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Abstract

The widespread success of LLMs on NLP
benchmarks has been accompanied by concerns
that LLMs function primarily as stochastic par-
rots that reproduce texts similar to what they
saw during pre-training, often erroneously. But
what is the nature of their errors, and do these
errors exhibit any regularities? In this work,
we examine irrelevant context hallucinations,
in which models integrate misleading contex-
tual cues into their predictions. Through be-
havioral analysis, we show that these errors
result from a structured yet flawed mechanism
that we term class-based (mis)generalization,
in which models combine abstract class cues
with features extracted from the query or con-
text to derive answers. Furthermore, mecha-
nistic interpretability experiments on Llama-3,
Mistral, and Pythia across 39 factual recall rela-
tion types reveal that this behavior is reflected
in the model’s internal computations: (i) ab-
stract class representations are constructed in
lower layers before being refined into specific
answers in higher layers, (ii) feature selection
is governed by two competing circuits — one
prioritizing direct query-based reasoning, the
other incorporating contextual cues — whose
relative influences determine the final output.
Our findings provide a more nuanced perspec-
tive on the stochastic parrot argument: through
form-based training, LLMs can exhibit sensi-
tivity to structured abstractions, albeit in unreli-
able ways.!

1 Introduction

The remarkable success of LLMs on various NLP
benchmarks has been accompanied by concerns
that they function primarily as “stochastic parrots”
that operate by “haphazardly stitching together se-
quences of linguistic forms” using statistical co-
occurrences in pre-training data (Bender et al.,
2021). This view is supported by evidence that
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Figure 1: Examples demonstrating class-based
(mis)generalization with Llama-3 (8B).

LLMs can reproduce training artifacts, exploit spu-
rious correlations, and fail when faced with dis-
tribution shifts, among other issues (Carlini et al.,
2021; Zhou et al., 2024; Dziri et al., 2023; Wu et al.,
2024c; Mirzadeh et al., 2024).

In this work, we argue that more deeply exam-
ining model errors can reveal insights into LLM
behaviors and generalization capabilities. In par-
ticular, we examine a specific and underexplored
type of error — irrelevant context hallucinations
— to investigate the mechanisms through which
LLMs integrate contextual information into their
predictions. We introduce a controlled experimen-
tal setting where LLMs receive irrelevant contex-
tual information alongside a query (Figure 1).

By artificially controlling the context and query
pairing, this setup allows us to explore how LLMs
behave in situations they were unlikely to have
encountered in pre-training. Additionally, by fo-
cusing on incorrect answers, we sidestep the data
leakage issue, which is primarily concerned with
memorization of correct answers (Balloccu et al.,



2024; Xu et al., 2024). Thus, these controls reduce
the possibility that answers stem purely from pat-
tern matching from pre-training data, allowing us
to better isolate prediction shifts driven by added
context.

Through qualitative analysis of irrelevant con-
text hallucinations, as demonstrated in Figure 1,
we hypothesize that these errors exhibit struc-
tured regularities. We posit that LLMs exhibit a
structured but flawed mechanism, which we term
the class-based (mis)generalization hypothesis.
Specifically, LLMs can leverage abstract class cues
(e.g., “language”), use them to select features in
the prompt (e.g., selecting the country feature of
“Honda”, instead of the year feature), and combine
these abstract classes with the selected features to
produce an answer (e.g., “Language” + “Japan” —
“Japanese”). This hypothesis suggests that LL.Ms
can generalize in a systematic and structured man-
ner in this setting, but as we will show, their re-
liance on these abstractions is often flawed. In
some cases, it leads to correct answers via an in-
correct computation (e.g., “Portuguese” in Figure
1), while in others, it results in hallucinations (e.g.,
“Japanese”, “Norwegian” in Figure 1).

To validate our hypothesis, we conduct a behav-
ioral analysis of how irrelevant context influences
model predictions on Llama-3, Mistral and Pythia.
Specifically, we perform annotations on 500 data
points and show that 70% of observed shifts pat-
tern with our class-based generalization hypothesis.
Moreover, statistical analyses confirm that this phe-
nomenon is systematic rather than due to chance or
being query-dependent.

We provide further evidence of this generaliza-
tion mechanism via mechanistic interpretability ex-
periments which probe the model’s internal compu-
tations across Transformer layers (Vaswani et al.,
2017). Our findings reveal two key mechanisms
that further support our hypothesis: (i) LLMs make
hierarchical class-to-instance predictions; i.e., they
construct abstract class representations (e.g., “lan-
guages”) before refining them to more specific an-
swers (e.g., “Japanese”). (ii) Feature selection is
governed by competing circuits: we identify one
pathway that prioritizes direct query-based reason-
ing and another that incorporates contextual cues.
Their relative strength determines the final output.
Attention knockout experiments show that ablating
key heads involved in the context-based pathway
can flip model predictions (e.g., flipping “Japanese”
to “French”), further confirming this competitive

interaction. These findings support the class com-
ponent of our hypothesis and illustrate how models
select features to combine with the abstract class.

Crucially, our findings do not suggest that LLMs

possess strong generalization abilities, nor do they
contradict the theoretical basis of the stochastic
parrot argument that LLMs are incapable of true
language understanding from form-based train-
ing alone (Bender and Koller, 2020). Instead,
to stretch the metaphor, we provide evidence of
LLMSs as stochastic parakeets, peacocks, and pen-
guins which can leverage abstract class structures
in ways that are neither purely memorized nor nec-
essarily reliable. These abstractions result from
next-token prediction during pre-training and ex-
tend beyond simple ontological hierarchies (e.g.,
superset-subset relationships), shaping the model’s
internal feature selection process.

In summary, our main contributions are:

* We introduce a novel setting that isolates how
LLMs integrate irrelevant contexts, distin-
guishing generalization from memorization.

* We provide empirical evidence that LLMs ex-
hibit class-based (mis)generalization, demon-
strating sensitivity to abstract class structures
beyond statistical co-occurrences.

* We uncover the internal computational mecha-
nisms of class-based generalization, revealing
competing circuits and hierarchical class rep-
resentations.

* We propose a behavioral analysis framework
that moves beyond accuracy-based evaluation,
emphasizing the importance of understanding
LLMs’ internal mechanisms.

2 Related Work

LLM Evaluation Traditional NLP evaluation
prioritizes test set performance but often overlooks
how models arrive at their final answers. For LLMs
trained on Internet-scale data, distinguishing gen-
uine generalization from memorization or spuri-
ous correlations is challenging, especially with po-
tential data leakage (Dziri et al., 2023; Wu et al.,
2024c; Zhou et al., 2024; Balloccu et al., 2024; Xu
et al., 2024). Prior work addresses this through
data extraction (Carlini et al., 2021), statistical
control (Min et al., 2022), adversarial perturba-
tions (Mirzadeh et al., 2024), and error analysis
(Daziri et al., 2023). In contrast, we take a behavior-
focused approach in a controlled setting, reduc-
ing the likelihood of pure pattern matching. Addi-



\Vk) cl
2
Class + ContextFeature --> Ctx-Based

Japan :| Candidates

1972
Soichiro

!

Language [

Example Feature Selection and Combination k'_'f'

[o]

Based (Mis)Gi

Context + Query - Answer

Feature + Class =

m )

Class + Query Feature --> Query-Based
Film :| Candidates

o | CEEED

Language « [2007

Answer

Q

Honda Civic, produced by Honda. The original language of A Secretwas ____

ype  Model Type  Manufacturer
Country Japan Country Japan
Y 1972 Founder ~Soichiro Honda

Context Features

ype  Film
Country France
Year 2007

Query Features

Figure 2: Class-based generalization framework: feature selection and combination.

tionally, by analyzing errors — often ignored by
accuracy-based metrics — we gain deeper insights
into model mechanisms.

Irrelevant Context Hallucinations Hallucina-
tions in text generation have been studied in the
absence of context (McKenna et al., 2023; Kang
et al., 2024; Meng et al., 2022) and in cases with
relevant context (Cao et al., 2020, 2022a; Maynez
et al., 2020; Lee et al., 2018; Adlakha et al., 2024;
Chuang et al., 2024; Petroni et al., 2020; Li et al.,
2023). We focus on irrelevant context hallucina-
tions, where extraneous context influences predic-
tions. Unlike prior work on evaluating or miti-
gating such errors (Cao et al., 2022b; Cuconasu
et al., 2024; Wu et al., 2024a; Petroni et al., 2020;
Li et al., 2023; Shi et al., 2023; Mirzadeh et al.,
2024), we explain their underlying class-based
(mis)generalization mechanisms, conceptually and
mechanistically.

Mechanistic Interpretability Mechanistic inter-
pretability methods (Olah, 2022; Nanda, 2023)
reverse-engineer LLMs via vocabulary projection
(Belrose et al., 2023; Geva et al., 2022; nostal-
gebraist, 2020) and computational interventions
(Ghandeharioun et al., 2024; Stolfo et al., 2023; Fin-
layson et al., 2021). Extending prior work (Merullo
et al., 2024; Wu et al., 2024b; Lv et al., 2024; Geva
et al., 2022), we use these techniques to uncover
how LLMs are influenced by irrelevant contexts.
By linking behavioral analysis with internal mech-
anisms, we provide a mechanistic perspective on
irrelevant context hallucinations.

3 Framework and Hypothesis

In this section, we describe the abstract framework
illustrated in Figure 2 and present our class-based
(mis)generalization hypothesis.

Setting Consider a query () representing the
question of interest and an irrelevant context C
prepended to it. Let Agp denote the model’s an-
swer to () alone and Acy denote the answer
with the added context (contextual answer). We
define context features and query features as sets
of properties or attributes of the entities in C' and
@, respectively. For example, for context features
in Figure 2, the feature names are {Type, Coun-
try, Year, etc.}, with corresponding feature values
{Model, Japan, 1972, etc.}. The class of Acq de-
rived from @ (e.g., “languages”) determines which
features the model should prioritize (e.g., derive
“Japanese” based on the “Country: Japan” feature).

Class-Based (Mis)Generalization Hypothesis
Given the setup C'+ (), when the context influences
the model predictions, instead of relying solely on
the query, we hypothesize a structured mechanism
by which the model integrates contextual informa-
tion into its predictions. Specifically, we propose
class-based generalization, where language mod-
els process context in two steps: they first derive
an abstract class (e.g., “languages”) and then select
and combine relevant features from C' or @) (e.g.,
“Japan” or “France”) to generate an answer (e.g.,
“Japanese’ or “French”).

Let query-based candidates be answers de-
rived from query features combined with the class
(e.g., “French”) and context-based candidates
be answers derived from context features (e.g.,
“Japanese”). If Ao is the query-based candidate,
we define the case as query-dominant; otherwise,
it is context-dominant. These terms emphasize
the final outcome rather than the intermediate steps.
See Table 1 for examples.

A special case arises when a token of the ex-
pected class is already present in the prompt (Ap-
pendix B), making the model more likely to copy
it directly (Jiang et al., 2024).



C+ Q AQ Cland. Qcand. AC+Q Case

C: Honda Civic, produced by Honda. French  Japanese French, Japanese Context-
Q: The original language of A Secret was P English P dominant
C: City of Boroondara is in Melbourne. . . Malaysia, . Query-
Q: Prime Minister of Malaysia is a legal term in Malaysia ~ Australia Malaysian Malaysia dominant

Table 1: Examples of context- and query-dominant categorizations with context- and query-based candidates.

4 Dataset and Experimental Design

Models & Datasets We evaluate three pretrained
LMs — Llama-3.1 (8B) (Al@Meta, 2024), Mistral
v0.3 (7B) (Jiang et al., 2023), and Pythia (6.9B-
deduped) (Biderman et al., 2023) — using their
base versions to assess raw model behavior. We
use the ParaRel dataset (Elazar et al., 2021), which
consists of 39 factual QA subdatasets. Dataset
statistics are provided in Table 12 in the Appendix
A. Both @ and C are sourced from these datasets.
Experiments are run on two RTX8000 GPUs.

Experimental Setup We compare two condi-
tions: 1) Q-only, where each () is formatted using
a predefined template and a subject-relation-object
(s,7,0) triplet from ParaRel, resulting in 27.6K
queries. The model’s top-1 prediction is Ag. 2)
C+Q, where each @ is prepended with context
demonstrations from other subdatasets spanning
various relation types, introducing controlled con-
textual variation. We randomly sample 100 ex-
amples per subdatasets”, generating 3,900 context
variations per query, totaling 106M examples. The
model’s top-1 prediction is Ac4q.

Context- and Query-Based Candidates To
make the definitions from Sec. 3 precise, we de-
fine a context-based candidate © € C,,,q to be
a candidate among the top three® predictions un-
der C' + @ but not among the top ten* predictions
under (). A query-based candidate x € Q)cang. ap-
pears in the top predictions under both conditions.
Note that AtglfQ = Ctand. U Qcand.- See Table 1 for
examples.

A .= {x | = € top 3 candidates under C' + Q} (1)

c+Q =
Agmo := {z | = € top 10 candidates under Q} )
Cena. := {z | @ € AT} and & ¢ A"} 3)
Qeana. := {z |z € Agﬁ@ and z € Atci)pm} 4)

2P264 has only 53 examples, so we include all of them.

3A threshold of three ensures that classified context-based
candidates are strongly influenced by context.

“A threshold of 10 ensures that classified context-based
candidates are not plausible answers under () alone.

5 Behavioral Analysis of Contextual
Answers

We now investigate how irrelevant context influ-
ences model predictions, verifying our class-based
(mis)generalization hypothesis through textual-
level behavioral analysis. Specifically, we examine:
(1) whether irrelevant context causes behavioral
changes (Sec. 5.1), (2) whether the influence of
irrelevant context aligns with our hypothesis (Sec.
5.2). (3) whether the observed correlation between
irrelevant context and context-based candidates is
statistically significant (Sec. 5.3).

Case Top-3 Candidates Llama Mistral Pythia
No in- 1. All query-based 47.9% 48.0% 39.3%
fluence  (Ceana. = 0)
Query- 2. Mix, top-1 is query- 27.9% 25.7% 27.2%
dominant based
3. Mix, top-1 is context- 15.1% 17.0% 19.2%
Context- based
dominant™, 1 Context-based  10.1% 103% 14.3%
(Qcand. = (Z))

Table 2: Breakdown of samples according to the com-

position of A[gfo, based on 106M datapoints. Detailed

results can be found in Table 7 in the Appendix.

5.1 Behavioral Changes Induced by
Irrelevant Context

In this section, we investigate whether adding irrel-
evant context leads to behavioral changes in model
predictions. From an accuracy perspective, we
observe a slight decrease: across 39 subdatasets,
the accuracy for Llama-3 drops from 47.2% to
43.1%, and for Mistral, from 38.2% to 35.3% (Ta-
ble 6 in Appendix). While these changes are mod-
est, accuracy alone does not provide a complete
picture of changes in model predictions. To ad-
dress this gap, we measure the answer change
rate (A Rate) after adding the irrelevant context:

ARate = %. For Llama-3, 38.3% of re-

sponses changed after adding irrelevant context,
while for Mistral, nearly half of the datapoints



Query Ctx. Context Demonstration + Query and Answer
Type Type
Person/ Prompt: Amilcare Ponchielli plays opera. The original language of A Hunting Accident was
Language Music Answer: Acyq = Italian, Ag = English
Make/ Prompt: Toyota Alphard, produced by Toyota. The original language of A Hunting Accident was
Model Answer: Acyq = Japanese, Ag = English
Person/  Prompt: Indo-Greek Kingdom is follower of Buddhism. Alpha Island is a part of the continent of
Place Religion Answer: Actq = Asia, Ag = Alpha
Place Prompt: Council of States of Switzerland is a legal term in Switzerland. Alpha Island is a part of the

continent of

Answer: Acq = Europe, Ag = Alpha

Table 3: Examples of context-based candidates across different query and context types.

(48.0%) experience a shift in predictions (Table
6 in Appendix).
We further examine the cases under the C' +

() condition based on the composition of (Atg]ig)

(Table 2). Roughly 48%" of samples are unaffected
by the irrelevant context for Llama and Mistral
(case 1), meaning all top-3 candidates are query-
based). However, when predictions are influenced
by the added context (cases 2, 3 and 4), about half
of these instances (49.5% for Llama, 52.5% for
Mistral) become context-dominant. These results
demonstrate the influence of irrelevant contexts,
even if the overall accuracy is little changed.

5.2 Human Annotation of Context-Based
Candidates

Next, we examine whether these behavioral
changes pattern with our class-based generalization
hypothesis. To do so, we annotate context-based
candidates, which capture the shifts induced by ir-
relevant context. We assess whether each answer
explicitly integrates identifiable features from the
context and combines them with the expected class
indicated by the query. Annotation procedure and
examples are provided in Appendix D.

We perform this annotation on a randomly sam-
pled set of 500 context-based candidates across
different subdatasets. Our results reveal that 81.6%
of the responses incorporate features from the pro-
vided context, 84.4% belong to the correct class,
and 71.0% satisty both criteria — combining iden-
tifiable context features with the correct abstract
class. This finding provides strong evidence for our
hypothesis as a majority of these samples can be
explained by the hypothesis. Table 3 provides illus-

Notably, due to the conservative choice of 10 for Agp'lo,
some answers in case 1 might also be context-based but al-
ready appear in the top-10 predictions under the ) condition.
Therefore, we exclude these cases from further analyses.

trative examples of the model’s output adapting to
contextual cues.

5.3 Statistical Validation of Contextual
Influence

Next, we investigate whether the correlation be-
tween irrelevant context and context-based candi-
dates is statistically significant. To quantify the
dependence between a context C (e.g., Honda) and
its associated context-based candidate Ceanq. (.2,
Japanese), we compute the pointwise mutual infor-
mation (PMI) between them. Specifically, we sam-
ple 100 distinct contexts from various subdatasets.
Each context is paired with 100 different queries
belonging to the same expected class (e.g., lan-
guages, places, etc.), resulting in 10,000 instances
per class. Since context-based candidates are de-
termined independently of the queries, each con-
text C; is paired with its corresponding candidate
Ceand. j» regardless of the 100 queries. This yields
100 pairs of (C, Ceand. ;) per class, such as (Honda,
Japanese) for languages, and (Honda, Japan) for
places. The mean PMI across the 100 pairs of each
class is computed as:

100
1
Hobserved = 100 E - PMI(CM Ccand-,i) (5)
1=

P(Cla Ccand‘yi)

. (6
PC)P(Coma.) O

PMI(Ci7 Ccand‘,i) = log

In this formula, P(C;) = 1/100, since we have
100 distinct contexts. P(Ceang. ;) is estimated
based on its frequency among all 10,000 gener-
ated answers Ac for the given expected class.
Similarly, P(C;, Ceand. ;) is computed from its co-
occurrence within these samples. Across all mod-
els and expected classes, the mean PMI is ap-
proximately 4, suggesting a strong association be-
tween contexts and their corresponding candidates.
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L16 L17 L18 L19 L20 L21 L22 L23 L24 L25 L27 L28 L29 L30 L31
fis English English English English English English  English
fis fis fis English English English English  English English English English English English Japanese

Table 4: Logit lens on Llama-3 showing top-1 predictions shifting from abstract concepts (e.g.,

‘languages’) to

concrete instances (e.g., ‘English’ or ‘Japanese’) across layers. The first and second row correspond to R, and the

second row is RZT’ ;> respectively. See Appendix F.2 for the corresponding prompt and associated probabilities.

To formally assess statistical dependence, we per-
form a one-sample t-test against the null hypothesis
E[PMI(C;, Ceand. )] = 0) (which would indicate
independence). With a p-value of 0.001, we reject
the null hypothesis, concluding that C' and Cigg.
exhibit significant dependence. (See Table 8 in the
Appendix for full results.)

6 Mechanistic Analysis of Contextual
Answers

We next investigate whether the models’ internal
computations reflect the class-based generalization
that we observed above. In Sec. 6.1, we use logit
attribution to show that models construct abstract
class representations, supporting the class compo-
nent of our hypothesis. In Sec. 6.2 and Sec. 6.3, we
apply activation patching and attention knockout to
reveal that feature selection in our hypothesis arise
from competition between circuits, where dis-
tinct query-based pathways (computing ()¢ang.) and
context-based pathways (computing Ccang.) com-
pete to determine the final answer. These findings
provide mechanistic evidence for our hypothesis.

Data We randomly draw 1,000 context-dominant
and 1,000 query-dominant datapoints from case
2 and case 3 in Table 2 as these cases have both
query- and context-based candidates.

6.1 Logit Attribution

Method To explore how models build answers
across layers, we apply logit attribution (nostalge-

braist, 2020) to trace predictions across layers by
projecting hidden states onto the vocabulary space.
Given a prompt with 7" tokens and a model with
L layers, we extract hidden states at the last token
position hr; € RY, where j € {1,..., L} and d is
the hidden size. These are projected onto the vocab-
ulary space using Unembed(LayerNorm(hr ;)) €
RV, where the Unembed matrix corresponds to
the transpose of the input embedding weights.
Models maintain a residual stream for each to-
ken 7, which accumulates information as it passes
through each layer. At each layer, two key trans-
formations occur: attention update (4; ;) and MLP
update (M; ;). Mathematically, the updates follow:

A; = ATTN(RY)) @)
Riy= A+ R, ®)
M;; = MLP(R})) )
R} = M+ Ry, (10)

where RZ! ; 18 the residual stream after attention at

layer [, and R;’ ; 1s the final residual stream at layer
[ after the MLP update. (See Appendix F.)

Findings To understand how different tokens
evolve across layers, we project the last token resid-
ual stream RlT ; (after attention) and RQT , (after
the MLP) onto ‘the vocabulary space at each layer.
Figure 3 tracks the logits for Ceang., Qcand., and
class tokens under the C' + @ condition. Addi-
tional results are provided in Appendix F. Figure 3
reveals a hierarchical class-to-instance process in



answer generation. Early layers prioritize class to-
ken logits (solid) like “languages”, suggesting that
the model first constructs abstract class representa-
tions. Around the middle layers, candidate answer
logits (dashed/dotted) begin to rise, refining these
abstract representations into concrete answers. In
Table 4, a concrete example of logit lens top-1 pre-
dictions reveals how Llama-3 shifts from abstract
class to concrete instances. This pattern supports
our hypothesis that models leverage class-based
information in shaping their predictions.

Moreover, the figures highlight a competition
between Cang. (dashed) and Q¢ang. (dotted), par-
ticularly in context-dominant cases (pink). In early
layers, logits for Ceang. and Qcang. form two dis-
tinct groups, regardless of dominance. Around
layer 14, Qcang. (dotted) in both cases begin to
split, followed by C,ng. (dashed) in layer 17. By
layer 24, Ccang. (dark pink) surpass Qcang. (light
pink) logits in context-dominant settings, mark-
ing a decisive shift in the competition. After this,
the early two-group pattern reemerges but with
reversed dominance — context-based candidates
prevail in context-dominant cases, and query-based
candidates in query-dominant cases. By layer 29,
the final prediction is fully formed, with the top
logits corresponding to the final output. These
observations reveal key insights: (i) existence of
competition: even when the final prediction is
query-dominant, context-based candidates remain
actively computed across layers. (ii) critical tran-
sition (Layers 17-24): the decisive competition
between query- and context-based candidates oc-
curs primarily in this range, determining which
candidate is promoted.

6.2 Activation Patching

Method To understand the competition between
Ceand. and Qcang., We investigate whether dis-
tinct context and query circuits exist within the
model’s internal activations. We apply activation
patching (Ghandeharioun et al., 2024; Meng et al.,
2022), a technique for causal intervention that se-
lectively perturbs and restores activations to assess
their contribution. We conduct three model runs:
(1) Clean run: Standard forward pass with the
original prompt, recording activations | J hgl. 2)
Corrupted run: Forward pass with Gaussian noise
e ~ N(0,09%)) injected into context or query topic
token embeddings, yielding perturbed activations

*We follow Meng et al. (2022) to set ¢ = 0.3 as three times
of the empirical standard deviation of the input embeddings.

U hl{ ;» and the final log-probabilities of candidates
logp(t|Uh},). (3) Restoration run: Same as
the corruptea run, but iterating over all ¢ and [,
restoring each hY. ;., while keeping the rest cor-
rupted. By injectiflg noise at context subject and
object (context patching) or query subject posi-
tion (query patching) and measuring the recovery
of predictions, we differentiate context and query
circuits, tracing how features from these tokens
propagate through the model and how they con-
tribute to context-based or query-based candidates.

The restoration effect for each ¢* and [* is cal-
culated as in Eq. 11, where t € {Ceang., Qcand. }>
with higher values indicate stronger contributions.

RE(i*, 1%, 1) = log p(t/h. ;. U by _p.)

—logp(t| | Jhiy) (11)

Aquery (i*a l*) = RE(i*7 l*7 Qcand.)_
RE(i*7 l*a Ccand‘) (12)

Acontext(i*y l*) = RE(i*, l*v C’camd.)_
RE(i*7 l*, Qcand.) (13)

In context and query circuits, we compute Eq. 13
(Figures 4a, 4c) and Eq. 12 (Figures 4b, 4d), re-
spectively. Comparing restoration effects maps
circuits responsible for context- and query-based
candidates and identifies where their competition
occurs. (See Appendix G for implementation de-
tails and additional results.)

Findings The results reveal distinct circuits for
context- and query-based pathways. Figures 4a
and 4c show the same context circuit aggregating
information from the context subject and object in
both cases, transferring it to the final token posi-
tion from layer 17 onward. In contrast, Figures
4b and 4d indicate that the same query circuit for
both cases integrating query subject information
earlier than in the context circuit, from layer 8. The
log-probability increases after layer 24 in context
circuit and after layer 16 in query circuit.

Both circuits exist across context- and query-
dominant cases, but their relative strength deter-
mines the final prediction. In context-dominant
cases, the context circuit wins, with a larger log-
probability difference (max 2.28) compared to the
query circuit (max 1.10). Conversely, in query-
dominant cases, the query circuit exerts a stronger
influence (max 1.37 vs. 1.25). Notably, between
layers 17 and 24, the query-dominant case shows
minimal context information transfer (Figure 4c),
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Figure 4: Left-hand plots demonstrate the context circuit, which extracts features from context and computes
context-based candidates, while right-hand plots illustrate the query circuit. These circuits are the same in both
context- and query-dominant cases; the difference lies in their strength, revealing the competition between context-
and query-based candidates. An example is C_RELO = [BOS], C_SUBJ1=* Honda Civic’, C_REL2=‘, produced
by’,C_OBJ3=* Honda’, Q_REL4=". The original language of ,Q_SUBJ5=" A Secret’, Q_REL6=" was’.

aligning with slower logit attribution growth (Fig-
ure 3). This confirms that both pathways exist for
both cases with final predictions depending on their
relative activation strength, and layers 17 to 24 are
the key to promoting context-based candidates.

6.3 Flipping Model Predictions via Attention
Knockout

To examine the causal role of internal competition
in shaping the final output Ac g, we intervene
in two key layers of the context circuit: layer 17
(where context first transfers to the last token) and
layer 24 (where it is most integrated). By restrict-
ing attention to the query in the context-dominant
case and to the context in the query-dominant case,
we test whether predictions can be flipped (e.g.,
“Japanese” to “French”). See Appendix H for de-
tails and additional results. Table 5 (Llama) shows
that in the context-dominant case, blocking context
flow causes (Qcang. probabilities to surpass Ceand.
on average, flipping 465/1000 datapoints to query-
based candidates. In the query-dominant case, inter-
vention increases Cang. probability by 4.7 and de-
creases (Jcand. probability by 8.4, flipping 225/1000
datapoints. These results confirm the competition
between Ccyng. and Qcand., and that these two layers
are the key to promoting context-based candidates.

Summary These findings support the class-based
(mis)generalization hypothesis. Logit attribution
confirms that models first construct abstract class
representations before refining them into specific
answers. Activation patching reveals competing
circuits for feature selection: one favoring direct
query-based pathway and the other integrating con-

Orig. L17+L24 2 Rand.

Prob. Prob. A Prob. A
Context-Dominant

Ceana. 255 131 -124 210 -45

Qcand. 8.6 148 +62 10.8 +2.2
Query-Dominant

Qeana. 352 268 -84 296 -57

Ceana. 6.6 113 +47 74 +0.8

Table 5: Effect of attention knockout on context- (Ceang.)
and query-based (Qcana.) candidate probabilities on
Llama-3. “Orig.” = No intervention, “2 Rand.” = Av-
erage of interventions on two random layers over three
runs. A denotes the change from the original setting.

textual cues, with their strength shaping the final
output. Notably, context circuit strengthens be-
tween layers 17 and 24, validated by the flipped
predictions from attention knockout.

7 Conclusion

By analyzing the mechanism behind irrelevant con-
text hallucinations, our study demonstrates that
LLMs exhibit class-based (mis)generalization, re-
lying on abstract class structures in a systematic
yet flawed manner. Through mechanistic analysis,
we show that this phenomenon arises from hier-
archical class-to-instance predictions and compet-
ing circuits that mediate feature selection. These
findings challenge a potential misconstrual of the
stochastic parrot hypothesis that LLMs can only
regurgitate surface-level patterns. Rather, we argue
that they utilize class structures in ways that are
neither purely memorized nor necessarily reliable.



8 Limitations

Our work has several limitations. First, our ex-
periments are conducted in a controlled setting,
which helps isolate generalization from memoriza-
tion and enables analysis at both behavioral and
mechanistic levels. However, future work could
improve upon this by designing setups that disen-
tangle memorization and generalization in natu-
rally occurring text. Second, our study is limited
to English-language datasets, and we only evaluate
models of certain sizes (around 7-8B) due to com-
putational constraints. It remains an open question
whether class-based generalization is influenced
by model size. Do larger models exhibit stronger
correlations of this kind? Do smaller models also
display class-based generalization, and if so, what
is the minimum size required? Third, in the mech-
anistic interpretability section, we focus primarily
on layer-wise analysis to support our main hypoth-
esis, while attention head analysis is left for future
work. Finally, while we conduct interventions, our
primary goal is not to mitigate contextual halluci-
nations. Developing mitigation methods informed
by our findings and evaluating their effectiveness
is an important direction for future research.
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A Dataset

The detailed breakdown of ParaRel dataset (Elazar
et al., 2021) based on relation type is presented
in Table 12. We categorize the sub-datasets into
5 knowledge types based on the expected class
or type of the answer (column ‘Ctx Type’): ‘lan-
guage’, ‘place’, ‘company’, ‘job’, and if a sub-
dataset doesn’t fit into the above types then it is
categorized as ‘others’. This is the dataset that we
use for Q-only experiments, and we construct the
dataset for C' 4 () experiments by generating 3900
context variations spanning all knowledge types per
query, resulting in a dataset of 106.2M data points.
For each generation, we restrict the vocabulary to
the set of tokens that begins with a capitalized En-
glish letter (Yu et al., 2024). When evaluating, we
lowercase generated and gold answers and perform
string matching: if the top-1 generated answer is a
substring of the gold answer, then this is correct.

B Class-based Generalization

We further categorize class-based generalization
into two distinct cases:

* Copying: When a token belonging to the ex-
pected class appears in the context, the model
is more likely to directly copy it as the an-
swer. From a dataset statistics perspective,
we observe a high copy rate when the context
contains tokens belonging to the same class
as the query.

Example: The mother tongue of Dominique
Sanda is French. The original language of
Puss in Boots was — French.

Non-copying: When tokens of the expected
query class are not explicitly present in the
input, the model combines the expected class
with relevant features inferred from context or
query to generate an answer.

Example: Honda Civic (fifth generation), pro-
duced by Honda. The original language of
Tow Truck Pluck was — Japanese.

C Behavioral Changes Induced by

Irrelevant Context

C.1 Irrelevant Context Hallucination
Evaluation

In Table 6, we provide detailed statistics of the
accuracy/wrong rate for each model under each
case for all three models.
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MODEL Q-ONLY C+Q
CASE  PROP. CASE PROP. A RATE
TST 357% 0%
T A12% T LB 115%  100%
Llama
FoT 74%  100%
F S28% BB a54%  427%
Total 472% Total 43.1% 38.3%
TST 294% 0%
. T 382% T Lp 88%  100%
Mistral
FoT 59%  100%
F 618% £ _,F 559% 59.5%
Total 382% Total  353% 48.0%
TST 204% 0%
T 309%  t L F g4%  100%
Pythia
FoT 56%  100%
F 1% £ L F 636% 67.8%
Total 309% Total  28.0% 57.1%

Table 6: Comparison of proportions (Prop.) of correct
and incorrect answers in Q-only and C+Q cases, along
with answer change rates (A Rate) for different mod-
els. Average across 39 datasets are reported. In the
‘Total’ row, under ‘Prop.” column, it indicates the global
accuracy across different cases, while under ‘A Rate’
column, it underlies the global answer change rate.

Table 6 shows that models are not robust against
irrelevant context. Even when a single irrelevant
demonstration is prepended, models exhibit no-
table shifts in performance. For instance, in Llama,
11.5% of previously correct answers become incor-
rect, while 7.4% of incorrect answers are corrected
after adding context. However, accuracy alone does
not capture all behavioral shifts — predictions can
still change even if they remain incorrect.

.es top-3
C.2 Composition of A~ YO

Table 7 provides counts and proportions of the
breakdown of samples according to the compo-
sition of Atcoi‘; for three models based on 106M

datapoints.

D Annotation

D.1 Annotation Procedure

To systematically evaluate the impact of irrelevant
context on model predictions, we perform an an-
notation procedure for context-based candidates
— those predictions that were influenced by the
inclusion of extraneous context. The aim was to
rigorously assess whether (i) these predictions in-
corporated identifiable features from the context,
and (ii) appropriately combined them with the ex-



Case Top-3 Candidates Llama Mistral Pythia
No 1. All query-based 50,874,341 51,013,564 41,833,760
influence (47.9 %) (48.0%) (39.3%)
Query- 2. Mix: Query + Context, top-1 is query-based 27,940,495 27,342,287 28,885,252
dominant (27.9 %) (25.7%) (27.2%)
3. Mix: Query + Context, top-1 is context-based 16,069,253 17,013,397 20,412,292
Context- (15.1 %) (16.0%) (19.2%)
dominant™, “A 11 context-based 11,353,892 10,963,675 15,250,026
(10.1 %) (10.3%) (14.3%)

Table 7: Breakdown of samples according to the composition of A~ .

pected class as indicated by the query. Upon accep-
tance, we will release the annotation.

Step 1: Candidate Selection We first randomly
sample a set of 500 context-based candidates from
different sub-datasets, ensuring a diverse set of
instances. Context-based candidates were selected
for both context- and query-dominant cases.

Step 2: Context Feature Identification For
each context-based candidate, we analyzed the con-
text —specifically the subject and object — to iden-
tify any features that could have been leveraged by
the model in generating the response. (‘context-
influenced?’ row in Table 13).

Each feature is categorized as identifiable if it
can be explicitly extracted from the context. For ex-
ample, the country of origin of a figure (e.g., candi-
dates ‘South’ ‘Korea’ for context subject ‘Lee Jong-
hyun’ in Example 5 in Table 13), country/continent
of a district (‘India’, ‘Asia’ for context object ‘Bi-
har’ in Example 4 in Table 13) are classified as
identifiable. In contrast, context-based candidates
‘Bee’, ‘Beach’ are categorized as non-context influ-
enced for context subject ‘Grant Green’ and object
‘jazz’ as shown in Example 6 in Table 13.

We ensure transparency by documenting the ra-
tionale. For example, in Example 2 of Table 13, we
provide the justification that ‘Svend Asmussen’ is a
Danish violinist and jazz musician, which supports
that ‘Danmark’ is a context-influenced candidate.

Step 3: Class Verification Next, each context-
based candidate is classified according to the ab-
stract class suggested by the query. The candidate
is compared to the expected class, and we verify
whether the response falls within the correct cate-
gory. For example, the context-based candidates
‘Vietnamese’ and ‘Thai’ for Example 1 in Table 13
have the correct class ‘language’, but ‘South’, ‘Ko-
rea’ in Example 5 in Table 13 do not have the
correct class because the query is asking about con-
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93 based on 106M datapoints.

tinent, not country.

Step 4: Hypothesis Verification Finally, a
context-based candidate is considered to satisfy
the hypothesis if it meets the criteria from both
Step 2 (context feature identification) and Step 3
(class verification). Only candidates that success-
fully integrate context features and align with the
expected class are retained as valid instances.

D.2 Annotation Examples

Details of examples and non-examples are shown
in Table 13.

E Statistical Validation of Contextual

Influence

Mean PMI values for each model are presented in
Table 8. A mean PMI of around 70 across all mod-
els and expected classes confirms strong statistical
dependence (Table 8).

Full results on three models in Table 8.

Value Llama-3 Mistral Pythia
Mean PMI 3.9 3.7 3.8
T-statistic 8.1 7.3 6.6
p-value 0.0006 0.0009 0.001

Table 8: Mean PMI values and T-test results for all three
models.

F Logit Attribution

F.1 Implementation Details

When the target candidates or class have multiple
tokens, we take the maximum logit, and average
this maximum logit across all data points in the
dataset.

To obtain the class logits from the model, we
predefine a list of tokens according to the relation

type.



» Languages: languages, language, tongue,
tongues, lingua, dialect, dialects

Places: country, countries, place, places, lo-
cation, locations, territory, city, cities, town,
towns, village, villages, state, states, province,
provinces, district, districts, continent, conti-
nents

Companies: company, companies, manufac-
turer, manufacturers, make, firm, firms, busi-
ness, corporation, corporations, enterprise, en-
terprises, organization, organizations, channel,
channels, broadcaster, broadcasters, industry,
industries

Jobs: position, positions, job, jobs, career,
careers, profession, professions, occupation,
occupations, role, roles, assignment, assign-
ments, employment, employments

Others: expertise, area, areas, field, fields, sub-
ject, subjects, instrument, instruments, genre,
music, religion, religions, concept, concepts,
framework, frameworks, artifact, artifacts,
type, types, part, parts, class, classes, eponym,
eponyms, entity, entities, person, persons,
place, places

F.2 Logit Lens Example

We provide an example of how the model’s top-1
predictions shift along the residual stream from ab-
stract concepts to concrete instances across layers
in Table 4 and Figure 5. The prompt used is Honda
Civic (fifth generation), produced by Honda. The
original language of Tow Truck Pluck was. Red
indicates probability around 80%. We show predic-
tions above layer 15 because lower than this, the
predictions are not interpretable.

F.3 Additional Logit Attribution Results

Additional results for Llama 8B are presented in
Figure 6. Importantly, we point out that the class-
based generalization might have existed already
for the Q-only case. In Figure 6a, we observe a
similar pattern as the C+Q case presented in Figure
3a — models build abstract class representation in
the lower layers, before refining their answers to
concrete ones. In fact, when we plot the logit differ-
ence of the abstract class tokens under C+Q and Q-
only case in Figure 6b, as shown as orange and yel-
low lines for context-dominant and query-dominant
case, the lines center around O — suggesting that
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the computation of abstract class representations
exists for zero-shot case, and is not influenced by
the added irrelevant context.

Logit attribution results for Mistral 7B are pre-
sented in Figure 7, and for Pythia 6.9B in Figure 8.
We remark that these plots follow a similar pattern.

G Activation Patching

G.1 Implementation Details

In the corrupted run, we corrupt the embeddings of
all tokens for context subject and object in context
patching, and all tokens for query subject in query
patching by adding a Gaussian noise where o is
3 times of the empirical standard deviation of the
input embeddings over a body of text (sigma
0.3) (Meng et al., 2022).

~
~

G.2 Additional Activation Patching Results

Activation patching results under the C+Q condtion
for Mistral and Pythia are in Figure 10 and 13,
respectively.

Additionally, we also visualize the query circuit
under the Q-only condition in Figure 9, 11, and
12, for Llama, Mistral, and Pythia, respectively.
We remark on two important observations: (i) The
query circuit is the same for context-dominant and
query-dominant data, without irrelevant context.
(ii) The query circuit remains as is after adding the
irrelevant context, as compared to Figures 4b and
4d.

H Attention Knockout

H.1 Implementation Details

In the attention knockout experiments, our goal is
to see if we can intervene in the internal computa-
tion to change the output behavior. Specifically, in
context-dominant case, we would like to flip the
prediction Acyg from Ceang. (€.g., ‘Japanese’ to
Qcang. ‘French’; And in query-dominant case, we
would like to flip the prediction Acy g from Qcand.
‘Malaysia’ to Ccang. ‘Australia’.

To do this, we intervene in two layers: the first
attention layer where the context information is
transferred to the last token residual stream, and the
attention layer where the most context information
is written into the last token residual stream. These
two layers correspond to the first blue spike and
the highest blue spike in Figures 6d, 7d and 8d.
For Llama-3, it is layers 17 and 24, respectively.
For Mistral, it is layers 18 and 24, respectively. For
Pythia, it is layers 19 and 24, respectively.
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Figure 6: Additional logit attribution results for Llama-3 8B.

Specifically, in the context-dominant case, at
the last token position, we set the attention scores
corresponding to all tokens in the context to be
—00, therefore, attention weight (which sums up
to 1) is only a distribution over the query tokens.
We perform this intervention to block information
flow from the context to the last token position,
and we only allow models to attend to the query
part. Similarly, in the query-dominant case, we set
the attention scores corresponding to all tokens in
the query to be —oo, allowing the models to only
retrieve information from the context.

To compare the knockout effect of the two criti-
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cal layers with other layers, we select two random
lower layers and two random higher layers. We re-
port the average intervention results for three runs.

H.2 Additional Results

Results for Llama and Mistral are presented in Ta-
ble 10 and Table 9, respectively.
With the targeted two-critical-layer intervention:

e Llama: 465/1000 context-dominant data-
points flip to query-based candidates, while
407/1000 remain context-based. Conversely,
225/1000 query-dominant datapoints shift to
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Figure 7: Logit Attribution Results For Mistral 7B.

context-based candidates, while 704/1000 re-
main query-based.

Mistral: 437/1000 context-dominant data-
points flip to query-based candidates, while
514/1000 remain context-based. Similarly,
232/1000 query-dominant datapoints shift to
context-based candidates, while 713/1000 re-
main query-based.

Pythia: 470/1000 context-dominant data-
points flip to query-based candidates, while
486/1000 remain context-based. Conversely,
294/1000 query-dominant datapoints shift to
context-based candidates, while 648/1000 re-
main query-based.

Across all models, approximately 950 datapoints
remain context- or query-based candidates, instead
of random non-identifiable answers, indicating that
our intervention preserves model capabilities.

Orig. L17+L24 2 Low 2 High
Prob. Prob. A Prob. A Prob. A
Context-Dominant
Ctx 226 14.6 -8.0 199 -27 190 -3.6
Query 82 124 +42 82 400 92 +1.0
Query-Dominant
Query 33.0 25.0 -80 255 -75 317 -13
Ctx 6.5 107 +42 77 +12 64 -0.1

Table 9: Effect of attention knockout on context- (Ctx)
and query-based (Query) candidate probabilities on
Llama-3. “Orig.” = No intervention, “2 Low” = Two
lower layers (<17), “2 High” = Two higher layers (>24).
“Diff.” represents the probability difference, and A de-
notes the change from the original setting. (Mistral 7B)
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Figure 8: Logit Attribution Results For Pythia 6.9B.

Orig. L17+L24 2 Low 2 High Orig. L17+L24 2 Low 2 High
Prob. Prob. A Prob. A Prob. A Prob. Prob. A Prob. A Prob. A
Context-Dominant Context-Dominant
Ctx 255 131 -124 209 -46 21.1 -44 Ctx 223 13.6 -8.7 183 -40 205 -1.8
Query 86 148 +62 89 +03 12.6 +4.0 Query 74 115 +4.1 84 +10 7.8 +04
Query-Dominant Query-Dominant
Query 352 268 -84 257 -95 334 -1.8 Query 26.6 20.8 -58 205 -6.1 256 -1.0
Ctx 6.6 113 +47 77 +1.1 71 +05 Ctx 6.3 96 +33 69 +06 62 -0.1

Table 10: Effect of attention knockout on context- (Ctx)
and query-based (Query) candidate probabilities on
Llama-3. “Orig.” = No intervention, “2 Low” = Two
lower layers (<17), “2 High” = Two higher layers (>24).
“Diff.” represents the probability difference, and A de-
notes the change from the original setting. (Llama-3)
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Table 11: Effect of attention knockout on context- (Ctx)
and query-based (Query) candidate probabilities on
Llama-3. “Orig.” = No intervention, “2 Low” = Two
lower layers (<17), “2 High” = Two higher layers (>24).
“Diff.” represents the probability difference, and A de-
notes the change from the original setting. (Pythia)
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(a) Q-only: Query circuit in context-dominant case.
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(b) Q-only: Query circuit in query-dominant case.

Figure 9: Activation patching under Q-Only condition reveals that query circuit is the same before and after adding
the irrelevant context for Llama-3 8B.
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(a) C+Q: Context circuit in context-dominant case.
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(b) C+Q: Context circuit in query-dominant case.
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(c) C+Q: Query circuit in context-dominant case.
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(d) C+Q: Query circuit in query-dominant case.

Figure 10: Activation patching under C+Q condition for Mistral 7B.
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(b) Q-only: Query circuit in query-dominant case.

Figure 11: Activation patching under Q-Only condition reveals that query circuit is the same before and after adding
the irrelevant context for Mistral 7B.
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(b) Q-only: Query Circuit in query-dominant case.

Figure 12: Activation patching under Q-Only condition reveals that query circuit is the same before and after adding
the irrelevant context for Pythia 6.9B.
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(b) Context circuit in query-dominant case.
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(¢) Query circuit in context-dominant case.
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(d) Query circuit in query-dominant case.

Figure 13: Activation patching under C+Q condition for Pythia 6.9B.
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Relation | Template Ctx Type | Total Rows
P1001 [X] is alegal term in [Y] Place 664
P101 The expertise of [X] is [Y]. Others 571
P103 The mother tongue of [X] is [Y]. Language 919
P106 [X] works as [Y]. Job 821
P108 [X], who is employed by [Y]. Company 378
P127 [X] owner [Y]. Company 616
P1303 [X] plays the [Y]. Others 513
P131 [X]isin [Y]. Place 775
P136 [X] plays [Y]. Others 859
P1376 [X], the capital city of [Y]. Place 179
P138 [X], which is named after [Y]. Others 461
P140 [X] is follower of [Y]. Others 432
P1412 [X] communicated in [Y]. Language 924
P159 [X] is headquartered in [Y]. Place 801

P17 [X], located in [Y]. Place 912
P176 [X], produced by [Y]. Company 925
P178 [X], a product developed by [Y]. Company 588

P19 [X] is native to [Y]. Place 779
P190 [X] is a twin city of [Y]. Place 671

P20 [X] passed away at [Y]. Place 817
P264 [X]’s label is [Y]. Company 53

P27 [X], a citizen of [Y]. Place 958
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Relation | Template Type Total Rows
P276 [X] is located in [Y]. Place 764
P279 [X], a type of [Y]. Others 900
P30 [X] is a part of the continent of [Y]. Place 959
P36 The capital city of [X] is [Y]. Place 471
P361 [X] is a part of [Y]. Others 746
P364 The original language of [X] was [Y]. | Language 756
P37 The official language of [X] is [Y]. Language 900
P39 [X], who holds the position of [Y]. Job 485
P407 [X] was written in [Y]. Language 857
P413 [X] plays in the position of [Y]. Job 952
P449 [X] premiered on [Y]. Company 801
P463 [X] belongs to the organization of [Y]. | Company 203
P47 [X] borders with [Y]. Place 649
P495 [X] was formed in [Y]. Place 905
P530 [X] ties diplomatic relations with [Y]. Place 950
P740 [X], founded in [Y]. Place 843
P937 [X] found employment in [Y]. Place 853

Table 12: Overview of Relations, Templates, Types, and Total Rows in the original Pararel Dataset. We take this
dataset and construct the C' + @ dataset, which has around 106.6M rows.
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Category Details

Example 1

Context Hanoi is a twin city of Bangkok.

Query The mother tongue of Louis Legendre is
Class Languages

Context Subject Possible Answers

Context Object Possible Answers

Context-Based Candidates

Vietnamese, Tay, Hmong, Khmer, English, French,
Chinese

Thai, Lao, Chinese, Malay, Khmer

Vietnamese, Thai

Context-Influenced? True

Correct Class? True

Exists Answer that Satisfies Both? True

Example 2

Context Svend Asmussen plays the violin.

Query Social-Economic Council is a legal term in
Class Places (Countries, Cities, States, etc.)/Languages

Context Subject Possible Answers

Context Object Possible Answers

Danmark, Danish (Svend Asmussen is a Violinist
and jazz musician)

Italy, Italian (Violin was originated in Italy)

Context-Based Candidates Denmark

Context-Influenced? True

Correct Class? True

Exists Answer that Satisfies Both? True

Example 3

Context Manchester Business School is headquartered in
Manchester.

Query Antipope Paschal III, who holds the position of

Class Jobs/Positions/Roles

Context Subject Possible Answers

Context Object Possible Answers

Context-Based Candidates

Professor, Lecturer, Instructor, Researcher, Depart-
ment Chair, Provost, Dean, Academic Advisor,
Teaching Assistant, Student, etc.

N/A

Dean, Professor

Context-Influenced?
Correct Class?

Exists Answer that Satisfies Both?

True
True

True
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Category Details

Example 4

Context Saharsa district is in Bihar.

Query Colbert Mountains is a part of the continent of
Class Continents/Places

Context Subject Possible Answers Asia

Context Object Possible Answers Asia

Context-Based Candidates Asia, India

Context-Influenced? True

Correct Class? True

Exists Answer that Satisfies Both? True

Example 5

Context Lee Jong-hyun plays the guitar.

Query Northern Foothills is a part of the continent of
Class Continents

Context Subject Possible Answers Asia

Context Object Possible Answers

Context-Based Candidates

Europe (Guitar originated in Spain)

South, Korea

Context-Influenced? True

Correct Class? False

Exists Answer that Satisfies Both? False

Example 6

Context Grant Green plays jazz.

Query David Gates plays the

Class Role/Genre/Style/Position/Musical Instrument

Context Subject Possible Answers

guitarist, composer, musician, songwriter etc. (role of
Grant Green), guitar (Musical Instrument that Grant
Green plays), jazz, R&B, etc. (music genre of Grant
Green)

Context Object Possible Answers Jazz.
Context-Based Candidates Bee, Beach
Context-Influenced? False
Correct Class? False
Exists Answer that Satisfies Both? False

Example 7
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Category

Details

Context

Query
Class

Samuil Marshak passed away at Moscow.
Jean Metcalfe, who is employed by

Company/Person

Context Subject Possible Answers
Context Object Possible Answers

Context-Based Candidates

Russia-1, Channel One Russia, RT, TV Rain, etc.
Russia-1, Channel One Russia, RT, TV Rain, etc.
BBC, Radio

Context-Influenced?
Correct Class?

Exists Answer that Satisfies Both?

False
True
False
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