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ABSTRACT

Cooking is one of the oldest and the most common human activities in everyone’s
daily life. Instructional cooking videos have also become one of the most common
data sources for multi-modal visual understanding researches, because compared
to other general domains, cooking videos: 1. not only have a significantly stronger
cross-modal dependency between the speech texts and their corresponding visual
frames at each individual step, 2. but also have a significantly stronger cross-
context dependency between sequential steps along their temporal dimensions,
making it an ideal domain for contextualized multi-modal embedding. This paper
proposes CookingCLIP, which introduces the latest CLIP (Contrastive Language-
Image Pre-training) embedding from the general domain into the specific domain of
cooking understanding, and makes two adaption upon the original CLIP embedding
for better customization to the cooking understanding problems: 1. from the
upstream perspective, we extend the static multi-modal CLIP embedding with a
temporal dimension, to facilitate context-aware semantic understanding; 2. from
the downstream perspective, we introduce the concept of zero-shot embedding to
sequence-to-sequence dense prediction domains, facilitating CLIP being not only
capable of telling “Which” (cross-modal recognition), but also capable of telling
“When” (cross-context localization). Experiments conducted on two challenging
cooking caption generation benchmarks, YouCook and CrossTask, demonstrate the
effectiveness of the proposed embedding. The code will be released.

1 INTRODUCTION

The close relationship between cooking and human life has not only led to a large amount of data sets
widely available for many NLP / CV / mulit-modal researches, but has also posed many real-world
challenges for theoretical deep learning researchers on how to solve problems that are more closely
related to the real need of human life. Up to 2023, cooking recipes/videos have accounted for one
of the largest proportion of data sets in many NLP/CV sub-areas, ranging from text/vision-only
name entity recognition Zhang et al. (2022), knowledge extraction Wu et al. (2022); Papadopoulos
et al. (2022); Xu et al. (2020), planning Lu et al. (2023), summarization Koupaee & Wang (2018);
Narasimhan et al. (2022), generation Udhayanan et al. (2023); Noever & Noever (2023), to multi-
modal retrieval Alikhani et al. (2022); Voutharoja et al. (2023); Tian et al. (2022), grounding Fang
et al. (2023); Tan et al. (2023); Bao et al. (2021), question answering Yang et al. (2022), and many
well-known benchmarks focused on cooking-related topics have been proposed in the last few years,
such as Recipe1M Salvador et al. (2017), RecipeQA Yagcioglu et al. (2018), YouCook2 Zhou et al.
(2018), CrossTask Zhukov et al. (2019a), COIN Tang et al. (2019), Breakfast Kuehne et al. (2014),
TACOS Regneri et al. (2013), to name a few.

1.1 MOTIVATION FROM A DOMAIN-SPECIFIC PERSPECTIVE

However the abundance and richness in terms of both quantity and diversity of the cooking data
proposed, so far the majority of which have been serving only as a composing part to train and
evaluate the large-scale multi-modal models in the general domain, whose adaption to specific
cooking problems have been left very much under-explored: the question about how much to their
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· · · cut the onion
· · ·

· · · put the onion
into · · ·

• • •

(b)

(a)(c)

There are three sources of self-supervision co-existing in many instructional video + language cooking data sets:
(a). the static cross-modal self-supervision from texts to frames at synchronous temporal locations: “ ... put

the onion into ... ” → the vision of the onion after being cut;
(b). the dynamic cross-context self-supervision from earlier frames to frames at asynchronous temporal

locations: the vision of the original onion before being cut → the vision of the onion after

being cut;
(c). the joint cross-context + cross-modal self-supervision from earlier texts to frames at asynchronous temporal

locations: “ ... cut the onion . . . ” → the vision of the onion after being cut;
where (b) and (c) remain as a major gap between existing static multi-modal embedding and human-level visual
understanding.

Figure 1: The motivation behind our proposed contextualized multi-modal embedding.

full potential can the most advanced multi-modal learning techniques in general domains, such as
the multi-modal transformers Shvetsova et al. (2022); Sun et al. (2019), the multi-modal contrastive
pre-training Chen et al. (2023), the multi-modal in-context prompting Wang et al. (2022), and even
the multi-modal large language models Lu et al. (2023), benefit the cooking related problems has not
been raised, explored, nor comprehensively answered yet.

1.2 MOTIVATION FROM AN OPEN-DOMAIN PERSPECTIVE

Moreover, cooking also serves an unique and irreplaceable domain where the study of an open-domain
contextualized multi-modal embedding is the most suitable to start out, because of its obviously
stronger cross-modal + cross-context joint complementary cues than other domains (Figure 1).
Although the multi-modal embedding and the text-only contextualized language modeling have each
achieved historical progress in their respective fields, research on cross-context + cross-modal joint
embedding in the open domain is still very challenging Driess et al. (2023); Li et al. (2023a); Alayrac
et al. (2022); Wang et al. (2023) due to too much noise in the raw data Gao et al. (2022) and the
breakdowns caused by catastrophic forgetting in large-scale training Li et al. (2022); Srinivasan et al.
(2022).

Therefore, starting from a low-noise narrow domain provides a promising path towards a successful
contextualized multi-modal embedding that could have potentially benefit research areas from both
perspectives.

1.3 CONTRIBUTION FROM A DOMAIN-SPECIFIC PROSPECT

As a small step towards more comprehensive cooking understandings in the era of large language
models, we propose a quasi-new benchmark for the purpose of a fair formal evaluation, named as
cooking recipe generation (CRG), however born from the traditional dense video caption (DVC)
Yang et al. (2023a); Zhu et al. (2022) benchmark, their exists two major differences in-between:

1) The traditional DVC reports n-gram matching scores like BLEU-4, METEOR, CIDEr, and
ROUGE, which are not originally designed for evaluating semantic similarities, while our proposed
CRG replaces them with more advanced Bert-score Zhang* et al. (2020) & Clip-score Hessel
et al. (2021), which are more widely employed in modern text generation community;

2) The traditional DVC solutions are neither zero-shot transferable nor open-vocabulary, and need
to be fine-tuned on a closed set of pre-defined vocabularies with manual annotations, while our
proposed CRG inherits all major advantages of modern multi-modal pre-trained models, which is
zero-shot, open-vocabulary, and fully free from manual supervision.
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vi ↔ si: one frame vi sampled within the temporal span of each speech sentences si .
We also introduce a background segment si = SIL to align with silent clips vSIL

i
without speech transcriptions.
Enc∗V ↔S : a sequence of frozen CLIP Vit-B/32 visual encoders / GPT-2 text encoders
for vi ↔ si , respectively.
EncV ↔S : a transformer encoder, with positional embedding at each speech sensentences
and [CLS] = Enc∗S(R) appened, where R = the title text of the video.

Decwhen/which: auto-regressive decoders for location / caption generation, respec-
tively, to map the input sequences (vi ↔ si) to (ck ↔ wk), in terms of the temporal
locations wk , in human readable formats ck .

L =
∑m

k=1 L
when
k + Lwhich

k : see section 3.1 for details.

Figure 2: Training illustration of our proposed cross-modal (“Which”) + cross-context (“When”)
multi-modal embedding.

1.4 CONTRIBUTION FROM AN OPEN-DOMAIN PERSPECTIVE

As a small step towards a more comprehensive embedding, we propose to formulate the contextualized
sequence-to-sequence dense prediction task as a joint semantic localization + embedding problem,
where an instructional video R of length T (frames VR and utterances SR) is mapped to:

• a discrete output sequence of semantic labels CR (referred to as “Caps” in our context), in a
temporal order, and in the forms of natural language descriptions (“Which”),

• along with their temporal localizations WR, in the form of time stamps (“When”).

By decoupling the localization and caption decoders, we eliminate the need of the beam search
decoding in traditional sequential prediction, and reduce the computing complexity to the same order
as a static image caption problem, with only an additional linear coefficient. Experimental results
show that our method not only outperforms the current state-of-the-art zero-shot baselines, but also
inspiringly catches up with fully supervised methods with only a small gap despite that our results
are obtained under a zero-shot setup.

2 RELATED WORKS

We gain our inspirations mainly from the well-known CLIP Radford et al. (2021) embedding, who
matches fully supervised baselines without the need for any manual supervision. CLIP ensembles
human intelligence in almost every aspect, which is zero-shot, open-vocabulary, scalable and gen-
eralizable, except one last major difference, lying in that humans do not gain the common sense of
this world by static images. Instead of static image - language pairs, humans recognize objects and
understand semantics within a dynamic context, along temporal and spatial dimensions.

2.1 ZERO-SHOT MULTI-MODAL EMBEDDING

There are efforts which do have noticed the absence of the temporal contextualization in CLIP, and
extend the idea of zero-shot embedding to the spatiotemporal space, like VideoCLIP Xu et al. (2021),
CLIP-VIP Xue et al. (2023), TempCLR Yang et al. (2023b) and so on, but they are still encoding-only
models and a lack of decoders prevents them from adapting to a challenging contextualized cooking
understanding problem, where an advanced task usually requires a series of interdependent sub-steps
carried on in a progressive step-by-step way.
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2.2 ZERO-SHOT MULTI-MODAL TEXT GENERATION

A contrary line of works try to cast multi-modal embedding back to their high-level semantics in
terms of natural language, in a zero-shot way, by either aligning with Tewel et al. (2022); Mokady
et al. (2021); Li et al. (2023b) or prompting Zeng et al. (2023) the existing moderate / large language
models. Corresponding to the lack of temporal contextualization, in the previous section 2.1 from
an upstream perspective, the main difference between this line and our work is a lack of temporal
localization, from a downstream perspective, making them also not well customized to a cooking
understanding problem.

2.3 TRADITIONAL DENSE VIDEO CAPTION GENERATION

Another related line of works are capable of both upstream contextualization and downstream
localization, with the help of seq2seq architectures Yang et al. (2023a); Zhu et al. (2022), however
they are not zero-shot scalable, needs to be fine-tuned, and very much time consuming with traditional
beam search decoders. To the best of our knowledge, we are not only the first to introduce the concept
of zero-shot embedding to a sequence-to-sequence dense prediction task, but also owns an additional
advantage not shared by the mentioned methods of Yang et al. (2023a); Zhu et al. (2022), which is
highly cost-effective: by decoupling the traditional beam search decoder into two separate decoders
for localization and generation, respectively, the exponential computational complexity of traditional
sequence-to-sequence prediction problems is reduced to linear.

3 ZERO-SHOT RECIPE GENERATION

From the upstream perspective, our model facilitates “Which” + “When” joint embedding:

• not only captures the text ↔ visual cross-modal relationships (“Which”), similar to the static
CLIP embedding,

• but also captures the cross-context temporal relationships (“When”) between frame ↔
sentence sequences,

All necessary pre-training data of R, T , VR, SR, TR are fully free from human supervision and
widely available from the internet: see Appendix for details on data preparations.

Our architecture is very simple, composed only of a pair of original CLIP encoders for each modality,
each of which being extended with a pair of auto-regressive decoders for localization and caption
generation, respectively. Our training and inference processes are also very simple, which are
illustrated in Figure 2 and 3, respectively.

3.1 TRAINING

We initialize our seq2seq models Enc - Decwhen / Decwhich for both modalities with a traditional
unsupervised temporal embedding method Kukleva et al. (2019), and then apply a CLIP-like con-
trastive loss at each auto-regressive step, to pull positive pairs of contextualized embedding together
and to push negative pairs of the other batch instances apart:

Lwhen
k = − log

exp
(
sim

(
WV

k↔WS
k

)
/τ
)

∑batch=B
b=1 1[b̸=k] exp

(
sim

(
WV

k↔WS
b

)
/τ
)

Lwhich
k = − log

exp
(
sim

(
Vwhichk ↔Swhichk

)
/τ

)∑batch=B
b=1 1[b ̸=k] exp

(
sim

(
Vwhichk ↔Swhichb

)
/τ

)
where sim(↔) is the cosine similarity, and τ is the temperature hyper-parameter set to 1/100 in our
experiments.

To facilitate customizable temporal granularity of semantic localization, we insert a mandatory
Wm = [EOS] when the sum of the absolute values of the first (m− 1) locations

∥∥∥Wk

∥∥∥ exceeds a
predefined threshold λ:

m−1∑
k=1

∥∥∥Wk

∥∥∥ > λ (1)
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The sample (vid= LeCwqp8Bic8) lasts 342 seconds with n = 112 clip / sentence pairs, including 34 silent clips vSIL
i /si = SIL without

virtual utterances. It is manually annotated with m = 8 captions describing major steps towards the a cooking task titled as R =
“restaurant style channa masala”. The horizontal colored lines, from top to bottom, are: 1. L1∼ L3: the input (si ← ti → vi);
2. L4∼ L6: the unsupervised hyper-parameter for initialization; 3. L7∼ L9: the zero-shot temporal semantic localization & caption generation
(wk↔ ck); 4. L10∼ L11: the manual location & captions (wmanual

k ↔ cmanual
k ), provided by the data set.

Figure 3: Qualitative generation results of a random sample from YouCook2 validation split, compared
with manual annotations provided by the data set.

where each
∥∥Wk

∥∥ is forced to be positive definite, and mapped to a closed interval of (0, 1], see
Figure 3 for a detailed illustration.

Upon the prediction of Wm = [EOS], Lk is aggregated across both modality and all autoregressive
steps k, to facilitate a global minimum:

L =
m∑

k=1

Lwhen
k + Lwhich

k (2)

3.2 INFERENCE

At inference, we apply a simple softmax function across the decoding step k, which produces the
zero-shot localizations of the relative temporal intervals of each “Cap”, directly from the “When”
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Table 1: Qualitative localization & caption generation results of a random sample from YouCook2
validation split, titled R = ’Restaurant Style- Channa Masala’ with vid = LeCwqp8Bic8,
compared with manual annotations provided by the data set. The the last row statistics are the
average of the preceding m rows. A zero-shot captioner DeCap Li et al. (2023b) based on static CLIP
embedding is taken as baseline.

k = 1, ...,m IOU “When” (wk) “Which”(ck) Bert-score Clip-score

Baseline Generation | ←Manual boundary→ | ’a bowl of carrots and other vegetables’ 0.3767 0.4028
1 Our Generation 0% | ←0:00 0:20→ | ’add the cooked beans to the pan’ 0.4140 0.5075

Manual Annotation | ←0:53 1:32→ | ’add onions tomatoes and water to
a pressure cooker and cook’

Baseline Generation | ←Manual boundary→ | ’a bowl of tomatoes, peppers, and onions’ 0.9474 0.8693

2 Our Generation 0% | ←0:20 0:48→ | ’blend the onion and tomato in a blender
until smooth’

0.9417 0.7681

Manual Annotation | ←1:48 1:53→ | ’add the onion and tomato to a blender and
blend’

Baseline Generation | ←Manual boundary→ | ’a pot with red powder sitting on a table’ 0.2974 0.8982
3 Our Generation 0% | ←0:48 1:09→ | ’add the ghee and oil to the handi’ 0.6232 0.7873

Manual Annotation | ←2:10 2:55→ |
’add oil, cumin seeds, ginger garlic paste,
garam masala, coriander powder, chili powder,
and turmeric powder to a pan’

Baseline Generation | ←Manual boundary→ | ’a bowl of vegetables in a kitchen ’ 0.2273 0.2664

4 Our Generation 0% | ←1:09 1:36→ | ’stir in the tomato and onion blend into the
pan’

0.8325 0.6953

Manual Annotation | ←2:56 3:03→ | ’add the tomato and onion paste to the pan’

Baseline Generation | ←Manual boundary→ | ’add the chickpeas to the pan’ 0.9206 0.7258
5 Our Generation 0% | ←1:36 2:15→ | ’pour in the cooked chickpeas to the pan’ 0.8510 0.6956

Manual Annotation | ←3:18 3:28→ | ’add the cooked chickpeas to the pan’

Baseline Generation | ←Manual boundary→ | ’food being cooked in a saucepan’ 0.0988 0.7102
6 Our Generation 0% | ←2:15 2:53→ | ’soup is cooked in a pan’ 0.2985 0.7265

Manual Annotation | ←3:40 3:49→ | ’add dried fenugreek leaves to the pan’

Baseline Generation | ←Manual boundary→ | ’a close up of a person stirring a pot of
soup’

0.0000 0.1391

7 Our Generation 9.52% | ←2:53 4:38→ | ’mix in the sweetened condensed milk with
the other ingredients in the pan.’

0.8590 0.7620

Manual Annotation | ←4:20 4:30→ | ’add sweetened condensed milk to the pan’

Baseline Generation | ←Manual boundary→ | ’a pot of curry with vegetables and cilantro’ 0.8747 0.7729
8 Our Generation 18.75% | ←4:38 5:42→ | ’food cooking in a pot on a stove’ 0.3655 0.4136

Manual Annotation | ←4:50 5:02→ | ’garnish with coriander leaves and lime juice’

(Avg) Baseline Generation | ←Manual boundary→ | 0.4679 0.5981
(Avg) Our Generation 3.53% | ←0:00 5:42→ | 0.6482 0.6695

• Words in ‘green’ indicates frequent named entities that occur in both the asynchronous cross-context speech transcriptions of the corresponding sample, and the
synchronous cross-modal manual captions;

• Words in ‘red’ indicates semantic entities / activities generated by the captioners of our / baseline methods but have not occurred in the speech transcriptions of the
corresponding sample;

• Words in ‘blue’ indicates frequent named entities that occur in both the asynchronous cross-context speech transcriptions of the corresponding sample, and the
synchronous cross-modal zero-shot output captions, but have not occurred in the manual captions provided by the data set.

embedding ∥Wk∥, without any beam search needed:

wk = wk−1 + softmax(
∥∥Wk

∥∥) · T
= wk−1 +

exp
(∥∥Wk

∥∥)∑m
k′ exp

(∥∥Wk′
∥∥) · T

where wm = T is naturally satisfied under a softmax distribution.

For caption generation at each location k, we follow the idea of zero-shot image captioners to project
the “Which” embedding V which

R back into the CLIP embedding space, and train a zero-shot text
decoder, in the same way as DeCap Li et al. (2023b), to generate sentences conditioned on V which

R ,
which performs exactly a reverse process of the CLIP encoder.

Note that the entire setup in this work, from pre-training to prediction, is fully automatic, does not
involve any forms of manual supervision, nor fine-tuning on any downstream objectives.

4 EXPERIMENTS

We use the YouCook2 Zhou et al. (2018) and CrossTask Zhukov et al. (2019a), and follow the standard
splits for training and testing. The same prompting strategy from the original CLIP publication
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Table 2: The semantic generation results CR on YouCook2 / CrossTask date sets. Best results in each
group are highlighted in bold.

Method Encoder Decoder
YouCook2

Bert-Score Clip-Score

CrossTask

Bert-Score Clip-Score

Zero-shot, with manual localizations Wk = Wmanual
k

2021 Clip prefix for image captioning
Mokady et al. (2021) CLIP Vit-B/32 GPT-2

(fine-tuned) 24.95 33.78 29.78 35.60

2022 Zero-shot image-to-text generation for
visual-semantic arithmetic Tewel et al. (2022) CLIP ViT-B/32 GPT-2

(off-the-shelf) 24.33 38.17 25.41 38.71

2023 Decoding clip latents for zero-shot
captioning via text-only training Li et al. (2023b) CLIP Vit-B/32 GPT-2

(trained from scratch) 25.22 37.47 28.52 33.95

Ours Initialzation Lwhen
k +Lwhich

k

Ablation (a)
= DeCap Manual ✗ ✗

Ablation (b) Manual ✓ ✓

CLIP Vit-B/32
Decwhich

+ DeCap
(trained from scratch)

25.22 37.47

27.94 41.51
△a= +2.72 ↑△a= +4.04 ↑

28.52 33.95

29.54 42.08
△a= +1.02 ↑△a= +8.13 ↑

Fully Zero-shot, joint localization + caption generation

Ablation (c) ✓ ✗ ✗

Ablation (d) ✓ ✓ ✗

Ablation (e) ✓ ✗ ✓

Ablation (f) ✓ ✓ ✓

CLIP Vit-B/32

Decwhen

+ Decwhich

+ DeCap
(trained from scratch)

12.22 21.19

16.08 23.89
△c= +3.86 ↑ △c= +2.70 ↑

17.34 25.76
△c= +5.12 ↑ △c= +4.57 ↑

17.92 26.62
△b= −20.02 ↓△b= −24.89 ↓

14.96 28.25

18.73 29.52
△c= +3.77 ↑ △c= +1.27 ↑

19.51 29.46
△c= +4.55 ↑ △c= +1.21 ↑

19.58 20.55
△b= −15.96 ↓△b= −21.53 ↓

• As current best zero-shot caption methods Mokady et al. (2021); Tewel et al. (2022); Li et al. (2023b) are not capable of localization nor report results on the
cooking-specific data sets in their original publications, their results are collected by our implementation using the official codebase whose scores are averaged across
m frames selected at manually annotated locations provided by the data set.

Table 3: The temporal semantic localization results (mIOU) on the YouCook2 / CrossTask date sets.
Method Encoder Decoder YouCook2 CrossTask

Fine-tuned

2021 TSP: Temporally-Sensitive Pre-training of Video
Encoders for Localization Tasks Alwassel et al. (2021) R(2+1)D-34 Linear Classification 21.4 44.0

Zero-shot

Ours Initialization Lwhen
k +Lwhich

k

Ablation (c) ✓ ✗ ✗

Ablation (d) ✓ ✓ ✗

Ablation (e) ✓ ✗ ✓

Ablation (f) ✓ ✓ ✓

CLIP Vit-B/32 Decwhen
6.7

12.2 △c= +5.5 ↑
10.3 △c= +3.6 ↑
17.0 △c= +10.3 ↑

29.6

30.5 △c= +0.9 ↑
31.3 △c= +1.7 ↑
35.8 △c= +6.2 ↑

1. As modern zero-shot image-to-text caption methods are not capable of semantic localization, we choose the current best fully supervised method Alwassel
et al. (2021) as the baseline.

2. The baseline result is collected by our implementations using the official codebase, bacause the Alwassel et al. (2021) uses a retrieval based metric mAP
which is not originally designed for semantic localization, not as intuitive nor explainable as mIOU.

Radford et al. (2021) is applied on CrossTask data set for sentence level embedding since there are no
sentence level annotations provided in CrossTask data set for Bert score calculation. All encoders /
decoders have the same 12 layers, 8 heads, embedding dimension 512, and MLP hidden dimension of
2048. There are 314M trainable parameters in total. For training we use AdamW with fixed weight
decay, with a learning rate of 10−4 and 1000 warm-up steps. We pretrain our model for 8 epochs
with a batch size of 32 videos split on 8 V100 GPUs, which lasts 1.6 days.

Table 2 and 3 reports captioning & localization performance of our method as compared to the state of
the art, respectively. Under the same setup of manual locations WR = Wman

R , our method achieves
absolute [Bert, Clip] scores of [27.94, 41.51] / [29.54, 42.08] on YouCook2 / CrossTask, respectively,
consistently outperforming the state of the art baselines with △baselines = [+2.72 ↑, +3.34 ↑] /
[−0.24 ↓, +3.37 ↑] points higher. For semantic localization, our method achieves competitive overall
mIOU in a fully zero-shot way, only △baseline=TSP = 4.4%/8.2% absolute gap behind the baseline
Alwassel et al. (2021) on YouCook2 / CrossTask, respectively.

From a higher-level perspective, Table 2 and 3 jointly verifies our initial motivation: 1. from the
upstream perspective, the integration of Decwhen promotes the generation accuracy of “Which”, and
vice versa; 2. from the downstream perspective, the higher accuracy in localization WR necessarily
associates with a higher accuracy in caption generations CR, and vice versa; which inspires us the
necessity of “Which” + “When” joint embedding: the semantics of “Which” and the contexts of
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Figure 4: How the value of m changes over hyper-parameter λ on YouCook2 Zhou et al. (2018).

“When” are inseparable for each other, mutually promoting each other and missing a piece without
each other for comprehensive semantic understanding.

4.1 λ SELECTION DETAILS

In order to facilitate customizable semantic density m on different data sets, we introduce a hyper-
parameter λ for different data sets: Figure 4. See Eq. equation 1 in section 3.1 for the relationships
between the average number of outputs captions m and the semantic similarity threshold λ. For a
specific downstream task like cooking video caption, m on average is usually an order of magnitude
less than the number of speech sentences n. For instance the YouCook2 Zhou et al. (2018) data set
contains 1,790 videos with 132, 310 (clip ↔ sentence) pairs, with average statistics being:

• n = 73.9/ per video;
• m = 7.7/ per video;
• T = 320 seconds / pre video;

4.2 VISUALIZATIONS

Figure 3 and Table 1 show a random example from the YouCook2 data set. Quite a number of
interesting findings can be observed:

4.2.1 TEMPORAL VISUAL EMBEDDING (OURS) ̸= STATIC VISUAL EMBEDDING (BASELINE):

compared with the baseline, our method achieves higher overlaps on non-stop words with manual
annotations, on average, especially on named entities (nouns) / activities (verbs) that frequently
appears in asynchronous / synchronous speech utterances from the temporal context (for example,
“oil”, “tomato”, “onion”, “blend”, and “condensed milk”, highlighted in “green” at k =
3, 4, 7 in Table 1). This indicates the ability of our temporal visual embedding on cross-context and
cross-modal joint reasoning, which cannot be achieved from a static embedding.

4.2.2 MANUAL ANNOTATION ̸= GROUND TRUTH:

We also notice that a low Bert score does not necessarily means bad performance, because manual
annotations do not always comply with the ground truth in a challenging dense video caption task. For
example, we get a low Bert score = 0.4140 at k = 1 in Table 1, however it is caused by the fact that
our method successfully discovers a non-negligible step omitted in the manual annotation provided
by the data set, which is c1 = ’add the cooked beans to the pan’. c1 is both visually and
linguistically salient and indispensable for the overall task of making the ’restaurant style
channa masala’.

8
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4.2.3 BERT SCORE ̸= CLIP SCORE:

Bert score Zhang* et al. (2020) is more prone to location inconsistence as compared to Clip score
Hessel et al. (2021), a satisfactory Clip score with a deteriorated Bert score occasionally happens
for example, k = 1, 6, 8 in Table 1. This observation is consistent with our quantitative results, that
our approach favours the evaluation metric of Clip score more than Bert score, former of which, is
more objective as Clip score is fully reference-free, does not involve any forms of subjective bias
introduced by manual annotations from the data set.

4.2.4 MORE CHALLENGING ̸= LESS ACCURATE:

From a common instinct, the task of dense video caption should be significantly more difficult than
that of image caption, and its zero-shot performance, should be even worse given the complication
introduced by the temporal dimension. However, the fact goes the opposite way against intuitive
expectations in both the quantitative and qualitative results: the performance gap between our
zero-shot dense video captioning and fully supervised baselines is substantially less obvious than
that between zero-shot image captioners and their fully supervised counterparts. This is another
inspiration which justifies our initial motivation, that rather than bringing complexities, what a joint
embedding really brings are more resourceful information, more complementary self-supervision, less
uncertainties, higher confidences, and last but not the least, a more robust way toward comprehensive
semantic understanding.

5 CONCLUSION

In this work, we facilitate dense cooking video recipe generation by learning a contextualized CLIP
embedding, from natural language supervision. Our method is simple, data-scalable, open-vocabulary,
zero-shot and at a low computation cost, however there do come along with some limitations worth
mentioning: 1. the first disadvantage lies in that we replace the common video processing unit of
clips with frames, resulting in a lack of spatiotemporal representation, however this is not a crucial
disadvantage because short-term motion plays a very minor role in long-term semantic understanding.
2. the second disadvantage lies in the reliance on the ASR transcriptions, videos without speech
transcriptions, or with very weak vision ↔ speech semantic associations do not provide effective
supervision, however this is also not a crucial disadvantage in cooking domain because training data
with satisfactory cross-modal speech association is plentiful, and once upon the convergence of the
training stage, our embedding is zero-shot transferrable to vision-only modality and fully free from
the constraint at the inference stage. Further explorations might also include better interpretability of
the learned embedding, from a more theoretical perspective, which we leave for future efforts.
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A APPENDIX

A.1 DETAILS ON THE DATA PREPARATION FOR TRAINING

A.1.1 THE TITLE R OF THE VIDEO:

In the from of natural language, R is composed as either several words / phrases / short sentences,
which can also be fed to the off-the-shelf pre-trained language encoders, like Bert / CLIP, for [CLS]
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tokenization in our embedding. For example R = “Restaurant Style Channa Masala” for
VR at www.youtube.com/watch?v=LeCwqp8Bic8.

A.1.2 THE FRAME SEQUENCE VR:

The video VR = {v1, ..., vn}, lasting T seconds in length, and segmented into n continuous clips
accordingly to align with the sentences in the transcript SR, with the title R. For computational
simplicity, one and only one frame is selected as the visual representation for each clip, which is
formally equivalent to vi in the context of this work.

A.1.3 THE SENTENCE SEQUENCE SR:

The temporal sequence of n sentences SR = {s1, ..., sn} representing VR’s corresponding transcripts.
Not every clip vi aligns to a virtual utterance, as common videos include non-speech segments like
an intro, an outro, in-between transitions, and background musics. We introduce a background
si = SIL to align with silent clips vSIL

i without speech transcriptions.

A.1.4 THE START / END TIME STAMPS SEQUENCE TR FOR BOTH VR AND SR:

To guarantee the temporal alignment between frame vi ↔ sentence si pairs, VR are segmented with
the Google Cloud API 1, with its corresponding time stamps TR = {tstart1 /tend1 , ..., tstartn /tendn } of
each transcribed speech sentence si. Note that with the introduction of the silent (clip ↔ sentence)
pairs

(
vSIL
i ↔ si = SIL

)
, we facilitate seamless processing both at the front (ti) and back (wk)

end:

ti =


tstarti = 0 i = 1

tend
i = tstarti+1 i = 1, ..., n− 1

tend
i = T i = n

wk =


wstart

k = 0 k = 1

wend
k = wstart

k+1 k = 1, ...,m− 1

wend
k = T k = m

A.2 DATA SETS DETAILS

A.2.1 YOUCOOK2

YouCook2 Zhou et al. (2018) consists of 1,790 videos of 89 cooking procedures (eg., spaghetti and
meatballs) from YouTube. The videos were separated into a 67% / 23% / 10% percent for training
/ validation / testing split and categorized by humans into one of 89 recipe types. Videos were
temporally segmented by human annotators into clips vi representing recipe steps, and each clip was
annotated with a text summary si of the recipe step. On average, each video lasts T = 320 seconds
and is annotated with m = 7.7 temporally-localized imperative sentences. Following Miech et al.
(2019), we use 9,586 training clips and 3,350 validation clips due to the unavailability of some videos
on YouTube.

A.2.2 CROSSTASK

CrossTask Zhukov et al. (2019b) consists of 2,750 instructional videos from YouTube with 18 primary
tasks and 65 related tasks. On average, each video lasts T = 297 seconds and is annotated with
m = 7 temporally-localized steps, such as “remove cap” and “spread mixture”. 20 videos
from each of the 18 primary tasks are designated as the validation set (360 videos total), and the
rest are left for training. The videos in the validation set were temporally localized into clips vi for
each step by human annotators, while the videos in the training set were localized into clips for each
step automatically based on the ASR transcripts. The training set contains 18,067 clips while the
validation set contains 2,852 clips.

1https://cloud.google.com/speech-to-text/docs/automatic-punctuation.
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A.3 EVALUATION DETAILS

A.3.1 EVALUATION DETAILS FOR SEMANTIC GENERATION

Similar to image to text caption, we apply two measurements for temporal semantic generation
quality assessment: one reference-based (Bert score Zhang* et al. (2020)) and one reference-less
metric (Clip score Hessel et al. (2021)).

Reference-based metric Bert score uses a pre-trained bert Devlin et al. (2019) model to calculate
the cosine similarity between the human-created texts embedding Cref and the texts embedding
generated by the model C, associated with the image.

Bert− score = sim(C,Cref ) =
C ·Cref

∥C∥ · ∥Cref∥

Reference-less metric CLIP score uses a pre-trained CLIP Radford et al. (2021) model to calculate
the cosine similarity between the image embedding V and the caption embedding C without the
need for any references.

Clip− score = sim(V,C) =
V ·C

∥V∥ · ∥C∥

A.3.2 EVALUATION DETAILS FOR SEMANTIC LOCALIZATION

we apply mIOU = 1
m

∑m
k IOUk for temporal semantic localization quality assessment, which is

calculated by the following three steps of at progressive granularity:

1. The IOUk for each ground-truth segment k within an individual video VR: map the predicted
indices wk into the corresponding ASR token time stamps and compare it against the
segment’s manual start and end time stamps. Recall that the ground-truth segments are
marked by start (and end) times, whereas the predicted segments are expressed according to
the position of the corresponding ASR token, and an IoU score can be computed for each
(ground-truth, predicted) segment pair.

2. The video-level mIOU for each video: mIoU is the average of IOUk across all ground-
truth segments. The video-level mIoU provides a summary score for segmentation perfor-
mance over the entire video.

3. The overall mIOU : the individual mIoU for each video is then averaged across the test
data split and reported as the overall mIoU .
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