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Abstract

The widespread success of LLMs on NLP001
benchmarks has been accompanied by concerns002
that LLMs function primarily as stochastic par-003
rots that reproduce texts similar to what they004
saw during pre-training, often erroneously. But005
what is the nature of their errors, and do these006
errors exhibit any regularities? In this work,007
we examine irrelevant context hallucinations,008
in which models integrate misleading contex-009
tual cues into their predictions. Through be-010
havioral analysis, we show that these errors011
result from a structured yet flawed mechanism012
that we term class-based (mis)generalization,013
in which models combine abstract class cues014
with features extracted from the query or con-015
text to derive answers. Furthermore, mecha-016
nistic interpretability experiments on Llama-3,017
Mistral, and Pythia across 39 factual recall rela-018
tion types reveal that this behavior is reflected019
in the model’s internal computations: (i) ab-020
stract class representations are constructed in021
lower layers before being refined into specific022
answers in higher layers, (ii) feature selection023
is governed by two competing circuits — one024
prioritizing direct query-based reasoning, the025
other incorporating contextual cues — whose026
relative influences determine the final output.027
Our findings provide a more nuanced perspec-028
tive on the stochastic parrot argument: through029
form-based training, LLMs can exhibit sensi-030
tivity to structured abstractions, albeit in unreli-031
able ways.1032

1 Introduction033

The remarkable success of LLMs on various NLP034

benchmarks has been accompanied by concerns035

that they function primarily as “stochastic parrots”036

that operate by “haphazardly stitching together se-037

quences of linguistic forms” using statistical co-038

occurrences in pre-training data (Bender et al.,039

2021). This view is supported by evidence that040

1Code will be released upon acceptance.

Figure 1: Examples demonstrating class-based
(mis)generalization with Llama-3 (8B).

LLMs can reproduce training artifacts, exploit spu- 041

rious correlations, and fail when faced with dis- 042

tribution shifts, among other issues (Carlini et al., 043

2021; Zhou et al., 2024; Dziri et al., 2023; Wu et al., 044

2024c; Mirzadeh et al., 2024). 045

In this work, we argue that more deeply exam- 046

ining model errors can reveal insights into LLM 047

behaviors and generalization capabilities. In par- 048

ticular, we examine a specific and underexplored 049

type of error — irrelevant context hallucinations 050

— to investigate the mechanisms through which 051

LLMs integrate contextual information into their 052

predictions. We introduce a controlled experimen- 053

tal setting where LLMs receive irrelevant contex- 054

tual information alongside a query (Figure 1). 055

By artificially controlling the context and query 056

pairing, this setup allows us to explore how LLMs 057

behave in situations they were unlikely to have 058

encountered in pre-training. Additionally, by fo- 059

cusing on incorrect answers, we sidestep the data 060

leakage issue, which is primarily concerned with 061

memorization of correct answers (Balloccu et al., 062
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2024; Xu et al., 2024). Thus, these controls reduce063

the possibility that answers stem purely from pat-064

tern matching from pre-training data, allowing us065

to better isolate prediction shifts driven by added066

context.067

Through qualitative analysis of irrelevant con-068

text hallucinations, as demonstrated in Figure 1,069

we hypothesize that these errors exhibit struc-070

tured regularities. We posit that LLMs exhibit a071

structured but flawed mechanism, which we term072

the class-based (mis)generalization hypothesis.073

Specifically, LLMs can leverage abstract class cues074

(e.g., “language”), use them to select features in075

the prompt (e.g., selecting the country feature of076

“Honda”, instead of the year feature), and combine077

these abstract classes with the selected features to078

produce an answer (e.g., “Language” + “Japan” →079

“Japanese”). This hypothesis suggests that LLMs080

can generalize in a systematic and structured man-081

ner in this setting, but as we will show, their re-082

liance on these abstractions is often flawed. In083

some cases, it leads to correct answers via an in-084

correct computation (e.g., “Portuguese” in Figure085

1), while in others, it results in hallucinations (e.g.,086

“Japanese”, “Norwegian” in Figure 1).087

To validate our hypothesis, we conduct a behav-088

ioral analysis of how irrelevant context influences089

model predictions on Llama-3, Mistral and Pythia.090

Specifically, we perform annotations on 500 data091

points and show that 70% of observed shifts pat-092

tern with our class-based generalization hypothesis.093

Moreover, statistical analyses confirm that this phe-094

nomenon is systematic rather than due to chance or095

being query-dependent.096

We provide further evidence of this generaliza-097

tion mechanism via mechanistic interpretability ex-098

periments which probe the model’s internal compu-099

tations across Transformer layers (Vaswani et al.,100

2017). Our findings reveal two key mechanisms101

that further support our hypothesis: (i) LLMs make102

hierarchical class-to-instance predictions; i.e., they103

construct abstract class representations (e.g., “lan-104

guages”) before refining them to more specific an-105

swers (e.g., “Japanese”). (ii) Feature selection is106

governed by competing circuits: we identify one107

pathway that prioritizes direct query-based reason-108

ing and another that incorporates contextual cues.109

Their relative strength determines the final output.110

Attention knockout experiments show that ablating111

key heads involved in the context-based pathway112

can flip model predictions (e.g., flipping “Japanese”113

to “French”), further confirming this competitive114

interaction. These findings support the class com- 115

ponent of our hypothesis and illustrate how models 116

select features to combine with the abstract class. 117

Crucially, our findings do not suggest that LLMs 118

possess strong generalization abilities, nor do they 119

contradict the theoretical basis of the stochastic 120

parrot argument that LLMs are incapable of true 121

language understanding from form-based train- 122

ing alone (Bender and Koller, 2020). Instead, 123

to stretch the metaphor, we provide evidence of 124

LLMs as stochastic parakeets, peacocks, and pen- 125

guins which can leverage abstract class structures 126

in ways that are neither purely memorized nor nec- 127

essarily reliable. These abstractions result from 128

next-token prediction during pre-training and ex- 129

tend beyond simple ontological hierarchies (e.g., 130

superset-subset relationships), shaping the model’s 131

internal feature selection process. 132

In summary, our main contributions are: 133

• We introduce a novel setting that isolates how 134

LLMs integrate irrelevant contexts, distin- 135

guishing generalization from memorization. 136

• We provide empirical evidence that LLMs ex- 137

hibit class-based (mis)generalization, demon- 138

strating sensitivity to abstract class structures 139

beyond statistical co-occurrences. 140

• We uncover the internal computational mecha- 141

nisms of class-based generalization, revealing 142

competing circuits and hierarchical class rep- 143

resentations. 144

• We propose a behavioral analysis framework 145

that moves beyond accuracy-based evaluation, 146

emphasizing the importance of understanding 147

LLMs’ internal mechanisms. 148

2 Related Work 149

LLM Evaluation Traditional NLP evaluation 150

prioritizes test set performance but often overlooks 151

how models arrive at their final answers. For LLMs 152

trained on Internet-scale data, distinguishing gen- 153

uine generalization from memorization or spuri- 154

ous correlations is challenging, especially with po- 155

tential data leakage (Dziri et al., 2023; Wu et al., 156

2024c; Zhou et al., 2024; Balloccu et al., 2024; Xu 157

et al., 2024). Prior work addresses this through 158

data extraction (Carlini et al., 2021), statistical 159

control (Min et al., 2022), adversarial perturba- 160

tions (Mirzadeh et al., 2024), and error analysis 161

(Dziri et al., 2023). In contrast, we take a behavior- 162

focused approach in a controlled setting, reduc- 163

ing the likelihood of pure pattern matching. Addi- 164
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Figure 2: Class-based generalization framework: feature selection and combination.

tionally, by analyzing errors — often ignored by165

accuracy-based metrics — we gain deeper insights166

into model mechanisms.167

Irrelevant Context Hallucinations Hallucina-168

tions in text generation have been studied in the169

absence of context (McKenna et al., 2023; Kang170

et al., 2024; Meng et al., 2022) and in cases with171

relevant context (Cao et al., 2020, 2022a; Maynez172

et al., 2020; Lee et al., 2018; Adlakha et al., 2024;173

Chuang et al., 2024; Petroni et al., 2020; Li et al.,174

2023). We focus on irrelevant context hallucina-175

tions, where extraneous context influences predic-176

tions. Unlike prior work on evaluating or miti-177

gating such errors (Cao et al., 2022b; Cuconasu178

et al., 2024; Wu et al., 2024a; Petroni et al., 2020;179

Li et al., 2023; Shi et al., 2023; Mirzadeh et al.,180

2024), we explain their underlying class-based181

(mis)generalization mechanisms, conceptually and182

mechanistically.183

Mechanistic Interpretability Mechanistic inter-184

pretability methods (Olah, 2022; Nanda, 2023)185

reverse-engineer LLMs via vocabulary projection186

(Belrose et al., 2023; Geva et al., 2022; nostal-187

gebraist, 2020) and computational interventions188

(Ghandeharioun et al., 2024; Stolfo et al., 2023; Fin-189

layson et al., 2021). Extending prior work (Merullo190

et al., 2024; Wu et al., 2024b; Lv et al., 2024; Geva191

et al., 2022), we use these techniques to uncover192

how LLMs are influenced by irrelevant contexts.193

By linking behavioral analysis with internal mech-194

anisms, we provide a mechanistic perspective on195

irrelevant context hallucinations.196

3 Framework and Hypothesis197

In this section, we describe the abstract framework198

illustrated in Figure 2 and present our class-based199

(mis)generalization hypothesis.200

Setting Consider a query Q representing the 201

question of interest and an irrelevant context C 202

prepended to it. Let AQ denote the model’s an- 203

swer to Q alone and AC+Q denote the answer 204

with the added context (contextual answer). We 205

define context features and query features as sets 206

of properties or attributes of the entities in C and 207

Q, respectively. For example, for context features 208

in Figure 2, the feature names are {Type, Coun- 209

try, Year, etc.}, with corresponding feature values 210

{Model, Japan, 1972, etc.}. The class of AC+Q de- 211

rived from Q (e.g., “languages”) determines which 212

features the model should prioritize (e.g., derive 213

“Japanese” based on the “Country: Japan” feature). 214

Class-Based (Mis)Generalization Hypothesis 215

Given the setup C+Q, when the context influences 216

the model predictions, instead of relying solely on 217

the query, we hypothesize a structured mechanism 218

by which the model integrates contextual informa- 219

tion into its predictions. Specifically, we propose 220

class-based generalization, where language mod- 221

els process context in two steps: they first derive 222

an abstract class (e.g., “languages”) and then select 223

and combine relevant features from C or Q (e.g., 224

“Japan” or “France”) to generate an answer (e.g., 225

“Japanese’ or “French”). 226

Let query-based candidates be answers de- 227

rived from query features combined with the class 228

(e.g., “French”) and context-based candidates 229

be answers derived from context features (e.g., 230

“Japanese”). If AC+Q is the query-based candidate, 231

we define the case as query-dominant; otherwise, 232

it is context-dominant. These terms emphasize 233

the final outcome rather than the intermediate steps. 234

See Table 1 for examples. 235

A special case arises when a token of the ex- 236

pected class is already present in the prompt (Ap- 237

pendix B), making the model more likely to copy 238

it directly (Jiang et al., 2024). 239
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C +Q AQ Ccand. Qcand. AC+Q Case

C: Honda Civic, produced by Honda.
Q: The original language of A Secret was French Japanese French,

English Japanese Context-
dominant

C: City of Boroondara is in Melbourne.
Q: Prime Minister of Malaysia is a legal term in Malaysia Australia Malaysia,

Malaysian Malaysia Query-
dominant

Table 1: Examples of context- and query-dominant categorizations with context- and query-based candidates.

4 Dataset and Experimental Design240

Models & Datasets We evaluate three pretrained241

LMs — Llama-3.1 (8B) (AI@Meta, 2024), Mistral242

v0.3 (7B) (Jiang et al., 2023), and Pythia (6.9B-243

deduped) (Biderman et al., 2023) — using their244

base versions to assess raw model behavior. We245

use the ParaRel dataset (Elazar et al., 2021), which246

consists of 39 factual QA subdatasets. Dataset247

statistics are provided in Table 12 in the Appendix248

A. Both Q and C are sourced from these datasets.249

Experiments are run on two RTX8000 GPUs.250

Experimental Setup We compare two condi-251

tions: 1) Q-only, where each Q is formatted using252

a predefined template and a subject-relation-object253

(s, r, o) triplet from ParaRel, resulting in 27.6K254

queries. The model’s top-1 prediction is AQ. 2)255

C+Q, where each Q is prepended with context256

demonstrations from other subdatasets spanning257

various relation types, introducing controlled con-258

textual variation. We randomly sample 100 ex-259

amples per subdatasets2, generating 3,900 context260

variations per query, totaling 106M examples. The261

model’s top-1 prediction is AC+Q.262

Context- and Query-Based Candidates To263

make the definitions from Sec. 3 precise, we de-264

fine a context-based candidate x ∈ Ccand. to be265

a candidate among the top three3 predictions un-266

der C +Q but not among the top ten4 predictions267

under Q. A query-based candidate x ∈ Qcand. ap-268

pears in the top predictions under both conditions.269

Note that Atop3
C+Q = Ccand. ∪Qcand.. See Table 1 for270

examples.271

Atop3
C+Q := {x | x ∈ top 3 candidates under C +Q} (1)272

Atop10
Q := {x | x ∈ top 10 candidates under Q} (2)273

Ccand. := {x | x ∈ Atop3
C+Q and x /∈ Atop10

Q } (3)274

Qcand. := {x | x ∈ Atop3
C+Q and x ∈ Atop10

Q } (4)275

2P264 has only 53 examples, so we include all of them.
3A threshold of three ensures that classified context-based

candidates are strongly influenced by context.
4A threshold of 10 ensures that classified context-based

candidates are not plausible answers under Q alone.

5 Behavioral Analysis of Contextual 276

Answers 277

We now investigate how irrelevant context influ- 278

ences model predictions, verifying our class-based 279

(mis)generalization hypothesis through textual- 280

level behavioral analysis. Specifically, we examine: 281

(1) whether irrelevant context causes behavioral 282

changes (Sec. 5.1), (2) whether the influence of 283

irrelevant context aligns with our hypothesis (Sec. 284

5.2). (3) whether the observed correlation between 285

irrelevant context and context-based candidates is 286

statistically significant (Sec. 5.3). 287

Case Top-3 Candidates Llama Mistral Pythia

No in-
fluence

1. All query-based
(Ccand. = ∅)

47.9% 48.0% 39.3%

Query-
dominant

2. Mix, top-1 is query-
based

27.9% 25.7% 27.2%

Context-
dominant

3. Mix, top-1 is context-
based

15.1% 17.0% 19.2%

4. All context-based
(Qcand. = ∅)

10.1% 10.3% 14.3%

Table 2: Breakdown of samples according to the com-
position of Atop-3

C+Q, based on 106M datapoints. Detailed
results can be found in Table 7 in the Appendix.

5.1 Behavioral Changes Induced by 288

Irrelevant Context 289

In this section, we investigate whether adding irrel- 290

evant context leads to behavioral changes in model 291

predictions. From an accuracy perspective, we 292

observe a slight decrease: across 39 subdatasets, 293

the accuracy for Llama-3 drops from 47.2% to 294

43.1%, and for Mistral, from 38.2% to 35.3% (Ta- 295

ble 6 in Appendix). While these changes are mod- 296

est, accuracy alone does not provide a complete 297

picture of changes in model predictions. To ad- 298

dress this gap, we measure the answer change 299

rate (∆ Rate) after adding the irrelevant context: 300

∆Rate =
|AC+Q ̸=AQ|
# datapoints . For Llama-3, 38.3% of re- 301

sponses changed after adding irrelevant context, 302

while for Mistral, nearly half of the datapoints 303
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Query
Type

Ctx.
Type

Context Demonstration + Query and Answer

Language

Person/
Music

Prompt: Amilcare Ponchielli plays opera. The original language of A Hunting Accident was ______
Answer: AC+Q = Italian, AQ = English

Make/
Model

Prompt: Toyota Alphard, produced by Toyota. The original language of A Hunting Accident was
______ Answer: AC+Q = Japanese, AQ = English

Place

Person/
Religion

Prompt: Indo-Greek Kingdom is follower of Buddhism. Alpha Island is a part of the continent of
______ Answer: AC+Q = Asia, AQ = Alpha

Place Prompt: Council of States of Switzerland is a legal term in Switzerland. Alpha Island is a part of the
continent of ______ Answer: AC+Q = Europe, AQ = Alpha

Table 3: Examples of context-based candidates across different query and context types.

(48.0%) experience a shift in predictions (Table304

6 in Appendix).305

We further examine the cases under the C +306

Q condition based on the composition of (Atop-3
C+Q)307

(Table 2). Roughly 48%5 of samples are unaffected308

by the irrelevant context for Llama and Mistral309

(case 1), meaning all top-3 candidates are query-310

based). However, when predictions are influenced311

by the added context (cases 2, 3 and 4), about half312

of these instances (49.5% for Llama, 52.5% for313

Mistral) become context-dominant. These results314

demonstrate the influence of irrelevant contexts,315

even if the overall accuracy is little changed.316

5.2 Human Annotation of Context-Based317

Candidates318

Next, we examine whether these behavioral319

changes pattern with our class-based generalization320

hypothesis. To do so, we annotate context-based321

candidates, which capture the shifts induced by ir-322

relevant context. We assess whether each answer323

explicitly integrates identifiable features from the324

context and combines them with the expected class325

indicated by the query. Annotation procedure and326

examples are provided in Appendix D.327

We perform this annotation on a randomly sam-328

pled set of 500 context-based candidates across329

different subdatasets. Our results reveal that 81.6%330

of the responses incorporate features from the pro-331

vided context, 84.4% belong to the correct class,332

and 71.0% satisfy both criteria – combining iden-333

tifiable context features with the correct abstract334

class. This finding provides strong evidence for our335

hypothesis as a majority of these samples can be336

explained by the hypothesis. Table 3 provides illus-337

5Notably, due to the conservative choice of 10 for Atop-10
Q ,

some answers in case 1 might also be context-based but al-
ready appear in the top-10 predictions under the Q condition.
Therefore, we exclude these cases from further analyses.

trative examples of the model’s output adapting to 338

contextual cues. 339

5.3 Statistical Validation of Contextual 340

Influence 341

Next, we investigate whether the correlation be- 342

tween irrelevant context and context-based candi- 343

dates is statistically significant. To quantify the 344

dependence between a context C (e.g., Honda) and 345

its associated context-based candidate Ccand. (e.g., 346

Japanese), we compute the pointwise mutual infor- 347

mation (PMI) between them. Specifically, we sam- 348

ple 100 distinct contexts from various subdatasets. 349

Each context is paired with 100 different queries 350

belonging to the same expected class (e.g., lan- 351

guages, places, etc.), resulting in 10,000 instances 352

per class. Since context-based candidates are de- 353

termined independently of the queries, each con- 354

text Ci is paired with its corresponding candidate 355

Ccand.,i, regardless of the 100 queries. This yields 356

100 pairs of (Ci, Ccand.,i) per class, such as (Honda, 357

Japanese) for languages, and (Honda, Japan) for 358

places. The mean PMI across the 100 pairs of each 359

class is computed as: 360

µobserved =
1

100

100∑
i=1

PMI(Ci, Ccand.,i) (5) 361

PMI(Ci, Ccand.,i) = log
P (Ci, Ccand.,i)

P (Ci)P (Ccand.,i)
. (6) 362

In this formula, P (Ci) = 1/100, since we have 363

100 distinct contexts. P (Ccand.,i) is estimated 364

based on its frequency among all 10,000 gener- 365

ated answers AC+Q for the given expected class. 366

Similarly, P (Ci, Ccand.,i) is computed from its co- 367

occurrence within these samples. Across all mod- 368

els and expected classes, the mean PMI is ap- 369

proximately 4, suggesting a strong association be- 370

tween contexts and their corresponding candidates. 371
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(a) C+Q Token Logit (Llama) (b) C+Q Token Logit (Mistral) (c) C+Q Token Logit (Pythia)

Figure 3: Logit attribution (C+Q condition) along residual stream (R1
T,l, R

2
T,l) reveals the construction of abstract

class representation in the lower layers, with competition between Qcand. (dashed) and Ccand. (dotted) in the mid to
higher layers. The example token in parenthesis correspond to Table 1. Additional results are in Appendix F.

L16 L17 L18 L19 L20 L21 L22 L23 L24 L25 L27 L28 L29 L30 L31

languages languages /is languages languages languages languages languages English English English English English English English
/is /is languages /is English English English English English English English English English English Japanese

Table 4: Logit lens on Llama-3 showing top-1 predictions shifting from abstract concepts (e.g., ‘languages’) to
concrete instances (e.g., ‘English’ or ‘Japanese’) across layers. The first and second row correspond to R1

T,l, and the
second row is R2

T,l, respectively. See Appendix F.2 for the corresponding prompt and associated probabilities.

To formally assess statistical dependence, we per-372

form a one-sample t-test against the null hypothesis373

E[PMI(Ci, Ccand.,i)] = 0) (which would indicate374

independence). With a p-value of 0.001, we reject375

the null hypothesis, concluding that C and Ccand.376

exhibit significant dependence. (See Table 8 in the377

Appendix for full results.)378

6 Mechanistic Analysis of Contextual379

Answers380

We next investigate whether the models’ internal381

computations reflect the class-based generalization382

that we observed above. In Sec. 6.1, we use logit383

attribution to show that models construct abstract384

class representations, supporting the class compo-385

nent of our hypothesis. In Sec. 6.2 and Sec. 6.3, we386

apply activation patching and attention knockout to387

reveal that feature selection in our hypothesis arise388

from competition between circuits, where dis-389

tinct query-based pathways (computing Qcand.) and390

context-based pathways (computing Ccand.) com-391

pete to determine the final answer. These findings392

provide mechanistic evidence for our hypothesis.393

Data We randomly draw 1,000 context-dominant394

and 1,000 query-dominant datapoints from case395

2 and case 3 in Table 2 as these cases have both396

query- and context-based candidates.397

6.1 Logit Attribution398

Method To explore how models build answers399

across layers, we apply logit attribution (nostalge-400

braist, 2020) to trace predictions across layers by 401

projecting hidden states onto the vocabulary space. 402

Given a prompt with T tokens and a model with 403

L layers, we extract hidden states at the last token 404

position hT,j ∈ Rd, where j ∈ {1, ..., L} and d is 405

the hidden size. These are projected onto the vocab- 406

ulary space using Unembed(LayerNorm(hT,j)) ∈ 407

R|V |, where the Unembed matrix corresponds to 408

the transpose of the input embedding weights. 409

Models maintain a residual stream for each to- 410

ken i, which accumulates information as it passes 411

through each layer. At each layer, two key trans- 412

formations occur: attention update (Ai,l) and MLP 413

update (Mi,l). Mathematically, the updates follow: 414

Ai,l = ATTN(R0
i,l) (7) 415

R1
i,l = Ai,l +R0

i,l (8) 416

Mi,l = MLP(R1
i,l) (9) 417

R2
i,l = Mi,l +R1

i,l (10) 418

where R1
i,l is the residual stream after attention at 419

layer l, and R1
i,l is the final residual stream at layer 420

l after the MLP update. (See Appendix F.) 421

Findings To understand how different tokens 422

evolve across layers, we project the last token resid- 423

ual stream R1
T,l (after attention) and R2

T,l (after 424

the MLP) onto the vocabulary space at each layer. 425

Figure 3 tracks the logits for Ccand., Qcand., and 426

class tokens under the C + Q condition. Addi- 427

tional results are provided in Appendix F. Figure 3 428

reveals a hierarchical class-to-instance process in 429
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answer generation. Early layers prioritize class to-430

ken logits (solid) like “languages”, suggesting that431

the model first constructs abstract class representa-432

tions. Around the middle layers, candidate answer433

logits (dashed/dotted) begin to rise, refining these434

abstract representations into concrete answers. In435

Table 4, a concrete example of logit lens top-1 pre-436

dictions reveals how Llama-3 shifts from abstract437

class to concrete instances. This pattern supports438

our hypothesis that models leverage class-based439

information in shaping their predictions.440

Moreover, the figures highlight a competition441

between Ccand. (dashed) and Qcand. (dotted), par-442

ticularly in context-dominant cases (pink). In early443

layers, logits for Ccand. and Qcand. form two dis-444

tinct groups, regardless of dominance. Around445

layer 14, Qcand. (dotted) in both cases begin to446

split, followed by Ccand. (dashed) in layer 17. By447

layer 24, Ccand. (dark pink) surpass Qcand. (light448

pink) logits in context-dominant settings, mark-449

ing a decisive shift in the competition. After this,450

the early two-group pattern reemerges but with451

reversed dominance — context-based candidates452

prevail in context-dominant cases, and query-based453

candidates in query-dominant cases. By layer 29,454

the final prediction is fully formed, with the top455

logits corresponding to the final output. These456

observations reveal key insights: (i) existence of457

competition: even when the final prediction is458

query-dominant, context-based candidates remain459

actively computed across layers. (ii) critical tran-460

sition (Layers 17–24): the decisive competition461

between query- and context-based candidates oc-462

curs primarily in this range, determining which463

candidate is promoted.464

6.2 Activation Patching465

Method To understand the competition between466

Ccand. and Qcand., we investigate whether dis-467

tinct context and query circuits exist within the468

model’s internal activations. We apply activation469

patching (Ghandeharioun et al., 2024; Meng et al.,470

2022), a technique for causal intervention that se-471

lectively perturbs and restores activations to assess472

their contribution. We conduct three model runs:473

(1) Clean run: Standard forward pass with the474

original prompt, recording activations
⋃
h0i,l. (2)475

Corrupted run: Forward pass with Gaussian noise476

ϵ ∼ N (0, σ6)) injected into context or query topic477

token embeddings, yielding perturbed activations478

6We follow Meng et al. (2022) to set σ = 0.3 as three times
of the empirical standard deviation of the input embeddings.

⋃
h1i,l, and the final log-probabilities of candidates 479

log p(t|
⋃
h1i,l). (3) Restoration run: Same as 480

the corrupted run, but iterating over all i and l, 481

restoring each h0i∗,l∗ , while keeping the rest cor- 482

rupted. By injecting noise at context subject and 483

object (context patching) or query subject posi- 484

tion (query patching) and measuring the recovery 485

of predictions, we differentiate context and query 486

circuits, tracing how features from these tokens 487

propagate through the model and how they con- 488

tribute to context-based or query-based candidates. 489

The restoration effect for each i∗ and l∗ is cal- 490

culated as in Eq. 11, where t ∈ {Ccand., Qcand.}, 491

with higher values indicate stronger contributions. 492

RE(i∗, l∗, t) = log p(t|h0i∗,l∗ ∪ h1−i∗,−l∗) 493

− log p(t|
⋃

h1i,l) (11) 494

∆query(i
∗, l∗) = RE(i∗, l∗, Qcand.)− 495

RE(i∗, l∗, Ccand.) (12) 496

∆context(i
∗, l∗) = RE(i∗, l∗, Ccand.)− 497

RE(i∗, l∗, Qcand.) (13) 498

In context and query circuits, we compute Eq. 13 499

(Figures 4a, 4c) and Eq. 12 (Figures 4b, 4d), re- 500

spectively. Comparing restoration effects maps 501

circuits responsible for context- and query-based 502

candidates and identifies where their competition 503

occurs. (See Appendix G for implementation de- 504

tails and additional results.) 505

Findings The results reveal distinct circuits for 506

context- and query-based pathways. Figures 4a 507

and 4c show the same context circuit aggregating 508

information from the context subject and object in 509

both cases, transferring it to the final token posi- 510

tion from layer 17 onward. In contrast, Figures 511

4b and 4d indicate that the same query circuit for 512

both cases integrating query subject information 513

earlier than in the context circuit, from layer 8. The 514

log-probability increases after layer 24 in context 515

circuit and after layer 16 in query circuit. 516

Both circuits exist across context- and query- 517

dominant cases, but their relative strength deter- 518

mines the final prediction. In context-dominant 519

cases, the context circuit wins, with a larger log- 520

probability difference (max 2.28) compared to the 521

query circuit (max 1.10). Conversely, in query- 522

dominant cases, the query circuit exerts a stronger 523

influence (max 1.37 vs. 1.25). Notably, between 524

layers 17 and 24, the query-dominant case shows 525

minimal context information transfer (Figure 4c), 526
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(a) Context circuit in context-dominant case. (b) Query circuit in context-dominant case.

(c) Context circuit in query-dominant case. (d) Query circuit in query-dominant case.

Figure 4: Left-hand plots demonstrate the context circuit, which extracts features from context and computes
context-based candidates, while right-hand plots illustrate the query circuit. These circuits are the same in both
context- and query-dominant cases; the difference lies in their strength, revealing the competition between context-
and query-based candidates. An example is C_REL0 = [BOS], C_SUBJ1=‘ Honda Civic’, C_REL2=‘, produced
by’,C_OBJ3=‘ Honda’, Q_REL4=‘. The original language of ’,Q_SUBJ5=‘ A Secret’, Q_REL6=‘ was’.

aligning with slower logit attribution growth (Fig-527

ure 3). This confirms that both pathways exist for528

both cases with final predictions depending on their529

relative activation strength, and layers 17 to 24 are530

the key to promoting context-based candidates.531

6.3 Flipping Model Predictions via Attention532

Knockout533

To examine the causal role of internal competition534

in shaping the final output AC+Q, we intervene535

in two key layers of the context circuit: layer 17536

(where context first transfers to the last token) and537

layer 24 (where it is most integrated). By restrict-538

ing attention to the query in the context-dominant539

case and to the context in the query-dominant case,540

we test whether predictions can be flipped (e.g.,541

“Japanese” to “French”). See Appendix H for de-542

tails and additional results. Table 5 (Llama) shows543

that in the context-dominant case, blocking context544

flow causes Qcand. probabilities to surpass Ccand.545

on average, flipping 465/1000 datapoints to query-546

based candidates. In the query-dominant case, inter-547

vention increases Ccand. probability by 4.7 and de-548

creases Qcand. probability by 8.4, flipping 225/1000549

datapoints. These results confirm the competition550

between Ccand. and Qcand., and that these two layers551

are the key to promoting context-based candidates.552

Summary These findings support the class-based553

(mis)generalization hypothesis. Logit attribution554

confirms that models first construct abstract class555

representations before refining them into specific556

answers. Activation patching reveals competing557

circuits for feature selection: one favoring direct558

query-based pathway and the other integrating con-559

Orig. L17+L24 2 Rand.

Prob. Prob. ∆ Prob. ∆

Context-Dominant
Ccand. 25.5 13.1 -12.4 21.0 -4.5
Qcand. 8.6 14.8 + 6.2 10.8 +2.2

Query-Dominant
Qcand. 35.2 26.8 -8.4 29.6 -5.7
Ccand. 6.6 11.3 +4.7 7.4 +0.8

Table 5: Effect of attention knockout on context- (Ccand.)
and query-based (Qcand.) candidate probabilities on
Llama-3. “Orig.” = No intervention, “2 Rand.” = Av-
erage of interventions on two random layers over three
runs. ∆ denotes the change from the original setting.

textual cues, with their strength shaping the final 560

output. Notably, context circuit strengthens be- 561

tween layers 17 and 24, validated by the flipped 562

predictions from attention knockout. 563

7 Conclusion 564

By analyzing the mechanism behind irrelevant con- 565

text hallucinations, our study demonstrates that 566

LLMs exhibit class-based (mis)generalization, re- 567

lying on abstract class structures in a systematic 568

yet flawed manner. Through mechanistic analysis, 569

we show that this phenomenon arises from hier- 570

archical class-to-instance predictions and compet- 571

ing circuits that mediate feature selection. These 572

findings challenge a potential misconstrual of the 573

stochastic parrot hypothesis that LLMs can only 574

regurgitate surface-level patterns. Rather, we argue 575

that they utilize class structures in ways that are 576

neither purely memorized nor necessarily reliable. 577

8



8 Limitations578

Our work has several limitations. First, our ex-579

periments are conducted in a controlled setting,580

which helps isolate generalization from memoriza-581

tion and enables analysis at both behavioral and582

mechanistic levels. However, future work could583

improve upon this by designing setups that disen-584

tangle memorization and generalization in natu-585

rally occurring text. Second, our study is limited586

to English-language datasets, and we only evaluate587

models of certain sizes (around 7–8B) due to com-588

putational constraints. It remains an open question589

whether class-based generalization is influenced590

by model size. Do larger models exhibit stronger591

correlations of this kind? Do smaller models also592

display class-based generalization, and if so, what593

is the minimum size required? Third, in the mech-594

anistic interpretability section, we focus primarily595

on layer-wise analysis to support our main hypoth-596

esis, while attention head analysis is left for future597

work. Finally, while we conduct interventions, our598

primary goal is not to mitigate contextual halluci-599

nations. Developing mitigation methods informed600

by our findings and evaluating their effectiveness601

is an important direction for future research.602
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A Dataset850

The detailed breakdown of ParaRel dataset (Elazar851

et al., 2021) based on relation type is presented852

in Table 12. We categorize the sub-datasets into853

5 knowledge types based on the expected class854

or type of the answer (column ‘Ctx Type’): ‘lan-855

guage’, ‘place’, ‘company’, ‘job’, and if a sub-856

dataset doesn’t fit into the above types then it is857

categorized as ‘others’. This is the dataset that we858

use for Q-only experiments, and we construct the859

dataset for C +Q experiments by generating 3900860

context variations spanning all knowledge types per861

query, resulting in a dataset of 106.2M data points.862

For each generation, we restrict the vocabulary to863

the set of tokens that begins with a capitalized En-864

glish letter (Yu et al., 2024). When evaluating, we865

lowercase generated and gold answers and perform866

string matching: if the top-1 generated answer is a867

substring of the gold answer, then this is correct.868

B Class-based Generalization869

We further categorize class-based generalization870

into two distinct cases:871

• Copying: When a token belonging to the ex-872

pected class appears in the context, the model873

is more likely to directly copy it as the an-874

swer. From a dataset statistics perspective,875

we observe a high copy rate when the context876

contains tokens belonging to the same class877

as the query.878

Example: The mother tongue of Dominique879

Sanda is French. The original language of880

Puss in Boots was → French.881

• Non-copying: When tokens of the expected882

query class are not explicitly present in the883

input, the model combines the expected class884

with relevant features inferred from context or885

query to generate an answer.886

Example: Honda Civic (fifth generation), pro-887

duced by Honda. The original language of888

Tow Truck Pluck was → Japanese.889

C Behavioral Changes Induced by890

Irrelevant Context891

C.1 Irrelevant Context Hallucination892

Evaluation893

In Table 6, we provide detailed statistics of the894

accuracy/wrong rate for each model under each895

case for all three models.896

MODEL
Q-ONLY C+Q

CASE PROP. CASE PROP. ∆ RATE

Llama
T 47.2% T → T 35.7% 0%

T → F 11.5% 100%

F 52.8% F → T 7.4% 100%
F → F 45.4% 42.7%

Total 47.2% Total 43.1% 38.3%

Mistral
T 38.2% T → T 29.4% 0%

T → F 8.8% 100%

F 61.8% F → T 5.9% 100%
F → F 55.9% 59.5%

Total 38.2% Total 35.3% 48.0%

Pythia
T 30.9% T → T 22.4% 0%

T → F 8.4% 100%

F 69.1% F → T 5.6% 100%
F → F 63.6% 67.8%

Total 30.9% Total 28.0% 57.1%

Table 6: Comparison of proportions (Prop.) of correct
and incorrect answers in Q-only and C+Q cases, along
with answer change rates (∆ Rate) for different mod-
els. Average across 39 datasets are reported. In the
‘Total’ row, under ‘Prop.’ column, it indicates the global
accuracy across different cases, while under ‘∆ Rate’
column, it underlies the global answer change rate.

Table 6 shows that models are not robust against 897

irrelevant context. Even when a single irrelevant 898

demonstration is prepended, models exhibit no- 899

table shifts in performance. For instance, in Llama, 900

11.5% of previously correct answers become incor- 901

rect, while 7.4% of incorrect answers are corrected 902

after adding context. However, accuracy alone does 903

not capture all behavioral shifts — predictions can 904

still change even if they remain incorrect. 905

C.2 Composition of Atop-3
C+Q 906

Table 7 provides counts and proportions of the 907

breakdown of samples according to the compo- 908

sition of Atop-3
C+Q for three models based on 106M 909

datapoints. 910

D Annotation 911

D.1 Annotation Procedure 912

To systematically evaluate the impact of irrelevant 913

context on model predictions, we perform an an- 914

notation procedure for context-based candidates 915

— those predictions that were influenced by the 916

inclusion of extraneous context. The aim was to 917

rigorously assess whether (i) these predictions in- 918

corporated identifiable features from the context, 919

and (ii) appropriately combined them with the ex- 920
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Case Top-3 Candidates Llama Mistral Pythia

No
influence

1. All query-based 50,874,341
(47.9 %)

51,013,564
(48.0%)

41,833,760
(39.3%)

Query-
dominant

2. Mix: Query + Context, top-1 is query-based 27,940,495
(27.9 %)

27,342,287
(25.7%)

28,885,252
(27.2%)

Context-
dominant

3. Mix: Query + Context, top-1 is context-based 16,069,253
(15.1 %)

17,013,397
(16.0%)

20,412,292
(19.2%)

4. All context-based 11,353,892
(10.1 %)

10,963,675
(10.3%)

15,250,026
(14.3%)

Table 7: Breakdown of samples according to the composition of Atop-3
C+Q, based on 106M datapoints.

pected class as indicated by the query. Upon accep-921

tance, we will release the annotation.922

Step 1: Candidate Selection We first randomly923

sample a set of 500 context-based candidates from924

different sub-datasets, ensuring a diverse set of925

instances. Context-based candidates were selected926

for both context- and query-dominant cases.927

Step 2: Context Feature Identification For928

each context-based candidate, we analyzed the con-929

text —specifically the subject and object — to iden-930

tify any features that could have been leveraged by931

the model in generating the response. (‘context-932

influenced?’ row in Table 13).933

Each feature is categorized as identifiable if it934

can be explicitly extracted from the context. For ex-935

ample, the country of origin of a figure (e.g., candi-936

dates ‘South’ ‘Korea’ for context subject ‘Lee Jong-937

hyun’ in Example 5 in Table 13), country/continent938

of a district (‘India’, ‘Asia’ for context object ‘Bi-939

har’ in Example 4 in Table 13) are classified as940

identifiable. In contrast, context-based candidates941

‘Bee’, ‘Beach’ are categorized as non-context influ-942

enced for context subject ‘Grant Green’ and object943

‘jazz’ as shown in Example 6 in Table 13.944

We ensure transparency by documenting the ra-945

tionale. For example, in Example 2 of Table 13, we946

provide the justification that ‘Svend Asmussen’ is a947

Danish violinist and jazz musician, which supports948

that ‘Danmark’ is a context-influenced candidate.949

Step 3: Class Verification Next, each context-950

based candidate is classified according to the ab-951

stract class suggested by the query. The candidate952

is compared to the expected class, and we verify953

whether the response falls within the correct cate-954

gory. For example, the context-based candidates955

‘Vietnamese’ and ‘Thai’ for Example 1 in Table 13956

have the correct class ‘language’, but ‘South’, ‘Ko-957

rea’ in Example 5 in Table 13 do not have the958

correct class because the query is asking about con-959

tinent, not country. 960

Step 4: Hypothesis Verification Finally, a 961

context-based candidate is considered to satisfy 962

the hypothesis if it meets the criteria from both 963

Step 2 (context feature identification) and Step 3 964

(class verification). Only candidates that success- 965

fully integrate context features and align with the 966

expected class are retained as valid instances. 967

D.2 Annotation Examples 968

Details of examples and non-examples are shown 969

in Table 13. 970

E Statistical Validation of Contextual 971

Influence 972

Mean PMI values for each model are presented in 973

Table 8. A mean PMI of around 70 across all mod- 974

els and expected classes confirms strong statistical 975

dependence (Table 8). 976

Full results on three models in Table 8. 977

Value Llama-3 Mistral Pythia

Mean PMI 3.9 3.7 3.8
T-statistic 8.1 7.3 6.6
p-value 0.0006 0.0009 0.001

Table 8: Mean PMI values and T-test results for all three
models.

F Logit Attribution 978

F.1 Implementation Details 979

When the target candidates or class have multiple 980

tokens, we take the maximum logit, and average 981

this maximum logit across all data points in the 982

dataset. 983

To obtain the class logits from the model, we 984

predefine a list of tokens according to the relation 985

type. 986
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• Languages: languages, language, tongue,987

tongues, lingua, dialect, dialects988

• Places: country, countries, place, places, lo-989

cation, locations, territory, city, cities, town,990

towns, village, villages, state, states, province,991

provinces, district, districts, continent, conti-992

nents993

• Companies: company, companies, manufac-994

turer, manufacturers, make, firm, firms, busi-995

ness, corporation, corporations, enterprise, en-996

terprises, organization, organizations, channel,997

channels, broadcaster, broadcasters, industry,998

industries999

• Jobs: position, positions, job, jobs, career,1000

careers, profession, professions, occupation,1001

occupations, role, roles, assignment, assign-1002

ments, employment, employments1003

• Others: expertise, area, areas, field, fields, sub-1004

ject, subjects, instrument, instruments, genre,1005

music, religion, religions, concept, concepts,1006

framework, frameworks, artifact, artifacts,1007

type, types, part, parts, class, classes, eponym,1008

eponyms, entity, entities, person, persons,1009

place, places1010

F.2 Logit Lens Example1011

We provide an example of how the model’s top-11012

predictions shift along the residual stream from ab-1013

stract concepts to concrete instances across layers1014

in Table 4 and Figure 5. The prompt used is Honda1015

Civic (fifth generation), produced by Honda. The1016

original language of Tow Truck Pluck was. Red1017

indicates probability around 80%. We show predic-1018

tions above layer 15 because lower than this, the1019

predictions are not interpretable.1020

F.3 Additional Logit Attribution Results1021

Additional results for Llama 8B are presented in1022

Figure 6. Importantly, we point out that the class-1023

based generalization might have existed already1024

for the Q-only case. In Figure 6a, we observe a1025

similar pattern as the C+Q case presented in Figure1026

3a – models build abstract class representation in1027

the lower layers, before refining their answers to1028

concrete ones. In fact, when we plot the logit differ-1029

ence of the abstract class tokens under C+Q and Q-1030

only case in Figure 6b, as shown as orange and yel-1031

low lines for context-dominant and query-dominant1032

case, the lines center around 0 – suggesting that1033

the computation of abstract class representations 1034

exists for zero-shot case, and is not influenced by 1035

the added irrelevant context. 1036

Logit attribution results for Mistral 7B are pre- 1037

sented in Figure 7, and for Pythia 6.9B in Figure 8. 1038

We remark that these plots follow a similar pattern. 1039

G Activation Patching 1040

G.1 Implementation Details 1041

In the corrupted run, we corrupt the embeddings of 1042

all tokens for context subject and object in context 1043

patching, and all tokens for query subject in query 1044

patching by adding a Gaussian noise where σ is 1045

3 times of the empirical standard deviation of the 1046

input embeddings over a body of text (sigma ≈ 1047

0.3) (Meng et al., 2022). 1048

G.2 Additional Activation Patching Results 1049

Activation patching results under the C+Q condtion 1050

for Mistral and Pythia are in Figure 10 and 13, 1051

respectively. 1052

Additionally, we also visualize the query circuit 1053

under the Q-only condition in Figure 9, 11, and 1054

12, for Llama, Mistral, and Pythia, respectively. 1055

We remark on two important observations: (i) The 1056

query circuit is the same for context-dominant and 1057

query-dominant data, without irrelevant context. 1058

(ii) The query circuit remains as is after adding the 1059

irrelevant context, as compared to Figures 4b and 1060

4d. 1061

H Attention Knockout 1062

H.1 Implementation Details 1063

In the attention knockout experiments, our goal is 1064

to see if we can intervene in the internal computa- 1065

tion to change the output behavior. Specifically, in 1066

context-dominant case, we would like to flip the 1067

prediction AC+Q from Ccand. (e.g., ‘Japanese’ to 1068

Qcand. ‘French’; And in query-dominant case, we 1069

would like to flip the prediction AC+Q from Qcand. 1070

‘Malaysia’ to Ccand. ‘Australia’. 1071

To do this, we intervene in two layers: the first 1072

attention layer where the context information is 1073

transferred to the last token residual stream, and the 1074

attention layer where the most context information 1075

is written into the last token residual stream. These 1076

two layers correspond to the first blue spike and 1077

the highest blue spike in Figures 6d, 7d and 8d. 1078

For Llama-3, it is layers 17 and 24, respectively. 1079

For Mistral, it is layers 18 and 24, respectively. For 1080

Pythia, it is layers 19 and 24, respectively. 1081
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Figure 5: Logit lens on Llama-3 shows how model’s top-1 predictions shift along the residual stream from abstract
concepts (e.g., ’languages’) to concrete instances (e.g., ’English’ or ’Japanese’) across layers. Red indicates high
probability.

(a) Q-only: Token logit from accumulated residual stream.
(R1

T,l, R
2
T,l) are visualized per layer.

(b) Token logit difference (Logit in C+Q - Logit in Q-only)
from accumulated residual stream (R1

T,l, R
2
T,l).

(c) C+Q: Token logit from accumulated residual stream.
(R1

T,l, R
2
T,l) are visualized per layer.

(d) C+Q: candidate logit difference from attention and MLP
output. AT,l and MT,l are visualized per layer.

Figure 6: Additional logit attribution results for Llama-3 8B.

Specifically, in the context-dominant case, at1082

the last token position, we set the attention scores1083

corresponding to all tokens in the context to be1084

−∞, therefore, attention weight (which sums up1085

to 1) is only a distribution over the query tokens.1086

We perform this intervention to block information1087

flow from the context to the last token position,1088

and we only allow models to attend to the query1089

part. Similarly, in the query-dominant case, we set1090

the attention scores corresponding to all tokens in1091

the query to be −∞, allowing the models to only1092

retrieve information from the context.1093

To compare the knockout effect of the two criti-1094

cal layers with other layers, we select two random 1095

lower layers and two random higher layers. We re- 1096

port the average intervention results for three runs. 1097

H.2 Additional Results 1098

Results for Llama and Mistral are presented in Ta- 1099

ble 10 and Table 9, respectively. 1100

With the targeted two-critical-layer intervention: 1101

• Llama: 465/1000 context-dominant data- 1102

points flip to query-based candidates, while 1103

407/1000 remain context-based. Conversely, 1104

225/1000 query-dominant datapoints shift to 1105
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(a) Q-only: Token logit from accumulated residual stream.
(R1

T,l, R
2
T,l) are visualized per layer.

(b) Token logit difference (Logit in C+Q - Logit in Q-only)
from accumulated residual stream (R1

T,l, R
2
T,l).

(c) C+Q: Token logit from accumulated residual stream.
(R1

T,l, R
2
T,l) are visualized per layer.

(d) C+Q: candidate logit difference from attention and MLP
output. AT,l and MT,l are visualized per layer.

Figure 7: Logit Attribution Results For Mistral 7B.

context-based candidates, while 704/1000 re-1106

main query-based.1107

• Mistral: 437/1000 context-dominant data-1108

points flip to query-based candidates, while1109

514/1000 remain context-based. Similarly,1110

232/1000 query-dominant datapoints shift to1111

context-based candidates, while 713/1000 re-1112

main query-based.1113

• Pythia: 470/1000 context-dominant data-1114

points flip to query-based candidates, while1115

486/1000 remain context-based. Conversely,1116

294/1000 query-dominant datapoints shift to1117

context-based candidates, while 648/1000 re-1118

main query-based.1119

Across all models, approximately 950 datapoints1120

remain context- or query-based candidates, instead1121

of random non-identifiable answers, indicating that1122

our intervention preserves model capabilities.1123

Orig. L17+L24 2 Low 2 High

Prob. Prob. ∆ Prob. ∆ Prob. ∆

Context-Dominant
Ctx 22.6 14.6 -8.0 19.9 -2.7 19.0 -3.6
Query 8.2 12.4 +4.2 8.2 +0.0 9.2 +1.0

Query-Dominant
Query 33.0 25.0 -8.0 25.5 -7.5 31.7 -1.3
Ctx 6.5 10.7 +4.2 7.7 +1.2 6.4 -0.1

Table 9: Effect of attention knockout on context- (Ctx)
and query-based (Query) candidate probabilities on
Llama-3. “Orig.” = No intervention, “2 Low” = Two
lower layers (<17), “2 High” = Two higher layers (>24).
“Diff.” represents the probability difference, and ∆ de-
notes the change from the original setting. (Mistral 7B)

1124
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(a) Q-only: Token logit from accumulated residual stream.
(R1

T,l, R
2
T,l) are visualized per layer.

(b) Token logit difference (Logit in C+Q - Logit in Q-only)
from accumulated residual stream (R1

T,l, R
2
T,l).

(c) C+Q: Token logit from accumulated residual stream.
(R1

T,l, R
2
T,l) are visualized per layer.

(d) C+Q: candidate logit difference from attention and MLP
output. AT,l and MT,l are visualized per layer.

Figure 8: Logit Attribution Results For Pythia 6.9B.

Orig. L17+L24 2 Low 2 High

Prob. Prob. ∆ Prob. ∆ Prob. ∆

Context-Dominant
Ctx 25.5 13.1 -12.4 20.9 -4.6 21.1 -4.4
Query 8.6 14.8 +6.2 8.9 +0.3 12.6 +4.0

Query-Dominant
Query 35.2 26.8 -8.4 25.7 -9.5 33.4 -1.8
Ctx 6.6 11.3 +4.7 7.7 +1.1 7.1 +0.5

Table 10: Effect of attention knockout on context- (Ctx)
and query-based (Query) candidate probabilities on
Llama-3. “Orig.” = No intervention, “2 Low” = Two
lower layers (<17), “2 High” = Two higher layers (>24).
“Diff.” represents the probability difference, and ∆ de-
notes the change from the original setting. (Llama-3)

Orig. L17+L24 2 Low 2 High

Prob. Prob. ∆ Prob. ∆ Prob. ∆

Context-Dominant
Ctx 22.3 13.6 -8.7 18.3 -4.0 20.5 -1.8
Query 7.4 11.5 +4.1 8.4 +1.0 7.8 +0.4

Query-Dominant
Query 26.6 20.8 -5.8 20.5 -6.1 25.6 -1.0
Ctx 6.3 9.6 +3.3 6.9 +0.6 6.2 -0.1

Table 11: Effect of attention knockout on context- (Ctx)
and query-based (Query) candidate probabilities on
Llama-3. “Orig.” = No intervention, “2 Low” = Two
lower layers (<17), “2 High” = Two higher layers (>24).
“Diff.” represents the probability difference, and ∆ de-
notes the change from the original setting. (Pythia)
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(a) Q-only: Query circuit in context-dominant case.

(b) Q-only: Query circuit in query-dominant case.

Figure 9: Activation patching under Q-Only condition reveals that query circuit is the same before and after adding
the irrelevant context for Llama-3 8B.
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(a) C+Q: Context circuit in context-dominant case.

(b) C+Q: Context circuit in query-dominant case.

(c) C+Q: Query circuit in context-dominant case.

(d) C+Q: Query circuit in query-dominant case.

Figure 10: Activation patching under C+Q condition for Mistral 7B.
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(a) Q-only: Query circuit in context-dominant case.

(b) Q-only: Query circuit in query-dominant case.

Figure 11: Activation patching under Q-Only condition reveals that query circuit is the same before and after adding
the irrelevant context for Mistral 7B.

(a) Q-only: Query Circuit in context-dominant case.

(b) Q-only: Query Circuit in query-dominant case.

Figure 12: Activation patching under Q-Only condition reveals that query circuit is the same before and after adding
the irrelevant context for Pythia 6.9B.
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(a) Context circuit in context-dominant case.

(b) Context circuit in query-dominant case.

(c) Query circuit in context-dominant case.

(d) Query circuit in query-dominant case.

Figure 13: Activation patching under C+Q condition for Pythia 6.9B.
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Relation Template Ctx Type Total Rows
P1001 [X] is a legal term in [Y] Place 664
P101 The expertise of [X] is [Y]. Others 571
P103 The mother tongue of [X] is [Y]. Language 919
P106 [X] works as [Y]. Job 821
P108 [X], who is employed by [Y]. Company 378
P127 [X] owner [Y]. Company 616
P1303 [X] plays the [Y]. Others 513
P131 [X] is in [Y]. Place 775
P136 [X] plays [Y]. Others 859
P1376 [X], the capital city of [Y]. Place 179
P138 [X], which is named after [Y]. Others 461
P140 [X] is follower of [Y]. Others 432
P1412 [X] communicated in [Y]. Language 924
P159 [X] is headquartered in [Y]. Place 801
P17 [X], located in [Y]. Place 912

P176 [X], produced by [Y]. Company 925
P178 [X], a product developed by [Y]. Company 588
P19 [X] is native to [Y]. Place 779

P190 [X] is a twin city of [Y]. Place 671
P20 [X] passed away at [Y]. Place 817

P264 [X]’s label is [Y]. Company 53
P27 [X], a citizen of [Y]. Place 958
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Relation Template Type Total Rows
P276 [X] is located in [Y]. Place 764
P279 [X], a type of [Y]. Others 900
P30 [X] is a part of the continent of [Y]. Place 959
P36 The capital city of [X] is [Y]. Place 471

P361 [X] is a part of [Y]. Others 746
P364 The original language of [X] was [Y]. Language 756
P37 The official language of [X] is [Y]. Language 900
P39 [X], who holds the position of [Y]. Job 485

P407 [X] was written in [Y]. Language 857
P413 [X] plays in the position of [Y]. Job 952
P449 [X] premiered on [Y]. Company 801
P463 [X] belongs to the organization of [Y]. Company 203
P47 [X] borders with [Y]. Place 649

P495 [X] was formed in [Y]. Place 905
P530 [X] ties diplomatic relations with [Y]. Place 950
P740 [X], founded in [Y]. Place 843
P937 [X] found employment in [Y]. Place 853

Table 12: Overview of Relations, Templates, Types, and Total Rows in the original Pararel Dataset. We take this
dataset and construct the C +Q dataset, which has around 106.6M rows.
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Category Details

Example 1

Context Hanoi is a twin city of Bangkok.

Query The mother tongue of Louis Legendre is

Class Languages

Context Subject Possible Answers Vietnamese, Tay, Hmong, Khmer, English, French,
Chinese

Context Object Possible Answers Thai, Lao, Chinese, Malay, Khmer

Context-Based Candidates Vietnamese, Thai

Context-Influenced? True

Correct Class? True

Exists Answer that Satisfies Both? True

Example 2

Context Svend Asmussen plays the violin.

Query Social-Economic Council is a legal term in
Class Places (Countries, Cities, States, etc.)/Languages

Context Subject Possible Answers Danmark, Danish (Svend Asmussen is a Violinist
and jazz musician)

Context Object Possible Answers Italy, Italian (Violin was originated in Italy)

Context-Based Candidates Denmark

Context-Influenced? True

Correct Class? True

Exists Answer that Satisfies Both? True

Example 3

Context Manchester Business School is headquartered in
Manchester.

Query Antipope Paschal III, who holds the position of

Class Jobs/Positions/Roles

Context Subject Possible Answers Professor, Lecturer, Instructor, Researcher, Depart-
ment Chair, Provost, Dean, Academic Advisor,
Teaching Assistant, Student, etc.

Context Object Possible Answers N/A

Context-Based Candidates Dean, Professor

Context-Influenced? True

Correct Class? True

Exists Answer that Satisfies Both? True
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Category Details

Example 4

Context Saharsa district is in Bihar.

Query Colbert Mountains is a part of the continent of

Class Continents/Places

Context Subject Possible Answers Asia

Context Object Possible Answers Asia

Context-Based Candidates Asia, India

Context-Influenced? True

Correct Class? True

Exists Answer that Satisfies Both? True

Example 5

Context Lee Jong-hyun plays the guitar.

Query Northern Foothills is a part of the continent of

Class Continents

Context Subject Possible Answers Asia

Context Object Possible Answers Europe (Guitar originated in Spain)

Context-Based Candidates South, Korea

Context-Influenced? True

Correct Class? False

Exists Answer that Satisfies Both? False

Example 6

Context Grant Green plays jazz.

Query David Gates plays the

Class Role/Genre/Style/Position/Musical Instrument

Context Subject Possible Answers guitarist, composer, musician, songwriter etc. (role of
Grant Green), guitar (Musical Instrument that Grant
Green plays), jazz, R&B, etc. (music genre of Grant
Green)

Context Object Possible Answers Jazz.

Context-Based Candidates Bee, Beach

Context-Influenced? False

Correct Class? False

Exists Answer that Satisfies Both? False

Example 7
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Category Details

Context Samuil Marshak passed away at Moscow.

Query Jean Metcalfe, who is employed by

Class Company/Person

Context Subject Possible Answers Russia-1, Channel One Russia, RT, TV Rain, etc.

Context Object Possible Answers Russia-1, Channel One Russia, RT, TV Rain, etc.

Context-Based Candidates BBC, Radio

Context-Influenced? False

Correct Class? True

Exists Answer that Satisfies Both? False
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