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ABSTRACT

Likelihood-based deep generative models (DGMs) commonly exhibit a puzzling
behaviour: when trained on a relatively complex dataset, they assign higher like-
lihood values to out-of-distribution (OOD) data from simpler sources. Adding to
the mystery, OOD samples are never generated by these DGMs despite having
high likelihoods. This two-pronged paradox has yet to be conclusively explained,
making likelihood-based OOD detection unreliable. Our primary observation is
that high-likelihood regions will not be generated if they contain minimal prob-
ability mass, which can occur if the density is sharply peaked. We demonstrate
how this seeming contradiction of large densities yet low probability mass can
occur around data confined to low dimensional manifolds. We also show that
this scenario can be identified through local intrinsic dimension (LID) estimation,
and propose a method for OOD detection which pairs the likelihoods and LID
estimates obtained from a pre-trained DGM. Moreover, we provide an efficient
method for estimating LID from a normalizing flow model, improving upon ex-
isting estimators, and enabling state-of-the-art OOD detection performance with
respect to comparable flow-based benchmarks.

1 INTRODUCTION

Out-of-distribution (OOD) detection (Quiñonero-Candela et al., 2008; Rabanser et al., 2019; Gins-
berg et al., 2022) is crucial for ensuring the safety and reliability of machine learning models, given
their deep integration into real-world applications ranging from finance (Sirignano & Cont, 2019) to
medical diagnostics (Esteva et al., 2017). In areas as critical as autonomous driving (Bojarski et al.,
2016) and medical imaging (Litjens et al., 2017; Adnan et al., 2022), these models, while proficient
with in-distribution data, may give overconfident or plainly incorrect outputs when faced with OOD
samples (Wei et al., 2022).

We focus on detecting OOD inputs using likelihood-based deep generative models (DGMs), which
aim to learn the density that generated the observed data. Maximum-likelihood operates by in-
creasing model likelihoods on training data, and since probability densities must be normalized,
one might reasonably expect lower likelihoods for OOD points. Likelihood-based DGMs, including
variational autoencoders (Kingma & Welling, 2014; Rezende et al., 2014; Vahdat & Kautz, 2020),
normalizing flows (NFs) (Dinh et al., 2016; Kingma & Dhariwal, 2018; Durkan et al., 2019), and
diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) have proven to be
powerful DGMs that can render photo-realistic images. Given these successes, it seems reasonable
to attempt OOD detection by thresholding the likelihood of a query datum under a trained model.

Surprisingly, likelihood-based DGMs trained on more complex datasets assign higher likelihoods
to OOD datapoints from less complex datasets (Choi et al., 2018; Nalisnick et al., 2019a; Havtorn
et al., 2021). This observation becomes even more puzzling in light of the fact that said DGMs are
explicitly trained to assign high likelihoods to in-distribution data without having been exposed to
OOD data, thus generating samples which are much closer to the former. In this work, we explore
the following explanation for how both these observations can simultaneously be true:

OOD datapoints can be assigned higher likelihoods while not being generated
if they belong to regions of low probability mass.
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Figure 1: Left: A 1D density which is highly peaked in the OOD region (red) assigns high likelihood, but low
probability mass to OOD data. Right: An analogous situation for a 2D density concentrated around a 1D OOD
manifold (red line), illustrated with FMNIST as in-distribution and MNIST as OOD. The model density has
become sharply peaked around the manifold of “less complex” data which has low intrinsic dimension, which
is nonetheless assigned low probability mass as it has negligible volume.

Figure 1 illustrates that regions assigned high density by a model may integrate to very little prob-
ability mass when densities are sharply peaked. When OOD data is “simpler” in the sense that it
concentrates on a manifold of lower dimension than in-distribution data, the phenomenon depicted
in Figure 1 becomes completely consistent with empirical observations, but why might this happen
in the first place? According to the manifold hypothesis, data often resides on lower-dimensional
manifolds within a higher-dimensional space (Bengio et al., 2013; Pope et al., 2021; Brown et al.,
2023). Consequently, a likelihood-based DGM aims to capture these manifolds by concentrating
its density around them. Previous work has shown that DGMs have inductive biases that capture
certain types of low-dimensional structure – structure that may also be present in OOD data – re-
sulting in high assigned densities (Kirichenko et al., 2020; Schirrmeister et al., 2020). Our work is
complementary to these past results: we provide a mathematical understanding of how the paradox
can arise, which we leverage to devise a method to perform OOD detection using only a pre-trained
density model.

Contributions (i) We develop an OOD detection method which classifies a datum as in-
distribution only if it is assigned high likelihood by a DGM whose density is not sharply peaked
around the datum, as measured by a large local intrinsic dimension (LID) estimate of the learned
manifold; (ii) design an efficient LID estimator for our method, which requires only a pre-trained
density model; (iii) we empirically verify the above explanation for the OOD paradox; and (iv)
achieve state-of-the-art OOD detection performance among methods using the same NF backbone
as us.

2 BACKGROUND

Normalizing Flows In this study, we target DGMs that produce a density model pθ, parameterized
by θ, which can be easily evaluated. Among them, NFs readily provide probability densities through
the change of variables formula, making them suitable for studying pathologies in the likelihood
function. A NF is a diffeomorphic mapping fθ : Z → X from a latent space Z = Rd to data space
X = Rd, which transforms a simple distribution pZ on Z , typically an isotropic Gaussian, into a
complicated data distribution pθ on X . The change of variables formula allows one to evaluate the
likelihood of a datum x ∈ X as

log pθ(x) = log pZ(z)− log |detJ(z)| , (1)

where z = f−1
θ (x) and J(z) is the Jacobian of fθ evaluated at z. NFs are constructed in such a

way that detJ(z) can be efficiently evaluated, and are trained through maximum-likelihood. After
training, a sample is drawn from the latent distribution z ∼ pZ , and in turn, it is pushed through the
mapping fθ to produce a sample fθ(z) = x ∼ pθ.
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(a) FMNIST-trained model vs MNIST and Omniglot. (b) MNIST-trained model vs FMNIST and Omniglot.

(c) CIFAR10-trained model vs SVHN. (d) CIFAR10-trained model vs CelebA. (e) CIFAR100-trained model vs SVHN.

Figure 2: Overview of likelihood pathologies: (a) an FMNIST-trained model assigns higher likelihoods to
MNIST and Omniglot data; (b) a model trained on MNIST shows notably lower likelihoods for its own gener-
ated samples compared to OOD data; (c-e) pathologies observed in some models trained on RGB datasets.

Likelihood Pathologies in OOD Detection Choi et al. (2018) and Nalisnick et al. (2019a) first
uncovered unintuitive behaviour that pervasively affects likelihood-based DGMs. For instance, mod-
els trained on relatively complex datasets like CIFAR10 (Krizhevsky & Hinton, 2009) and FMNIST
(Xiao et al., 2017) often yield high likelihoods when tested on simpler ones like SVHN (Netzer
et al., 2011) and MNIST (LeCun et al., 1998), respectively, despite the latter datasets not having
been seen in the training process. While this issue is not exclusive to images (Ren et al., 2019),
our experiments, shown in Figure 2, confirm these previous findings for NFs trained on image data.
Additionally, we find that this pathological behaviour is not limited to these well-known cases, but
extends to numerous dataset pairs and even to generated samples (see Appendix A for details).

Local Intrinsic Dimension As previously discussed, natural data often lies on low-dimensional
submanifolds of X = Rd, where d is the ambient dimension of the data space. The local intrinsic
dimension (LID) of a datapoint x ∈ X with respect to these data submanifolds is the dimension of
the submanifold that contains x. For example, if the ambient space is R2 and the data manifold is
the 1D unit circle S, then any point x ∈ S will have an intrinsic dimension of 1. Often, datasets
lie on multiple non-overlapping submanifolds of different dimensionalities (Brown et al., 2023), in
which case the LID will vary between datapoints.

Density models pθ implicitly attempt to learn these manifolds by concentrating mass around them.
As a consequence, even though they are defined on the full d-dimensional space X , trained densities
pθ implicitly encode low-dimensional manifold structure, which in turn implies that pθ contains LID
information. When referring to an LID with respect to the manifolds implied by pθ, we will write
LIDθ(x). In the following, we will link LID to the sharpness of likelihood peaks, so it will be of
interest to estimate LIDθ(x0) for in- and out-of-distribution query points x0.

Various methods to estimate intrinsic dimension exist (Levina & Bickel, 2004; Johnsson et al., 2014;
Facco et al., 2017; Bac et al., 2021). Unfortunately, most of these are inadequate for our pur-
poses, either because they estimate global (i.e. averaged or aggregated) intrinsic dimension instead
of LIDθ(x0), or because they require observed data around x0 to produce the estimate. Since we
want LIDθ(x0) for OOD points x0, the latter methods would require access to samples from pθ
which fall in the OOD region, which are of course unavailable. The key to circumvent this issue is
to use LID estimators based on densities rather than data.

Density-based LID estimators are enabled by a surprising result linking Gaussian convolutions and
LID (Loaiza-Ganem et al., 2022; Tempczyk et al., 2022). Intuitively, adding high-dimensional but
low-variance Gaussian noise corrupts pθ more easily in lower-dimensional regions (see Figure 1
from Tempczyk et al. (2022)). Comparing pθ convolved with noise for different noise levels allows
one to infer LID from how quickly pθ is corrupted as the noise increases. More formally, defining
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the convolution between a pre-trained density pθ and a Gaussian with log standard deviation r as

ρr(x) := [pθ(·) ∗ N ( · ;0, e2rId)](x) =
∫
pθ(x− x′)N (x′;0, e2rId)dx′, (2)

Tempczyk et al. (2022) showed that under mild regularity conditions, for sufficiently negative r (i.e.
small standard deviation),

log ρr(x) = r(LIDθ(x)− d) +O(1). (3)

Equation 3 implies that, for sufficiently negative r (corresponding to sufficiently small noise), the
rate of change of log ρr(x0) with respect to r can be used to estimate LID, since ∂

∂r log ρr(x0) ≈
LIDθ(x0)−d. Tempczyk et al. (2022) leverage this observation to propose an estimator of LIDθ(x0),
which they call LIDL. To compute this estimate, they train one NF for each of several noise levels
r on in-distribution data convolved with N ( · ;0, e2rId). Then, for a given x0, they treat the log
densities provided by the NFs as approximations of log ρr(x0), and they fit a simple linear regression
to these values using r as the covariate; the resulting slope is an estimate of LIDθ(x0) − d. This
procedure is of course computationally intensive, as several NF models must be trained. We will
later show how to obtain estimates of LIDθ(x0) from a single pre-trained density model pθ.

3 RELATED WORK

A substantial amount of research into likelihood anomalies tries to explain the underlying causes
for the OOD paradox. One particular line of research proposes probabilistic explanations: Choi
et al. (2018) and Nalisnick et al. (2019b) put forth the “typical set” hypothesis, which has been
contested in follow-up work. For example, Le Lan & Dinh (2021) argue that likelihood rankings not
being invariant to data reparameterizations causes the paradox, whereas Caterini & Loaiza-Ganem
(2022) claim it is the lower entropy of “simpler” distributions as compared to the higher entropy of
more “complex” ones – which somewhat aligns with our work, although we use intrinsic dimension
instead of entropy to quantify complexity.

Nonetheless, we significantly differ from these explanations in that they all assume, sometimes im-
plicitly, that the supports of in- and out-of-distribution data overlap, and that the paradox is thus
fundamentally unavoidable. We find it extremely plausible, for example, that the intersection be-
tween CIFAR10 and SVHN images is empty. In this sense, we are more in agreement with the work
of Zhang et al. (2021) who blame model misalignment – i.e. pθ failing to properly learn its target
data-generating density – and highlight that perfect density models would not be subject to the OOD
paradox if dataset supports do not overlap.

Previous work has also found an empirical cause of this model misalignment: Kirichenko et al.
(2020) and Schirrmeister et al. (2020) show that the multi-scale convolutional architectures em-
ployed by NFs fixate on high-frequency local features and pixel-to-pixel correlations. When these
features and correlations are strongly present in OOD data – which happens when it is “simpler” –
OOD likelihoods become large. Although insightful, these studies do not provide an explanation for
why OOD data is never generated. Our work is thus complementary to this research, as we show
why the OOD paradox is mathematically possible, and use the resulting insights for OOD detection.

Another line of work aims to build DGMs which do not experience the aforementioned misalign-
ment, sometimes at the cost of generation quality. For example, Grathwohl et al. (2020) and Liu
et al. (2020) argue that the training procedure of energy-based models (EBMs) (Xie et al., 2016; Du
& Mordatch, 2019) provides inductive biases which are useful for OOD detection, and Yoon et al.
(2021) construct an EBM specifically designed for this task. Kirichenko et al. (2020) and Loaiza-
Ganem et al. (2022) first embed data into semantically rich latent spaces, and then employ dense
neural network architectures, thus minimizing susceptibility to local high-frequency features. We
differ from these works in that they attempt to build DGMs that are better at likelihood-based OOD
detection, whereas we only leverage a (potentially misaligned) pre-trained model. The understand-
ing of the OOD paradox that we derive is nonetheless compatible with other DGMs.

Finally, other works use “outside help” or auxiliary models. Some methods assume access to an
OOD dataset (Nalisnick et al., 2019b), require class labels (Görnitz et al., 2013; Ruff et al., 2020),
or leverage an image compression algorithm (Serrà et al., 2020). Some other works, while fully
unsupervised, require training an auxiliary model on distorted data (Ren et al., 2019) or on specific
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data statistics (Morningstar et al., 2021). Once again, we differ from these works in that our focus
is on gaining a deeper understanding of the OOD paradox, and using it for fully unsupervised OOD
detection based only on a single pre-trained model.

4 METHOD

In this section, we provide an OOD detection algorithm that can be readily applied to any pre-
trained NF, even if it is misaligned and exhibits undesired likelihood peaks on OOD data. In order to
determine if a given query point x0 is in- or out-of-distribution, our method requires approximating
log ρr(x0). While our main ideas are widely applicable to likelihood-based DGMs, we focus on
NFs since, as we will shortly show, they allow for particularly tractable approximations. Intuitively,
the fact that NFs never generate OOD samples indicates that they do contain the information needed
to discern OOD from in-distribution samples, and we will show how to extract this information.

4.1 PROBABILITY MASS, SHARP LIKELIHOOD PEAKS, AND INTRINSIC DIMENSION

Approximating Probability Mass Our explanation of the paradox involves OOD regions having
sharply peaked likelihoods with negligible probability mass. It is thus natural to explore ways of
computing the probability mass around x0 to determine if it is OOD or not. A sensible first attempt
proposed by Grathwohl et al. (2020) is to consider the ℓ2 norm of the derivative of log pθ(x) with
respect to x evaluated at x0, ∥ ∂

∂x log pθ(x0)∥2. Intuitively, a large norm would suggest a sharply
peaked density and thus low probability mass; however, as they report and we confirm in Section 5,
this produces unreliable results for NFs. A natural alternative would be to directly approximate the
probability mass that the model assigns to a small neighbourhood of x0, such as an ℓ2 ball of radius
R, BR(x0) := {x ∈ X : ∥x− x0∥22 ≤ R2}:

Pθ (x ∈ BR(x0)) =

∫
BR(x0)

pθ(x)dx = vol(BR(0)) · [pθ(·) ∗ U( · ;BR(0))] (x0), (4)

where vol(B) denotes the d-dimensional Lebesgue measure (i.e. the volume) of B and U( · ;B) the
density of the uniform distribution on B. Since vol(BR(0)) does not depend on x0, Equation 4
suggests approximating [pθ(·) ∗ U( · ;BR(0))](x0) for OOD detection. In initial experiments, we
tried doing so through a Monte Carlo estimate, but found the estimator particularly unreliable (see
Appendix B). More specifically, despite the true probability in Equation 4 being non-decreasing in
R, its Monte Carlo estimate did not exhibit this property. To circumvent this issue, we leverage
the standard and well-known result that in high dimensions, the uniform distribution on the ball is
approximately Gaussian, U( · ;Ber

√
d(0)) ≈ N ( · ;0, e2rId).1 This result suggests that, if we take

R = er
√
d, we can approximate [pθ(·) ∗ U( · ;BR(0))](x0) using the density ρr(x0) defined in

Equation 2.

Fast Convolutions of NFs with Gaussians In LIDL, estimating ρr(x0) requires training a sepa-
rate density model for each r value of interest. This is computationally expensive and ill-suited for
our purposes, since our goal is to use only pθ. Instead, we propose a way to leverage the properties of
NFs to approximate ρr(x0). Using a first order Taylor approximation of fθ around z0 = f−1

θ (x0),
we approximate the NF as an affine function fθ(z) ≈ J0(z − z0) + x0, where J0 is the Jacobian
of fθ evaluated at z0 and is tractable by design. Since pZ is Gaussian and affine transformations of
Gaussians remain Gaussian, we can thus approximate pθ(x) as p̂θ(x) := N (x;x0 − J0z0,J0J

⊤
0 ).

While it might at first appear strange to approximate a function fθ and a density pθ that we can
already evaluate, this approximation makes convolutions analytically tractable. By convolving p̂θ
(instead of pθ) with a Gaussian, we can approximate ρr(x0) from Equation 2 as

ρ̂r(x0) :=

∫
p̂θ(x0 − x)N (x;0, e2rId)dx = N (x0;x0 − J0z0,J0J

⊤
0 + e2rId). (5)

1Readers unfamiliar with this can see Saremi & Hyvärinen (2019) for a related derivation in a machine
learning context. Note that this derivation shows Gaussians are approximately uniform on the boundary of
the ball, but another classic result is that, in high dimensions, the majority of the mass of the ball lies near its
boundary (see e.g. Wegner (2021)), so that uniforms on the ball or its boundary are also approximately equal.
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Importantly, since the Taylor expansion of fθ is only accurate around x0, so is p̂θ. In turn, ρ̂r(x0)
is an accurate approximation of ρr(x0) only when N ( · ;0, e2rId) concentrates most of its mass
around 0 – i.e. when r is sufficiently negative – since this means that the contributions of p̂θ(x0−x)
to the integral in Equation 5 happen mostly when x ≈ 0. For a detailed analysis of the quality of
this approximation, please refer to Appendix C.

Figure 3: Comparison of mean values of
ρ̂r(xin) and ρ̂r(xood) for in- and out-of-
distribution xin and xood, respectively. The
shaded area shows one standard deviation.
Here, in-distribution is FMNIST, and OOD
is MNIST.

Identifying Sharp Likelihood Peaks So far, we have
argued that: (i) for an appropriate r, ρr(x0) is a sensible
proxy for how much mass pθ assigns around x0, and that
(ii) ρ̂r(x0) is a good approximation of ρr(x0) for nega-
tive enough values of r. However, these two arguments
together do not necessarily imply that ρ̂r(x0) estimates
how much mass pθ assigns around x0, since choices of
r high enough to capture the mass might not be nega-
tive enough for ρ̂r(x0) to remain a close approximation
of ρr(x0). In Figure 3, which shows log ρ̂r for in- and
out-of-distribution data as r increases, some relevant pat-
terns emerge.

First, we can see a marked change of behaviour around
r ≈ −7. Since ρr(x0) ≈ ρ̂r(x0) for negative enough
values of r, we believe that the consistent behaviour be-
fore r ≈ −7 agrees with our approximation remaining
accurate until this threshold. However, it is unclear if the
behaviour after r ≈ −7 changes due to an underlying
change in ρr or because of a decline in approximation
quality. We thus find it prudent to only trust ρ̂r for negative enough values of r below this threshold.
Second, before r ≈ −7, OOD values of ρ̂r remain larger, which is consistent with pθ also being
larger for OOD data and with r being too negative to appropriately quantify the probability mass
around x0.

Fortunately, even though the values of r for which ρ̂r(x0) is a good approximation of ρr(x0) are too
negative for ρr(x0) to remain a useful proxy for probability mass, ρ̂r(x0) nonetheless contains rel-
evant information. In the example shown in Figure 3, it is clear that log ρ̂r(x0) decreases faster for
pathological OOD data than it does for in-distribution data, including in the regime where r is nega-
tive enough for us to trust our approximations. Thus, instead of attempting to estimate log ρr(x0) for
relatively less negative values of r, we estimate its rate of change, ∂

∂r log ρr(x0), for very negative
values of r. Intuitively, the rate of change that we consider, ∂

∂r log ρ̂r(x0), can be understood as a
measure of how sharply peaked pθ is around x0.

Finally, we make a crucial observation: ∂
∂r log ρr(x0) is exactly what LIDL aims to estimate from

Equation 3, i.e. LIDθ(x0) − d. Importantly, we now have a well-grounded understanding that
LIDθ(x0) ≈ ∂

∂r log ρ̂r(x0) + d provides a measure of how sharply peaked pθ is around x0, thus
making LID a perfect candidate for OOD detection.

4.2 PUTTING IT ALL TOGETHER: DUAL THRESHOLD OOD DETECTION

Algorithm 1 Dual threshold OOD detection, re-
turns True if x0 is deemed OOD, and False if
it is deemed in-distribution.
Require: x0, pθ, r, ψL, ψLID

1: if log pθ(x0) < ψL then
2: return True ▷ case (i)

3: if ∂
∂r log ρ̂r(x0) < ψLID then

4: return True ▷ case (ii)

5: return False ▷ case (iii)

In summary, three mutually exclusive circum-
stances can arise: (i) pθ(x0) is very small, in
which case we can infer that x0 does not lie
on the manifolds learned by pθ, so we should
flag x0 as OOD. Non-pathological situations
where the model pθ actually assigns very low
likelihoods to OOD data will of course be de-
tected in this case. (ii) pθ(x0) is large, and
∂
∂r log ρ̂r(x0) ≈ LIDθ(x0) − d is very neg-
ative, i.e. LIDθ(x0) is very small. Here, the
likelihood is high but sharply peaked, suggest-
ing that pθ places a negligible amount of mass
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around x0. In this case, we should also flag x0 as OOD. As previously mentioned, we see this case
as caused by misalignment of pθ, yet our LID estimate still allows us to detect this pathological sit-
uation. (iii) pθ(x0) is large, and ∂

∂r log ρ̂r(x0) ≈ LIDθ(x0)− d is not very negative, i.e. LIDθ(x0)
is also large. In this case the likelihood is large but not sharply peaked, suggesting that pθ places a
relatively large amount of mass around x0, so we can tag x0 as in-distribution.

Putting these three possibilities together, we propose a simple OOD detection method in Algorithm
1 which uses two thresholds, ψL and ψLID, for log pθ(x0) and ∂

∂r log ρ̂r(x0), respectively, to decide
which case x0 belongs to. In Appendix D.1 we detail how we select all the hyperparameters (r, ψL,
and ψLID), but make the important observation that we set them in a fully unsupervised way, i.e.
without relying on OOD data, using only in-distribution training data and the given model pθ.

5 EXPERIMENTS

Setup For a thorough examination of likelihood pathologies, we compared datasets within two
classes: (i) 28 × 28 greyscale images, including FMNIST, MNIST, Omniglot (Lake et al., 2015),
and EMNIST (Cohen et al., 2017); and (ii) RGB images resized to 32× 32× 3, comprising SVHN,
CIFAR10 and CIFAR100 (Krizhevsky & Hinton, 2009), Tiny ImageNet (Le & Yang, 2015), and a
simplified, cropped version of CelebA (Kist, 2021). While we kept the most popular OOD detection
tasks in the main text, due to space constraints our extensive experiments across all of the OOD
detection tasks along with details of our setup for reproducibility are available in Appendix D.2.
Interestingly, we did not see the exploding inverses identified by Behrmann et al. (2021) in our flow
models. We postulate this could be due to a different hyperparameter configuration than theirs; see
Figure 10 in Appendix D.1. Our anonymized code, which will be made publicly available, can be
found here https://anonymous.4open.science/r/LID-OOD-1E25.

Notation Throughout this section, we will use the suffixes “-train”, “-test”, and “-gen” when talk-
ing about datasets to specify if we are referring to the train set, test set, or generated samples, re-
spectively. For datasets A and B, we write “A (vs) B” to refer to the OOD detection task that aims
to distinguish A-test from B-test using the model pθ pre-trained on A-train. When we write “A-gen
(vs) B”, A-test is replaced by A-gen, but pθ is still pre-trained on A-train. Ideally, for a model
trained on A-train, both A-gen and A-test should align. However, if the model excels in the “A-gen
(vs) B” task but falters in “A (vs) B”, it indicates poor model fit. By making these comparisons, we
can pinpoint scenarios where improved generative models are required.

Evaluation For the single threshold baselines, we employ the area under the curve (AUC) of
receiver operator curves (ROC), a common metric for classifier performance, to evaluate them on
OOD detection tasks. Notably, dual threshold classifiers do not produce a traditional ROC; however,
they give rise to a receiver operator graph (ROG). Each dual threshold, represented by (ψL, ψLID),
maps to a point on the ROG, indicating the true-positive (TP) and false-positive (FP) rates of the
corresponding classifier. The ROG’s convex hull (including the axes from 0 to 1) acts as a ROC
surrogate, allowing for comparisons against the AUCs of single threshold baselines.

Together, Likelihoods and LID Isolate OOD Regions In our first set of experiments, we compute
log-likelihoods and LID estimates for each datapoint. Results are shown in Figure 4. When consid-
ered separately, the likelihoods or LIDs of in- and out-of-distribution data can overlap, as depicted
by the likelihood marginals on the left and right, and the LID marginals on the bottom. In contrast,
the scatterplots using both likelihoods and LIDs show a clear separation between in-distribution
and OOD datapoints. Furthermore, the “directions” predicted by our method are correct: in the
pathological case, FMNIST (vs) MNIST (left), we clearly see that while OOD points have higher
likelihoods, they also have lower LIDs; whereas in the non-pathological case, MNIST vs FMNIST
(right), likelihoods are lower for OOD data. These results highlight not only the importance of us-
ing LID estimates for OOD detection, but also that of combining them with likelihoods. For more
comparisons depicting the same scatterplots across various datasets, please refer to Appendix D.3.

Visualizing the Benefits of Dual Thresholding The separation of OOD and in-distribution data
shown in the scatterplots in Figure 4 confirms that likelihood/LID pairs contain the needed informa-
tion for OOD detection. However, it remains to show that Algorithm 1 succeeds at this task (recall
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Figure 4: LID estimates and likelihood values: FMNIST (vs) MNIST and FMNIST-gen (vs) MNIST (left scat-
terplot); and MNIST (vs) FMNIST and MNIST-gen (vs) FMNIST (right scatterplot). Marginal distributions
of likelihoods and LIDs are shown on the sides and bottom, respectively.

(a) FMNIST (vs) MNIST:
AUC boost (0.070 → 0.953)

(b) FMNIST-gen (vs) Omniglot:
AUC boost (0.000 → 0.996)

(c) CIFAR10 (vs) SVHN:
AUC boost (0.060 → 0.926)

(d) CIFAR10-gen (vs) CelebA:
AUC boost (0.258 → 0.733)

Figure 5: ROG visualizations for select pathological OOD tasks. The red dots and the yellow area correspond
to the ROG graph, and the ROC for our dual thresholding method, respectively; the blue areas represent ROCs
for single threshold likelihood-based classifiers.

that we cannot simply train a classifier to differentiate between red and blue points in Figure 4 since
the red OOD points are unavailable when designing the OOD detector). Figure 5 provides a visual
comparison showcasing the ROGs from our dual thresholding technique versus the ROCs obtained
by single threshold classifiers obtained by using only likelihoods. These results not only show a
dramatic boost in AUC-ROC performance across four different pathological scenarios – once again
highlighting the relevance of combining likelihoods with LIDs for OOD detection – but they also
showcase that our dual threshold method successfully carries out this combination. For further ex-
periments showing why dual thresholding is necessary and how it can boost ROC-AUC across all
the OOD detection tasks we consider, please refer to Appendix D.4 and Appendix D.5.

Quantitative Comparisons In the top part of Table 1, we compare our method against several
baselines, all of which are evaluated using the exact same NF as our method. These baselines
are: (i) naı̈vely labeling large likelihoods log pθ(x0) as in-distribution, which as previously men-
tioned, strongly fails at identifying “simpler” distributions as OOD when trained on “complex”
datasets (e.g. FMNIST (vs) MNIST, FMIST (vs) Omniglot, and CIFAR10 (vs) SVHN). (ii) Us-
ing ∥ ∂

∂x log pθ(x0)∥2, as proposed by Grathwohl et al. (2020), which performs very poorly across
tasks, except at CIFAR10 (vs) SVHN. (iii) The complexity correction method of Serrà et al. (2020),
which uses image compression information to adjust the inflated likelihood observed in OOD dat-
apoints. Despite this comparison being unfair in that the baseline is allowed access not only to the
NF, but to image compression algorithms as well, we beat it across all tasks except for FMNIST
(vs) Omniglot. (iv) The likelihood ratios approach of Ren et al. (2019), which employs an auxiliary
likelihood-based reference model to compute this ratio. This comparison is once again unfair, as the
baseline has access to an additional model that we do not, and yet we uniformly beat it across tasks.
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Table 1: ROC-AUC (higher is better). The top part of the table contains NF-based approaches, whereas the
last row shows an EBM-based one. Notation: ∗ tasks where likelihoods alone do not exhibit pathological
behaviour, ‡ methods that employ external information or auxiliary models. For the NF methods, we bold the
best performing model, and the EBM model is bolded when it surpasses all others.

Trained on MNIST ∗ FMNIST CIFAR10 SVHN ∗

OOD Dataset FMNIST Omniglot MNIST Omniglot SVHN CelebA CIFAR10 CelebA

Naı̈ve Likelihood log pθ(x0) 1.000 0.807 0.069 0.088 0.084 0.386 0.987 0.995
∥ ∂
∂x

log pθ(x0)∥2 0.156 0.444 0.516 0.538 0.722 0.433 0.200 0.080
Complexity Correction‡ 0.945 0.852 0.939 0.935 0.835 0.479 0.771 0.639
Likelihood Ratios‡ 0.944 0.722 0.666 0.639 0.299 0.396 0.302 0.099
Dual Threshold (Ours) 1.000 0.869 0.953 0.862 0.926 0.653 0.987 0.995

NAE 1.000 0.994 0.995 0.976 0.919 0.887 0.948 0.965

Besides the strong empirical performance of our method, other aspects of the top part of Table 1
warrant attention. Both the complexity correction and likelihood ratio baselines lose performance
over naı̈vely using likelihoods on non-pathological tasks, i.e. when models are trained on relatively
“simple” data like MNIST or SVHN. Since likelihoods perform well at these tasks, they are often
considered “easy” and thus omitted from comparisons. The fact that complexity correction and
likelihood ratios struggle at these tasks is a novel finding that suggests these methods “overfit” to
the pathological tasks, and highlights the underlying difficulty of unsupervised OOD detection. See
Appendix E for additional results and discussions. Overall, we believe it is remarkable that our
dual threshold method so conclusively outperforms these baselines at both pathological and non-
pathological tasks, despite them having access to additional help. We see these results as strong
evidence supporting the understanding that we derived about the OOD paradox and its connection
to local intrinsic dimension.

The last row of Table 1 shows the performance of normalized autoencoders (NAEs) (Yoon et al.,
2021). NAEs are EBMs specially tailored for OOD detection at the cost of generation quality, but
to the best of our knowledge achieve state-of-the-art performance on fully unsupervised, likelihood-
based OOD detection. Once again, we believe that the empirical results of our dual threshold method
are remarkable: we achieve similar performance to NAEs on most tasks, even outperforming them
on three, despite using a general purpose model pθ, not one explicitly designed for OOD detection.

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this paper we studied the OOD detection paradox, where likelihood-based DGMs assign high
likelihoods to OOD points from “simpler” datasets, but do not generate them. We proposed an
explanation of how the paradox can arise as a consequence of sharply peaked densities in OOD
regions, thus assigning low probability mass to them. We connected this explanation to LID and
proposed an efficient estimator of LID which we leveraged for our dual threshold OOD detection
method, thus beating every method that used the same underlying NF model. While our ideas
are widely applicable to any density model, the current incarnation of our method is limited in
that it only applies to NFs, as estimating LID is more tractable for these models. Extending our
methodology to other likelihood-based DGMs which map a Gaussian latent space through a readily
available decoder, such as variational autoencoders or others (Brehmer & Cranmer, 2020; Caterini
et al., 2021; Ross & Cresswell, 2021), can likely also work well with a similar Taylor expansion of
the decoder. Nonetheless, we see extending our method to diffusion models, which achieve state-
of-the-art performance for image synthesis, and to EBMs, which achieve state-of-the-art likelihood-
based OOD detection, to be particularly promising directions for future work.

Reproducibility Statement To facilitate the reproducibility of our experiments we have provided
a link to our anonymized codebase. It contains instructions on how to build an environment, and on
how to run the code to repeat our experiments. Our methods are described in Section 4 and we have
included pseudocode for the algorithms we propose in Algorithm 1. All necessary details of the
experimental setup are given in Section 5 and Appendix D. All datasets we used are freely available
for download from the cited sources and are used in accordance with any applicable licenses.
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Ethics Statement We do not foresee any ethics concerns with the present research. The overarch-
ing topic, OOD detection, is widely used as a method to improve the reliability of machine learning
models in critical settings. Our goal is to theoretically explain and empirically rectify issues that
arise when using OOD detection with deep generative models, and does not promote the use of
generative models for harmful applications.
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(a) EMNIST-trained model vs MNIST and Omniglot (b) Omniglot-trained model vs FMNIST and EMNIST

(c) Tiny-trained model vs SVHN (d) CelebA-trained model vs SVHN (e) CIFAR100-trained model vs CelebA

Figure 6: Extra Likelihood Pathologies Overview: (a) A model trained on the EMNIST dataset yields
marginally lower likelihoods for its in-distribution data than for OOD data from Omniglot and strikingly low
likelihoods on its generated samples. (b) An Omniglot-trained model displays low likelihoods for its own
generated samples. (c-e) Additional pathologies among our RGB dataset pairs: Tiny ImageNet (vs) SVHN,
CelebA (vs) SVHN, and CIFAR100 (vs) CelebA.

A DIAGNOSING PATHOLOGIES IN FLOW MODELS

In this section we list the full extent of the pathologies we identified in our experiments. The first
class is the standard one, in which NFs assign equal or higher likelihoods to out-of-distribution data
than the distribution of the data they were trained on. In addition to Figure 2, which shows that
FMNIST (vs) MNIST, CIFAR-10 (vs) SVHN, CIFAR10 (vs) CelebA, and CIFAR100 (vs) SVHN
are pathological, Figure 6 depicts pathological behaviour for EMNIST (vs) MNIST, EMNIST (vs)
Omniglot, Tiny (vs) SVHN, CelebA (vs) SVHN, and CIFAR100 (vs) CelebA.

Moreover, since models may not be perfectly fit, the likelihoods obtained for generated samples may
not align with those of the test split of the in-distribution data. To demonstrate this phenomenon, we
visualize the likelihoods of generated samples in Figure 2 and Figure 6. Notably, these likelihoods
are almost always smaller than the in-distribution samples; this is a new, second class of patholo-
gies. This difference is especially evident in greyscale models like FMNIST, MNIST, EMNIST, and
Omniglot. Here, generated samples consistently show lower likelihoods than both in-distribution
and OOD data points, as seen in Figure 2a, Figure 2b, Figure 6a, and Figure 6b respectively. Some
of these cases, such as MNIST- and Omniglot-trained models were previously thought to be non-
pathological (Nalisnick et al., 2019a). This adds to the unexplained phenomena of likelihood-based
DGMs for OOD detection.
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B COMPUTATIONAL INTRACTABILITY OF PROBABILITY MASSES

As mentioned in the main text, one could try to approximate the probability in Equation 4. A natural
solution would be a Monte Carlo estimator:

Pθ(x ∈ BR(x0)) = vol(BR(x0)) · Ex∼U( . ;BR(x0)) [pθ(x)] ≈ vol(BR(x0))

n∑
i=1

pθ(x
(i)), (6)

where x(i) ∼ U( · ;BR). Note that vol(BR(x0)) admits a closed-form formula. Naı̈vely computing
the above estimator is numerically unstable, but at the cost of some bias, logPθ(x ∈ BR(x0))
can be approximated instead by using the logsumexp function, since we can evaluate log pθ(x).
In Figure 7 we show these estimates for a model trained on FMNIST over a range of small radii.
Unlike logPθ(x ∈ BR(x0)), the estimated values are not non-decreasing in R, both for in- and out-
of-distribution data: this highlights that these estimates are completely unreliable. While we believe
Markov Chain Monte Carlo methods are a promising avenue towards more accurately approximating
these probabilities, we leave such explorations for future work.

Figure 7: The trend of the average estimated logPθ(x ∈ BR(x0)) for MNIST and FMNIST on an
FMNIST-trained NF.
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(a) Convolution of the first mode (b) Convolution of the second mode

(c) Convolution of the third mode (d) Convolution of the fourth mode

Figure 8: The estimated convolution log ρr(xi) for different modes of a mixture of Gaussians.

C ON THE QUALITY OF THE LINEAR APPROXIMATION

In this section, we assess the accuracy of the approximation ρ̂r, as introduced in subsection 4.1.

C.1 EMPIRICAL RESULTS

To empirically evaluate our approximation log ρ̂r, we experiment on a synthetic dataset. Our exper-
iment shows that log ρ̂r accurately represents log ρr, the logarithm of a Gaussian convolved with the
model’s density, on this dataset.

First, we generated an 800-dimensional dataset from a mixture of four Gaussians with different
means and covariances. After training an RQ-NSF on 70,000 samples of this distribution, we obtain
a model pθ that fits this mixture of Gaussians well. The modes of the distribution are set far apart and
their componentwise covariance matrices are set so that there is minimal overlap between them; this
setting allows us to derive an analytical expression to accurately approximate the density around each
mode as follows. If ci is the probability of a sample belonging to the ith component with

∑
i ci = 1,

and xi and Ai represent the mean and covariance matrix of the ith component, respectively, then
the density at each mode can be approximated by ignoring the other components:

log pθ(xi) ≈ log ci · N (xi;xi,Ai) ⇒ log ρr(xi) ≈ log
1√

(2π)d det(Ai + e2rI)
(7)

Therefore, comparing our estimator inspired by the Taylor expansion with the value obtained above
provides us with a way to validate the quality of our estimator for log ρr. Figure 8 (a-d) shows the
estimated log ρ̂r for every mode vis-à-vis the accurate value obtained analytically from the above
equation as r increases. This comparison confirms that these estimators can be accurate approxima-
tions, even for high dimensional data.

C.2 THEORETICAL BOUNDS

In addition to the empirical analysis, we mathematically evaluate the accuracy of our approximation
by establishing error bounds. To advance our discussion, we first introduce two key mathematical
operators essential for deriving these bounds.
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Definition C.1. For positive scalars σ and δ, the constrained Gaussian convolution operator ϕδσ :
F → F on the family of smooth functions F mapping from Rd to R+ takes in an arbitrary function
h and outputs g as follows:

ϕδσ(h) = g s.t. g(x) :=
∫
Bσδ(x)

h(x− u) · N (u;x, σ2 · I) · du. (8)

Here, the integral is on the ℓ2 ball of radius σ · δ. The unconstrained Gaussian convolution operator
is also defined similarly with the exception that the integration is over the complement of the ball:

ϕ̄δσ(h) = g s.t. g(x) :=
∫
Rd\Bσδ(x)

h(x− u) · N (u;x, σ2 · I) · du. (9)

Note that ϕδσ + ϕ̄δσ results in the normal convolution operator, and when the input of the operator is
the density function pθ, we have that ρr(x0) = ϕδσ(pθ)(x0) + ϕ̄δσ(pθ)(x0) for σ = er and any δ.
Now we will provide an upper bound for the unconstrained convolution operator which will help us
provide a global error margin for ρ̂r(x0):
Lemma C.1. Given a bounded function h : Rd → R+ where M := supx∈Rd(h(x)), we have that

ϕ̄δσ(h)(x0) ≤M ·
[
(δ/d)e1−(δ/d)

]d/2
, (10)

when δ > d.

Proof.

ϕ̄δσ(h)(x0) =

∫
Rd\Bσδ(x0)

h(x0 − u) · N (u;x0, σ
2 · I) · du

≤
∫
Rd\Bδ(x0)

M · N (v;0, I) · dv Change of variables v := (u− x0) · σ−1

=M · P (χ2
d > δ2) ≤M ·

[
(δ/d)e1−(δ/d)

]d/2
,

where χ2
d denotes a Chi-squared random variable with d degrees of freedom. The last inequality is

a well-known Chernoff bound on the survival function of the Chi-squared distribution.

Given an NF with a diffeomorphic mapping fθ, a high-quality local approximation to fθ around x0

would result in a high-quality approximation of pθ via the change of variables formula. Now we
will present error bounds for our core estimator ρ̂r(x0).
Theorem C.2. Assume R specifies a region in which an approximation p̂θ is accurate up to a small
error margin: ∀x ∈ BR(x0) : |p̂θ(x) − pθ(x)| ≤ e(R). If M ′ := supx∈supp(pθ)

(|pθ(x) − p̂θ(x)|)
is finite and er = σ < R/d, then the total error between ρr(x0) and ρ̂r(x0) is bounded as follows:

|ρr(x0)− ρ̂r(x0)| ≤ e(R) +M ′ ·
[
R

dσ
e1−

R
dσ

]d/2
(11)

Proof.

|ρr(x0)− ρ̂r(x0)| ≤ ϕR/σ
σ (|pθ − p̂θ|)(x0) + ϕ̄R/σ

σ (|pθ − p̂θ|)(x0)

≤
∫
BR(x0)

|pθ(x0 − u)− p̂θ(x0 − u)| · N (u;x0, σ
2 · I) · du+M ′ ·

[
(R/dσ)e1−(R/dσ)

]d/2
≤ e(R) +M ′ ·

[
(R/dσ)e1−(R/dσ)

]d/2

Therefore, for a sufficiently small σ (translating to a sufficiently negative r) the total error bound of
ρ̂r is as small as the bound e(R) obtained from the linearization. This analysis demonstrates that
even though ρr(x0) concerns taking a convolution over the entire support of pθ, a high-quality local
approximation of the density directly yields a high-quality approximation ρ̂r(x0).
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D EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

D.1 DETAILS OF LID ESTIMATION

(a) Fixed scale r = −20 (b) Fixed scale r = −7

Figure 9: LID estimates, ∂
∂r

log ρ̂r(x0) for in-distribution (CI-
FAR10) and OOD data (SVHN): (a) at very negative value, LID
estimates for both datasets overlap and are close to d; (b) at a larger
value, OOD datapoints exhibit notably smaller LID estimates.

As mentioned in Section 4, our dual
threshold method requires setting hy-
perparmeters. Here we describe how
to set r. Naı̈vely, we could pick an
arbitrary, negative enough value, but
we found this does not work well
across datasets as the results can be
sensitive to the choice of r. Figure 9
shows the issue: setting the parame-
ter this way will not properly detect
the lower LID of SVHN with respect
to a model pθ trained on CIFAR10.
A way to intuitively understand why
the choice of r matters is that it cor-
responds to the scale at which intrinsic dimension is assessed. Viewed at a small enough scale, a
density will appear to imply a large intrinsic dimension, whereas, from a large enough scale, the
entire local peak will appear to be a point. The goal here is to choose the best scale from which to
differentiate OOD from in-distribution points. We note that this explanation is also why Tempczyk
et al. (2022) use several noise scales.

One sensible way of setting r is to calibrate it based on another model-free estimator of LID using
the training data. In particular, we perform local principal component analysis (LPCA) which is a
model-free method for LID estimation. LPCA is similar to our estimator in that it uses the concept
of local linearizations. We use the scikit-dimension (Bac et al., 2021) implementation and
use the algorithm introduced by Fukunaga & Olsen (1971) with alphaFO set to 0.001 to estimate
the average LID of our training data. Then r is set so that LIDθ estimates of the training dataset
match the LPCA average.

To increase efficiency, we select a random set of 80 data points from our training set as representative
samples. We then employ a binary search to fine-tune r. During each iteration of the binary search,
we compare the average LIDθ of our subsamples with the intrinsic dimension determined by LPCA.
If the average LIDθ is lower, we increase r; otherwise, we decrease it. We initially set r’s binary
search range between −20 and 20, representing a wide range of plausible scales. Binary search
is then executed in 20 steps to accurately ascertain a value of r. Table 2 represents three distinct
scenarios to assess how to set r optimally. In the first two rows, r is held constant, while in the third,
r is dynamically adjusted based on the above approach. Although there is a minor performance drop
in the FMNIST (vs) MNIST comparison, this is offset by a notable enhancement in the CIFAR10
(vs) SVHN case. This significant improvement justifies our preference for the adaptive method.

Table 2: Ablation study for the choice of r evaluating on ROC-AUC (higher is better).

FMNIST (vs) MNIST MNIST (vs) FMNIST CIFAR10 (vs) SVHN SVHN (vs) CIFAR10

r = −20 0.961 1.000 0.730 0.991
r = −10 0.957 1.000 0.737 0.991
Adaptive scaling 0.953 1.000 0.926 0.986
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Table 3: Essential hyperparameter settings for the normalizing flow models.

Property Model Configuration

Learning rate 1× 10−3

Gradient Clipping Value based (max = 1.0)
Scheduler ExponentialLR (with a factor of 0.99)
Optimizer AdamW
Weight decay 5× 10−5

Batch size 128
Epochs 400

Transform blocks Actnorm → (1× 1) Convolution → Coupling
Number of multiscale levels 7 levels
Coupling layer backbone ResNet (channel size = 64, # blocks = 2, dropout = 0.2)
Masking scheme Checkerboard
Latent Space Standard isotropic Gaussian

Data pre-processing Dequantization & Logit scaling
Data shape 28× 28× 1 for grayscale and 32× 32× 3 for RGB

D.2 HYPERPARAMETER SETTING FOR NORMALIZING FLOWS

We trained both Glow (Kingma & Dhariwal, 2018) and RQ-NSFs (Durkan et al., 2019) on our
datasets, with the hyperparameters detailed in Table 3. Specifically, while Glow utilized an affine
coupling layer, we adopted RQ-NSF’s piecewise rational quadratic coupling with two bins and linear
tails capped at 1. In Figure 11 and Figure 12, we highlight the Glow architecture’s failure cases.
The artifacts, particularly in CelebA, Tiny ImageNet, and Omniglot samples, stem from the affine
coupling layers’ unfavourable numerical properties. In contrast, the RQ-NSF architectures showed
no such issues, leading us to adopt them for subsequent experiments.

In the context of OOD detection, expressive architectures sometimes face issues of numerical non-
invertibility and exploding inverses, particularly with OOD samples. Behrmann et al. (2021) argue
that while expressive NFs adeptly fit data manifolds, their mapping from a full-dimensional space to
a lower-dimensional one can cause non-invertibility, especially in OOD datapoints. They specifically
identified non-invertibility examples in Glow models on OOD data. Contrarily, the RQ-NSFs we
trained according to the hyperparameter setup in Table 3 demonstrated full reconstruction on OOD
data, as depicted in Figure 10. This is another reason why we chose RQ-NSFs.

We used an NVIDIA Tesla V100 SXM2 with 7 hours of GPU time to train each of the models.

(a) Original samples from the test
split.

(b) Reconstructed samples from
the test split.

(c) Original samples from the
OOD dataset.

(d) Reconstructed samples from
the OOD dataset.

Figure 10: Numerical invertibility: (a-b) A random batch of samples and their reconstructions from the test
split of an RQ-NSF model trained on CelebA. (c-d) A random batch of samples and their reconstructions from
the OOD dataset, SVHN.
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(a) Glow model trained on
MNIST.

(b) Glow model trained on FM-
NIST.

(c) Glow model trained on Om-
niglot.

(d) Glow model trained on EM-
NIST.

(e) RQ-NSF model trained on
MNIST.

(f) RQ-NSF model trained on FM-
NIST.

(g) RQ-NSF model trained on
Omniglot.

(h) RQ-NSF model trained on
EMNIST.

Figure 11: Samples generated from models trained on the grayscale collection: due to numerical properties of
affine coupling layers, Glow models tend to produce artifacts in their generated data.

(a) Glow model trained on
SVHN.

(b) Glow model trained on CI-
FAR10.

(c) Glow model trained on
CelebA.

(d) Glow model trained on Tiny
ImageNet.

(e) RQ-NSF model trained on
SVHN.

(f) RQ-NSF model trained on CI-
FAR10.

(g) RQ-NSF model trained on
CelebA.

(h) RQ-NSF model trained on
Tiny ImageNet.

Figure 12: Samples generated from models trained on the RGB collection: the artifacts in Glow models are
apparent.
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D.3 INTRINSIC DIMENSION VS LIKELIHOOD SCATTERPLOTS

In this section, we introduce scatterplots analogous to those in Figure 4 that illustrate results for var-
ious tasks. As emphasized previously, we consistently observe that LID estimates for pathological
OOD data points are generally lower than the in-distribution data. This confirms our hypothesis sug-
gesting that these points are situated on a lower dimensional submanifold that is assigned minimal
probability mass. This behaviour is evident across all figures in this section that exhibit patholog-
ical likelihoods. Examples include MNIST-gen (vs) FMNIST and Omniglot-gen (vs) EMNIST on
the right, and all the figures on the left. Conversely, in non-pathological scenarios (shown on the
right), OOD data points are generally assigned lower likelihoods. Our dual thresholding approach
effectively identifies both scenarios by simultaneously setting thresholds on both log pθ(x0) and
LIDθ(x0). Results are shown in Figure 13, Figure 14, Figure 15, and Figure 16.

Figure 13: Visualization of LID estimates using adaptive scaling and likelihoods per datum where the x-
axis represents LIDθ(x0) and the y-axis represents log pθ(x0). Left: Scatterplots for the pathological OOD
detection tasks “FMNIST (vs) MNIST” and “FMNIST-gen (vs) MNIST”. Right: Scatterplots for the non-
pathological OOD detection tasks “MNIST (vs) FMNIST” and “MNIST-gen (vs) FMNIST”.

Figure 14: Visualization of LID estimates using adaptive scaling and likelihoods per datum where the x-
axis represents LIDθ(x0) and the y-axis represents log pθ(x0). Left: Scatterplots for the pathological OOD
detection tasks “EMNIST (vs) Omniglot” and “EMNIST-gen (vs) Omniglot”. Right: Scatterplots for the non-
pathological OOD detection tasks “Omniglot (vs) EMNIST” and “Omniglot-gen (vs) EMNIST”.

21



Under review as a conference paper at ICLR 2024

Figure 15: Visualization of LID estimates using adaptive scaling and likelihoods per datum where the x-
axis represents LIDθ(x0) and the y-axis represents log pθ(x0). Left: Scatterplots for the pathological OOD
detection tasks “CIFAR10 (vs) SVHN” and “CIFAR10-gen (vs) SVHN”. Right: Scatterplots for the non-
pathological OOD detection tasks “SVHN (vs) CIFAR10” and “SVHN-gen (vs) CIFAR10”

Figure 16: Visualization of LID estimates using adaptive scaling and likelihoods per datum where the x-
axis represents LIDθ(x0) and the y-axis represents log pθ(x0). Left: Scatterplots for the pathological OOD
detection tasks “CIFAR10 (vs) CelebA” and “CIFAR10-gen (vs) CelebA”. Right: Scatterplots for the non-
pathological OOD detection tasks “CelebA (vs) CIFAR10” and “CelebA-gen (vs) CIFAR10”.
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Table 4: ROC-AUC (higher is better) at A-gen (vs) B tasks. Notation: ∗ tasks where likelihoods alone do not
exhibit pathological behaviour, ‡ methods that employ external information or auxiliary models. For each task,
we bold the best performing model.

Trained on MNIST ∗ FMNIST CIFAR10 SVHN ∗

OOD Dataset FMNIST Omniglot MNIST Omniglot SVHN CelebA CIFAR10 CelebA

Naı̈ve Likelihood log pθ(x0) 0.004 0.000 0.040 0.000 0.025 0.240 0.971 0.985
∥ ∂
∂x

log pθ(x0)∥2 0.997 0.997 0.993 0.993 0.712 0.379 0.195 0.077
Complexity Correction‡ 0.026 0.000 0.044 0.001 0.678 0.243 0.714 0.451
Likelihood Ratios‡ 0.998 1.000 1.000 1.000 0.299 0.396 0.302 0.099
Dual Threshold (Ours) 0.999 1.000 1.000 0.996 0.951 0.733 0.970 0.985

D.4 ADDITIONAL AUC RESULTS

Table 4 compares methods by seeing how well they can differentiate between generated samples
from pθ and OOD data. Overall, our dual threshold method performs consistently well across tasks.

Table 5 compares naı̈ve likelihoods against our dual threshold method across all tasks. We can see
an extremely consistent improvement, highlighting the relevance of dual thresholding.

D.5 EXTRA ABLATIONS

Throughout our paper, we have argued in favour of our dual threshold method, which combines
likelihoods and LID estimates. To highlight that our strong performance is not just based on dual
thresholding itself, we carry out an ablation where we use dual thresholding, but on likelihood and
gradient norm ∥ ∂

∂x log pθ(x0)∥2 pairs. Table 6 shows the results, highlighting that LID estimates
are much more useful. The table also shows that using single thresholds with LID estimates is also
not enough to reliably detect OOD points.
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Table 5: ROC-AUC (higher is better) using likelihoods only, compared to dual thresholds. The top
part of the table contains greyscale tasks, and the bottom contains RGB tasks. Values are bolded
when there is at least a 20% improvement from dual thresholding over likelihoods alone.

OOD Task Type A-gen (vs) B § A (vs) B †

Dataset Pair
A (and) B

(AUC-ROC)
Naı̈ve Likelihood

(AUC-ROC)
Dual Threshold

(AUC-ROC)
Naı̈ve Likelihood

(AUC-ROC)
Dual Threshold

EMNIST (and) MNIST 0.000 1.000 0.533 0.797
EMNIST (and) Omniglot 0.000 1.000 0.397 0.814
EMNIST (and) FMNIST 0.039 1.000 0.998 0.998
Omniglot (and) MNIST 0.011 1.000 1.000 1.000
Omniglot (and) EMNIST 0.000 1.000 0.983 0.983
Omniglot (and) FMNIST 0.138 1.000 1.000 1.000
FMNIST (and) MNIST 0.000 1.000 0.070 0.953
FMNIST (and) EMNIST 0.001 0.960 0.391 0.605
FMNIST (and) Omniglot 0.000 0.996 0.086 0.862
MNIST (and) EMNIST 0.000 1.000 0.985 0.985
MNIST (and) Omniglot 0.000 1.000 0.787 0.869
MNIST (and) FMNIST 0.005 0.999 1.000 1.000

CelebA (and) Tiny 0.933 0.965 0.905 0.936
CelebA (and) SVHN 0.154 0.930 0.151 0.949
CelebA (and) CIFAR100 0.946 0.967 0.919 0.941
CelebA (and) CIFAR10 0.944 0.965 0.915 0.935
Tiny (and) CelebA 0.640 0.646 0.812 0.812
Tiny (and) SVHN 0.036 0.951 0.164 0.907
Tiny (and) CIFAR100 0.686 0.776 0.796 0.822
Tiny (and) CIFAR10 0.691 0.767 0.802 0.825
SVHN (and) CelebA 0.984 0.984 0.995 0.995
SVHN (and) Tiny 0.971 0.971 0.987 0.987
SVHN (and) CIFAR100 0.970 0.970 0.987 0.987
SVHN (and) CIFAR10 0.970 0.970 0.986 0.986
CIFAR100 (and) CelebA 0.225 0.646 0.378 0.635
CIFAR100 (and) Tiny 0.392 0.453 0.485 0.493
CIFAR100 (and) SVHN 0.017 0.941 0.076 0.930
CIFAR100 (and) CIFAR10 0.402 0.502 0.492 0.502
CIFAR10 (and) CelebA 0.258 0.733 0.413 0.653
CIFAR10 (and) Tiny 0.445 0.555 0.543 0.548
CIFAR10 (and) SVHN 0.017 0.951 0.069 0.926
CIFAR10 (and) CIFAR100 0.424 0.610 0.518 0.561

Table 6: Ablation study for the dual thresholding method on ROC-AUC (higher is better).

Method FMNIST (vs) MNIST MNIST (vs) FMNIST CIFAR10 (vs) SVHN SVHN (vs) CIFAR10

LIDθ(x0) 0.947 0.002 0.949 0.009
∥ ∂
∂x

log pθ(x0)∥2 + log pθ(x) 0.509 0.983 0.716 0.962
LIDθ(x0) + log pθ(x) (Ours) 0.953 1.000 0.926 0.986
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E CRITICAL ANALYSIS OF OOD BASELINES

As we outlined in Section 5, when benchmarking against the complexity correction and likelihood
ratio methods, we observed notable underperformance in non-pathological directions. Both methods
aim to correct inflated likelihoods encountered in pathological OOD scenarios by assigning a score
to each datapoint which is obtained by adding a complexity term to the likelihood (Serrà et al., 2020),
or subtracting a reference likelihood obtained from a model trained on augmented data (Ren et al.,
2019). This score then becomes the foundation for their OOD detection through single thresholding.
However, as we will demonstrate in this section, these techniques often necessitate an artificial
hyperparameter setup to combine these metrics together, making it less than ideal.

Formally, both of these studies aim to find a score S(x0) to correct the inflated likelihood term
log pθ(x0), by adding a metric to m(x0) as follows:

S(x0) := log pθ(x0) + λ ·m(x0), (12)

In Serrà et al. (2020), λ = 1 and m(x0) is the bit count derived by compressing x0 using three
distinct image compression algorithms and selecting the least bit count from the trio (an ensemble
approach as they describe). The algorithms include standard cv2, PNG, JPEG2000, and FLIF
(Sneyers & Wuille, 2016). Moreover, we did not find any official implementation for the complexity
correction method; however, since their algorithm was fairly straightforward, we re-implemented
it according to their paper and it is readily reproducible in our experiments. On the other hand,
Ren et al. (2019) propose training a reference likelihood model with the same architecture as the
original model; however, on perturbed data. We employ another RQ-NSF, samples of which are
depicted in the bottom row of Figure 17. Ren et al. (2019) claim that their reference model only
learns background statistics that are unimportant to the semantics we care for in OOD detection;
hence, subtracting the reference likelihood m(x0) can effectively correct for these confounding
statistics that potentially inflate our original likelihoods. That being said, they employ a complicated
hyperparameter tuning process on λ to ensure best model performance.

As illustrated in Figure 18, we sweep values of λ and compare our method against all these mod-
els. While certain λ values enhance OOD detection in pathological scenarios, they falter in non-
pathological contexts. In contrast, our dual thresholding remains robust irrespective of the scenario’s
nature. This observation underscores a significant gap in the OOD detection literature. While sev-
eral methods address the OOD detection pathologies, many are overly specialized, performing well
predominantly in the pathological direction. We note that the results we report in Table 1 correspond
to the best values of λ.
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(a) Samples from RQ-NSF model
trained on CIFAR10.

(b) Samples from RQ-NSF model
trained on SVHN.

(c) Samples from RQ-NSF model
trained on FMNIST.

(d) Samples from RQ-NSF model
trained on MNIST.

(e) Samples from background
model trained on CIFAR10.

(f) Samples from background
model trained on SVHN.

(g) Samples from background
model trained on FMNIST.

(h) Samples from background
model trained on MNIST.

Figure 17: Samples generated from normal and background models that are trained using the RQ-NSF hy-
perparameters provided in Table 3. The background models are trained on perturbed data, using the scheme
presented by Ren et al. (2019).

(a) Performance comparison of different methods on two pathologi-
cal and non-pathological OOD detection tasks obtained from the FM-
NIST and MNIST pair.

(b) Performance comparison of different methods on two pathologi-
cal and non-pathological OOD detection tasks obtained from the CI-
FAR10 and SVHN pair.

Figure 18: Comparing our dual thresholding approach of combining metrics to all the different single score
thresholding baselines by sweeping over different values of λ in Equation 12. The tasks that are considered
are either: (i) pathological such as “FMNIST (vs) MNIST” (left) or “CIFAR10 (vs) SVHN” (right); or (ii)
non-pathological such as “MNIST (vs) FMNIST” (left) or “SVHN (vs) CIFAR10” (right).

26


	Introduction
	Background
	Related Work
	Method
	Probability Mass, Sharp Likelihood Peaks, and Intrinsic Dimension
	Putting it All Together: Dual Threshold OOD Detection

	Experiments
	Conclusions, Limitations, and Future Work
	Diagnosing Pathologies in Flow Models
	Computational Intractability of Probability Masses
	On the Quality of the Linear Approximation
	Empirical Results
	Theoretical Bounds

	Experimental Details and Additional Experiments
	Details of LID Estimation
	Hyperparameter Setting for Normalizing Flows
	Intrinsic Dimension vs Likelihood Scatterplots
	Additional AUC Results
	Extra Ablations

	Critical Analysis of OOD Baselines

