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Abstract

In this work we pre-train a DINO-ViT based model using two Synthetic Aperture
Radar datasets (S1GRD or GSSIC) across three regions (China, Conus, Europe).
We fine-tune the models on smaller labeled datasets to predict vegetation percentage,
and empirically study the connection between the embedding space of the models
and their ability to generalize across diverse geographic regions and to unseen
data. For S1GRD, embedding spaces of different regions are clearly separated,
while GSSIC’s overlaps. Positional patterns remain during fine-tuning, and greater
distances in embeddings often result in higher errors for unfamiliar regions. With
this, our work increases our understanding of generalizability for self-supervised
models applied to remote sensing.

1 Introduction

Earth observation (EO) and remote sensing techniques have witnessed significant advancements in
recent years, allowing us to characterize our planet with ever increasing resolution and accuracy.
Using EO data, we can e.g. characterize global vegetation in a consistent manner, and link vegetation
changes to the complex feedback mechanisms of climate change[1]. Synthetic Aperture Radar (SAR)
data [2] has proven immensely valuable for this task, since SAR sensors are sensitive to the dielectric
and geometric characteristics of plants, and provide consistent, all-weather, day-and-night monitoring
capabilities. However, making sense of the wealth of (unlabelled) SAR data requires advanced
computational techniques such as machine learning (ML) and specifically self-supervised learning
(SSL) which has revolutionized the training of neural networks without the need for labeled data.
Self-supervised learning with SAR images is a new research direction and has not been widely
explored [3], and can therefore greatly enhance the scalability and cost-effectiveness of SAR-based
vegetation estimation [4].
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In this study, we investigate the application of self-distillation with no labels (DINO)[5] to SAR-based
vegetation estimation. We specifically focus on understanding how the embedding space of the SSL
pre-trained model empirically links to generalizability across diverse geographic regions (in our case
Europe, China, the Continental United States (Conus), and South America), and when fine-tuning
with limited labelled data. By assessing model performances on areas outside of the training set, we
uncover valuable insights into the models’ robustness and scalability. More specifically, we show
that shared embedding spaces across geographic regions improve the generalizability of pre-trained
models to previously unseen regions. With this, our work significantly advances our understanding of
the applicability and reliability of SSL techniques for remote sensing, with profound implications for
environmental science and land management, where labelled datasets might be limited.

2 Data

Areas of Interest & Data Splits. Our dataset includes four regions of interest (AOIs): Europe,
China, the Continental United States (Conus), and South America. For each region, we created
ML-ready datasets of SAR images and associated vegetation percentage. Among the AOIs, SSL
pre-training was performed on three areas (Europe, Conus, and China), while downstream fine-tuning
was performed on each AOI separately. We partitioned all data into tiles measuring 448×448 pixels,
using geetiles1 and sartiles2 for pre-processing. These tiles were further divided into training
(60%), validation (20%), and test (20%) sets based on geographic bands to minimize data leakage
across contiguous tiles (see Figure 4 in the SI). To keep the data volume manageable, we only used
data from 2020 in this work.

SAR Data. We processed two data diversities from Sentinel-1: (1) SAR coherence from the Global
Seasonal Sentinel-1 Interferometric Coherence and Backscatter (GSSIC) dataset [6] and (2) SAR
amplitude from the Sentinel-1 Level 1 Ground Range Detected (S1GRD) dataset. While the amplitude
characterizes the intensity of the back-scattered signal in vertical (V) or horizontal (H) polarisation,
coherence measures the similarity of two complex SAR images taken at different times, i.e. using
both intensity and phase information. For GSSIC, we used seasonal averages (spring, summer,
autumn, winter) for all possible 12 and 24 timedeltas available to calculate SAR coherence using
VV3 polarization, totalling 8 channels. For S1GRD we used seasonal averages for polarizations VV
and VH4 including the logarithmic difference between them (VV-VH), resulting in 12 channels.

Vegetation Data. After pre-training on unlabeled SAR data, we fine-tuned our models for vegetation
estimation, using the Terra MODIS Vegetation Continuous Fields (VCF) product. For this, we
calculated the yearly mean vegetation percentage per SAR tile as labels for the supervised fine-tuning.
The distribution of labels for each AOI is shown in Figure 6 in the SI.

3 Self-Supervised Learning & Fine-tuning using DINO

Self-distillation with no labels (DINO) [5] is an SSL method based on a student-teacher framework,
where the student network aims to emulate the representations generated by the teacher. While the
teacher network has access to the full input, the student only sees cropped components of the image to
learn context from limited information. The weights of the teacher are updated using an exponential
moving average (ema) from the student, and the student and teacher embeddings are matched using a
cross-entropy loss. In this work, we adapted the original DINO architecture for SAR data. We used
ViTs as the student and teacher backbones to make use of the ViTs attention mechanism for model
fine-tuning (see Figure 5 in the SI). Due to SAR specifics, we only employed horizontal flipping and
cropping as transformations during pre-training. Figure 1 shows a diagram of our ML pipeline. We
use either GSSIC or S1GRD as unlabeled input to DINO during pre-training. Afterwards, we use
the attention maps generated by the pre-trained student backbone as the input to a linear decoder to
predict the mean vegetation percentage for each SAR tile. While we also performed experiments
where the weights of the backbone are frozen, the best results were obtained when both the backbone
and the decoder were trained during fine-tuning. To rationalize model performance and investigate

1https://github.com/rramosp/geetiles
2https://github.com/rramosp/sartiles
3I.e. For pulses sent and received in vertical polarization.
4I.e. For pulses sent in vertical and received in horizontal polarization.
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generalizability, we analyzed the embeddings of the pre-trained or fine-tuned backbone (labelled with
pink stars in Figure 1).
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Figure 1: Diagram of the ML pipeline used in this work. GSSIC (8 channels) or S1GRD (12 channels)
SAR data is used as an unlabelled input to DINO. After pre-training, the attention maps generated by
the student backbone are used as input to a linear decoder to predict mean vegetation percentage. The
pink stars show the steps in the pipelines that were used to visualize model embeddings.

4 Results

Benefits of Model Pre-training. For both S1GRD or GSSIC, our model was pre-trained in China,
Conus, and Europe, totalling ∼650K input tiles. After pre-training, the model was fine-tuned on
each AOI separately. Table 2 in the SI shows the root mean square error (RMSE[%]) in predicting
mean vegetation percentage when training the model from scratch or using the pre-trained backbone.
In all cases, supervised fine-tuning was performed using only 1% of available data in each AOI, to
investigate the performance of SSL when labelled datasets are limited. With more data, the RMSE[%]
reduces slightly (see Figure 6 in the SI). We generally observe lower RMSE[%] with pre-training,
and therefore focus the remaining discussion on the pre-trained models.

Empirical Investigation of Embedding Spaces & Model Generalizability. The generalizability of
SSL models hinges on meaningful embedding spaces, which should capture essential and distinguish-
ing data features for effective generalization to new, unseen data. This requires thoughtful design of
pretext tasks and model architectures. Figure 2 shows a 2D TSNE reduction of the embeddings from
each AOI after pre-training DINO using S1GRD (2a) or GSSIC (2b). The positional embedding of
each tile is colored with the logarithm of the mean vegetation percentage. Importantly, the vegetation
labels are not used to compute the embeddings or the 2D TSNE position, and are completely unseen
by the model at this stage. The embeddings of the pre-trained models show clear positional patterns,
and similar values of vegetation are clustered together. In the case of S1GRD, all AOIs are clearly
separated, while the embedding space of GSSIC overlaps regions in a continuous label distribution.
We hypothesize that the complexity of features contained in the different SAR input data contributes
to the observed differences. S1GRD utilizes amplitude data from multiple polarizations, while
our GSSIC input relies only on VV polarization coherence. In high density vegetation regions,
the forest structure sensitivity of coherence leads to low values [7], this may hinder the model’s
coherence-vegetation relationship learning when predicting it. In addition, the S1GRD dataset has
higher resolution (448x448 pixels/tile compared to ∼ 50x60 pixels/tile for GSSIC) and it provides
more information about local features. Therefore S1GRD likely has more data diversity than GSSIC,
resulting in lower RMSE[%] values (see Table 2 in SI).

To empirically assess generalizability, we visualize the embedding space after model fine-tuning
and investigate whether model performance on previously unseen regions can be predicted from
looking at the embedding space alone. More specifically, we plot the 2D TSNE reduction of the
embedding space after fine-tuning on 1% of data in Europe, Conus, or China, and investigate how
well vegetation in South America (which has not been seen) is predicted. In Figure 3 the first
(third) column shows the embeddings and prediction error for 2000 example tiles in the respective
fine-tuning datasets for S1GRD (GSSIC), while the second (fourth) column shows the embeddings
and prediction errors when performing inference of the fine-tuned models on 2000 tiles in South
America. Similar plots for inference on the training regions are included in the Supplementary
Information, but not discussed here. Looking at Figure 3, we observe that after fine-tuning using
S1GRD, the embedding spaces of the different AOIs remain separated. Generally, prediction errors
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Figure 2: Comparison of the embedding space of the pre-trained DINO model for a) S1GRD, and b)
GSSIC, for tiles from Conus (pink), Europe (grey), China (green), and South America (blue). The
embedding space was visualized using the class token and via TSNE dimensionality reduction. For
each area, we show the embedding of 2000 tiles from the test set (dots), colored with each tile’s mean
vegetation percentage.

are high (yellow dots), for tiles that are far from the embedding space of the fine-tuning AOI. We
quantified embedding separation using Sliced Wasserstein Distance (SWD), which is a mathematical
metric used for comparing high-dimensional distributions [8]. All SWD values were calculated for
10 seeds and 10000 projections. The lowest SWD and RMSE[%] for predicting vegetation in South
America is observed when using the model fine-tuned on Conus. For the model fine-tuned on Europe
or China, both the SWD and RMSE[%] values are high, although no direct correlation between them
was observed. In the case of GSSIC, the embedding spaces of all AOIs still show large overlaps
after fine-tuning. We empirically observe that prediction errors in South America match those in the
fine-tuning AOIs for shared embeddings. In other words, good predictions in the model fine-tuned on
e.g. Conus translate to low errors for South America in the same embedding space. We observe that
prediction errors increase if tiles in South America fall further outside the embedding space of the
fine-tuning AOI. For Europe-fine-tuned model, South America’s embedding space barely overlaps
with the few tiles in Europe that the model is able to predict well, resulting in the highest RMSE for
South American inference. For both input modalities, the embedding space of Europe shows the
largest SWD to the embedding space of South America. Looking at the distribution of vegetation
across the AOIs, we hypothesize that the stark difference in vegetation found in Europe compared to
the other regions leads to the poor prediction performance when applying the model fine-tuned in
Europe to other regions.

5 Conclusions

To summarize, we pre-trained DINO on unlabelled SAR data, and later fine-tuned our models on
small datasets across diverse geographic regions to predict mean vegetation percentage. We find that
pre-training leads to lower errors compared to training from scratch. This highlights the potential of
SSL for remote sensing applications, where labeled datasets are limited. Furthermore, we visualized
the embedding spaces of the pre-trained and fine-tuned models to draw conclusions about their
generalizability. We empirically find that the complexity of the data could lead to larger distances in
embedding spaces (measured via the SWD) and therefore cause larger prediction errors for unseen
regions as is the case of S1GRD dataset. However, it is important to acknowledge the limitations
of this work, and further research is needed to analyze additional datasets. The exploration should
involve finding a metric to characterize the complexity and diversity of the data, thereby strengthening
the support for our hypothesis. With this, our work presents a first step towards creating fully
generalizable models for Earth Observation.

4



Figure 3: Embedding space and prediction errors (in %) for models pre-trained on S1GRD or
GSSIC. The first (third) column shows the embeddings and prediction error for 2000 example tiles in
the respective fine-tuning areas for S1GRD (GSSIC), while the second (fourth) column shows the
embeddings and prediction errors when performing inference of the fine-tuned models on 2000 tiles
in South America. The Sliced Wasserstein Distance (SWD) of the embedding distributions and the
root mean square error (RMSE[%]) for inference on the entire test is included.
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Figure 4: Data splits for Europe, Conus, China, and South America. In total there are 167K image
tiles for Conus, 285K tiles for China, 200K tiles for Europe, and 83K tiles for South America.

Table 1: Parameters used for pre-training DINO on unlabelled S1GRD or GSSIC datasets.

GSSIC S1GRD
Model Architecture ViT_Base ViT_Base

Learning Rate 0.00001 0.000001
Teacher Temperature 0.04 0.001
Student Temperature 0.1 0.03

Warm-up Teacher Temperature 0.04 0.01
Warm-up Teacher Temperature Epochs 10 5

Center Momentum 0.90 0.99

Table 2: Root mean square error (RMSE[%]) for predicting mean vegetation percentage using S1GRD
or GSSIC. The model was either trained from scratch or using our pre-trained backbone with 1% of
available data in Europe, China, Conus, or South America.

S1GRD
Europe China Conus South America

From scratch 5.50 3.39 5.58 10.14
With pre-training 5.31 3.12 5.30 11.73

GSSIC
Europe China Conus South America

From scratch 6.33 7.29 8.29 11.09
With pre-training 6.78 6.81 7.54 10.77
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Figure 5: Example S1GRD SAR input images and ViT attention maps. The ViT used during this
work have 12 attention heads that pay attention to different features in the input data.

Table 3: Root mean square error (RMSE[%]) values when fine-tuning (columns) and performing
inference (rows) in each AOI. All fine-tuning was done using only 1% of available data, and all
inferencing was performed on the entire test set. The values in purple refer to the models trained
on S1GRD, and the values in teal refer to the models trained on GSSIC. For completeness, we also
fine-tuned a model on ∼ 1% of data sampled from the combined area of Europe, Conus, and China,
shown in the last row.

Conus Europe China South America
Conus 6.06 / 8.19 9.53 / 15.56 22.05 / 15.00 14.26 / 27.36
Europe 18.29 / 13.80 5.53 / 7.22 20.93 / 19.70 25.24 / 30.40
China 27.93 / 31.90 20.71 / 25.34 3.74 / 8.77 26.77 / 27.22

South America 21.12 / 19.88 16.36 / 21.10 17.18 / 12.60 12.72 / 11.87
Conus/Europe/China 6.33 / 11.33 5.77 / 9.71 4.38 / 10.60 18.95 / 14.49
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b)a)

Figure 6: a) Histogram distributions of the mean vegetation percentage labels for each AOI, and
b) root mean square error (RMSE[%]) in predicting mean vegetation percentage after fine-tuning
on Europe (grey) or South America (blue) using 1%, 10% or 100% of available data. Analyzing
the distributions of vegetation percentage in different AOIs can offer insights into the distribution
learned by the model during the fine-tuning process. We observe that for Europe, which was part of
the pre-training set, the improvement in RMSE[%] when fine-tuning on 100% compared to 1% of
data is very small. Even for South America, which was not part of the pre-training set, good model
performances are obtained for small data fine-tuning.
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Figure 7: Embedding space and prediction errors (in %) for models pre-trained on S1GRD or
GSSIC. The first (third) column shows the embeddings and prediction error for 2000 example tiles in
the respective fine-tuning areas for S1GRD (GSSIC), while the second (fourth) column shows the
embeddings and prediction errors when performing inference of the fine-tuned models on 2000 tiles
in Conus. The Sliced Wasserstein Distance (SWD) of the embedding distributions and the root mean
square error (RMSE[%]) for inference on the entire test is included.
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Figure 8: Embedding space and prediction errors (in %) for models pre-trained on S1GRD or
GSSIC. The first (third) column shows the embeddings and prediction error for 2000 example tiles in
the respective fine-tuning areas for S1GRD (GSSIC), while the second (fourth) column shows the
embeddings and prediction errors when performing inference of the fine-tuned models on 2000 tiles
in Europe. The Sliced Wasserstein Distance (SWD) of the embedding distributions and the root mean
square error (RMSE[%]) for inference on the entire test is included.
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Figure 9: Embedding space and prediction errors (in %) for models pre-trained on S1GRD or
GSSIC. The first (third) column shows the embeddings and prediction error for 2000 example tiles in
the respective fine-tuning areas for S1GRD (GSSIC), while the second (fourth) column shows the
embeddings and prediction errors when performing inference of the fine-tuned models on 2000 tiles
in China. The Sliced Wasserstein Distance (SWD) of the embedding distributions and the root mean
square error (RMSE[%]) for inference on the entire test is included.
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