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ABSTRACT

Semi-supervised community detection methods are widely used for identifying
specific communities due to the label scarcity. Existing semi-supervised com-
munity detection methods typically involve two learning stages i.e., learning in
both initial identification and subsequent adjustment, which often starts from an
unreasonable community core candidate. Moreover, these methods encounter
scalability issues because they depend on reinforcement learning and generative
adversarial networks, leading to higher computational costs and restricting the
selection of candidates. To address these limitations, we draw a parallel between
crystallization kinetics and community detection to integrate the spontaneity of the
annealing process into community detection. Specifically, we liken community
detection to identifying a crystal subgrain (core) that expands into a complete
grain (community) through a process similar to annealing. Based on this finding,
we propose CLique ANNealing (CLANN), which applies kinetics concepts to
community detection by integrating these principles into the optimization process
to strengthen the consistency of the community core. Subsequently, a learning-free
Transitive Annealer was employed to refine the first-stage candidates by merging
neighboring cliques and repositioning the community core, enabling a spontaneous
growth process that enhances scalability. Extensive experiments on diverse com-
munity detection datasets demonstrate that CLANN outperforms state-of-the-art
methods across multiple real-world datasets, showcasing its exceptional efficacy
and efficiency in community detection.

1 INTRODUCTION

Community detection aims to distinguish node groups with closer inner connections. (defined by
concrete contexts) (Jeong et al., 2021; Li et al., 2019; Zhang et al., 2018; Abbe, 2023) Unsupervised
methods eliminate the need for costly data labeling and are widely utilized due to the label scarcity in
community detection (Holland et al., 1983; Amini et al., 2013; de Lange et al., 2014). While these
methods have demonstrated strong performance and practicality, they often struggle to accurately
identify specific communities with distinct semantic meanings. For instance, in a social network with
100 user communities, only 10 of which are fraudulent, unsupervised methods might identify all 100
communities but typically struggle to differentiate which ones are fraudulent. This is mainly because
they are typically designed based on general structural information rather than the specific inherent
features of the targeted communities.

To improve the detection of communities with semantic meaning, some semi-supervised methods
have been introduced that primarily utilize a two-stage approach (Wu et al., 2022; Bakshi et al., 2018).
They identify potential community centers first, then expand these centers into final communities.
Although semi-supervised methods are intuitive, they still have the following limitations:

Community Core Inconsistency: Prevalent growth-based methods scan all vertices (or their k-ego
networks) and calculate embedding space distances to the labeled communities to select optimal
community cores. However, a single node feature is insufficient to represent structural information.
Moreover, the k-hop ego network frequently includes vertices positioned outside of any community.
Instead, as shown in App. A, clique (where all nodes are connected and cannot be expanded by adding
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another vertex) more accurately and essentially reflects cohesiveness in a given structure (Gupta
& Singh, 2023; Maity & Rath, 2014; Mimaroglu & Yagci, 2012; Jia et al., 2019). Consequently,
using cliques as starting points is more effective than traversing all nodes to identify community
centers (Shen et al., 2009; Lu et al., 2010; Svendsen et al., 2015).

(b) Learning-free Grow

(a) Spontaneous Anneal

(c) Analogy

≈

Sub-grain Sub-graph
(Clique)

Crystallized
Grain Community

≈

Merge

Figure 1: (a) Spontaneous annealing process where the
subgrains grow into the crystallized grain by merging
with other grains. (b) CLANN Schematic diagram. The
initial clique spontaneous grows into a community by
merging other cliques. (c) Analogy between community
detection and annealing process.

Inferior Growth Scalability: Besides, ex-
isting growth models often employ Rein-
forcement Learning (RL) modules to ex-
pand first-stage candidates using prede-
fined reward functions (Wu et al., 2022;
Zhang et al., 2020). However, these re-
ward functions are typically disconnected
from the design of the first stage, result-
ing in inefficient use of the initial informa-
tion. Moreover, when Generative Adver-
sarial Networks (GANs) are introduced to
generate more realistic reward signals, they
exacerbate scalability issues (Zhang et al.,
2017), limiting the number of community
core candidates and often leading to subop-
timal solutions.

To address the above challenge, we utilize the annealing process in crystallization kinetics to effec-
tively simulate the seed-growth mechanism, allowing subgrains to merge with others and grow into
fully crystallized grains, as illustrated in Fig. 1 (a). The annealing seeds are consistently subgrains,
not just any random region. This aligns with the concept that a community core is not a random node
or its K-ego network. Given that the entire crystallization process is spontaneous and follows physical
laws, we further proposed CLique ANNealing (CLANN), which consists of two main components:
the Nucleus Proposer and the Transitive Annealer. As illustrated in Fig. 1 (b), we first identify a
clique as community core and gradually merges neighbor cliques to form the final community. The
analogy between crystallization and community formation is illustrated in Fig. 1 (c).

Specifically, we first only optimize a single graph encoder to inherently analogize community
formation by integrating four crystallization principles (Stability, Cohesion, Growth, and Status) into
the optimization to mitigate Community Core Inconsistency. Instead of evaluating all individual
nodes, our Nucleus Proposer selects the most prospective cliques, thus speeding up the selection
process. To address the Inferior Growth Scalability, we further propose a learning-free Transitive
Annealer that directly leverages the module trained in the Nucleus Proposer to guide the annealing
of candidates into communities. This method circumvents the convergence challenges and high
computational costs typically associated with reinforcement learning or GANs. Given the clique’s
high homophily scores (as shown in App. A), we choose the clique as the core motif in this work;
other motifs may also be effective depending on the dataset. In summary, our contributions can be
summarized as follows:

• We introduce a novel model, CLANN, that leverages the annealing process to detect commu-
nities providing a new physics-grounded perspective for community detection by studying
the subgrain growth process.

• We introduce two key components in CLANN: Nucleus Proposer, which uses crystallization
principles and cliques to learn graph representations and identify community cores, and
Transitive Annealer, which ensures spontaneous growth guided by the Nucleus Proposer.

• Empirical evaluations on real-world datasets consistently show that CLANN outperforms
state-of-the-art methods by a significant margin, demonstrating its effectiveness and effi-
ciency across diverse network analysis scenarios.

2 RELATED WORK

Given the limited availability of labeled data, we concentrate on unsupervised and semi-supervised
approaches for overlapping community detection, while also providing an introduction to clique-based
methods.
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2.1 OVERLAPPING COMMUNITY DETECTION WITH UN/SEMI-SUPERVISED METHODS

Unsupervised Methods. Unsupervised methods are particularly valuable for exploratory data
analysis, especially in scenarios where no supervision information is accessible. NOCD (Shchur
& Günnemann, 2019) uses a generative model for inferring community affiliations. Community-
GAN (Jia et al., 2019) applies GANs to generate motifs and optimize vertex embeddings, representing
membership strength. ACNE (Chen et al., 2021) employs a perception-based walking strategy and
a discriminator to jointly map node and community embeddings. DFuzzy (Bhatia & Rani, 2018)
uses a stacked sparse autoencoder to evolve overlapping and disjoint communities via modularity.
BigClam (Yang & Leskovec, 2013) identifies densely connected overlaps to improve accuracy and
scalability. ComE (Cavallari et al., 2017) enhances detection through a synergistic loop between
community and node embeddings. vGraph (Sun et al., 2019) utilizes a mixture model to represent
nodes as combinations of communities.

Semi-supervised Methods. In contrast to unsupervised learning methods, which impose strict
limitations on pinpointing specific types of communities, semi-supervised methods can effectively
utilize labels from previous community members making them more practical in identifying specific
community types. BigClam-A (Bakshi et al., 2018) stands for BigClam-Assisted with graphs modified
by adding extra edges between nodes in the same community. SEAL (Zhang et al., 2020) generates
seed-aware communities using a Graph Pointer Network with incremental updates (iGPN). DGL-
FRM (Mehta et al., 2019) captures community membership strength and sparse node. LGVG (Sarkar
et al., 2020) is designed to learn multi-layered and gamma-distributed embeddings, allowing it to
detect communities at both fine-grained and coarse-grained levels. Bespoke (Bakshi et al., 2018)
leverages community membership information and node metadata to identify unique patterns in
communities beyond traditional structures. CLARE (Wu et al., 2022) builds a locator to find the
community seeds and uses a rewriter to modify the candidates. Although the aforementioned
semi-supervised methods perform well, many of them focus heavily on architectural design while
underutilizing the inherent graph structures. On the contrary, CLANN can fully exploit the insights
of community positioning and formation mechanisms from inherent motifs.

2.2 CLIQUE-BASED METHODS

A clique is a complete subgraph, naturally capturing densely connected subgraphs. Clique-based
methods are classified into K-clique-based and maximum-clique-based. K-clique methods (e.g.,
CPM (Palla et al., 2005), SCP (Kumpula et al., 2008), ECPM (Maity & Rath, 2014), WCPM (Zhang
et al., 2017), LOC (Ma & Fan, 2019)) find and merge adjacent K-cliques into communities, while
maximum-clique methods (e.g., EA/G (Zhang et al., 2005), MaxCliqueDyn (Konc & Janezic, 2007),
GVG-Mine (Lee et al., 2012), ACENV (Cheng et al., 2018), PECO (Svendsen et al., 2015)) select
cliques with the largest number of nodes as initial communities. Though these approaches utilize
substructures, they often struggle to represent lower-dimensional embeddings while preserving
structural complexity (Fan et al., 2020; Bo et al., 2020; Luo et al., 2020; Cheng et al., 2021). In
contrast, CLANN generates insightful embeddings while maintaining formation mechanisms.

3 PROBLEM DEFINITION AND PIPELINE

Problem Definition: Give a graph G = (V, E ,X ), where the V represent the node set, E represents
the edge set and X represents the node feature. The expert-labeled training communities are denoted
as C = {C1, ..., CN} where N is the number of expert-labeled communities. The objective in semi-
supervised community detection, is formulated as given a small set of expert-labeled communities
Ctrain = {C1, ..., Cm} as training data, where m (m ≪ N ), to predict N -m communities Cpred

from G. The predicted communities should be consistent with all rest labeled communities (test
communities), Ctest = C \ Ctrain.

Pipeline: As shown in Fig. 2, Nucleus Proposer first identifies cliques with embeddings similar to
the training community embeddings as potential core candidates (represented by dashed circles).
To get the final integral structure, the Transitive Annealer will expand candidates into communities.
Considering community core inherently contains less information than an integral community,
Nucleus Propose might inevitably locate the sub-optimal start point. The Nucleus Transition module
is thus proposed to dynamically relocate the initial candidates to other better cliques.

3
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Figure 2: The pipeline of proposed model. Nodes with orange borders and identical labels belong to
the same community. Dashed circles represent the currently predicted centers, while nodes filled in
orange are those predicted to be within communities. It is worth mentioning overlapping communities
are not shown for clarity, CLANN can also accommodate overlapping communities because core
growth is driven solely by energy requirements, operating independently without considering previous
community assignments.

4 NUCLEUS PROPOSER

The Nucleus Proposer aims to integrate the dynamics of community formation into an advanced
graph encoder with crystallization kinetics. After training, it selects prospective cliques as community
centers for further growth.

4.1 LINKING CRYSTALLIZATION TO COMMUNITY DETECTION

Many physics methods (Pang & Li, 2013; Greydanus et al., 2019; Cranmer et al., 2020) minimize a
global energy function to penalize node assignments that do not correspond to natural communities.
Since crystallization kinetics inherently reflect growth mechanisms where a community core can
spontaneously expand into a full community without the need for learning, we apply these principles
to simulate community growth and develop a more effective graph encoder, rather than relying
on previous energy function. These principles can be clearly illustrated through four specific
characteristics of communities, see more details in App. B.

Community Stability. Community stability correlates with size and outliers. Because members
heighten interaction complexity and increase the potential for conflict. Outliers who deviate signifi-
cantly from the norm can further disrupt stable dynamics. This is analogous to larger crystals with
defects having higher stored energy, depicted in Fig. 3(a).

Higher Cohesion. Higher member similarity promises better community cohesion. Similar traits
among members lead to harmonious interactions and stronger unity, akin to subgrains with the same
crystallographic orientations merging in crystallization, as illustrated in Fig. 3(b).

Spontaneous Growth. Community growth consumes resources, as expanding a community involves
resource expenditure to integrate infrastructure and complexity management. In crystallization,
subgrains must overcome an Interface Energy Barrier to merge, with the total energy surpassing that
of the larger, merged grain, as shown in Fig. 3(c).

Equilibrium Status. Larger and outlier-rich communities risk overgrowth and instability. Conversely,
smaller and more cohesive communities have great potential for further growth (undergrown). This
mirrors how a crystal’s size and defect levels decide its status in Fig. 3(d).

4.2 IMPLEMENTATION OF CRYSTALLIZATION KINETICS

Table 1: Sample notations.
Notation Definition
a1, a2, a3 Labeled community

b, c 1st/2nd largest clique in a1
◦̄ Replace m% nodes in ◦
◦̇ Remove m% nodes from ◦
◦̆ one-hop neighbors of ◦

To implement the crystallization kinetics, we map each sub-
graph g into a d-dimensional embedding h(g) and ensure these
principles can be reflected appropriately in the embedding space.
Specifically, we construct positive and negative pairs with the
subgraphs listed in Tab. 1 to optimize different loss functions.
Positive pairs conform to these principles, while negative pairs
violate them. The value of m is given in App. H. We devise
four novel loss functions to imitate the dynamics of community
formation with crystallization kinetics.

4
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Figure 3: The connection between crystallization to community detection and the associated loss
functions. We distill these principles into four core requisites: energy, consistency, interface, and
integrity. S.E. and I.E., stand for stored and interface energy, respectively.

Energy-Based Loss. To capture the relationship between community stability and energy, we use the
following loss function, which leverages the positive correlation between subgraph size and stored
energy:

lossESize =

Pos−S∑
(i,j)

max{0, ||i|| − ||j||}+
Neg−S∑
(i,j)

max{0, α− (||i|| − ||j||)}, (1)

where α is the loss margin, and || · || denotes the norm of the subgraph embedding h, which we
utilize as an indicator of the graph’s stored energy. We further define the positive and negative pair
Pos-S = {(b, a1), (c, a1), (ȧ1, a1)}, Neg-S = {(a1 + a2, a1), (a2 + a3, a2), (a3 + a1, a3)}, where
‘+’ indicates combination. For each pair in Pos-S, the stored energy of the first subgraph is less than
the second’s, reflecting smaller subgraph sizes. Conversely, in Neg-S, the first subgraph, representing
a merged subgraph, exhibits greater stored energy than the second subgraph due to its bigger size.

As the high defect concentration typically reflect the high stored energy, we further define the second
energy-based loss function to describe the relationship between energy and misalignment:

lossEDefc =

Pos−D∑
(i,j)

max{0, ||i|| − ||j||}, (2)

where Pos-D = {(a1, ā1), (b, b̄), (c, c̄)}. For each pair in Pos-D, the latter is distorted from the first
subgraph (inside nodes are replaced with outside connected nodes). The second subgraph’s stored
energy should thus be larger than the first one.

Consistency-Based Loss. To ensure consistency, crystal grains with matching crystallographic
orientation are expected to merge more easily into a unified grain. Similarly, major cliques within a
community should follow the consistency requirement. Therefore, we require the aggregate of these
clique embeddings qi to closely approximate the community embedding:

lossC = d(h(a1),

λclq∑
i

h(qi)), (3)

where d(., .) is a distance function defined in App. D, λclq represents how many biggest cliques in a1
are used to represent a1. λclq ≤ |Qa1

|, where Qa1
is the set of all cliques in a1. For instance, if we

set λclq to 2, the loss lossC will be formulated as d(h(a1), h(b) + h(c)).

Interface-Based Loss. The energy barrier determines whether a subgrain can continue to grow.
In community detection, we use a similar concept to decide if subgraphs can expand into a larger
community. Specifically, the total stored energy of the subgraphs, combined with the interface energy,
must exceed the stored energy of the resulting larger community (positive pairs). Conversely, when
insufficient energy is available, a well-structured community cannot expand further (negative pairs).
The interface-based loss function can thus be formed as:

lossI =

Pos−I∑
(i,j)

max{0, ||i||−||j||−
∑
v∈j̆

Intf-E(v)}+
Neg−I∑
(i,j)

max{0, ||i||−||j||+
∑
v∈ĭ

Intf-E(v)}, (4)

where Pos-I = {(a1, b), (a1, c)}, Neg-I = {(a1, a1 + ă1)}, ∗̆ stands for the one-hop neighbors.
Intf-E(·) represents the interface energy between the neighbor node and the corresponding subgraph,
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and is defined as follows:
Intf-E(v) = Softplus(WI ∗ fv + bI), (5)

where WI and bI represent the weights and bias respectively, fv = [fa
v ||fe

v,g], f
a
v = [fo

v , deg(v),
max(DN(v)), min(DN(v)), avg(DN(v)), std(DN(v))] is the standard augment feature of node
v, fo

v is the raw features of node v with default value of 1, following the previous studies (Wu et al.,
2022; Cai & Wang, 2018; Zhang et al., 2020). deg(v) is the degree of node v and DN(v) represents
the degree set of the neighbor nodes of v.

For the corresponding subgraph g, the external feature fe
v,g is represented as [l-num, graph-size,

mis-num], where l-num is the edge number between node v and g. graph-size is the node number
of g. It is worth noting that an ideal community is distinguished by high exclusivity and strong
internal connections, forming a clique. Accordingly, mis-num is defined as the number of nodes
that are not part of a clique.

Integrity-Based Loss. The size and defect concentration play a crucial role in determining its
growth status (overgrown, undergrown, or in equilibrium), which are essential for understanding how
communities evolve and merge. To effectively integrate these factors, we propose an integrity-based
loss function. The norm of the subgraph embedding represents its stored energy, while the normalized
vector signifies defect concentration. Each subgraph is assigned a triplet integrity score, with [1,0,0],
[0,1,0], and [0,0,1] representing the undergrown, equilibrium, and overgrown states, respectively. For
subgraph g, its integrity score ŷg is defined as the following:

pkg = σ(W k
p ∗ [h(g)||h̄(g)] + bkp), k ∈ {1, 2, 3},

ŷg = [ŷ1g , ŷ
2
g , ŷ

3
g ] = Softmax(p1g, p

2
g, p

3
g),

(6)

where σ stands for activation function, || stands for concatenation, h(∗) and h̄(∗) are the graph
embedding and normalized embedding for the given subgraph. W k

p and bkp are the weights and bias
of the corresponding network. The integrity-based loss function can thus be formed as:

lossG = −1

3

{S1,S2,S3}∑
S

∑
g∈S

3∑
k=1

(ykg log(ŷkg ) + (1− ykg )log(1− ŷkg )), (7)

where ykg is the k-th dimension of g’s label, ŷkg is the corresponding prediction of ykg . S1 = {b, c, ȧ1}
stands for those subgraphs can still growth. S2 = {a1, a2, a3} stands for stable subgraphs, and S3 =
{a1 + ă1, a1 + a2, a2 + a3, a3 + a1} stands for overgrown subgraphs.

4.3 GRAPH ENCODER

The original node representation fa
v of node v is transformed through a fully-connected layer into

z0(v). Subsequently, the encoder disseminates and amalgamates the information through a K-layer
GCN:

zk(v) = GNN(zk−1(v)), z0(v) = σ(W ffa
v + bf ),

z(v) = σ(W a ∗ ||Kk=0z
k(v) + ba),

(8)

where zk(v) stands for the embedding of node v after k GNN layers, z(v) is the final node embedding
of node v by concatenating all previous layer embeddings and transforming it with a linear layer. We
then use sum-pooling z(g) to represent the embedding for the given subgraph g.

In the preferential attachment model, new nodes tend to connect to high-degree nodes, and smaller
cliques cluster around larger ones, forming a hierarchical structure. Hyperbolic geometry is effective
for preserving tree-like structures between cliques and communities, making it effective for commu-
nity detection (Gerald et al., 2023; Chami et al., 2020; Cao et al., 2022). We thus transform Euclidean
graph embedding z(g) to hyperbolic embedding h(g), see App. D for more details. The overall loss
function L is formulated as follows:

L = γElossE + γC lossC + γI lossI (9)

where γ{E,C,I} are the coefficients that regulate the balance between the contributions of different
loss functions. lossE is the summation of lossESize and lossEDefc. After the initial training, we employ
an independent fully connected layer to minimize lossG for status checking. Finally, cliques with

6
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the shortest embedding distance to the training communities are chosen as the first-stage candidates.
The algorithm of the Nucleus Proposer is provided in Algo. 1. (For large graphs, finding all cliques
is extremely time-consuming. Therefore, we implement an preliminary selection mechanism prior
Nucleus Propose, see App. F for more details.)

5 TRANSITIVE ANNEALER

To develop this core candidate selected by Nucleus Proposer into the final communities, we introduce
a learning-free propagation method called Transitive Annelar. The pipeline of the Transitive Annealer
and complexity analysis can be found in Algo. 2 and App. C. The meanings of the notations can be
found in Tab. 2. In each growth iteration, we tackle three key points to ensure the candidates develop
into reasonable structures.

5.1 POTENTIAL FOR FURTHER GROWTH OF THE CURRENT STATE

The integrity score and interface energy barrier are crucial for ensuring a community remains
stable and suitable for further expansion. Therefore, we use integrity checks and interface energy
assessments to evaluate community stability and determine the conditions for merging new subgraphs.

Table 2: Element notations. N, S, E, I stand for
node, subgraph, energy, and integrity score.

Notation Type/Definition
V e [N] Sm−1’s inner boundary nodes
Ce

i [S] Merge all cliques contain vei as Ce
i

Sm−1/m [S] Current / next step state
Sc
i [S] Ce

i + Sm−1, Candidate state
Intf-E(∗) [E] Interface energy btw ∗ and Sm−1

||*|| [E] Stored energy of a subgraph
ŷj∗ [I] j-th integrity scores of a subgraph

Integrity Check. Annealer expands candidates to
communities iteratively. For the m-th iteration, we
need to check the current state Sm−1’s integrity
scores by Eq. 6. If ŷ1Sm−1

< max(ŷ1,2,3Sm−1
), we deem

the Sm−1 has already reached the stable or over-
grown state, we thus stop the growth.

Interface Energy Check. As mentioned in Sec. 4.2,
to surpass the interface barrier, subgraphs need to
consume extra energy. For an extendable node vei ∈
V e, we merge all cliques containing vei as Ce

i , the
corresponding expanded candidate Sc

i is constructed by combining Ce
i with Sm−1. Due to the

interface energy barrier, the stored energy summation of the current state Sm−1, merged clique Ce
i ,

and their interface energy Intf-E(vei ) (defined in Eq. 5) should be larger than the stored energy of the
expanded candidate. We therefore require the following interface energy constraint:

||Ce
i ||+ ||Sm−1||+ |Ce

i | ∗ Intf-E(vei ) ≥ ||Sc
i ||, (10)

where |Ce
i | is the number of nodes inside Ce

i , but outside Sm−1.

5.2 SELECTION OF CLIQUE FOR MERGING

To develop a more cohesive community with fewer outliers, we select the candidate with the highest
stored energy as the next state Sm. The annealing process continues until it either reaches the
overgrown state or the maximum step count is reached:

||Sc
k|| = arg max

i∈|V e|
(||Sc

i ||); Sm = Sc
k. (11)

However, merely selecting the merged clique with the highest stored energy may lead to a local
optimum. To address this issue, we employ the simulated annealing algorithm, which accepts sub-
optimal solutions with certain probabilities. Specifically, the weighting probabilities are defined
based on the energy differences between the potential expanded states and the initial states:

{P1, . . . , P|V e|} = Softmax(D1, . . . , D|V e|),

Di = ||Sc
i || − ||Sm−1||.

(12)

With a pre-defined temperature probability function Ptemp(|Sc
i |), where |Sc

i | is the node number of
Sc
i . The candidate is selected if its weight score exceeds Ptemp(|Sc

i |) (the function will be illustrated
in App. H). Accordingly, the updated state Sm is determined as follows:

Ŝc
i = {Sc

i |Pi > Ptemp(|Sc
i |)}, (i ∈ {1, . . . , |V e|}),

Sm =
⋃
{Sc

i |1(Ce
i , Sm−1, S

c
i ) = 1}, Sc

i ∈ Ŝc
i ,

(13)

where the indicator function 1(Ce
i , Sm−1, S

c
i ) = 1, if the requirement in Eq.10 is satisfied.
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5.3 SHIFTING OF COMMUNITY CORE

The Nucleus Proposer utilizes cliques for matching, potentially resulting in sub-optimal community
center selections. To dynamically identify prospective cliques during growth, we determine if a
merged clique Ce

i could serve as a superior community core by calculating its integrity scores using
Eq. 6. If the integrity score ŷ2Ce

i
of Ce

i surpasses that of the previous state ŷ2Sm−1
and all other

extendable nodes, the center will be shifted to Ce
i and a new annealing cycle will be initiated, as

illustrated in Fig. 2, where the center of community 1 has been adjusted.

6 EXPERIMENT AND ANALYSIS

Dataset. Our datasets include Amazon (Product), DBLP (Citation), and LiveJournal (Social Network),
each containing a graph and 5,000 labeled communities. We also compare with classic unsupervised
methods in Table 13 and 15, and test model under Non-Clique (Bipartite) setting in Table 16. We
used two experimental settings:

Setting 1 (from CLARE): We strictly replicated from Wu et al. (2022); Zhang et al. (2020) to ensure
a fair comparison. In this setting, communities above the 90-th percentile in size were excluded, and
1,000 communities were then sampled. Additionally, 5,000 edges were added between two graphs
from different datasets to create a hybrid graph (e.g., A/D). The A/D task was to identify communities
only from A (No D community should be found) within the hybrid graph.

Setting 2: Concerning about the ability of finding communities under different sizes, in this setting,
no community exclusions, link insertions, or hybrid networks. This setting can better study the impact
of large community sizes. We sorted communities by size and conducted 15 experiments to evaluate
the model’s performance across different community sizes. The split setting: training (9%), validation
(1%), and testing sets (90%). Detailed information about the datasets can be found in App. E.

Baselines & Metrics. We compare CLANN with the following models: BigClam (Unsupervised)
Yang & Leskovec (2013) and its assisted version BigClam-A, ComE (Unsupervised) Cavallari et al.
(2017), CommunityGAN Jia et al. (2019), vGraph (Unsupervised) Sun et al. (2019), Bespoke Bakshi
et al. (2018), SEAL Zhang et al. (2020), and CLARE Wu et al. (2022). NP stands for Nucleus
Proposer (directly using clique candidates as predictions). Top 4 models are selected for adaptability
analysis. We follow the evaluation metrics (bi-matching F1, Jaccard, and ONMI) in Bakshi et al.
(2018); Chakraborty et al. (2017); Jia et al. (2019), each metric’s definition is provided in the App. G.

6.1 OVERALL PERFORMANCE

Table 3: F1 Scores (Jacc., OMNI in Table 9). A/D:
find A’s communities in A+D. Bold/Underline:
1st/2nd best scores. N/A: not converge in 2 days.
We conduct 5 experiments for NP and CLANN,
the average std is less than 0.0323.

Model A D L A/D D/A D/L L/D
BigClam .6885 .3217 .3917 .1759 .2363 .0909 .2183

BigClam-A .6562 .3242 .3934 .1745 .2346 .0859 .2139
ComE .6569 N/A N/A N/A N/A N/A N/A

Com-GAN .6701 .3541 .4067 .0204 .0764 .0251 .0142
vGraph .6895 .1134 .0429 .0769 .1002 .0131 .0206
Bespoke .5193 .2956 .1706 .0641 .2464 .0817 .1893
SEAL .7252 .2914 .4638 .2733 .1317 .1906 .2291

CLARE .7730 .3835 .4950 .3988 .2901 .2480 .2894
NP .7809 .3979 .3655 .4586 .3850 .3334 .2435

CLANN .9055 .4701 .5144 .6578 .4355 .3373 .3932

We compared CLANN with different baseline
models in Table 3. CLANN significantly out-
performs other models in various metrics. On
single datasets, CLANN improves the F1 score
by an average of 14.54% over the top SOTA
models; for hybrid datasets, the increase aver-
ages 46.74%, with scores nearly doubling those
of the closest competitors in some cases. Prob-
abilistic methods struggle on hybrid datasets as
they rely on statistical distributions that align
well within single datasets but fail to capture the
nuances between two combined datasets.

Bespoke and SEAL rely on the initial core’s
quality, while CLARE lacks accuracy as many
community cores don’t fit the K-hop ego net-
work structure. Additionally, most nodes lie
outside labeled communities, adding noise to later stages. However, as Fig. 7 shows, almost all
communities comprise internal cliques, enhancing the effectiveness of our Nucleus Proposer. Further-
more, most methods limit candidate numbers due to computational constraints, leading to sub-optimal
centers. The Transitive Annealer, with its lower computational costs, can handle more candidates,
reducing the likelihood of forming sub-optimal communities in the second stage.
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6.2 ABLATION STUDY

Table 4: F1 scores (Jaccard, OMNI scores are in Tab. 10)
of different schemes. Engy., Intf., Cons., and Intg. stand
for energy, interface, consistency, and integrity losses. (+:
add new scheme). NP: Nucleus Proposer with hyperbolic
geometry. +Infc: Filter out candidates by interface energy.
+SA: Simulated Anneal. +C-E: Clique-wise operation.
+TA: Transitive Annealer.

Engy. +Intf. +Cons. +Intg. NP +Infc +SA +C-E +TA
A .7515 .7582 .7795 .7796 .7809 .8023 .8241 .8654 .9055
D .3370 .3556 .3590 .3613 .3979 .4287 .4399 .4415 .4701
L .3266 .3267 .3310 .3657 .3655 .3920 .4184 .4713 .5144

A/D .3841 .3890 .4099 .4118 .4586 .4834 .5083 .5820 .6578
D/A .2497 .2671 .2562 .2689 .3850 .3921 .4020 .4222 .4355
D/L .2312 .2433 .2497 .2492 .3334 .3332 .3316 .3300 .3373
L/D .1923 .2019 .2057 .2056 .2435 .2668 .2876 .3311 .3932

Effectiveness of Crystallization Kinet-
ics. We analyze the contribution of var-
ious loss functions in crystallization ki-
netics and the results are shown in Ta-
ble 4. Engy. acts as a baseline, fo-
cusing on the graph’s energy but ne-
glecting interactions with neighboring
nodes and inner component relation-
ships. Intf. considers interactions be-
tween the graph and neighboring nodes,
which is crucial for community integra-
tion and exclusion. Cons. aims to en-
sure embedding robustness by requiring
the sum of the embeddings of a com-
munity’s two largest cliques close to the
community embedding. Intg. evaluates community status, although achieving minimal performance
boosts, it is essential for guiding the Transitive Annealer, informing about the potential oversizing or
undersizing of communities.

Effectiveness of Transitive Annealer. The Transitive Annealer modules significantly enhance
performance across various aspects, as shown in Table 4: +Infc excludes candidate cliques that
violate the interface energy criteria, effectively pruning irrelevant cliques to boost efficiency and
community detection quality. +SA utilizes a simulated annealing algorithm to merge neighboring
candidates, refining the candidate set to achieve a more optimal community structure. +C-E shows
performance gains by leveraging the full interconnectivity of cliques. +TA indicates that the initial
candidates may not always be the best choices, as it dynamically identifies better community centers.

6.3 ADAPTABILITY EVALUATION

Table 5: Adaptability comparison on Amazon dataset
with different community sizes and numbers.

Metric C-GAN Bespoke SEAL CLARE NP CLANN

A
-1

k F1 .3446 .9644 .8331 .9086 .8339 .9905
Jacc. .2097 .9463 .7472 .8483 .7927 .9905

ONMI .0000 .9411 .7467 .8676 .7426 .9905

A
-2

k F1 .4160 .9163 .7026 .9140 .7508 .9601
Jacc. .3103 .8879 .5915 .8661 .6803 .9452

ONMI .1947 .8936 .6099 .8787 .6569 .9490

A
-3

k F1 .5003 .8794 .4414 .8853 .6783 .9452
Jacc. .4023 .8328 .3490 .8213 .5848 .9203

ONMI .3386 .8463 .3151 .8281 .5707 .9306

A
-4

k F1 .5551 .8199 .3866 .8583 .6214 .9177
Jacc. .4491 .7607 .2976 .7841 .5129 .8764

ONMI .4150 .7714 .2706 .7895 .4354 .8957

A
-5

k F1 .6602 .7298 .2381 .6927 .5223 .8084
Jacc. .5635 .6575 .1623 .5897 .4241 .7428

ONMI .5694 .6432 .0700 .5725 .3529 .7418

Table 5 presents the adaptability compari-
son of CLANN across different community
sizes and numbers. The results demonstrate
superior performance of CLANN across all
datasets. As the community size increases, all
models’ performance tends to decrease. How-
ever, CLANN’s decrease is much less pro-
nounced than other models, suggesting better
adaptability to complex structures. The results
also apply to the other two datasets in Table 11
and 12. CLANN offers a more nuanced and ac-
curate representation of community structures,
which could better capture the intricacies of
community formation and evolution by bal-
ancing stored energy with interface energy.

6.4 EFFICIENCY EVALUATION

Table 6: NP: NP runtime, Clq: clique core
number, T/S-(avg): total/average annealing
runtime/step.

NP(s) # Clq T(s) T-avg(s) S S-avg
A 35.2 4,995 112.1 0.022 11267 2.26
D 78.5 16,990 291.3 0.017 17984 1.06
L 147.9 30,000 945.5 0.032 37574 1.25

A/D 38.1 29,040 717.0 0.025 42732 1.47
D/A 75.9 5,775 124.2 0.022 9037 1.56
D/L 109.8 30,000 453.5 0.015 20329 0.68
L/D 212.3 30,000 839.2 0.028 42082 1.40

As shown in Table 6, the total and average number of
steps taken to anneal candidates underlines the model’s
efficiency again. The annealing process is a fine-tuning
mechanism, making it more adaptable and versatile.
The fact that CLANN can efficiently anneal all candi-
dates, regardless of the quantity, indicates its superior
handling of candidate communities compared to mod-
els like CLARE and SEAL. These models often limit
the number of candidates, which might hinder their
ability to detect all possible communities accurately.
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Figure 4: Runtime analysis. Nodes with bigger sizes
stand for the best performance.

In addition, we compare the runtime with
different community sizes. As shown in
Fig. 4, CLANN achieves the best perfor-
mance with much greater efficiency. This
efficiency comes from three points: (1) Pre-
liminary Core Filter prevents unnecessary
clique searching; (2) Nucleus Proposer only
checks possible cliques rather than all nodes’
k-hop ego-networks; (3) Transitive Annealer
refine candidate structure on clique-wise op-
eration. Fig. 10 shows the runtime of each
module.

6.5 PARAMETER ANALYSIS

Engergy-Based Loss

Loss AmplificationLoss AmplificationLoss Amplification

Consistency-Based Loss Interface-Based Loss
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Figure 5: F1 scores of different loss weights.

As illustrated in Fig. 5, we conduct a de-
tailed loss weight analysis, where we first
normalized the three loss items to the same
magnitude. Then, for the target loss item,
we varied its weight γ{E,C,I} across a range
of values (0.01, 0.1, 1, 10, 100) to evaluate
its influence on the final results. The analy-
sis demonstrates that our model remains sta-
ble and robust across different loss weights.

6.6 CASE VISUALIZATION

We provide a detailed case analysis in Fig. 6. This analysis examines the annealing process across
different community sizes. For small-sized communities, we may not need the annealing process,
particularly when the community is a clique. In cases of larger community size, based on the
clique-wise operation, CLANN can merge two cliques in a single step, thus converge efficiently. For
large community, CLANN can also efficiently identify most of the core nodes, with errors typically
occurring at the periphery. These peripheral errors usually involve nodes with either a single link to
the main body or those that have multiple connections but do not truly belong to the core community.

Small Size
(1 Steps)

Large Size
(Over-Include)

Large Size
(Mis-Include)

Small Size 
(No Adjustment)

Middle Size
(3 Steps)

A
nn

ea
le

r

Figure 6: Case analysis on different community sizes. Our model takes only at most 3 steps to get the
final communities for cases.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel community detection method CLique ANNealing (CLANN) inspired
by the linking of the annealing process and community detection. Inconsistency in community cores
and poor scalability are key challenges in semi-supervised community detection. To address these
issues, CLANN introduces two main components: the Nucleus Proposer and the Transitive Annealer.
The Nucleus Proposer enhances consistency between core candidates and actual community cores
by incorporating crystallization kinetics into clique-based optimization. Meanwhile, the Transitive
Annealer employs a learning-free growth process to boost scalability. Comprehensive evaluations
highlight CLANN’s superior performance, while also shedding light on the underlying mechanisms.
Additionally, adaptability analysis underscores the model’s applicability to real-world scenarios.
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A CLIQUE-BASED MODULARITY AND LOSS IN COMMUNITY DETECTION

Community Structure: In all the datasets we used, the labeled communities inherently contain at
least one clique. This aligns with the natural formation of communities, where tightly-knit groups of
nodes (cliques) are common. Also, as shown in Fig. 7, all communities harbor at least one internal
clique. Using these motifs (cliques) as starting points is thus more effective than traversing all nodes
to locate suitable community centers Shen et al. (2009); Lu et al. (2010); Svendsen et al. (2015).

Besides, we design the homophily score in Fig. 8 to describe how central the nodes inside a community
are. The score is calculated by using the number of neighbor nodes in the same community divided
by the community size. We can see clique nodes have much higher homophily scores than those
outside cliques.
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Figure 7: Accumulative proportion to community’s max inner clique size.

Modularity Consideration: For the reason why cliques are used as the starting point, we can refer
to modularity, which is calculated as the summation of the term

(
ai,j − ki·kj

2m

)
× δ(i, j) over all

pairs of nodes i and j, where ai,j represents the actual connection between nodes i and j, ki and
kj are the degrees of nodes i and j, and m is the total number of edges in the graph. The δ(i, j)
function is 1 if nodes i and j are in the same community, and 0 otherwise. In a clique, every pair of
nodes is connected, making the term

(
ai,j − ki·kj

2m

)
positive for all node pairs within the clique. This

positive contribution is maximized when all nodes of the clique are treated as a single community,
and breaking a clique into smaller communities reduces the overall modularity because it decreases
the number of positive contributions in the summation.

Energy-Based Loss: To understand why the modularity of a clique with size k is always greater than
that of a sub-clique with size k − 1, consider the modularity formula in detail. When you remove
a node from a k-clique to form a (k − 1)-clique, you also remove all the edges connected to that
node. This reduces the number of positive terms in the modularity summation. Specifically, for
each node pair (i, j) within the original clique, the term

(
ai,j − ki·kj

2m

)
contributes positively to the

modularity when i and j are connected (which is always true in a clique). By removing a node from
the community, you reduce the number of such positive contributions, thereby lowering the overall
modularity. Therefore, the modularity of the original k-clique is always greater than that of any
(k − 1)-clique derived from it.

Interface-Based Loss: When expanding a community, the new additions must bring more benefit
than the loss incurred. Referring to the term

(
ai,j − ki·kj

2m

)
, the first term ai,j is positive if there is

an edge between nodes i and j, but the second term ki·kj

2m is always negative because it subtracts
from the overall modularity. This means that if the newly added node j has strong connections to the
existing community (resulting in more positive ai,j values), it can potentially overcome the negative
contribution from the ki·kj

2m term, leading to an overall positive gain in modularity. Conversely, if
most of the connections ai,j are zero, the gains from adding the node would not compensate for the
loss, aligning the energy-based crystallization principle with modularity.

Consistency-Based Loss: Consistency is a natural property of well-structured communities. Better
community structures tend to have tighter internal links, making it easier for a node’s information
to integrate into the community during GNN encoding. Particularly in cliques, all neighbors are
one-hop neighbors of each other, ensuring strong consistency.
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Figure 8: Homophily scores of community nodes inside (orange) and outside (blue) cliques.

Integrity-Based Loss: In practical scenarios, communities labeled by experts may not always align
with the criterion of maximum modularity. Therefore, we introduce an additional loss to incorporate
expert knowledge, recognizing that a community structure deemed appropriate by experts may not
always correspond to the highest modularity score.

B EXPLANATION OF CRYSTALLIZATION KINETICS PRINCIPLES

If we compare a network to a crystal lattice structure, nodes signify atoms, and edges depict atomic
bonds. Within an amorphous lattice structure, if we select and scrutinize a random area, we can
find defects and deformations in it. This scenario mirrors constructing a subgraph from randomly
chosen connected nodes, deemed a community. The so-called ‘defects’ or ‘deformations’ essentially
represent mis-included or mis-excluded nodes within the community.

In the process of crystallization, annealing is a heat treatment that mitigates dislocations, repositions
them into a configuration with lower energy, and promotes the formation of better grain boundaries.
According to Rios et al. (2005), this process practically eradicates all dislocations prompted by
deformation through the migration of grain boundaries. In the context of community detection, our
proposed CLANN model emulates this annealing process. ‘Defects’ and ‘deformations’ within the
network undergo ‘annealing’ to form well-structured communities by correctly including and exclud-
ing nodes. This process mirrors the organic adjustment of a crystal’s structure, where misalignments
are rectified, and a more coherent and unified formation emerges.

• Stored Energy is Determined by the Grain Size and Defect Concentration: In a crys-
talline structure, the material itself and those defects (such as dislocations, vacancies, and
grain boundaries) store a significant portion of the energy. This energy is termed ‘stored
energy’. The size of the crystal grain and the concentration of these defects, therefore,
largely influence the stored energy in the system. Also, the larger the grain, the higher the
probability of containing defects, which leads to an increase in stored energy.

• Crystallographic Directions Should be Consistent: A well-crystallized crystal signifies
that a material has a regular, repeating arrangement of atoms with minimal defects. As
shown in Fig. 3, one characteristic of such a material is the consistency in crystallographic
directions across grains, allowing for more uniform physical properties. On the other hand,
if two crystal subgrains share the same crystallographic direction, they are very likely to
form a more integrated grain. For instance, these consistent crystallographic directions can
influence how the crystal behaves under stress or how it conducts heat or electricity.

• Stored Energy and Boundary Interface Energy Barrier Decide the Crystal Growth:
Crystal growth depends on minimizing the material’s total energy, which comprises the
energy within the crystal itself and the energy at the interface or grain boundary. The driving
force for the growth of a crystal subgrain is the reduction of energy density among the whole
grain. If the energy barrier at the grain boundary is high, it might impede the grain’s growth,
even if there’s a significant reduction in the energy within the crystal itself. Therefore, both
the crystal’s energy and the energy at the interface play a crucial role in determining whether
the crystal will continue to grow.

• Stored Energy and Defect Concentration Decide the Integrity: For a selected area, if
the area is full of well-crystallized crystals, we will get a larger average grain size and
smaller defect concentration. Otherwise, there will be a smaller grain size and larger defect
concentration, as there are more grain boundaries in this area. The comparison is shown in
Fig. 3.
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C COMPLEXITY ANALYSIS

Let N represent the number of nodes and M the specified number of cores. The entire model consists
of three main components:

Preliminary Core Filter: This component identifies appropriate community center nodes using a
simple Multi-Layer Perceptron (MLP) model. The training data is constructed based on betweenness
centrality, but it is computed only on a few small sub-graphs, making the computation trivial and
negligible compared to other parts of the model. Calculating the scores for all nodes to determine
their suitability as community centers has a time complexity of N .

Nucleus Proposer: The primary time complexity of the Nucleus Proposer arises from clique
preparation. Since the Nucleus Proposer only prepares cliques for specific nodes selected by the Core
Filter, we thus only need to find the max cliques for these M selected nodes. For each node, we
need to find its neighbor nodes (O(N)) and check all edges among them (O(N2)). The worst-case
complexity is then O(M · (N +N2)), which simplifies to O(N2).

Transitive Annealer: As detailed in Algo. 2, each iteration of the Transitive Annealer involves 4
main steps (blue comments):

1. Check Expandability: Check the integrity score of the current state, thus O(1).
2. Collect Extendable Nodes: Check all extendable neighboring nodes, in a worst-case O(N).
3. Check Nucleus Transition: Check the transition condition, thus O(1).
4. Check Interface Requirement: Similar to Step 2, in a worst-case O(N).

If the maximum number of iterations is C, the total time complexity for Transitive Annealer is:
C(O(N) + O(N)) → O(N). The total time complexity of CLANN is thus O(N) + O(N) +
O(N2)→ O(N2).

For runtime and convergence analysis, as illustrated in Fig. 4 and 10, CLANN’s total runtime is
better than most compared methods. The convergence behavior of the Transitive Annealer is shown
in Table 6. In most cases, the Transitive Annealer converges within 3 steps. The case analysis in
the appended PDF shows CLANN’s behaviors under 5 settings with different community sizes, and
CLANN will converge in at most 3 steps for all of them, which further justifies CLANN’s scalability.

D PRELIMINARIES OF HYPERBOLIC GEOMETRY

Hyperbolic geometry encompasses several conformal models Cannon et al. (1997). Based on its
widespread use in deep learning and computer vision, we operate on the Poincaré ball. The Poincaré
ball is defined as (Dn

c , gD
n
c ), with manifold Dn

c = {x ∈ Rn : c||x|| < 1} and Riemannian metric:

gDc
x = (λc

x)
2gE =

2

1− c||x||2
In, (14)

where gE = In denotes the Euclidean metric tensor and c is a hyperparameter governing the curvature
and radius of the ball. Segmentation networks operate in Euclidean space and to be able to operate on
the Poincaré ball, a mapping from the Euclidean tangent space to the hyperbolic space is required.
The projection of a Euclidean vector x onto the Poincaré ball is given by the exponential map with
anchor v and the Möbius addition ⊕c :

expc
v(x) = v ⊕c (tanh(

√
c
λc
v||x||
2

)
x√
c||x||

),

v ⊕c w =
(1 + 2c⟨v, w⟩+ c||w||2)v + (1− c||v||2)w

1 + 2c⟨v, w⟩+ c2||v||2||w||2
.

(15)

In practice, v is commonly set to the origin, simplifying the exponential map to:

expc0(x) = tanh(
√
c|||x|)(x/(

√
c||x||)). (16)

Besides, vector addition is not well-defined in the hyperbolic space (adding two points in the Poincaré
ball might result in a point outside the ball). Instead, Möbius addition also provides an analog to
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Table 7: Dataset statistics of community number #Ĉ, vertex number #V , edge number #E,
max(average) community size CM/A, the logarithm of edge number/vertex number log(E/V ), and
coverage ratio Rc. A, D, and L stand for Amazon, DBLP, and LiveJournal, respectively. Additionally,
Est.α represents the estimated α value of degree power law fit.

#Ĉ #V #E CM/A log(E/V) Rc Est.α
A 1,000 6,926 17,893 30/9.4 1.37 0.812 12.91
D 1,000 37,020 149,501 16/8.4 2.01 0.221 2.86
L 1,000 69,860 911,179 30/13.0 3.71 0.169 3.21

A+D 2,000 43,946 172,394 30/8.9 1.97 0.128 2.95
D+A 2,000 43,946 172,394 30/8.9 1.97 0.186 2.95
D+L 2,000 106,880 1,070,680 30/10.7 3.32 0.077 3.30
L+D 2,000 106,880 1,070,680 30/10.7 3.32 0.111 3.30

Euclidean addition for hyperbolic space. Also, using hyperbolic embeddings, we should use the
hyperbolic distance with the explicit formula:

dc(x, y) =
1√
|c|

acosh
(
1 +

2∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
. (17)

E DATASET STATISTICS

We utilize two dataset configurations. Initially, we adhere strictly to the data preparation and
evaluation procedures of Wu et al. (2022); Zhang et al. (2020), involving three single datasets
(Amazon(A), DBLP(D), and Livejournal(L)) and two hybrid datasets ("Amazon+DBLP"(A+D) and
"DBLP+Livejournal"(D+L)). From a total of 5, 000 communities, communities exceeding the 90-th
percentile size are excluded, and 1, 000 are randomly selected for experiments with 9%, 1%, and 90%
designated as training, validation, and testing sets, respectively. For hybrid datasets, we introduce
5, 000 cross-network links between datasets like Amazon and DBLP, testing the model’s ability to
identify diverse community types. For instance, in the A/D setting, 90 Amazon communities are used
for training, 10 for validation, and the rest for testing.

Additionally, to evaluate CLANN’s adaptability to varying community sizes and numbers, each
dataset is sorted by community size without excluding any community, forming 5 subsets such as
"A-1k" for the smallest 1,000 communities to "A-5k" for all labeled communities. Split ratios are
consistent with the first setting. Details of these arrangements are provided in Tab. 7 and Tab. 8.

F PRELIMINARY CORE FILTER

The Nucleus Proposer needs to prepare all nodes’ cliques. However, for large graphs, finding all
cliques is prohibitively time-consuming. To address this challenge, we develop a preliminary selection
mechanism for large graphs before the Nucleus Proposer. Concretely, for each community, nodes
with the highest betweenness centrality are labeled as community cores. The remaining nodes are
considered peripheral nodes and labeled as 0. To characterize the feature of node v, we concatenate
the original representation fa

v and the average original features f̄a
v of v’s neighbors. We train the

preliminary classifier with communities from the training set:

ycv = σ(W c[fa
v ||f̄a

v ] + bc), (18)

where ycv is the prediction for node v. σ(·), W c, and bc are the activation function, weight parameters,
and bias of the classifier. After feeding all nodes’ features into the classifier, clique computations are
exclusively performed for the top M nodes and their neighbors in several hops. By employing this
preliminary filter, we significantly reduce the time required for clique computation.

For betweenness calculation, while it is computationally expensive, we do not calculate it for all
nodes. Instead, we calculate betweenness only for nodes within the training communities, which
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Table 8: Dataset statistics of different community numbers (1k-5k). The meanings of each notation
are identical to the previous table. Additionally, Est.α represents the estimated α value of degree
power law fit.

#V #E CM/A log(E/V) Rc Est.α
A-1k 1,032 1,156 4 / 3.3 0.11 0.767 26.41
A-2k 2,819 4,596 7 / 4.3 0.49 0.776 17.50
A-3k 5,401 10,878 10 / 5.6 0.70 0.790 19.98
A-4k 9,478 22,522 18 / 7.5 0.87 0.800 8.83
A-5k 19,905 54,618 328 / 13.5 1.01 0.840 4.48
D-1k 26,027 88,945 6 / 6.0 1.23 0.224 3.32
D-2k 47,416 181,396 7 / 6.3 1.34 0.254 3.04
D-3k 70,529 280,695 9 / 6.8 1.38 0.270 3.24
D-4k 97,435 397,563 12 / 7.6 1.41 0.288 3.30
D-5k 216,556 829,388 7,556 / 22.4 1.34 0.431 6.65
L-1k 10,252 25,724 6 / 4.2 0.92 0.356 5.59
L-2k 37,967 274,146 13 / 6.7 1.98 0.293 2.44
L-3k 100,435 1,097,204 21 / 10.0 2.39 0.234 2.56
L-4k 234,820 3,401,944 35 / 14.3 2.67 0.177 4.03
L-5k 439,450 7,431,647 1,441 / 27.8 2.83 0.192 2.69

comprise just 9% of the labeled communities. We extract each training community as a subgraph
and only calculate betweenness within this subgraph. Subsequently, we use this neural network to
identify community centers in the whole graph without needing to calculate betweenness for every
node again, thus significantly reducing computational cost.

G EVALUATION METRICS & BASELINE

Evaluation Metrics. By convention, we select the bi-matching F1 and Jaccard scores Bakshi et al.
(2018); Chakraborty et al. (2017); Jia et al. (2019); Zhang et al. (2020) as evaluation metrics. Given
N generated communities {Ċj} and M ground truth communities {Ĉi}, scores are computed as:

1

2
(
1

N

∑
i

max
j

δ(Ĉi, Ċj) +
1

M

∑
j

max
i

δ(Ċj , Ĉi)), (19)

where δ(., .) can be F1 or Jaccard function. Besides, we use the overlapping normalized mutual
information (ONMI) McDaid et al. (2011) as a supplementary metric, the overlapping version of the
NMI score. It is derived from the normalized mutual information, adjusted to ensure that it ranges
between 0 and 1, where 0 indicates no correlation between the two community assignments, and 1
indicates a perfect match. For more information on ONMI, please refer to McDaid et al. (2011).

Baselines. We give details of our baseline methods of community detection:

• BigClam Yang & Leskovec (2013)1 is designed for large-scale overlapping community
detection. It recognizes densely connected overlaps between communities to enhance
accuracy and scalability.

• BigClam-A Bakshi et al. (2018) stands for BigClam-Assisted, where BigClam is imple-
mented on graphs modified by adding extra edges between nodes in the same community.
These extra edges serve as additional constraints to the BigClam algorithm.

• ComE Cavallari et al. (2017)2 leverages a synergistic loop between community and node
embeddings to enhance graph visualization, community detection and node classification on
multiple real-world datasets

1https://github.com/RobRomijnders/bigclam
2https://github.com/andompesta/ComE
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• CommunityGAN Jia et al. (2019)3 utilizes a Generative Adversarial Net (GAN) to generate
the most likely motifs and optimize vertex embeddings, which indicate membership strength
in communities.

• vGraph Sun et al. (2019)4 is a probabilistic generative model that leverages a mixture model
approach to represent nodes as combinations of communities.

• Bespoke Bakshi et al. (2018)5 is a semi-supervised algorithm that leverages community
membership information and node metadata to identify unique patterns in communities
beyond traditional structures.

• SEAL Zhang et al. (2020)6 uses a GAN to learn community detection heuristics from data,
featuring a specialized GNN for generating communities and a seed selector for enhanced
accuracy.

• CLARE Wu et al. (2022)7 incorporates a Community Locator and Community Rewriter,
utilizing deep reinforcement learning for community structure refinement.

H IMPLEMENTATION DETAILS

CLANN is implemented in Pytorch 2.1.0, PyG 2.4.0 with Python 3.9, and DeepSNAP 0.2.1. All
experiments are conducted on AMD EPYC 7763 64-core Processor with 256GB of memory and a
single NVIDIA RTX A5000 with 24GB of memory. In CLANN, the graph encoder is implemented
by a 3-layer GCN with sum-pooling, and the hidden layers dimension d is 64 (identical to previous
works), with a total of 104783 (0.1M) parameters. The size of the model’s checkpoint is 424 KB. Its
weight parameters are optimized using Adam Kingma & Ba (2017) optimizer with 10 epochs and a
learning rate of 1e−3 by default. m in Tab. 1 is set to be 25, as we aim to maintain the structure with
at least a smallest clique (k=3). For example, if we have a k=4 clique, by removing 25% of the nodes,
we can still retain a k=3 clique. λclq in Consistency-Based Loss is set to be 2. Loss coefficients
γ{E,C,I} are set to keep each loss item in the same magnitude. The temperature probability function,
Ptemp(|Sc

i |) = Φ
(

|Sc
i |−µ
σ

)
, represents a normal distribution where µ is the mean and σ is the standard

deviation of the training community size.

Preliminary Core Filter is trained with training communities. For our largest dataset, lj-5k, it took
63.56 seconds for training and selection (betweenness is not calculated on the whole graph but on the
community sub-graph, which usually only contains 30 nodes). All the competing methods are based
on their publicly available official source code and are trained using the recommended optimization
and hyperparameter settings in the original papers.

I SUPPLEMENTARY PARAMETERS ANALYSIS

Candidate Size Rate. As previously noted, the initial candidates generated by the Nucleus Proposer
might not represent the optimal community centers. Therefore, we increased the candidate pool for
the Transitive Annealer. Fig. 9 illustrates the comparison across various Candidate Size Rates. The
model exhibits improved performance when annealing a broader set of candidates rather than solely
relying on those provided by the Nucleus Proposer. In most instances, achieving superior community
center detection necessitates annealing four times the number of candidates suggested by the Nucleus
Proposer."

J MODULE RUNTIME ANALYSIS

We analyze the runtime performance of three different modules – Clique Prepare, Nucleus Proposer,
and Transitive Annealer – across three separate datasets in Fig. 10. The datasets vary in size from
1, 000 to 5, 000 communities.

3https://github.com/SamJia/CommunityGAN
4https://github.com/sunfanyunn/vGraph
5https://github.com/yzhang1918/bespoke-sscd
6https://github.com/FDUDSDE/SEAL
7https://github.com/FDUDSDE/KDD2022CLARE
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Figure 9: F1 performance of different candidate size rates and std rates.

1000 2000 3000 4000 50001000 2000 3000 4000 50001000 2000 3000 4000 5000

Amazon DBLP LiveJournal

Figure 10: Runtime of different modules.

The runtime of the Clique Preparation module increases exponentially with the complexity of the
graph. For instance, in the LiveJournal dataset, runtime rises from 1.57 seconds for 1,000 communities
to 35,712.81 seconds for 5,000 communities, demonstrating substantial exponential growth as the
community size and complexity increase. In contrast, the Nucleus Proposer module exhibits a more
linear relationship with graph complexity. In the Amazon dataset, for example, runtime increases
steadily from 7.09 seconds for 1,000 communities to 110.19 seconds for 5,000 communities, reflecting
a consistent and predictable scaling with increasing community sizes.

The Transitive Annealer module’s runtime initially increases exponentially with the complexity of the
graph but tends to stabilize or converge at higher community numbers. For the LiveJournal dataset,
runtime escalates from 32.28 seconds at 1,000 communities to 880.61 seconds at 5,000 communities,
showing a tapering growth as it approaches larger datasets.

For smaller datasets, the major computational burden is attributed to the Transitive Annealer, where
its runtime significantly surpasses that of other modules at initial community sizes. However, for
larger real-world datasets, the Clique Preparation module becomes a significant bottleneck due to its
exponential increase in runtime. In such scenarios, considering simpler motifs may be a promising
choice to mitigate computational challenges and optimize performance.

K PERFORMANCE ON NON-CLIQUE, SPARSE, AND NOISY DATASETS

We evaluate CLANN’s performance on non-clique structures, including bipartite graphs (3 collabora-
tion and 3 co-purchase networks) and scatter-core networks as shown in Tables 16. To adapt CLANN
for these graphs, cliques were replaced with scatter-based cores, resulting in CLANN(S). These
experiments demonstrate that CLANN(S) maintains robust performance under non-clique and noisy
conditions. The scatter-core approach effectively handles lower-density and overlapping community
structures, addressing concerns regarding CLANN’s reliance on cliques and extending its adaptability
to diverse network types.

Additionally, as shown in Table 17, we conduct experiments on 15 datasets across three scenarios
(Scatter-Core, Barabási-Albert, and NoisyDBLP datasets) to further evaluate CLANN(S)’s effective-
ness in diverse settings. These scenarios simulate non-clique, scale-free, and noisy communities to
assess the model’s generalizability.
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K.1 ADAPTABILITY TO BIPARTITE NETWORKS

CLANN(S) shows significant improvement in bipartite networks by replacing clique-based cores with
scatter cores. As shown in Table 16, CLANN(S) achieves the highest F1 scores across all datasets,
including 0.5241 on CL1 and 0.5051 on CP2, outperforming CLARE and NP(S). This highlights
CLANN(S)’s ability to identify community structures in networks lacking cliques, further validating
its adaptability to non-clique environments.

K.2 SCATTER-CORE NETWORKS (0 CLIQUES)

Scatter-core datasets were generated with 100,000 nodes distributed across varying community sizes
(1K to 5K). For each community, nodes were connected as random tree structures to avoid clique,
and inter-community edges were added while avoiding triangle formation. CLANN outperformed
SOTA in all scatter-core datasets, achieving F1 scores up to 0.3011, highlighting its robustness in
detecting coherent communities in sparse and minimally connected environments.

K.3 BARABÁSI-ALBERT NETWORKS (<300 CLIQUES)

Barabási-Albert (BA) datasets, characterized by scale-free structures, were created with 100,000
nodes divided across varying community sizes (1K to 5K). High-degree nodes served as seeds, with
connected nodes progressively added to maintain community growth. This process preserved the
hierarchical and hub-dominated topology typical of BA networks. CLANN consistently outperformed
SOTA, demonstrating its adaptability to scale-free structures.

K.4 NOISYDBLP DATASETS

NoisyDBLP datasets were constructed by adding 10% noise (random edge additions and removals)
to DBLP networks while preserving community connectivity. Across varying community sizes (1K
to 5K), CLANN maintained stable performance, outperforming SOTA with F1 scores ranging from
0.4157 to 0.4742. This demonstrates the model’s resilience to noise and overlapping structures.

The experimental results validate CLANN(S)’s generalizability and robustness across diverse network
types, including scatter-core, bipartite, scale-free, and noisy graphs. By effectively adapting to
different cores and maintaining strong performance in sparse, heterogeneous, and noisy environments,
CLANN demonstrates its versatility as a robust community detection framework.

Table 9: Performance (Jaccard and ONMI) Comparisons with SOTA models.

Dataset BigClam BigClam-A ComE Com-GAN vGraph Bespoke SEAL CLARE NP CLANN

Ja
cc

ar
d

A 0.5874 0.5623 0.5691 0.6045 0.5721 0.4415 0.6792 0.6827 0.7227 0.8600
D 0.2186 0.2203 N/A 0.2830 0.0645 0.2593 0.2143 0.3132 0.3266 0.3703
L 0.3102 0.3076 N/A 0.3183 0.0222 0.1324 0.3795 0.4027 0.3025 0.4382

A/D 0.1102 0.1095 N/A 0.0109 0.0421 0.0488 0.2419 0.3241 0.4238 0.6247
D/A 0.1485 0.1478 N/A 0.0610 0.0555 0.2135 0.0879 0.2166 0.3337 0.3601
D/L 0.0523 0.0485 N/A 0.0120 0.0066 0.0756 0.1485 0.1893 0.2864 0.2893
L/D 0.1505 0.1464 N/A 0.0097 0.0105 0.1503 0.1907 0.2308 0.1970 0.3356

O
N

M
I

A 0.5865 0.5625 0.5570 0.6040 0.5532 0.4129 0.6862 0.7015 0.7404 0.8781
D 0.1113 0.1110 N/A 0.2324 0.0020 0.2347 0.1603 0.2600 0.2799 0.3253
L 0.2696 0.2641 N/A 0.3171 <1e-4 0.1024 0.3695 0.3703 0.2768 0.4273

A/D 0.0305 0.0334 N/A <1e-4 <1e-4 0.0364 0.2475 0.3126 0.4261 0.6277
D/A 0.0471 0.0477 N/A 0.0523 <1e-4 0.1780 0.0380 0.1566 0.3108 0.3261
D/L 0.0113 0.0065 N/A <1e-4 <1e-4 0.0723 0.1155 0.1331 0.2648 0.2777
L/D 0.0858 0.0795 N/A 0.0053 <1e-4 0.1248 0.1906 0.2012 0.1808 0.3279
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Table 10: Jaccard and ONMI Scores of different loss function and annealer schemes.

Dataset Engy. +Intf. +Cons. +Intg. NP +Infc +SA +C-E +TA

Ja
cc

ar
d

A 0.6925 0.7006 0.7228 0.7631 0.7227 0.7458 0.7696 0.8148 0.8600
D 0.2749 0.2836 0.2932 0.2979 0.3266 0.3485 0.3452 0.3468 0.3703
L 0.2590 0.2609 0.2660 0.3062 0.3025 0.3258 0.3491 0.3984 0.4382

A/D 0.3520 0.3550 0.3839 0.3983 0.4238 0.4452 0.4666 0.5453 0.6247
D/A 0.1955 0.2028 0.2107 0.2163 0.3337 0.3370 0.3391 0.3556 0.3601
D/L 0.1762 0.1762 0.2008 0.1932 0.2864 0.2790 0.2817 0.2839 0.2893
L/D 0.1495 0.1583 0.1607 0.1601 0.1970 0.2226 0.2508 0.2971 0.3356

O
N

M
I

A 0.7075 0.7298 0.7411 0.7789 0.7404 0.7641 0.7887 0.8335 0.8781
D 0.2454 0.2547 0.2610 0.2623 0.2799 0.3046 0.3110 0.3137 0.3253
L 0.2355 0.2374 0.2401 0.2748 0.2768 0.3011 0.3254 0.3805 0.4273

A/D 0.3517 0.3566 0.3801 0.4023 0.4261 0.4483 0.4705 0.5481 0.6277
D/A 0.1597 0.1743 0.1717 0.1819 0.3108 0.3115 0.3115 0.3179 0.3261
D/L 0.1476 0.1504 0.1596 0.1608 0.2684 0.2666 0.2677 0.2696 0.2777
L/D 0.1319 0.1399 0.1446 0.1453 0.1808 0.2109 0.2787 0.3210 0.3279

Table 11: Adaptability comparison on DBLP dataset with different community sizes and numbers.

Dataset Metrics Com-GAN Bespoke SEAL CLARE NP CLANN

DBLP-1k
F1 0.1031 0.4259 0.0306 0.4755 0.2808 0.5547

Jaccard 0.0822 0.3977 0.0181 0.3843 0.2061 0.5142
ONMI 0.0665 0.3681 0.0024 0.3463 0.1335 0.4745

DBLP-2k
F1 0.0823 0.4383 0.0877 0.4922 0.2749 0.5200

Jaccard 0.0656 0.4096 0.0666 0.4011 0.2032 0.4701
ONMI 0.0548 0.3794 0.0444 0.3609 0.1443 0.4326

DBLP-3k
F1 0.0776 0.4380 0.1637 0.5105 0.3068 0.5464

Jaccard 0.0606 0.4000 0.1048 0.4163 0.2337 0.4801
ONMI 0.0494 0.3656 0.0256 0.3710 0.1924 0.4613

DBLP-4k
F1 N.A 0.4187 0.4611 0.4993 0.2117 0.5343

Jaccard N.A 0.3736 0.3979 0.4008 0.1527 0.4608
ONMI N.A 0.3483 0.3934 0.3399 0.1173 0.4409

DBLP-5k
F1 N.A 0.3193 0.2684 0.2893 0.1883 0.4688

Jaccard N.A 0.2744 0.2097 0.2246 0.1352 0.4064
ONMI N.A 0.2453 0.1948 0.1714 0.0981 0.3711
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Table 12: Adaptability comparison on LiveJournal dataset with different community sizes and
numbers.

Dataset Metrics Com-GAN Bespoke SEAL CLARE NP CLANN

LiveJournal-1k
F1 0.2922 0.4266 0.4193 0.5614 0.5563 0.6297

Jaccard 0.2192 0.3532 0.3470 0.4561 0.4820 0.5512
ONMI 0.1728 0.3051 0.3164 0.4426 0.4545 0.5457

LiveJournal-2k
F1 0.1442 0.4312 0.3182 0.5547 0.5513 0.5916

Jaccard 0.1175 0.3687 0.2391 0.4587 0.4752 0.5075
ONMI 0.1076 0.3441 0.1654 0.4525 0.4675 0.4999

LiveJournal-3k
F1 N.A 0.3903 0.2497 0.5480 0.3378 0.5717

Jaccard N.A 0.3331 0.1818 0.4557 0.2830 0.4867
ONMI N.A 0.3160 0.1225 0.4345 0.2672 0.4840

LiveJournal-4k
F1 N.A 0.4099 0.1701 0.5224 0.3169 0.5462

Jaccard N.A 0.3497 0.1159 0.4275 0.2697 0.4580
ONMI N.A 0.3335 0.0548 0.3969 0.2606 0.4470

LiveJournal-5k
F1 N.A 0.4298 0.1744 0.4350 0.2804 0.4758

Jaccard N.A 0.3634 0.1210 0.3460 0.2402 0.3904
ONMI N.A 0.3286 0.0644 0.3043 0.2398 0.3724

Table 13: F1 Score compared with unsupervised methods under Setting 1. For Spectral clustering
methods, we present the best results among DBSCAN, HDBSCAN, and OPTICS. Additionally, Est.
α represents the estimated α value of degree power law fit. N/A: not converge in 2 days.

Est.α SBM N-SBM O-SBM Louvain Label Prop. Spectral CLANN
A 12.91 0.3058 0.0371 0.0319 0.8226 0.7789 0.8226 0.9055
D 2.86 0.0924 0.0000 0.0068 0.1986 0.3777 0.3070 0.4701
L 3.21 0.1601 0.0000 N/A 0.4201 0.4801 0.4806 0.5144

A/D 2.95 0.0847 0.0371 0.0055 0.1206 0.4710 0.1575 0.6578
D/A 2.95 0.0876 0.0000 0.0057 0.1000 0.3606 0.1400 0.4355
D/L 3.30 0.0332 0.0000 N/A 0.0599 0.3346 0.0946 0.3373
L/D 3.30 0.1317 0.0000 N/A 0.2224 0.3849 0.3699 0.3932

Table 14: Runtime (in seconds) comparison with unsupervised methods under Setting 1.

Dataset SBM N-SBM Louvain Label Prop. DBSCAN HDBSCAN OPTICS CLANN
A 4.4 4.5 0.3 0.2 0.1 0.2 5.1 112.1
D 23.3 109.1 3.2 1.9 1.5 3.0 51.4 291.3
L 190.2 605.7 15.8 7.0 6.0 4.9 147.7 945.5

A/D 30.2 132.5 4.6 2.2 2.1 3.7 70.3 717.0
D/A 34.2 190.4 3.8 2.4 2.0 3.6 70.2 124.2
D/L 224.9 856.9 20.9 11.0 19.2 8.8 314.5 453.5
L/D 261.3 863.3 17.4 9.5 19.1 12.6 318.6 839.2

Table 15: F1 Score compared with top-3 unsupervised methods under Setting 2. Lv:Louvain, Lp:
Label Propagation, Sp: Spectral, CL: CLANN.

Est.α Lv Lp Sp CL Est.α Lv Lp Sp CL Est.α Lv Lp Sp CL
A1 26.41 .8546 .8609 .8546 .9905 D1 3.32 .2160 .3976 .3322 .5547 L1 5.59 .4334 .5579 .4713 .6297
A2 17.50 .8538 .8612 .8538 .9601 D2 3.04 .2185 .4246 .3521 .5200 L2 2.44 .4416 .5661 .5192 .5916
A3 19.98 .8391 .8369 .8391 .9452 D3 3.24 .1952 .4333 .3451 .5464 L3 2.56 .4384 .5624 .5232 .5717
A4 8.83 .8230 .8271 .8230 .9177 D4 3.30 .1811 .4303 .3631 .5343 L4 4.03 .4258 .5249 N/A .5462
A5 4.48 .7997 .7237 .7989 .8084 D5 6.65 .1839 .3697 N/A .4688 L5 2.69 .4438 .4747 N/A .4758
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Table 16: F1 Score on general and bipartite graphs. Original CLANN can’t be implemented on
bipartite network, we build NP(S) and CLANN(S) by changing the core from clique to scatter (S). CL
is collaboration network, where nodes are scientists and research papers. CP is co-purchase network,
where modes are customers and products.

A (F1) D (F1) L (F1) CL1 CL2 CL3 CP1 CP2 CP3
CLARE 0.7730 0.3835 0.4950 0.4278 0.3612 0.4278 0.2158 0.2228 0.2017

NP 0.7809 0.3979 0.3655 N/A N/A N/A N/A N/A N/A
CLANN 0.9055 0.4701 0.5144 N/A N/A N/A N/A N/A N/A
NP (S) 0.6306 0.4615 0.4349 0.4190 0.3683 0.3500 0.3814 0.4312 0.3341

CLANN (S) 0.8933 0.4739 0.5154 0.5241 0.4477 0.5494 0.4312 0.5051 0.4923

Table 17: Robustness of CLANN in Diverse Network Environments: F1 Performance on Scatter,
Barabási-Albert, and NoisyDBLP Datasets with Scaling Community Structures (1K-5K Communi-
ties)

Scatter Datasets
# Community 1K 2K 3K 4K 5K

# Node 64,020 100,000 100,000 100,000 100,000
# Edge 66,665 200,000 200,000 200,000 200,000
CLARE 0.1929 0.1522 0.1904 0.2153 0.2394
CLANN 0.3100 0.1567 0.2824 0.2980 0.3011

Barabási-Albert Datasets
# Community 1K 2K 3K 4K 5K

# Node 100,000 100,000 100,000 100,000 100,000
# Edge 200,000 200,000 200,000 200,000 200,000
CLARE 0.1291 0.1871 0.2160 0.2458 0.2589
CLANN 0.1922 0.2513 0.2992 0.3300 0.3307

NoisyDBLP Datasets
# Community 1K 2K 3K 4K 5K

# Node 25,968 47,318 70,425 97,270 215,912
# Edge 88,949 181,547 280,586 397,201 829,877
CLARE 0.3308 0.3608 0.3660 0.3753 0.2837
CLANN 0.4157 0.4475 0.4742 0.4398 0.3539

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 1: Nucleus Proposer
Input :Graph G, Training communities C, Recorded Clique Set Q, Max Epoch EM , Loss

Contribution Coefficients γ{E,C,I}, Learning Rate α, Initial State Number M .
Output :Initial State Sinit, Graph Encoder H , Status Classifier Parameters W k

p , bkp (in Eq. 6)
1 Epoch: e← 1, Sinit ← {};
2 while e < EM do
3 // Prepare positive and negative batches
4 Sample a1, a2, a3 from C;
5 Sample b, c from a1;
6 S ← {a1, a2, a3, b, c};
7 // Calculate Energy, Consistency, and Interface losses
8 lossE ←lossESize(S) + lossEDefc(S);
9 lossC ←lossC(S);

10 lossI ←lossI (S);
11 // Update encoder
12 H := H − α▽ (γElossE + γC lossC + γI lossI);
13 while e < EM do
14 // Prepare positive and negative batches
15 Sample a1, a2, a3 from C;
16 Sample b, c from a1;
17 S ← {a1, a2, a3, b, c};
18 // Calculate Integrity loss
19 lossG ←lossG(S);
20 // Update Status Classifier
21 W k

p , b
k
p := W k

p , b
k
p − α▽ lossG;

22 // Select initial states
23 Clique Embedding Set hQ ← H(Q);
24 for c ∈ C do
25 Community Embedding hc ← H(c);
26 Embedding Distance dc,Q ← ||hc − hQ||;
27 Sort dc,Q with ascending order;
28 Append first ⌊M/|C|⌋ Cliques into Sinit;
29 return Sinit, H
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Algorithm 2: Transitive Annealer
Input :Initial state Sinit, Max Step M .
Output :Annealed community Ŝ.

1 Ending Flag: Fend ← False;
2 while Fend ̸= True do
3 // Check Expandability
4 Ŝ ← Sinit;
5 ŷSinit

← Integrity score of Sinit;
6 if ŷ1Sinit

< max(ŷSinit) then
7 Break ;
8 // Collect Extendable Nodes and Calculate Properties
9 Extendable nodes set V e = {ve1, . . . , ve|V e|};

10 Extendable Node Properties Eex ← {};
11 for vei ∈ V e do
12 Ce

i ← merge all cliques of vei and exclude nodes in Sinit;
13 Calculate properties and append to Eex;
14 // Check Nucleus Transition
15 k ← max(Integrity Scores);
16 if ŷ2Sinit

< ŷ2Ce
i

then
17 Sinit ← Ce

k;
18 Continue ;
19 // Check Energy Score and Interface Requirement
20 Node score Pex ← Softmax(Norm Difference List);
21 for i← 1 to |V e| do
22 Energy Flag FE ← Pex[i] ≥ Ptemp(|Ŝ ∪ Ce

i |));
23 Interface Flag FI ← Interface Energy Check;
24 if FE and FI then
25 // Update State
26 Ŝ ← Ŝ ∪ Ce

i ;

27 M ←M − 1;
28 if Ŝ = Sinit or M ≤ 0 then
29 Fend ← True;

30 return Ŝ

26


	Introduction
	Related Work
	Overlapping Community Detection with Un/Semi-supervised Methods
	Clique-based Methods

	Problem Definition and Pipeline
	Nucleus Proposer
	Linking Crystallization to Community Detection
	Implementation of Crystallization Kinetics
	Graph Encoder

	Transitive Annealer
	Potential for Further Growth of the Current State
	Selection of Clique for Merging
	Shifting of Community Core

	Experiment and Analysis
	Overall Performance
	Ablation Study
	Adaptability Evaluation
	Efficiency Evaluation
	Parameter Analysis
	Case Visualization

	Conclusion and Future Work
	Clique-Based Modularity and Loss in Community Detection
	Explanation of Crystallization Kinetics Principles
	Complexity Analysis
	Preliminaries of Hyperbolic Geometry
	Dataset Statistics
	Preliminary Core Filter
	Evaluation Metrics & Baseline
	Implementation Details
	Supplementary Parameters Analysis
	Module Runtime Analysis
	Performance on Non-Clique, Sparse, and Noisy Datasets
	Adaptability to Bipartite Networks
	Scatter-Core Networks (0 Cliques)
	Barabási-Albert Networks (<300 Cliques)
	NoisyDBLP Datasets


