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ABSTRACT

We proposed the molecular hyper-message passing network (MolHMPN1) that pre-
dicts the molecular properties of a molecule with prior knowledge-guided sub-
graph. Modeling higher-order connectivities in molecules is necessary as changes
in both the pair-wise and higher-order interactions among atoms results in the
change of molecular properties. Many approaches have attempted to model the
higher-order connectivities. However, those methods relied heavily on data-driven
approaches, and it is difficult to determine if the utilized subgraphs contain any
properties of interest or have any significance on the molecular properties. Hence,
we propose MolHMPN to utilize the functional group prior knowledge, which has
been defined by chemists, to model the pair-wise and higher-order connectivi-
ties among atoms in a molecule. Molecules can contain many types of func-
tional groups, which affect the properties the molecules. For example, the toxi-
city of a molecule is associated with toxicophores, such as nitroaromatic groups
and thiourea. MolHMPN uses functional groups to construct hypergraphs, modifies
the hypergraph using domain knowledge-guided learning scheme, and embeds
the graph and hypergraph inputs using a hypergraph message passing (HyperMP)
layer. Our model provides a way to utilize prior knowledge in chemistry for
molecular properties prediction tasks, and balances between the usage of prior
knowledge and data-driven learning adaptively. We show that our model is able
to outperform the other baseline methods for most of the dataset, and show that
using domain knowledge-guided data-learning is effective.

1 INTRODUCTION

Toxicological screening is vital for the development of new drugs, the evaluation of the therapeutic
potential of existing molecules, and the assessment of pharmacological activity and toxicity po-
tential of new molecules on human. Traditionally, toxicity studies of molecules relied on animal
testing, which can provide inadequate bases for predicting clinical outcomes on humans (Akhtar,
2015). It has also been estimated that it takes more than eight years to test and study a new drug
before its approval to the general public, which includes early laboratory and animal testing (Food
& Administration, 2015). Machine learning (ML) methods have therefore been utilized widely to
assess the effects that chemicals have on humans and the evironments as it is able to utilize large
types and sizes of data while reducing the time and cost it takes for drugs approval, and avoiding
costly late-stage failures.

In chemistry, molecules are constructed from a carbon skeleton, onto which functional groups are
attached to. The carbon skeleton a chain of carbon atoms and is relatively unreactive. On the other
hand, functional group is a group of atoms that are bonded together in a particular fashion, and
determines the reactivities and chemical properties of the molecules (Blackman, 2019). Functional
groups can therefore be seen as the higher-order interactions between groups of atoms in a molecule.
Molecules with the same functional groups often exhibit similar properties while molecules with
different functional groups exhibit different properties. Figure 1 shows examples of molecules that
have similar structures but with different properties. From figure 1, it can be seen that changes
in the pair-wise and higher-order interactions among the atoms can change the properties of the
molecules. (Kotera et al., 2008). Hence, accounting for both pair-wise and higher-order interactions

1The code is available at will-be-available-after-the-decision.
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Figure 1: Molecules of similar structures but different properties. xanthine is found in caffeine and
temporarily prevents or reduces drowsiness, theobromine is found in cacao and has mood improving
effect, and pentoxifylline is a drug used to treat muscle pain in people with peripheral artery disease.
The colored parts shows their difference. The yellow and pink parts show that the pair-wise interac-
tions between two atoms can change the properties of the molecules, and the yellow/pink and green
parts show that the higher-order interactions between atoms can change molecular properties.

among atoms is important for molecular properties prediction. The current study aims to learn to
identify and utilize these higher-order interactions to predict the properties of a target molecule.

In ML, graph-based methods have been used actively for molecule-related tasks for their ability to
represent molecules as graphs. Modeling higher-order connectivities is necessary in various graph-
related tasks (Jumper et al., 2021; Jin et al., 2018; 2020). Although this can be done by stacking
multiple graph convolution layers, it can cause the model to suffer from the oversmoothing problem
(Rong et al., 2020). Instead of performing multiple rounds of convolutions, graph pooling methods
learns to coarsen some parts of the graph into a single node (Ying et al., 2018; Noutahi et al., 2020).
Alternatively, this can also be done by augmenting substructures, such as introducing virtual nodes
(Li et al., 2018) or combining multiple nodes (Sun et al., 2019; Jin et al., 2020; Huang & Zitnik,
2020) as the subgraph. Similarly, hypergraphs contains hyperedges that are made up of nodes from
a subgraph (Feng et al., 2018; Bai et al., 2021). However, these methods have focused exclusively
on data-driven approaches and it is hard to determine if those subgraphs contain any properties
of interest or have any significance on the molecular properties like the functional groups. Hence,
inspired by the significance of functional groups on the properties of the molecules, the current study
aims to utilize the prior knowledge of functional groups to model the higher-order connectivities in
a molecule.

In this paper, we propose a molecular hyper-message passing network (MolHMPN) that is able to
predict the molecular properties of a molecule with prior knowledge-guided subgraphs. Our model
(MolHMPN) predicts the molecular properties by conducting the following sequential operations:

• Constructing hypergraphs using functional groups. Given a graph representation of a
molecule that is constructed from its simplified molecular-input line-entry system (SMILES)
string, MolHMPN constructs the hyperedges according to the chemically-valid functional groups
that have been identified by chemists to represent the higher-order connectivities among the atoms.
Each hyperedge represents a functional group that is present in a molecule (a molecule can have
many functional groups).

• Embedding the graph and hypergraph using hypergraph message passing layer (HyperMP).
The HyperMP consists of an atom graph convolution (AtomGC) and a functional group graph
convolution (FuncGC) for the graphs and hypergraphs respectively. It performs message passing
on the graphs and hypergraphs sequentially.

• Modifying the hypergraph using the computed embeddings. MolHMPN adjusts the input hyper-
graph by considering the original graph and hypergraph, and their respective embedded represen-
tations. This process updates the prior knowledge (i.e., input hypergraphs) with observations (i.e.,
embeddings) similar to that of the the Bayesian approaches.

• Predicting the molecular properties from the modified hypergraph. MolHMPN applies Hy-
perMP again to compute the embedding with the original graph and modified hypergraph, and
predict the target label with the updated embeddings.

The key contribution of the current study is on the adaptation of functional groups using prior knowl-
edge and the utilization of the prior knowledge selectively when conducting the molecular prediction
tasks. Our novelties are summarized as follows:
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• Providing a way to utilize the prior knowledge. MolHMPN translates functional groups, which
are based upon prior knowledge in chemistry, into hyperedges to process higher-order connectiv-
ities in molecules effectively.

• Balancing between prior knowledge and data-driven learning. Without heavily relying on the
functional group prior knowledge, MolHMPN learns to use such information adaptively depending
on the target input. This can alleviate risk of using faulty information or representations of the
target molecule.

We evaluate the effectiveness of MolHMPN on several datasets that are used for molecular properties
classification and regression tasks, and show that MolHMPN is able to outperform the other baseline
methods for most of datasets. We also analyze the usage of different types of substructures and the
effectiveness of the prior knowledge-guided data-driven learning for the prediction tasks.

2 RELATED WORKS

In this section, we provide an overview of the applications of graph neural networks (GNNs) in
chemistry-related tasks, and methods that utilizes higher-order connectivities and domain knowledge
in deep learning.

Applications of GNNs in chemistry. Graph representation of molecules is natural and preferred as
the molecular structure is inextricably linked to the molecular properties of the molecules. The atoms
and bonds of the molecules are represented by the nodes and edges of the graphs. These methods
take the graph as inputs and consider the pair-wise or higher-order connectivities among the graph
entities to predict the molecular properties. Message passing neural network (MPNN), a represen-
tative GNN architecture, has been devised as a fast simulation method to replace computationally
expensive quantum mechanical simulations (Gilmer et al., 2017). Directed MPNN (DMPNN), a
variant of MPNN, uses directional message passing based on directions of the edges (Yang et al.,
2019). Communicative MPNN (CMPNN) further improves DMPNN by devising a sophisticated
updating procedure for the nodes and edges, and strengthens the messages between the nodes and
edges using a message booster (Song et al., 2020). Subgraph neural network learns a disentangled
subgraph representation and propagates the messages at the subgraph level Alsentzer et al. (2020).
It has been shown experimentally that subgraphs contribute significantly to the prediction results
(Ying et al., 2019; Pope et al., 2019).

Higher-order connectivities in GNNs. Higher-order connectivities have been utilized in various
graph-related tasks. Many approaches attempted to extract meaningful subgraphs for their respec-
tive tasks. For instance, frequently-occurring substructures have been utilized for polymer genera-
tion and molecule property optimization (Jin et al., 2020), subgraphs that are constructed from their
K-hop neighbors for graph meta-learning tasks (Huang & Zitnik, 2020), and residual substructures
that are unspecified by the graph adjacency matrix has been utilized for molecular properties pre-
diction tasks (Li et al., 2018). Graph pooling methods has also been used to learn the hierarchical
representations of graphs (Ying et al., 2018; Noutahi et al., 2020).

Domain knowledge incorporation to Neural Networks (NNs). Incorporating domain knowledge
to ML models often enhances the performance while decreasing the number of training samples
that are required to attain a certain performance. For example, when the whole dynamics of the
target task is known, the entire (or partial) ML model can be trained to match the dynamics (Raissi
et al., 2019; Park & Park, 2019; Long et al., 2018; Yang et al., 2021). However, utilizing the entire
domain knowledge in a closed form may not be possible in practice, and may be unfavorable to
the models depending on the selection of prior knowledge. In this regard, prior knowledge can be
leveraged partially to regularize the models via augmented loss functions. It has also be shown
that models that leverage the prior knowledge partially are able to outperform their pure data-driven
counterparts (Erichson et al., 2019; Seo et al., 2019; Yin et al., 2020). MolHMPN is also a method
that uses prior knowledge to complement the data-driven (learning) scheme. However, unlike the
approaches above that constraint or penalize the models to conform to the prior knowledge, we
utilize the prior knowledge to guide the model and also allow the model to overcome it if needed.
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Figure 2: Overall architecture of MolHMPN

3 METHODOLOGY

This section highlights the methodology of the proposed MolHMPN. In MolHMPN, the hypergraphs
are first constructed using the prior knowledge of functional groups. The graph and constructed
hypergraphs are then embedded using the HyperMP layer(s) so as to modify the membership of
the hyperedges using the computed embeddings. The graph and modified hypergraphs are then
embedded again using the HyperMP layer(s) to predict the target label with the updated embedding.
Figure 2 shows the overall architecture of MolHMPN.

3.1 HYPERGRAPH CONSTRUCTION

Inspired by the significance of functional groups on the molecular properties as discussed in sec-
tion 1, we utilize the knowledge of functional groups that are defined by chemists to let the model
identify the similarities and differences of the molecules more easily. We represent the molecules as
conventional pair-wise graphs and hypergraphs. The conventional pair-wise graphs are defined as
G = {V,E}, where V is a set of nodes (atoms) vi ∈ V, and E is a set of edges (bonds) eij ∈ E if
a bond between vi and vj exists. The features of vi and eij are defined as xi and xij respectively.
The hypergraph is defined asH = {Hk|k = 1, ..., nK}, whereHk is kth hyperedge that has a set of
nodes as its members. The features ofHk are defined as zk.

When constructingH, we consider atoms in cyclic and acyclic (open-chain) groups separately. The
minimal collection of cycles in the molecules are extracted as Hk. For the acyclic groups, the
vicinity of the functional group is considered when extracting the hyperedge representation, which
is defined as the central atom and the atoms that are attached to it (Kotera et al., 2008). The main
atoms that are used are carbon (C), nitrogen (N), oxygen (O), phosphorus (P) and sulfur (S), and the
main bond types that are used are the single (−), double (=) and triple bonds (≡). The extraction
process of the acyclic groups can be described as follows:

1. Find a central atom (e.g., C, N, O, P or S) from G and set it as vc.
2. Find the 1-hop neighborhood set F1(vc) of vc, which is given as F1(vc) = {vj ∈
N (vc) | t(vj) ∈ At, t(eij) ∈ Bt}, where N (vc) is the neighborhood of vc, t(·) denotes
the types of atom/bond, and At,Bt are the sets of target atom and bond respectively that
are based accordingly to the target functional group.

3. Find the 2-hop neighborhood set F2(vc) of vc, which is given as F2(vc) = {vk ∈⋃
vj∈N (vi)

N (vj) | t(vj) 6= C ∨ t(eij) 6= −}.

4. The extracted hyperedge is henceHk = {vc} ∪ F1(vc) ∪ F2(vc).

Different combinations of the central atoms, and At, Bt are used to match each functional group.
Here, the prior knowledge of functional groups is applied in At and Bt. The remaining atoms that
do not belong to any of the specified functional groups are put into the same hyperedge if they are
connected by an edge. Figure 3 shows an example of the hyperedge construction for the carboxyl
group in aspirin. The list of functional groups used in this paper are given in Appendix A.1. G and
H will then be fed into the HyperMP layer to compute the embedding that are needed to adjust the
members ofHk.
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(a) G (b) Set vc (c) Find F1(vc) (d) Find F2(vc) (e) Extracted H

Figure 3: Hypergraph construction for aspirin. a) G of aspirin. b) Set carbon as vc. c) To find
F1(vc), set vc− O, vc = O and vc− C, where {O,C ∈ At} and {−,=∈ Bt}. d) To find F2(vc), find
vj that is not C and eij that is not a single bond. e) All the extractedHk of G.

3.2 GRAPH AND HYPERGRPH EMBEDDING WITH HYPERGRAPH MESSAGE PASSING

Modeling both the pair-wise (atom/bond) and higher-order (functional group) connectivities is cru-
cial for conducting the molecule property predictions. Hence, we introduce the hypergraph message
passing HyperMP layer to integrate the information from both the atoms and functional groups.
HyperMP updates the input graphs via two steps: atom graph convolution (AtomGC) and functional
group graph convolution (FuncGC). The general equation of the HyperMP can be defined as:

G′,H′ = HyperMP(G,H) (1)

where G′ andH′ are the updated graph and hypergraph respectively.

AtomGC. AtomGC is designed to model the pair-wise connectivities between atoms that are
bonded together. It involves updating the edge features using the features of the edges and nodes
that it connects, and updating the node features using the updated edge features. The edge update
step is given as:

x′ij = fbond(xi, xj , xij) (2)

where fbond(·) is the edge multi-layer perceptron (MLP). It is noteworthy that, for the target tasks, the
edge information is essential as the chemical bonds contains crucial information about the molecular
properties. In the node update step, the x′ij is aggregated to produce the x′i as follows:

αij = fattn(xi, xj , xij) (3)

x′i = fatom

(
xi,

∑
j=N (i)

αijx
′
ij

)
(4)

where αij is the attention coefficient of eij , fattn(·) is the attention multi-layer perceptron (MLP)
whose output activation is the sigmoid activation function, and fatom(·) is the node MLP andN (i) is
the neighborhood set of vi. Here, unlike many attention modules that normalizes the attention scores
so that the summantion of the scores becomes 1.0, we normalize each attention score to be between
0.0 and 1.0. We empirically confirmed that this selection results in better prediction performance
than the conventional attention scheme.

FuncGC. FuncGC is designed to model the higher-order connectivities that are defined by the
chemically-valid functional groups. Although the same functional groups can be present in many
molecules, the effects that they have on the molecular properties may differ depending on their
neighboring functional groups (or atoms). To account for such differences, we utilize the updated
node feature that contains local information from the molecular graphs when generating the localized
functional group features. We start the FuncGC by updating zk using x′i as follows:

z̃k = gatom→fg

(
zk,

∑
i∈Hk

x′i

)
(5)

where z̃k is the localized feature that receives localized information from AtomGC, and gatom→fg(·)
is the localizing MLP. Unlike G, H has no naturally defined edges as the functional groups are
concepts rather than physically exist. Hence, we learn the edges among the hyperedges as follows:

z′km = gedge(z̃k, z̃m) (6)
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where z′km is the learnt edge feature between Hk and Hm, and gedge is the edge MLP. z′km thus
captures the interaction betweenHk andHm. Lastly, we perform the hyperedge update with z′km as
follows:

βkm = gattn(z̃k, z̃m) (7)

z′k = gfg

(
zk,

∑
m∈H

βkmz
′
km

)
(8)

where βkm is the attention coefficient between the kth and the mth hyperedge, gattn(·) is the attention
MLP whose output activation is sigmoid activation function as in AtomGC, and gfg(·) is the hyper-
edge update function. The HyperMP layer is then used to modify the membership of the hyperedges
and predict the molecular properties of the molecules using their respective computed embeddings.

Note that we did not design a path that propagate z′k back to the members (atoms) ofHk. This design
works similar to the uninterrupted gradient path of LSTM (Hochreiter & Schmidhuber, 1997) or the
latent arrays of Perciever models (Jaegle et al., 2021). We also experimentally confirmed that this
design shows better prediction results.

3.3 LEARNING THE PRIOR-GUIDED SUBGRAPH STRUCTURES

H is constructed using the functional groups of the molecules. However, molecular properties from
the understanding of functional groups may be more straightforward for chemists, but may not be
so for GNNs as we have discussed in section 1. Hence, we allow models to adjust the members of
Hk, which is built upon the prior knowledge of functional groups, while predicting the molecular
property. The general equation of the membership adjustment function Fθ(G,H) can be defined as:

Fθ(G,H) = H̃ (9)

where H̃ is the membership-adjusted hypergraph. It first uses the membership encoder fθ(·) to
produce the membership-encoded features as follows:

{x̂i}, {ẑk} = fθ(G,H) (10)
where x̂i and ẑk are the membership-encoded node and hyperedge features respectively, and fθ(·)
is a stack of the HyperMP layer(s). As the memberships can be interpreted as a virtual “edge”
between an atom vi and its functional group Hk, we employ a graph structure learning method
to adjust the membership. In the adjustment procedure, we consider the random discrete methods
(i.e., the adjusted memberships are binary) which share a common philosophy with the Bayesian
approaches. The membership adjustment procedure then starts by using the membership-encoded
features to produce H̃ as follows:

mik = gθ(x̂i, ẑk) ∀vi ∈ Hk (11)

m̃ik = sigmoid
((

log
( mik

1−mik

)
+ ε0 − ε1

)
/s
)

∀vi ∈ Hk (12)

wheremik is the bernoulli parameter for vi to become a member ofHk, m̃ik is the sampled member-
ship, gθ(·) is the MLP whose output activation is the sigmoid function, ε0 and ε1 are the samples of
Gumbel(0,1), and s > 0 is the temperature parameter. This procedure reparameterize the Bernoulli
distribution via Gumbel reparameterization such that the (sampled) binary m̃ik are differentiable
(Jang et al., 2016). By annealing s → 0, we can recover m̃ik ∼ Ber(mik). We define the kth ad-
justed hyperedge H̃k = {vi ∈ Hk | m̃ik = 1}. H̃ will then be used to produce the final predictions.

A similar approach is investigated in the context of pair-wise graph structure learning (Shang et al.,
2021), where they assume that the edges of a complete graph is subjective to edge learning. On
the other hand, we utilize this idea only to the members of hyperedges so as to provide a balance
between the usage of prior knowledge and the data-driven scheme.

Extending hyperedges As we allow the model to adjust the given hyperedges, it naturally pro-
vokes us to use extended hyperedges as it may provide more efficient representations for molecular
properties predictions. In that regard, we extend the hyperedges as their K-local subgraph as fol-
lows:

Hk =
⋃

vi∈Hk

NK(vi) (13)
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Table 1: Benchmark results. Comparing between different methods for molecular properties pre-
diction. All results are taken from the original papers except CMPNN. Results in bold are the best-
performing results for their respective datasets. (↑means that higher result is better and ↓means that
lower result is better.)

Metric AUROC RMSE
Dataset Tox21 (↑) ClinTox (↑) SIDER (↑) BBBP (↑) BACE (↑) ESOL (↓) FreeSolv (↓) Lipophilicity (↓)

PAIR MPNN (atom only) 0.845 0.896 0.644 0.908 0.864 0.719 1.243 0.625
? MPNN 0.844 0.881 0.641 0.910 0.850 0.702 1.242 0.645
× DMPNN 0.845 0.894 0.646 0.913 0.878 0.665 1.167 0.596

CMPNN 0.854 0.908 0.656 0.958 0.887 0.567 0.901 0.582
SUB AGCN 0.802 0.868 0.592 − − 0.306 1.33 0.736

? GAAN 0.839 0.888 0.658 − − 0.294 1.057 0.605
×ML-MPNN 0.852 0.892 0.689 − − 0.571 1.052 0.560
MolHMPN 0.837 0.924 0.620 0.928 0.894 0.392 0.815 0.511

where NK(vi) is the K-hop neighborhood set of vi. This extension allows the membership adjust-
ment to consider a much higher-order interactions while restricting the scope of the edge (or mem-
bership) learning to the extentedHk so that the learned memberships are guided by the chemically-
valid prior knowledge.

3.4 MOLECULAR PROPERTIES PREDICTION

From the aforementioned methods,H is first constructed using the prior knowledge of the functional
groups for a given G. Then the memberships ofH are adjusted using Fθ(G,H) to produce H̃. Hence,
in the final step of MolHMPN, we predict the target label y of a given molecule by updating G and H̃
using the HyperMP layer as follows:

y = Gθ(G, H̃) (14)

where Gθ(G, H̃) is the property prediction function, which consists of a stack of the HyperMP
layer(s), a readout function, and a MLP.

4 BENCHMARK RESULTS

This section highlights the performance of MolHMPN as compared to other baseline methods. The
training details can be found in Appendix A.2.

4.1 RESULTS

We evaluate the performance of MolHMPN with baselines that make use of the pair-wise connectivi-
ties (PAIR) and subgraphs (SUB). This is done to analyze the effectiveness of the usage of pair-wise
and higher-order connectivites. For the PAIR baselines, we analyze the usage of atom (MPNN (atom
only)) (Yang et al., 2019), atom and bonds (MPNN) (Yang et al., 2019), directed bonds (DMPNN)
(Yang et al., 2019), and atoms and bonds with enhanced interactions (CMPNN) (Song et al., 2020).
For the SUB baselines, we compare with baselines that have utilized substructures with nodes that
are not connected by an edge (AGCN) (Li et al., 2018), substructure with marginal nodes (GAAN)
(Sun et al., 2019), and substructures constructed by junction tree (ML-MPNN) (Wang et al., 2021).
The benchmark datasets for the performance evaluation includes Tox21, ClinTox, SIDER, BBBP,
BACE, ESOL, FreeSolv and Lipophilicity. The results of the baselines are taken directly from their
respective papers, except for CMPNN2).

Table 1 shows the overall results of MolHMPN on graph classification and regression tasks. From Ta-
ble 1, we can see that MolHMPN has outperformed the other baselines for four out of eight datasets.
This shows the efficacy of using both pair-wise and higher-order connectivities, as well as the prior
knowledge-guided data-driven scheme. From the PAIR results, we can see that the usage of atoms,
directed and undirected bond information do not have a significant impact on the performance.

2We rerun their condes for all datasets as a mistake was found in their results as stated in their official code
https://github.com/SY575/CMPNN.git
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Table 2: Increasing K for hyperedge learning. Comparison between the different K used. Results
in bold are the best-performing results for their respective datasets. (↑ means that higher result is
better and ↓ means that lower result is better.)

Metric AUROC RMSE
Dataset Tox21 (↑) ClinTox (↑) SIDER (↑) BBBP (↑) BACE (↑) ESOL (↓) FreeSolv (↓) Lipophilicity (↓)

MolHMPN-0 0.838
(± 0.0146)

0.918
(± 0.0426)

0.605
(± 0.0227)

0.927
(± 0.0299)

0.873
(± 0.0232)

0.450
(± 0.0339)

0.815
(± 0.3606)

0.519
(± 0.0391)

MolHMPN-1 0.837
(± 0.0042)

0.924
(± 0.0452)

0.614
(± 0.0105)

0.928
(± 0.0388)

0.888
(± 0.0106)

0.436
(± 0.1324)

0.980
(± 0.4127)

0.511
(± 0.0672)

MolHMPN-2 0.837
(± 0.0072)

0.912
(± 0.0485)

0.620
(± 0.0160)

0.903
(± 0.0416)

0.894
(± 0.0173)

0.392
(± 0.0917)

1.012
(± 0.5553)

0.533
(± 0.0744)

MolHMPN-3 0.833
(± 0.0717)

0.909
(± 0.0465)

0.608
(± 0.0144)

0.921
(± 0.0202)

0.885
(± 0.0258)

0.406
(± 0.0872)

1.100
(± 0.4243)

0.556
(± 0.0928)

Instead, increasing the interactions between the atoms and bonds in CMPNN gives better results, es-
pecially for BBBP, ESOL and FreeSolv. Comparing MolHMPN with the PAIR models, we can see that
the inclusion of higher-order connectivities is indeed beneficial for the tasks as MolHMPN has out-
performed the models for five out of eight datasets. From the SUB results, we can see that MolHMPN
outperforms the other baselines for three out of six datasets. Also, although ML-MPNN has inte-
grated information from the nodes, edges, subgraphs and graphs, MolHMPN has outperformed it for
four out of six datasets. This shows the efficacy of employing chemically-useful representations
when conducting the benchmark tasks. Although the PAIR models can capture higher-order connec-
tivities by using multiple layers, MolHMPN has outperformed the baselines with only one HyperMP
layer as shown in figure 4. The other results can be found in Appendix A.3.

5 ABLATION STUDIES

In this section, we analyze the effects of the hyperedge expansion and different subgraphs usage.

5.1 HYPEREDGE LEARNING WITH EXTENDED HYPEREDGES

We analyze the performance of MolHMPN with increasedK as in Section 3.3. WhenK increases, the
size of each hyperedge increases as it gets further away from the original functional group informa-
tion. MolHMPN is then able to modify the membership of the nodes in each hyperedge. We refer to
MolHMPN with the K-hop extension as MolHMPN-K. For MolHMPN-0, the original functional group
hyperedges were used without the additional hyperedge learning scheme.

Table 2 shows the results of the effects of increasing K. From Table 2, we can see that the extended
learning strategy has mostly improved the performance of MolHMPN. MolHMPN-1 has generally im-
proved the performance from MolHMPN-0 for six out of eight datasets, where MolHMPN-2 has further
improved the performance for two of those datasets (SIDER and ESOL). However, when K is too
large (e.g., K = 3), performance degradation is observed for most of the datasets. This is because
the extended hyperedges has deviated too far away from the original functional groups and often
cover all the atoms in G, thus making the hyperedges indistinguishable. From this results, we can
see that the domain knowledge-guided hyperedge learning can play a crucial role when modeling
higher-order connectivities robustly.
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Table 3: Subgraph Comparison. Comparison between different types of subgraphs. Results in
bold are the best-performing results for their respective datasets. (↑means that higher result is better
and ↓ means that lower result is better.)

Metric AUROC RMSE
Dataset Tox21 (↑) ClinTox (↑) SIDER (↑) BBBP (↑) BACE (↑) ESOL (↓) FreeSolv (↓) Lipophilicity (↓)

Ring & C. Bond 0.834
(± 0.0142)

0.904
(± 0.0401)

0.577
(± 0.0339)

0.919
(± 0.0124)

0.884
(± 0.0106)

0.509
(± 0.0547)

1.468
(± 0.5970)

0.513
(± 0.0475)

2-hop ngh. 0.836
(± 0.0135)

0.902
(± 0.0448)

0.582
(± 0.0271)

0.926
(± 0.0314)

0.894
(± 0.0240)

0.431
(± 0.0709)

0.995
(± 0.3844)

0.526
(± 0.0475)

3-hop ngh. 0.830
(± 0.0147)

0.881
(± 0.0363)

0.597
(± 0.0307)

0.918
(± 0.0278)

0.871
(± 0.0136)

0.508
(± 0.1032)

0.984
(± 0.3094)

0.524
(± 0.0889)

MolHMPN-0 0.838
(± 0.0146)

0.918
(± 0.0426)

0.605
(± 0.0227)

0.927
(± 0.0299)

0.873
(± 0.0232)

0.450
(± 0.0339)

0.815
(± 0.3606)

0.519
(± 0.0391)

5.2 SUBGRAPH COMPARISONS

We evaluate the performance of MolHMPN with other methods that employs other kinds of substruc-
tures. We do this by assessing the effectiveness of employment of the functional group information
as compared to the baseline methods, which are known to effective in solving molecule generation
and graph meta-learning tasks. Since we are making comparison based on the substructure types
only, we analyze the results using MolHMPN-0. The baseline methods are (1) “Ring & Chemical
Bond” which utilizes the ring structure and chemical bonds as the subgraph3 (Jin et al., 2020) and
(2) “K-hop neighbors” which utilizes theK-hop neighbors as substructures (Huang & Zitnik, 2020).
In the following experiments, we replace the hyperedge construction rules with those of the baseline
methods, and assess their performances with our benchmark datasets. Other than the hyperedge
constructions, we use the same experiment setups as in Appendix A.2.

Table 3 shows the results where different types of subgraphs are used. From Table 3, MolHMPN-
0 has outperformed the other methods for five out of eight datasets, especially for ClinTox and
FreeSolv. For SIDER, MolHMPN has outperformed the other methods and has the smallest standard
deviation. For BBBP, although 2-hop neighbor is comparable with MolHMPN-0, MolHMPN-0 has a
smaller standard deviation. This is also the case for ESOL, where MolHMPN-0 has a smaller standard
deviation even though it is comparable with 2-hop neighbor. One notable trend is that the 3-hop
neighbor underperforms as compared to the 2-hop neighbor even though it can model higher-order
connectivities. However, this is not observed in MolHMPN-0 even though we also employ up to 3-hop
neighbors for the functional groups as we used chemically meaningful substructures. Hence, this
shows the efficacy of employing chemically meaningful and valid substructures (functional groups
in our case) when conducting molecular properties prediction tasks.

6 CONCLUSION

We propose a molecular hyper-message passing network (MolHMPN) to integrate pair-wise and
higher-order connectivities for molecular properties prediction using domain knowledge-guided
learnt substructures. We construct the hypergraph representation of the molecules using chemically-
valid functional groups, update the nodes and hyperedge features in the HyperMP layer, and learn
the substructures from the constructed substructures. We evaluate the performance of our model
with several baseline methods, and show that our model is able to achieve outstanding results with
only one HyperMP layer. In our ablation study, we show that using domain knowledge-guided learnt
substructure improves the performance of the benchmark tasks. We also compare the usage of dif-
ferent types of substructures using the same model architecture and show the efficacy of employing
chemically meaningful and valid substructures.

3In original paper, the frequently-occurring chemical substructures are also considered. However, in our
benchmark datasets, none of the dataset satisfies the proposed value for occurrence frequency.
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Ethics statements Although the proposed method has shown its potential in molecular property
prediction tasks, overreliance on such methods might lead to the neglection of the possible side
effects that these molecules have on humans and their potential negative impact when released to
the environment since these information are not given in the datasets.

Reproducibility As machine learning researchers, we consider the reproducibility of numerical
results as one of the top priorities. Thus, we put a significant amount of effort into pursuing the
reproducibility of our experimental results. As such, we set and tracked the random seed used for
our experiments and confirmed the experiments were reproducible.
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A APPENDIX

A.1 HYPERGRAPH CONSTRUCTION

In this section, we provide the list of functional groups that have been utilized in our current study
based on their central atoms. We highlight the central atoms and their respective first- and second-
hop neighbors with circles of different colors.

Table A.1: Functional groups with nitrogen as the central atom. The red circles represent the
central atoms, and the blue and green circles represent the 1-hop and 2-hop neighbors from the
central atom respectively.

Functional group Structure Hyperedge Functional group Structure Hyperedge

Amine Nitro

Nitrate C nitroso

N nitroso Azo

Hydrazine Hydroxylamine

Nitrile
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Table A.2: Functional groups with carbon as the central atom. The red circles represent the
central atoms, and the blue and green circles represent the 1-hop and 2-hop neighbors from the
central atom respectively.

Functional group Structure Hyperedge Functional group Structure Hyperedge

Alkene Alkyne

Aldehyde Ketene

Isocynate Carboxyl

Carbamate Carbamide

Amide Ketone

Isothiocynate Thione

Thioamide Thiourea

Carbodiimide Carboximidamide

Imine Hydrazone

Oxime Alcohol

Thiol Allene
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Table A.3: Functional groups with oxygen as the central atom. The red circles represent the
central atoms, and the blue and green circles represent the 1-hop and 2-hop neighbors from the
central atom respectively.

Functional group Structure Hyperedge Functional group Structure Hyperedge

Ether Peroxide

Table A.4: Functional groups with phosphorus as the central atom. The red circles represent
the central atoms, and the blue and green circles represent the 1-hop and 2-hop neighbors from the
central atom respectively.

Functional group Structure Hyperedge Functional group Structure Hyperedge

Phosphanyl Phosphine oxide

Phosphite ester Phosphodiester

Table A.5: Functional groups with sulfur as the central atom. The red circles represent the central
atoms, and the blue and green circles represent the 1-hop and 2-hop neighbors from the central atom
respectively.

Functional group Structure Hyperedge Functional group Structure Hyperedge

Disulfide Sulfoxide

Sulfone Sulfonamide

Sulfonate Thioether

Sulfate
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A.2 TRAINING DETAILS

In this section, we provide the data and training details.

Data details. The dataset information are given in Table A.6. The atom and bond features that are
used as the initial node and edge features are given in Tables A.7 and A.8 respectively. We use the
BaseAtomFeaturizer and BaseBondFeaturizer of DGL-LifeSci to extract features from the initial
atom and bond features. The hypergraphs were constructed using DGL and Networkx.

Table A.6: Datasets types, number of tasks, performance metric and split type

Dataset Task Number of tasks Metric Split
Tox21 Classification 12 AUROC Random

ClinTox Classification 2 AUROC Random
SIDER Classification 27 AUROC Random
BBBP Classification 1 AUROC Random
BACE Classification 1 AUROC Random
ESOL Regression 1 RMSE Random

FreeSolv Regression 1 RMSE Random
Lipophilicity Regression 1 RMSE Random

Table A.7: Atom features used to featurize the node features

Atom Features Number of Features
atom type one hot 43

atomic number 1
atom mass 1

atom degree one hot 11
atom explicit valence one hot 6
atom implicit valence one hot 7

atom total num H one hot 5
atom formal charge one hot 5
atom hybridisation one hot 5

atom num radical electrons one hot 5
atom is aromiatic one hot 2

atom is in ring one hot 2
atom chiral tag one hot 4

atom chirality type one hot 2
atom is chiral center 1

Table A.8: Bond features used to featurize the edge features

Bond Features Number of Features
bond type one hot 4

bond is in ring 1
bond is conjugated one hot 2
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Training details. For our tasks, we randomly split the datasets into 80:10:10 ratio as the training,
validation and test sets and take the average of the results from different 5 random seeds (0 to 4). We
use the AdamP optimizer (Heo et al., 2021) whose learning rate is scheduled by the CosineAnnealing
scheduler(Loshchilov & Hutter, 2016). The loss functions for the classification and regression tasks
are the binary cross-entropy (BCE) loss and mean squared error (MSE) respectively. We give extra
weights to the minority class in the loss functions for the classification datasets based on the ratio
of the minority to majority class of each task to handle the class imbalance problems. The attentive
sum and max function are used as the readout function of Gθ(·). We use a batch size of 512, run the
models for 500 epochs and initialized the learning rate as 0.001. For Fθ(·) and Gθ(·), we use only
one HyperMP layer each. The training details can be found in Table A.9 and A.10.

Table A.9: Hyperparameters for MolHMPN-0

Dataset xk Cycles GNN dropout Regressor dropout MLP neurons Latent dimensions
Tox21 ZERO FALSE 0.2 0.2 [64] 128
ClinTox ZERO FALSE 0.3 0.3 [64, 32] 128
SIDER MEAN FALSE 0.0 0.1 [64] 128
BBBP MEAN FALSE 0.0 0.0 [128] 256
BACE MEAN TRUE 0.2 0.0 [64, 32] 128
ESOL MEAN TRUE 0.0 0.0 [128] 256
FreeSolv MEAN FALSE 0.4 0.4 − 128
Lipophilicity MEAN FALSE 0.2 0.2 − 128

Table A.10: Hyperparameters for MolHMPN-1,2,3

Dataset xk Cycles GNN dropout Theta dropout Regressor dropout MLP neurons Latent dimensions
Tox21 ZERO FALSE 0.2 0.2 0.2 [64] 128
ClinTox ZERO FALSE 0.3 0.3 0.3 [128] 256
SIDER MEAN FALSE 0.0 0.0 0.1 [64] 128
BBBP MEAN FALSE 0.0 0.0 0.0 [128, 64] 256
BACE MEAN TRUE 0.0 0.0 0.0 [128] 256
ESOL MEAN TRUE 0.0 0.0 0.0 [128] 256
FreeSolv MEAN FALSE 0.4 0.4 0.4 − 128
Lipophilicity MEAN FALSE 0.2 0.2 0.2 − 128
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A.3 ADDITIONAL RESULTS

In this section, we provide the extended plots for showing the benchmark results of baseline models
with their number of graph convolutions.
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Figure A.1: Number of graph convolutions vs. classification performances
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