965 0.3509 0.6523 0.5134 1.5932 1.1469 0.7329
RDE-Linear ✓ 0.2903 0.2632 0.4185 0.3514 1.7832 1.2159 0.6059
RDE-Net. ✓ 0.4448 0.4010 0.6447 0.5584 1.5799 1.1123 0.7454
PPIFormer ✓ 0.4281 0.3995 0.6450 0.5304 1.6420 1.1186 0.7380

Refine-PPI ✗ 0.4475 0.4102 0.6584 0.5394 1.5556 1.0946 0.7517
Refine-PPI ✓ 0.4561 0.4374 0.6592 0.5608 1.5643 1.1093 0.7542

A. B.

Figure 5: A. Visualization of correlations between experimental ∆∆G and predicted ∆∆G. D. A
selected example of the interface of a predicted mutant structure. B. The scatter plot shows that the
recovery error of the wild-type structure has a positive relation with the error of ∆∆G prediction.

practical scenarios, the correlation observed within a specific protein complex attracts heightened
interest. To account for this, we arrange mutations according to their associated structures. Groups
with fewer than 10 mutation data points are excluded. Subsequently, correlation calculations are
performed for each structure independently, leading to two additional metrics: the average per-
structure Pearson and Spearman correlation coefficients. Other details are in the Appendix A.

4.2 COMPARISON WITH EXISTING TOOLS ON MUTANT EFFECT PREDICTION

Tab. 1 documents the results, and performance on subsets of single-mutation and multi-mutation
is removed to Appendices 7 and 8 due to space limitation. It can be seen that our Refine-PPI
model is better or more competitive in all regression metrics. Precisely, it achieves the highest per-
structure Spearman and Pearson’s correlations, which are considered as our primary metrics because
the correlation of one specific protein complex is the most important.

Multiple point mutations are often required for successful affinity maturation (Sulea et al., 2018),
and Refine-PPI outperforms DDGPred and RDE-Net by a large margin in the multi-mutation subset.
This stems from the fact that RDE-Net and DDGPred perceive the mutant structures the same as the
wild-type and consequently are not aware of the structural distinction. On the contrary, the mutant
structures with multiple mutations should be more different than those with single mutations, and it
becomes more crucial to detect the variant after the mutation. Refine-PPI anticipates the structural
transformation due to mutation and can connect the structural change with ∆∆G. Notably, Refine-
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PPI trained from scratch has already outpassed pretrained methods such as RDE-Net, MIF-Net,
and ESM-IF, which enjoy the unsupervised benefits in PDB-REDO. This further verifies the great
success of Refine-PPI.

4.3 CORRELATION BETWEEN VARIANCE AND ATOMIC UNCERTAINTY

PDC posits that atoms adhere to Gaussian and derives geometric attributes such as distance and
angles as distributions, where Σ determines the magnitude of 3D atomic uncertainty. Here, we jus-
tify the correspondence between Σ and positional uncertainty. Notably, experimentally observing
and documenting particle uncertainty within macromolecules, such as proteins, is challenging. All
data in PDB or SKEMPI.v2 are deterministic and uncertainty-free conformations. As a solution, we
resort to molecular dynamics (MD) simulations to simulate atomic motions. Notably, MD approxi-
mates atomic motions by Newtonian physics and can capture the sequential behavior of molecules
in full atomic details at a very fine temporal resolution. We run short-time MD for all complexes in
SKEMPI.v2 and calculate the Root Mean Square Fluctuation (RMSF) alongside the entire trajectory,
which numerically indicates positional differences between entire structures over time. It calculates
individual residue flexibility, or how much a particular residue fluctuates during a simulation.

4.3.1 INITIALIZATION OF VARIANCE

Table 2: Performance of different initialization meth-
ods for the coordinate variance Σ (without pretraining)

Method Per-Structure
Pearson Spearman

Identity Matrix 0.4422± 0.0033 0.4043± 0.0018
MD Simulations 0.4522± 0.0036 0.4287± 0.0015
Learnable Σ 0.4475± 0.0034 0.4102± 0.0017

We investigate three mechanisms to ini-
tialize Σ. First and naively, we turn all
Σi into an identity matrix I. Second, we
leverage RMSF as the initial Σ. Third, we
adopt a learnable strategy to initialize Σ,
where an embedding layer maps each cat-
egory of twenty residue types to their cor-
responding Σ. Their performance is listed
in Tab. 2, where the mean and standard deviation are documented for three runs. It can be found
that MD-based initialization achieves the best Spearman (0.4287), outweighing the learnable one
(0.4102) and the identity matrix (0.4043), emphasizing the efficacy of incorporating simulated un-
certainty into the PDC module. This implies that simulated uncertainty is the optimal choice for this
variance, and learned variance ideally should move towards this simulated uncertainty. However,
since MD simulations are time-consuming and costly, it is prohibited to implement MD during the
inference stage each time. As a consequence, we use the learnable sort in Refine-PPI for subsequent
experiments.

4.3.2 ANALYSIS OF LEARNED UNCERTAINTY

WT 5F4EWT 2QJA

WT 3MZG WT 4UWQ

Figure 6: Visualization of learned un-
certainty. A darker color corresponds to
a more flexible protein segment.

Visualization of Learned Variance. We randomly
pick up four PDBs and visualize the learned variance,
that is, the magnitude of ||Σi||2 in Fig. 5. Pictures show
that particles at the interface have a smaller variation
than those at protein edges. This aligns with the bio-
logical concept that atoms in the binding surface are less
volatile than atoms in other parts of the complex. This
phenomenon confirms that PDC-Net has adaptively com-
prehended the magnitude and strength of entities’ motion
during PPIs.

Quantitative Analysis. We also quantitatively investi-
gated the correlation between the learned variance and the
ground truth uncertainty. A detailed comparison, classi-
fied by residues at and not at the interface, is in Tab. 3.
Notably, the ground truth RMSF at the interface is signif-
icantly smaller than that observed elsewhere. At the same time, the learned Σi exhibits a parallel
pattern, where ||Σi||2 at the interface is much smaller. This analysis further substantiates that the
learned variance corresponds to atomic uncertainty.
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Table 3: Performance of different position variance update methods without pretraining.
Interface Non-Interface Overall

RMSF 0.4945 0.9735 0.8271
||Σi||2 0.6072 0.8940 0.7745

4.3.3 PERFORMANCE OF UNCERTAINTY PREDICTION WITH MD SIMULATIONS

Table 4: Performance on the uncer-
tainty prediction task.

Model MSE

SchNet 0.5214± 0.038
GVP-GNN 0.2807± 0.025
SE(3)-Trans. 0.3462± 0.035
EGNN 0.2609± 0.026
TorchMD-Net 0.2011± 0.013
SphereNet 0.1688± 0.021
EquiFormer 0.1659± 0.022
PDC-EGNN 0.1381± 0.020

To further verify the efficacy of our PDC-Net to capture the
atomic uncertainty, we propose a more straightforward task,
where DL models are required to directly predict the simulated
uncertainty (i.e., RMSF). On the one hand, we adopt PDC-
EGNN and directly enforce the learnable variance to corre-
spond to the simulated uncertainty. The loss term is therefore
set as MSE(||Σi||2,RMSF). On the other hand, we leverage
some advanced geometric networks and require them to output
RMSF based on the residue feature of the final layer. The loss
is written as MSE(MLP(h(L)),RMSF), where MLP is the ab-
breviation of the multi-layer perceptron. A group of baselines
are selected for thorough comparison, including SchNet (Schütt et al., 2018), GVP-GNN (Jing et al.,
2020), SE(3)-Transformer (Fuchs et al., 2020), SphereNet (Liu et al., 2021), TorchMD-Net (Thölke
& De Fabritiis, 2021), and EquiFormer (Liao & Smidt, 2022). We run three random seeds and report
the mean and standard deviation of these three runs in Tab. 4. The experiments show that the PDC
module achieves the best performance in understanding the atomic uncertainty and significantly im-
proves the ability of EGNN to forecast RMSF. This phenomenon illustrates that our design of Σ can
be a good choice to represent and encode atomic uncertainty in the 3D space.

To summarize, though our loss term primarily influences output positions without directly enforcing
the network to capture uncertainty information, extensive experiments demonstrate that the theoret-
ical foundation of our PDC-module design closely connects the concept of atomic uncertainty with
the variance of positional distributions Σ.

4.4 DISCUSSION OF REFINE-PPI

Table 5: Performance of different
coordinate initialization strategies for
MMM.

Method Per-Structure
Pearson Spearman

Easy 0.4417 0.4060
Hard 0.4475 0.4102

Ablation Studies. We also conduct additional experi-
ments to investigate the contributions of each component
of our Refine-PPI and the results are displayed in Tab. 6.
It can be concluded that the introduction of co-training of
the structure refinement and the ∆∆G prediction greatly
contributes to the promotion of all metrics, culminating
in an increase of 11.8% and 15.6% in per-structure Pear-
son’s and Spearman correlations. Additionally, PDC-Net
also brings obvious benefits such as a lower MAE and a higher AUORC. In Tab. 5, we report the
performance of two initialization strategies to corrupt the masked region. The easy mode (denoising-
based) is slightly outpassed by the hard one (surroundings-based).

Table 6: Ablation study of Refine-PPI without pretraining, where we choose the backbone hρ (i.e.,
Graph Transformer) as the foundation model for comparison (i.e., No. 1).

No. MMM PDC-Net Per-Structure Overall
Pearson Spearman Pearson Spearman RMSE MAE AUROC

1 ✗ ✗ 0.3708 0.3353 0.6210 0.4907 1.6199 1.1933 0.7225
2 ✓ ✗ 0.4145 0.3875 0.6571 0.5553 1.5580 1.1025 0.7460
3 ✓ ✓ 0.4475 0.4102 0.6584 0.5394 1.5556 1.0946 0.7517

Visualization of Results. We envision the scatter plot of experimental and predicted ∆∆G and
also draw the relation between the error of wild-type structure recovery and the error of ∆∆G esti-
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mation in Fig. 5. It can be found that, generally, a small error of wild-type structure reconstruction
leads to a more accurate ∆∆G prediction. This indicates that these two tasks are closely related to
each other. In addition, we provide a case study of 16 seed complexes with different numbers of mu-
tations that are well predicted by our Refine-PPI in Fig. 9. It can be discovered that Refine-PPI can
realize a pretty high Spearman of 0.7 even when there are more than three mutations. In addition,
we visualize three hallucinated mutant structures in the Appendix C.

5 CONCLUSION

This work proposes a new framework named Refine-PPI to predict the mutation effect. Given that
mutant structures are always absent, we introduce an additional structure refinement module to re-
cover the masked regions around the mutations. This module is trained simultaneously via mask
geometric modeling. In addition, we notice that protein-protein interactions are a dynamic process,
but few prior studies have taken this characteristic into account in a deep learning design. To bridge
the gap, we present a probability density cloud (PDC)-Network to capture the dynamics in atomic
resolution. Our results highlight the necessity to adopt a more robust mutant structure and consider
dynamics for molecular modeling. A statement regarding limitations and future work is elaborated
in Appendix E.
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A EXPERIMENTAL DETAILS

We implement all experiments on 4 A100 GPUs, each with 80G memory. Refine-PPI is trained
with an Adam optimizer without weight decay and with β1 = 0.9 and β2 = 0.999. A ReduceL-
ROnPlateau scheduler is employed to automatically adjust the learning rate with a patience of 10
epochs and a minimum learning rate of 1.e − 6. The batch size is set to 64 and an initial learning
rate of 1.e− 4. The maximum iterations are 50K and the validation frequency is 1K iterations. The
node dimension is 128, and no dropout is conducted. As for the structure refinement, the recycle
number is set as 3, and the balance weight is tuned as 1.0. We performed a grid search to find the
optimal length of the masked region and found that l = r = 5 is a good choice. However, different
initializations require different optimal hyperparameters, and typically we can mask longer regions
for denoising-based MMM. The pretraining follows a similar training scheme with a batch size of
32. During pretraining, the data loader randomly selects a cluster and then randomly chooses a chain
from the cluster to ensure balanced sampling. Since there is no mutant residue in PDB-REDO, we
randomly select a seed residue from the chosen chain and adopt the same MMM strategy.

As for the specific model architecture, the backbone module hρ(.) can take the form of any conven-
tional geometric neural network (e.g., GVP-GNN, EGNN, SE(3)-Transformer, Graph Transformer).
Here, we adopt a one-layer Graph Transformer (Luo et al., 2023) to extract general representations
of proteins. The refinement module fθ(.) needs to output both updated features and coordinates,
and therefore we use PDC-EGNN as fθ(.) in our experiments. Lastly, the head predictor gτ (.) is a
simple linear layer that accepts the concatenation of representations of both wide and mutation types
and forecasts the change in free energy. The total model size of our Refine-PPI is approximately 6M.

A.1 BASELINES IMPLEMENTATIONS

Baselines that require training and calibration using the SKEMPI.v2 dataset (DDGPred, End-to-
End, B-factor, MIF-∆logit, MIF-Network, RDE-Linear, and RDE-Net) are trained independently
using the 3 different splits of the dataset as described in Section 4.1. This is to ensure that every data
point in the SKEMPI.v2 dataset is tested once. Below are descriptions of the implementation of the
baseline methods, which follow the same scheme as Luo et al. (2023) and Bushuiev et al. (2023).

Rosetta (Alford et al., 2017; Leman et al., 2020): The Rosetta version is 2021.16, and the scor-
ing function is ref2015 cart. Every protein structure in the SKEMPI.v2 dataset is first pre-
processed using the relax application. The mutant structure is built by cartesian ddg. The
binding free energies of both wild-type and mutant structures are predicted by interface energy
(dG separated/dSASAx100). Finally, the binding ∆∆G is calculated by subtracting the binding
energy of the wild-type structure from the binding energy of the mutant.

FoldX (Delgado et al., 2019): Structures are first relaxed by the RepairPDB command. Mutant
structures are built with the BuildModel command based on the repaired structure. The change in
binding free energy ∆∆G is calculated by subtracting the wild-type energy from the mutant energy.

ESM-1v (Meier et al., 2021): We use the implementation provided in the ESM open-source reposi-
tory. Protein language models can only predict the effect of mutations for single protein sequences.
Therefore, the cases where mutations occur in multiple sequences are ignored. The sequence of the
mutated protein chain is extracted from the SEQRES entry in the PDB file. A masked marginal
mode is used to score both wild-type and mutant sequences and use their difference as an estimate
of ∆∆G.

PSSM MSAs are constructed from the Uniref90 database for chains with mutation annotations in the
SKEMPI.v2 dataset. Jackhmmer version 3.3.1 is used following the setting in Meier et al. (2021).
The MSAs are filtered using HHfilter with coverage 75 and sequence identity 90. This HHfilter
parameter is reported to have the best performance for MSA Transformer according to Meier et al.
(2021). Position-specific scoring matrices (PSSM) is calculated and the change in probability is
used as a prediction of ∆∆G.

MSA Transformer (Rao et al., 2021): We use the implementation provided in the ESM open-
source repository. We input the MSAs constructed during the evaluation of the PSSM to the MSA
Transformer. We used the mask-marginal mode to score both wild-type and mutant sequences and
use their difference as the prediction of ∆∆G.
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Tranception (Notin et al., 2022): We use the implementation provided in the Tranception open-
source repository. We predict mutation effects using the large model checkpoint. Previously built
MSAs (not filtered by HHfilter) are used for inference-time retrieval.

DDGPred (Shan et al., 2022): We use the implementation that follows the paper by Shan et al.
(2022). Since this model requires predicted sidechain structures of the mutant, we use mutant struc-
tures packed during our evaluation of Rosetta to train the model and run prediction.

End-to-End: The end-to-end model shares the same encoder architecture as RDE (Luo et al., 2023).
The difference is that in the RDE normalizing flows follow the encoder to model rotamer distribu-
tions, but in the end-to-end model, the embeddings are directly fed to an MLP to predict ∆∆G.

B-factor: This model predicts per-atom b-factors for proteins. It has the same encoder architecture
as RDE (Luo et al., 2023). The encoder is followed by an MLP that predicts a vector for each amino
acid, where each dimension is the predicted b-factor of different atoms in the amino acid. The amino
acid-level b-factor is calculated by averaging the atom-level b-factors. The predicted b-factors are
used as a measurement of conformational flexibility. They are used to predict ∆∆G using the linear
model same as RDE-Linear (Luo et al., 2023).

ESM-IF (Hsu et al., 2022): ESM-IF can score protein sequences using the log-likelihood. Im-
plementation of the scoring function is provided in the ESM repository. We enable the –
multichain backbone flag to let the model see the whole protein-protein complex. We subtract the
log-likelihood of the wild-type from the mutant to predict ∆∆G.

MIF Architecture: The masked inverse folding (MIF) network uses the same encoder architecture
as RDE (Luo et al., 2023). Following the encoder is a per-amino-acid 20-category classifier that
predicts the type of masked amino acids. We use the same PDB-REDO train-test split to train the
model. At training time, we randomly crop a patch consisting of 128 residues and randomly mask
10% amino acids. The model learns to recover the type of masked amino acids with the standard
cross entropy loss.

MIF-∆logit: To score mutations, we first mask the type of mutated amino acids. Then, we use the
log probability of the amino acid type as the score. Analogously, we have the score of the wild-
type bound ligand, wild-type bound receptor, wild-type unbound ligand, unbound receptor, mutated
bound ligand, mutated bound receptor, and mutated unbound ligand. Therefore, we use the identical
linear model to RDE-Linear (Luo et al., 2023) to predict ∆∆G from the scores.

MIF-Network: This is similar to RDE-Network (Luo et al., 2023). The difference is that we use
the pre-trained encoder of MIF rather than the encoder of RDE. We also freeze the MIF encoder as
we aim to utilize the unsupervised representations.

PPIFormer: We use EquiFormer as the backbone and pretrain it on PPIRef. Then the effects of
mutations are predicted via the log odds ratio.

A.2 VISUALIZATION OF COORDINATE INITIALIZATION IN MMM

To better clarify the initialization of our MMM, we show the process of two different mechanisms
(i.e., the easy denoising-based one and the hard surrounding-based one) in Fig. 7.

A.3 PSEUDO-CODE OF REFINE-PPI

B ADDITIONAL RESULTS

B.1 PERFORMANCE ON SUBSETS AND CASE STUDIES

For better comparison of our Refine-PPI and other baselines, we make a bar plot on per-structure
Pearson’s and Spearman correlations in Fig. 8. We also explicitly document the evaluation results
of different methods on the multi-mutation and single-mutation subsets of the SKEMPI.v2 dataset
in Tab. 7 and Tab. 8. It can be found that with pretraining on PDB-REDO, Refine-PPI achieves the
best per-structure metrics on both multi-mutation and single-mutation subsets. This indicates that
Refine-PPI is a more effective tool to screen and select mutant proteins for desired properties.
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Figure 7: The illustration of coordinate initialization in the MMM task.

Algorithm 1 The workflow of our Refine-PPI.
Input: wild-type structure GWT, mutant site and amino acid types am and a′m; backbone module
hρ, refinement model fθ, head predictor gτ ; number of recycles k, the real free energy change y,
loss weight λ
G̃WT
0 , G̃MT

0 ← Equation 1
(
GWT

)
▷ Initialize structures

# Training-only
for t = 0, 1, ..., k − 1 do
ZWT
t ← hρ

(
G̃WT
t

)
x̃WT
t+1 ← fθ

(
G̃WT
t ,ZWT

t , x̃WT
t , am

)
end for
Lrefine ← Equation 2

(
x̃WT
k ,xWT

)
▷ The MMM loss

for t = 0, 1, ..., k − 1 do
ZMT
t

No grad.←−−−− hρ
(
G̃MT
t

)
x̃MT
t+1

No grad.←−−−− fθ
(
G̃MT
t ,ZMT

t , x̃MT
t , a′m

)
end for
ZWT,ZMT ← hρ

(
GWT

)
, hρ

(
G̃MT
k

)
ŷ ← gτ

(
ZWT,ZMT

)
L∆∆G ← RMSE(ŷ, y) ▷ The ∆∆G loss
# Backpropagation
ρ, θ, τ ← L∆∆G + λLrefine

B.2 POSITION VARIANCE UPDATE IN PDC-EGNN

Notably, the way to update the variance of the positions of different atoms is not unique. Here, we
offer another kind of approach to renew the variance in the layer of PDC-EGNN.

Σ
(l+1)
i =

1 +
1

|N (i)|
∑

j∈N (i)

ϕµ(mj→i)

2

Σ
(l)
i +

1

|N (i)|
∑

j∈N (i)

ϕµ(mj→i)Σ
(l)
j , (7)

where we leverage the same ϕµ instead of a new ϕσ . Besides, we distribute and square the xi
terms because xi − xj is not independent of xi. Noticeably, this Equation 7 does not damage the
equivariance property of our model. Experiments show that this form of position variance compu-
tation performs slightly better in the mutant effect prediction task (see Tab. 9), with a per-structure
Spearman of 0.4490.
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Figure 8: Per-structure Spearman and Pearson correlations of different baseline methods and Refine-
PPI.

Table 7: Evaluation of ∆∆G prediction on the multi-mutation subset of the SKEMPI.v2 dataset.

Method Pretrain Per-Structure Overall
Pearson Spearman Pearson Spearman RMSE MAE AUROC

Energy Function-based
Rosetta – 0.1915 0.0836 0.1991 0.2303 2.6581 2.0246 0.6207
FoldX – 0.3908 0.3640 0.3560 0.3511 1.5576 1.0713 0.6478
Supervised-based
DDGPred ✗ 0.3912 0.3896 0.5938 0.5150 2.1813 1.6699 0.7590
End-to-End ✗ 0.4178 0.4034 0.5858 0.4942 2.1971 1.7087 0.7532
Sequence-based
ESM-1v ✓ -0.0599 -0.1284 0.1923 0.1749 2.7586 2.1193 0.5415
PSSM ✓ -0.0174 -0.0504 -0.1126 -0.0458 2.7937 2.1499 0.4442
MSA Transf. ✓ -0.0097 -0.0400 0.0067 0.0030 2.8115 2.1591 0.4870
Tranception ✓ -0.0688 -0.0120 -0.0185 -0.0184 2.9280 2.2359 0.4874
Unsupervised or Semi-supervised-based
B-factor ✓ 0.2078 0.1850 0.2009 0.2445 2.6557 2.0186 0.5876
ESM-IF ✓ 0.2016 0.1491 0.3260 0.3353 2.6446 1.9555 0.6373
MIF-∆logit ✓ 0.1053 0.0783 0.3358 0.2886 2.5361 1.8967 0.6066
MIF-Net. ✓ 0.3968 0.3789 0.6139 0.5370 2.1399 1.6422 0.7735
RDE-Linear ✓ 0.1763 0.2056 0.4583 0.4247 2.4460 1.8128 0.6573
RDE-Net. ✓ 0.4233 0.3926 0.6288 0.5900 2.0980 1.5747 0.7749
PPIFormer ✓ 0.3985 0.3925 0.6405 0.5946 2.1407 1.5753 0.7893

Refine-PPI ✗ 0.4474 0.4134 0.6307 0.5839 2.0939 1.5894 0.7831
Refine-PPI ✗ 0.4558 0.4289 0.6458 0.6091 2.0601 1.554 0.8064

C VISUALIZATION OF HALLUCINATED STRUCTURES

Here we provide some instances of mutant structures hallucinated by our Refine-PPI in Fig. 10.
Since the ground truth mutant structures are inaccessible, we leave it for future work to examine
their accuracy.

D PROOF OF EQUIVARIANCE

Equivariance is an important characteristic, and here, we demonstrate that PDC-Net strictly follows
this rule of principle. More formally, for any translation vector g ∈ R3 and for any orthogonal
matrix Q ∈ R3×3, the model should satisfy:

h(l+1),
{
Qµ

(l+1)
i + g,Q⊤Σ

(l+1)
i Q

}n
i=1

= PDC-L
[
h(l),

{
Qµ

(l)
i + g,Q⊤Σ

(l)
i Q

}n
i=1

, E
]
. (8)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 8: Evaluation of ∆∆G prediction on the single-mutation subset of the SKEMPI.v2 dataset.

Method Pretrain Per-Structure Overall
Pearson Spearman Pearson Spearman RMSE MAE AUROC

Energy Function-based
Rosetta – 0.3284 0.2988 0.3113 0.3468 1.6173 1.1311 0.6562
FoldX – 0.3908 0.3640 0.3560 0.3511 1.5576 1.0713 0.6478
Supervised-based
DDGPred ✗ 0.3711 0.3427 0.6515 0.4390 1.3285 0.9618 0.6858
End-to-End ✗ 0.3818 0.3426 0.6605 0.4594 1.3148 0.9569 0.7019
Sequence-based
ESM-1v ✓ 0.0422 0.0273 0.1914 0.1572 1.7226 1.1917 0.5492
PSSM ✓ 0.1215 0.1229 0.1224 0.0997 1.7420 1.2055 0.5659
MSA Transf. ✓ 0.1415 0.1293 0.1755 0.1749 1.7294 1.1942 0.5917
Tranception ✓ 0.1912 0.1816 0.1871 0.1987 1.7455 1.1708 0.6089
Unsupervised or Semi-supervised-based
B-factor ✓ 0.1884 0.1661 0.1748 0.2054 1.7242 1.1889 0.6100
ESM-IF ✓ 0.2308 0.2090 0.2957 0.2866 1.6728 1.1372 0.6051
MIF-∆logit ✓ 0.1616 0.1231 0.2548 0.1927 1.6928 1.1671 0.5630
MIF-Net. ✓ 0.3952 0.3479 0.6667 0.4802 1.3052 0.9411 0.7175
RDE-Linear ✓ 0.3192 0.2837 0.3796 0.3394 1.5997 1.0805 0.6027
RDE-Net. ✓ 0.4687 0.4333 0.6421 0.5271 1.3333 0.9392 0.7367
PPIFormer ✓ 0.4192 0.3796 0.6287 0.4772 1.4232 0.9562 0.7213

Refine-PPI ✗ 0.4474 0.4134 0.6667 0.5338 1.2963 0.9179 0.7431
Refine-PPI ✓ 0.4701 0.4459 0.6658 0.5153 1.2978 0.9287 0.7481

Table 9: Performance of different position variance update methods (without pretraining).

Method Per-Structure
Pearson Spearman

Equ. 6 0.4475 0.4102
Equ. 7 0.4490 0.4153

We will analyze how the translation and rotation of input coordinates propagate through our
model. We start by assuming that h0 is invariant to the E(n) transformations on the co-
ordinate distributions ν. In other words, information on the absolute position or orientation
of ν0 is not encoded in h0. Then, the distance between two particles is invariant to trans-
lations, rotations, and reflections. This is because, for the mean of distance µdij , we have
tr
(
Q⊤ΣiQ+Q⊤ΣjQ

)
= tr (Σi +Σj) due to the characteristic of the isotropic matrix and

||Qµ
(l)
i + g − (Qµ

(l)
j + g)||2 = ||Qµ

(l)
i − Qµ

(l)
j ||2 = (µ

(l)
i − µ

(l)
j )⊤Q⊤Q(µ

(l)
i − µ

(l)
j ) =

(µ
(l)
i − µ

(l)
j )⊤I(µ(l)

i − µ
(l)
j ) = ||µ(l)

i − µ
(l)
j ||2. Meanwhile, for the variance of distance

σdij , we have [Qµi + g − (Qµj + g)]
⊤ (
Q⊤ΣiQ+Q⊤ΣjQ

)
[Qµi + g − (Qµj + g)] = (µi −

µj)
⊤Q⊤ (Σi +Σj)Q(µi − µj) = (µi − µj)

⊤ (Σi +Σj) (µi − µj). Consequently, the output
mj→i will also be invariant as the edge operation ϕe(.) becomes invariant.

Afterward, the equations of our model that update the mean and variance of coordinates x are E(n)
equivariant as well. In the following, we prove their equivariance by showing that a E(n) trans-
formation of the input leads to the same transformation of the output. Notice that mj→i is already
invariant as proven above. Notably, the translation g has no impact over the variance of coordinates
Σ

(l)
i . Thus, we want to show:

Qµ
(l+1)
i + g = Qµ

(l)
i + g +

1

|N (i)|
∑

j∈N (i)

(
Qµ

(l)
i + g −

[
Qµ

(l)
j + g

])
ϕµ(mj→i),

Q⊤Σ
(l+1)
i Q = Q⊤Σ

(l)
i Q+

1

|N (i)|
∑

j∈N (i)

(
Q⊤Σ

(l)
i Q+Q⊤Σ

(l)
j Q

)
ϕσ(mj→i).

(9)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

0.0 0.5 1.0 1.5 2.0 2.5 3.0
G_real  (kcal/mol)

1

0

1

2

3

4

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 3SZK -- 21 Samples

1 mut
MAE:  0.599  
Pear.: 0.722  
Spear.: 0.675  
R2: -1.411 

0.0 0.5 1.0 1.5 2.0
G_real  (kcal/mol)

1

0

1

2

3

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 3C60 -- 35 Samples

1 mut
MAE:  0.310  
Pear.: 0.781  
Spear.: 0.736  
R2: 0.335 

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
G_real  (kcal/mol)

2

1

0

1

2

3

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 3SE9 -- 25 Samples

1 mut
MAE:  0.625  
Pear.: 0.784  
Spear.: 0.705  
R2: -0.476 

0 1 2 3 4 5
G_real  (kcal/mol)

1

0

1

2

3

4

5

6

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 3QHY -- 25 Samples

1 mut
MAE:  0.732  
Pear.: 0.714  
Spear.: 0.703  
R2: 0.265 

2 1 0 1 2
G_real  (kcal/mol)

3

2

1

0

1

2

3

4

5

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 1C1Y -- 18 Samples

1 mut
2 mut
MAE:  0.730  
Pear.: 0.819  
Spear.: 0.898  
R2: 0.652 

0 1 2 3 4
G_real  (kcal/mol)

1

0

1

2

3

4

5

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 4L3E -- 13 Samples

1 mut
2 mut
MAE:  1.013  
Pear.: 0.825  
Spear.: 0.802  
R2: -1.885 

2 1 0 1 2
G_real  (kcal/mol)

3

2

1

0

1

2

3

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 3QDJ -- 17 Samples

1 mut
2 mut
MAE:  0.508  
Pear.: 0.717  
Spear.: 0.762  
R2: 0.427 

1 0 1 2 3
G_real  (kcal/mol)

2

1

0

1

2

3

4

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 1B41 -- 22 Samples

1 mut
2 mut
MAE:  0.549  
Pear.: 0.768  
Spear.: 0.786  
R2: -0.290 

0.0 0.5 1.0 1.5 2.0 2.5
G_real  (kcal/mol)

1

0

1

2

3

4

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 2DVW -- 10 Samples

1 mut
2 mut
3 mut
MAE:  0.564  
Pear.: 0.763  
Spear.: 0.685  
R2: 0.233 

0 2 4 6 8 10
G_real  (kcal/mol)

0

2

4

6

8

10

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 1A4Y -- 45 Samples

1 mut
2 mut
3 mut
MAE:  1.333  
Pear.: 0.831  
Spear.: 0.695  
R2: -0.195 

0 1 2 3 4 5 6 7
G_real  (kcal/mol)

0

2

4

6

8

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 2NZ9 -- 20 Samples

1 mut
3 mut
MAE:  0.379  
Pear.: 0.971  
Spear.: 0.896  
R2: 0.838 

0 1 2 3 4 5 6 7
G_real  (kcal/mol)

0

2

4

6

8

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 1Z7X -- 21 Samples

1 mut
2 mut
3 mut
MAE:  0.977  
Pear.: 0.935  
Spear.: 0.719  
R2: 0.480 

0.0 0.5 1.0 1.5 2.0 2.5
G_real  (kcal/mol)

1

0

1

2

3

4

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 1CZ8 -- 18 Samples

1 mut
2 mut
3 mut
n mut
MAE:  0.447  
Pear.: 0.708  
Spear.: 0.768  
R2: -0.270 

0 1 2 3 4 5 6 7
G_real  (kcal/mol)

0

2

4

6

8

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 2NYY -- 32 Samples

1 mut
2 mut
n mut
MAE:  0.405  
Pear.: 0.942  
Spear.: 0.701  
R2: 0.880 

2 1 0 1 2 3 4
G_real  (kcal/mol)

3

2

1

0

1

2

3

4

5

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 4FTV -- 18 Samples

1 mut
2 mut
3 mut
n mut
MAE:  0.983  
Pear.: 0.666  
Spear.: 0.735  
R2: -1.346 

1 0 1 2 3 4 5 6
G_real  (kcal/mol)

2

0

2

4

6

G_
pr

ed
  (

kc
al

/m
ol

)

Seed 2C5D -- 16 Samples

1 mut
2 mut
3 mut
n mut
MAE:  0.606  
Pear.: 0.953  
Spear.: 0.832  
R2: -4.795 

Figure 9: Prediction plots of 16 seed PDBs that are made by Refine-PPI. Four rows correspond to
different numbers of mutations, where the gray belt represents acceptable prediction errors. It can be
found that Refine-PPI can perform well in all circumstances containing one, two, or more mutations.

Its derivation is as follows.

Qµ
(l)
i + g +

1

|N (i)|
∑

j∈N (i)

(
Qµ

(l)
i + g −

[
Qµ

(l)
j + g

])
ϕµ(mj→i)
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|N (i)|
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(
µ
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i − µ
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j
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1

|N (i)|
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(
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i + g.

(10)
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Figure 10: Examples of hallucinated structures of mutation-type.
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(11)

Therefore, we have proven that rotating and translating the mean and variance of x(l) results in the
same rotation and translation on the mean and variance of x(l+1).

Furthermore since the update of h(l) only depend on mj→i and h(l) which as saw at the be-
ginning of this proof, are E(n) invariant, therefore, h(l+1) will be invariant too. Thus, we
conclude that a transformation Qµ

(l)
i + g in µ

(l)
i will result in the same transformation on

µ
(l+1)
i while h(l+1) will remain invariant to it so that h(l+1),

{
Qµ

(l+1)
i + g,Q⊤Σ

(l+1)
i Q

}n
i=1

=

PDC-L
[
h(l),

{
Qµ

(l)
i + g,Q⊤Σ

(l)
i Q

}n
i=1

, E
]

is satisfied.

E LIMITATIONS AND FUTURE WORK

Despite the success of Refine-PPI in estimating the mutation effect, there is still room left for im-
provement. First, Refine-PPI keeps most of the complex stable and merely restores a region around
the mutant site. It is possible that the entire complex can be significantly different upon mutation.
Therefore, a promising future direction would be to enlarge the mask region. Furthermore, previous
studies demonstrate the benefit of structural pretraining to dramatically expand the representation
space of DL models. We expect to implement MMM with more experimental structures other than
PDB (e.g., Alphafold-Database) and transfer the knowledge to predict free energy change.

20


	Introduction
	Preliminary and Background
	Method
	Probability Density Cloud Network

	Results
	Experimental Setups
	Comparison with Existing Tools on Mutant Effect Prediction
	Correlation between Variance and Atomic Uncertainty
	Initialization of Variance
	Analysis of Learned Uncertainty
	Performance of Uncertainty Prediction with MD Simulations

	Discussion of Refine-PPI

	Conclusion
	Experimental Details
	Baselines Implementations
	Visualization of Coordinate Initialization in MMM
	Pseudo-code of Refine-PPI

	Additional Results
	Performance on Subsets and Case Studies
	Position Variance Update in PDC-EGNN

	Visualization of Hallucinated Structures
	Proof of Equivariance
	Limitations and Future Work

