
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEW RECIPE FOR SEMI-SUPERVISED COMMUNITY DE-
TECTION: CLIQUE ANNEALING UNDER CRYSTALLIZA-
TION KINETICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Semi-supervised community detection methods are widely used for identifying
specific communities due to the label scarcity. Existing semi-supervised com-
munity detection methods typically involve two learning stages i.e., learning in
both initial identification and subsequent adjustment, which often starts from an
unreasonable community core candidate. Moreover, these methods encounter
scalability issues because they depend on reinforcement learning and generative
adversarial networks, leading to higher computational costs and restricting the
selection of candidates. To address these limitations, we draw a parallel between
crystallization kinetics and community detection to integrate the spontaneity of the
annealing process into community detection. Specifically, we liken community
detection to identifying a crystal subgrain (core) that expands into a complete
grain (community) through a process similar to annealing. Based on this finding,
we propose CLique ANNealing (CLANN), which applies kinetics concepts to
community detection by integrating these principles into the optimization process
to strengthen the consistency of the community core. Subsequently, a learning-free
Transitive Annealer was employed to refine the first-stage candidates by merging
neighboring cliques and repositioning the community core, enabling a spontaneous
growth process that enhances scalability. Extensive experiments on diverse com-
munity detection datasets demonstrate that CLANN outperforms state-of-the-art
methods across multiple real-world datasets, showcasing its exceptional efficacy
and efficiency in community detection.

1 INTRODUCTION

Community detection aims to distinguish node groups with closer inner connections. (defined by
concrete contexts) (Jeong et al., 2021; Li et al., 2019; Zhang et al., 2018; Abbe, 2023) Unsupervised
methods eliminate the need for costly data labeling and are widely utilized due to the label scarcity in
community detection (Holland et al., 1983; Amini et al., 2013; de Lange et al., 2014). While these
methods have demonstrated strong performance and practicality, they often struggle to accurately
identify specific communities with distinct semantic meanings. For instance, in a social network with
100 user communities, only 10 of which are fraudulent, unsupervised methods might identify all 100
communities but typically struggle to differentiate which ones are fraudulent. This is mainly because
they are typically designed based on general structural information rather than the specific inherent
features of the targeted communities.

To improve the detection of communities with semantic meaning, some semi-supervised methods
have been introduced that primarily utilize a two-stage approach (Wu et al., 2022; Bakshi et al., 2018).
They identify potential community centers first, then expand these centers into final communities.
Although semi-supervised methods are intuitive, they still have the following limitations:

Community Core Inconsistency: Prevalent growth-based methods scan all vertices (or their k-ego
networks) and calculate embedding space distances to the labeled communities to select optimal
community cores. However, a single node feature is insufficient to represent structural information.
Moreover, the k-hop ego network frequently includes vertices positioned outside of any community.
Instead, as shown in App. A, clique (where all nodes are connected and cannot be expanded by adding

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

another vertex) more accurately and essentially reflects cohesiveness in a given structure (Gupta
& Singh, 2023; Maity & Rath, 2014; Mimaroglu & Yagci, 2012; Jia et al., 2019). Consequently,
using cliques as starting points is more effective than traversing all nodes to identify community
centers (Shen et al., 2009; Lu et al., 2010; Svendsen et al., 2015).

(b) Learning-free Grow

(a) Spontaneous Anneal

(c) Analogy

≈

Sub-grain Sub-graph
(Clique)

Crystallized
Grain Community

≈

Merge

Figure 1: (a) Spontaneous annealing process where the
subgrains grow into the crystallized grain by merging
with other grains. (b) CLANN Schematic diagram. The
initial clique spontaneous grows into a community by
merging other cliques. (c) Analogy between community
detection and annealing process.

Inferior Growth Scalability: Besides, ex-
isting growth models often employ Rein-
forcement Learning (RL) modules to ex-
pand first-stage candidates using prede-
fined reward functions (Wu et al., 2022;
Zhang et al., 2020). However, these re-
ward functions are typically disconnected
from the design of the first stage, result-
ing in inefficient use of the initial informa-
tion. Moreover, when Generative Adver-
sarial Networks (GANs) are introduced to
generate more realistic reward signals, they
exacerbate scalability issues (Zhang et al.,
2017), limiting the number of community
core candidates and often leading to subop-
timal solutions.

To address the above challenge, we utilize the annealing process in crystallization kinetics to effec-
tively simulate the seed-growth mechanism, allowing subgrains to merge with others and grow into
fully crystallized grains, as illustrated in Fig. 1 (a). The annealing seeds are consistently subgrains,
not just any random region. This aligns with the concept that a community core is not a random node
or its K-ego network. Given that the entire crystallization process is spontaneous and follows physical
laws, we further proposed CLique ANNealing (CLANN), which consists of two main components:
the Nucleus Proposer and the Transitive Annealer. As illustrated in Fig. 1 (b), we first identify a
clique as community core and gradually merges neighbor cliques to form the final community. The
analogy between crystallization and community formation is illustrated in Fig. 1 (c).

Specifically, we first only optimize a single graph encoder to inherently analogize community
formation by integrating four crystallization principles (Stability, Cohesion, Growth, and Status) into
the optimization to mitigate Community Core Inconsistency. Instead of evaluating all individual
nodes, our Nucleus Proposer selects the most prospective cliques, thus speeding up the selection
process. To address the Inferior Growth Scalability, we further propose a learning-free Transitive
Annealer that directly leverages the module trained in the Nucleus Proposer to guide the annealing
of candidates into communities. This method circumvents the convergence challenges and high
computational costs typically associated with reinforcement learning or GANs. Given the clique’s
high homophily scores (as shown in App. A), we choose the clique as the core motif in this work;
other motifs may also be effective depending on the dataset. In summary, our contributions can be
summarized as follows:

• We introduce a novel model, CLANN, that leverages the annealing process to detect commu-
nities providing a new physics-grounded perspective for community detection by studying
the subgrain growth process.

• We introduce two key components in CLANN: Nucleus Proposer, which uses crystallization
principles and cliques to learn graph representations and identify community cores, and
Transitive Annealer, which ensures spontaneous growth guided by the Nucleus Proposer.

• Empirical evaluations on real-world datasets consistently show that CLANN outperforms
state-of-the-art methods by a significant margin, demonstrating its effectiveness and effi-
ciency across diverse network analysis scenarios.

2 RELATED WORK

Given the limited availability of labeled data, we concentrate on unsupervised and semi-supervised
approaches for overlapping community detection, while also providing an introduction to clique-based
methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 OVERLAPPING COMMUNITY DETECTION WITH UN/SEMI-SUPERVISED METHODS

Unsupervised Methods. Unsupervised methods are particularly valuable for exploratory data
analysis, especially in scenarios where no supervision information is accessible. NOCD (Shchur
& Günnemann, 2019) uses a generative model for inferring community affiliations. Community-
GAN (Jia et al., 2019) applies GANs to generate motifs and optimize vertex embeddings, representing
membership strength. ACNE (Chen et al., 2021) employs a perception-based walking strategy and
a discriminator to jointly map node and community embeddings. DFuzzy (Bhatia & Rani, 2018)
uses a stacked sparse autoencoder to evolve overlapping and disjoint communities via modularity.
BigClam (Yang & Leskovec, 2013) identifies densely connected overlaps to improve accuracy and
scalability. ComE (Cavallari et al., 2017) enhances detection through a synergistic loop between
community and node embeddings. vGraph (Sun et al., 2019) utilizes a mixture model to represent
nodes as combinations of communities.

Semi-supervised Methods. In contrast to unsupervised learning methods, which impose strict
limitations on pinpointing specific types of communities, semi-supervised methods can effectively
utilize labels from previous community members making them more practical in identifying specific
community types. BigClam-A (Bakshi et al., 2018) stands for BigClam-Assisted with graphs modified
by adding extra edges between nodes in the same community. SEAL (Zhang et al., 2020) generates
seed-aware communities using a Graph Pointer Network with incremental updates (iGPN). DGL-
FRM (Mehta et al., 2019) captures community membership strength and sparse node. LGVG (Sarkar
et al., 2020) is designed to learn multi-layered and gamma-distributed embeddings, allowing it to
detect communities at both fine-grained and coarse-grained levels. Bespoke (Bakshi et al., 2018)
leverages community membership information and node metadata to identify unique patterns in
communities beyond traditional structures. CLARE (Wu et al., 2022) builds a locator to find the
community seeds and uses a rewriter to modify the candidates. Although the aforementioned
semi-supervised methods perform well, many of them focus heavily on architectural design while
underutilizing the inherent graph structures. On the contrary, CLANN can fully exploit the insights
of community positioning and formation mechanisms from inherent motifs.

2.2 CLIQUE-BASED METHODS

A clique is a complete subgraph, naturally capturing densely connected subgraphs. Clique-based
methods are classified into K-clique-based and maximum-clique-based. K-clique methods (e.g.,
CPM (Palla et al., 2005), SCP (Kumpula et al., 2008), ECPM (Maity & Rath, 2014), WCPM (Zhang
et al., 2017), LOC (Ma & Fan, 2019)) find and merge adjacent K-cliques into communities, while
maximum-clique methods (e.g., EA/G (Zhang et al., 2005), MaxCliqueDyn (Konc & Janezic, 2007),
GVG-Mine (Lee et al., 2012), ACENV (Cheng et al., 2018), PECO (Svendsen et al., 2015)) select
cliques with the largest number of nodes as initial communities. Though these approaches utilize
substructures, they often struggle to represent lower-dimensional embeddings while preserving
structural complexity (Fan et al., 2020; Bo et al., 2020; Luo et al., 2020; Cheng et al., 2021). In
contrast, CLANN generates insightful embeddings while maintaining formation mechanisms.

3 PROBLEM DEFINITION AND PIPELINE

Problem Definition: Give a graph G = (V, E ,X), where the V represent the node set, E represents
the edge set and X represents the node feature. The expert-labeled training communities are denoted
as C = {C1, ..., CN} where N is the number of expert-labeled communities. The objective in semi-
supervised community detection, is formulated as given a small set of expert-labeled communities
Ctrain = {C1, ..., Cm} as training data, where m (m ≪ N), to predict N -m communities Cpred

from G. The predicted communities should be consistent with all rest labeled communities (test
communities), Ctest = C \ Ctrain.

Pipeline: As shown in Fig. 2, Nucleus Proposer first identifies cliques with embeddings similar to
the training community embeddings as potential core candidates (represented by dashed circles).
To get the final integral structure, the Transitive Annealer will expand candidates into communities.
Considering community core inherently contains less information than an integral community,
Nucleus Propose might inevitably locate the sub-optimal start point. The Nucleus Transition module
is thus proposed to dynamically relocate the initial candidates to other better cliques.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1 1

11

1 1
1

1

2

2
2

2

2

3

33

3

3

1 1

11

1 1
1

1

2

2
2

2

2

3

33

3

3

1 1

11

1 1
1

1

2

2
2

2

2

3

33

3

3
2

2
2

2
1 1

11

1 1
1

1

3

33

3

3

2

2
2

2
1 1

11

1 1
1

1

3

33

3

3
2

Prediction

Ground Truth

EvaluateTransitive
Annealer

Nucleus
Proposer

Figure 2: The pipeline of proposed model. Nodes with orange borders and identical labels belong to
the same community. Dashed circles represent the currently predicted centers, while nodes filled in
orange are those predicted to be within communities. It is worth mentioning overlapping communities
are not shown for clarity, CLANN can also accommodate overlapping communities because core
growth is driven solely by energy requirements, operating independently without considering previous
community assignments.

4 NUCLEUS PROPOSER

The Nucleus Proposer aims to integrate the dynamics of community formation into an advanced
graph encoder with crystallization kinetics. After training, it selects prospective cliques as community
centers for further growth.

4.1 LINKING CRYSTALLIZATION TO COMMUNITY DETECTION

Many physics methods (Pang & Li, 2013; Greydanus et al., 2019; Cranmer et al., 2020) minimize a
global energy function to penalize node assignments that do not correspond to natural communities.
Since crystallization kinetics inherently reflect growth mechanisms where a community core can
spontaneously expand into a full community without the need for learning, we apply these principles
to simulate community growth and develop a more effective graph encoder, rather than relying
on previous energy function. These principles can be clearly illustrated through four specific
characteristics of communities, see more details in App. B.

Community Stability. Community stability correlates with size and outliers. Because members
heighten interaction complexity and increase the potential for conflict. Outliers who deviate signifi-
cantly from the norm can further disrupt stable dynamics. This is analogous to larger crystals with
defects having higher stored energy, depicted in Fig. 3(a).

Higher Cohesion. Higher member similarity promises better community cohesion. Similar traits
among members lead to harmonious interactions and stronger unity, akin to subgrains with the same
crystallographic orientations merging in crystallization, as illustrated in Fig. 3(b).

Spontaneous Growth. Community growth consumes resources, as expanding a community involves
resource expenditure to integrate infrastructure and complexity management. In crystallization,
subgrains must overcome an Interface Energy Barrier to merge, with the total energy surpassing that
of the larger, merged grain, as shown in Fig. 3(c).

Equilibrium Status. Larger and outlier-rich communities risk overgrowth and instability. Conversely,
smaller and more cohesive communities have great potential for further growth (undergrown). This
mirrors how a crystal’s size and defect levels decide its status in Fig. 3(d).

4.2 IMPLEMENTATION OF CRYSTALLIZATION KINETICS

Table 1: Sample notations.
Notation Definition
a1, a2, a3 Labeled community

b, c 1st/2nd largest clique in a1
◦̄ Replace m% nodes in ◦
◦̇ Remove m% nodes from ◦
◦̆ one-hop neighbors of ◦

To implement the crystallization kinetics, we map each sub-
graph g into a d-dimensional embedding h(g) and ensure these
principles can be reflected appropriately in the embedding space.
Specifically, we construct positive and negative pairs with the
subgraphs listed in Tab. 1 to optimize different loss functions.
Positive pairs conform to these principles, while negative pairs
violate them. The value of m is given in App. H. We devise
four novel loss functions to imitate the dynamics of community
formation with crystallization kinetics.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Annealing

)

(a) Energy-Based Loss

S.E. (

S.E. ()
>
>
>

S.E. ()
S.E. ()
S.E. ()

>
>
>

S.E. ()
S.E. ()
S.E. ()

+

(b) Consistency-Based Loss

h (

h (

h ())

)
+ h ()

(c) Interface-Based Loss

S.E.()
S.E.()
S.E.() > S.E.()

I.E.()

SUM()

S.E.()
S.E.()
S.E.()

SUM(

I.E.()

) > S.E.()

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

[1, 0, 0] [0, 1, 0] [0, 0, 1]
(d)Integrity-Based Loss

, : Crystal Orientations()

Figure 3: The connection between crystallization to community detection and the associated loss
functions. We distill these principles into four core requisites: energy, consistency, interface, and
integrity. S.E. and I.E., stand for stored and interface energy, respectively.

Energy-Based Loss. To capture the relationship between community stability and energy, we use the
following loss function, which leverages the positive correlation between subgraph size and stored
energy:

lossESize =

Pos−S∑
(i,j)

max{0, ||i|| − ||j||}+
Neg−S∑
(i,j)

max{0, α− (||i|| − ||j||)}, (1)

where α is the loss margin, and || · || denotes the norm of the subgraph embedding h, which we
utilize as an indicator of the graph’s stored energy. We further define the positive and negative pair
Pos-S = {(b, a1), (c, a1), (ȧ1, a1)}, Neg-S = {(a1 + a2, a1), (a2 + a3, a2), (a3 + a1, a3)}, where
‘+’ indicates combination. For each pair in Pos-S, the stored energy of the first subgraph is less than
the second’s, reflecting smaller subgraph sizes. Conversely, in Neg-S, the first subgraph, representing
a merged subgraph, exhibits greater stored energy than the second subgraph due to its bigger size.

As the high defect concentration typically reflect the high stored energy, we further define the second
energy-based loss function to describe the relationship between energy and misalignment:

lossEDefc =

Pos−D∑
(i,j)

max{0, ||i|| − ||j||}, (2)

where Pos-D = {(a1, ā1), (b, b̄), (c, c̄)}. For each pair in Pos-D, the latter is distorted from the first
subgraph (inside nodes are replaced with outside connected nodes). The second subgraph’s stored
energy should thus be larger than the first one.

Consistency-Based Loss. To ensure consistency, crystal grains with matching crystallographic
orientation are expected to merge more easily into a unified grain. Similarly, major cliques within a
community should follow the consistency requirement. Therefore, we require the aggregate of these
clique embeddings qi to closely approximate the community embedding:

lossC = d(h(a1),

λclq∑
i

h(qi)), (3)

where d(., .) is a distance function defined in App. D, λclq represents how many biggest cliques in a1
are used to represent a1. λclq ≤ |Qa1

|, where Qa1
is the set of all cliques in a1. For instance, if we

set λclq to 2, the loss lossC will be formulated as d(h(a1), h(b) + h(c)).

Interface-Based Loss. The energy barrier determines whether a subgrain can continue to grow.
In community detection, we use a similar concept to decide if subgraphs can expand into a larger
community. Specifically, the total stored energy of the subgraphs, combined with the interface energy,
must exceed the stored energy of the resulting larger community (positive pairs). Conversely, when
insufficient energy is available, a well-structured community cannot expand further (negative pairs).
The interface-based loss function can thus be formed as:

lossI =

Pos−I∑
(i,j)

max{0, ||i||−||j||−
∑
v∈j̆

Intf-E(v)}+
Neg−I∑
(i,j)

max{0, ||i||−||j||+
∑
v∈ĭ

Intf-E(v)}, (4)

where Pos-I = {(a1, b), (a1, c)}, Neg-I = {(a1, a1 + ă1)}, ∗̆ stands for the one-hop neighbors.
Intf-E(·) represents the interface energy between the neighbor node and the corresponding subgraph,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

and is defined as follows:
Intf-E(v) = Softplus(WI ∗ fv + bI), (5)

where WI and bI represent the weights and bias respectively, fv = [fa
v ||fe

v,g], f
a
v = [fo

v , deg(v),
max(DN(v)), min(DN(v)), avg(DN(v)), std(DN(v))] is the standard augment feature of node
v, fo

v is the raw features of node v with default value of 1, following the previous studies (Wu et al.,
2022; Cai & Wang, 2018; Zhang et al., 2020). deg(v) is the degree of node v and DN(v) represents
the degree set of the neighbor nodes of v.

For the corresponding subgraph g, the external feature fe
v,g is represented as [l-num, graph-size,

mis-num], where l-num is the edge number between node v and g. graph-size is the node number
of g. It is worth noting that an ideal community is distinguished by high exclusivity and strong
internal connections, forming a clique. Accordingly, mis-num is defined as the number of nodes
that are not part of a clique.

Integrity-Based Loss. The size and defect concentration play a crucial role in determining its
growth status (overgrown, undergrown, or in equilibrium), which are essential for understanding how
communities evolve and merge. To effectively integrate these factors, we propose an integrity-based
loss function. The norm of the subgraph embedding represents its stored energy, while the normalized
vector signifies defect concentration. Each subgraph is assigned a triplet integrity score, with [1,0,0],
[0,1,0], and [0,0,1] representing the undergrown, equilibrium, and overgrown states, respectively. For
subgraph g, its integrity score ŷg is defined as the following:

pkg = σ(W k
p ∗ [h(g)||h̄(g)] + bkp), k ∈ {1, 2, 3},

ŷg = [ŷ1g , ŷ
2
g , ŷ

3
g] = Softmax(p1g, p

2
g, p

3
g),

(6)

where σ stands for activation function, || stands for concatenation, h(∗) and h̄(∗) are the graph
embedding and normalized embedding for the given subgraph. W k

p and bkp are the weights and bias
of the corresponding network. The integrity-based loss function can thus be formed as:

lossG = −1

3

{S1,S2,S3}∑
S

∑
g∈S

3∑
k=1

(ykg log(ŷkg) + (1− ykg)log(1− ŷkg)), (7)

where ykg is the k-th dimension of g’s label, ŷkg is the corresponding prediction of ykg . S1 = {b, c, ȧ1}
stands for those subgraphs can still growth. S2 = {a1, a2, a3} stands for stable subgraphs, and S3 =
{a1 + ă1, a1 + a2, a2 + a3, a3 + a1} stands for overgrown subgraphs.

4.3 GRAPH ENCODER

The original node representation fa
v of node v is transformed through a fully-connected layer into

z0(v). Subsequently, the encoder disseminates and amalgamates the information through a K-layer
GCN:

zk(v) = GNN(zk−1(v)), z0(v) = σ(W ffa
v + bf),

z(v) = σ(W a ∗ ||Kk=0z
k(v) + ba),

(8)

where zk(v) stands for the embedding of node v after k GNN layers, z(v) is the final node embedding
of node v by concatenating all previous layer embeddings and transforming it with a linear layer. We
then use sum-pooling z(g) to represent the embedding for the given subgraph g.

In the preferential attachment model, new nodes tend to connect to high-degree nodes, and smaller
cliques cluster around larger ones, forming a hierarchical structure. Hyperbolic geometry is effective
for preserving tree-like structures between cliques and communities, making it effective for commu-
nity detection (Gerald et al., 2023; Chami et al., 2020; Cao et al., 2022). We thus transform Euclidean
graph embedding z(g) to hyperbolic embedding h(g), see App. D for more details. The overall loss
function L is formulated as follows:

L = γElossE + γC lossC + γI lossI (9)

where γ{E,C,I} are the coefficients that regulate the balance between the contributions of different
loss functions. lossE is the summation of lossESize and lossEDefc. After the initial training, we employ
an independent fully connected layer to minimize lossG for status checking. Finally, cliques with

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the shortest embedding distance to the training communities are chosen as the first-stage candidates.
The algorithm of the Nucleus Proposer is provided in Algo. 1. (For large graphs, finding all cliques
is extremely time-consuming. Therefore, we implement an preliminary selection mechanism prior
Nucleus Propose, see App. F for more details.)

5 TRANSITIVE ANNEALER

To develop this core candidate selected by Nucleus Proposer into the final communities, we introduce
a learning-free propagation method called Transitive Annelar. The pipeline of the Transitive Annealer
and complexity analysis can be found in Algo. 2 and App. C. The meanings of the notations can be
found in Tab. 2. In each growth iteration, we tackle three key points to ensure the candidates develop
into reasonable structures.

5.1 POTENTIAL FOR FURTHER GROWTH OF THE CURRENT STATE

The integrity score and interface energy barrier are crucial for ensuring a community remains
stable and suitable for further expansion. Therefore, we use integrity checks and interface energy
assessments to evaluate community stability and determine the conditions for merging new subgraphs.

Table 2: Element notations. N, S, E, I stand for
node, subgraph, energy, and integrity score.

Notation Type/Definition
V e [N] Sm−1’s inner boundary nodes
Ce

i [S] Merge all cliques contain vei as Ce
i

Sm−1/m [S] Current / next step state
Sc
i [S] Ce

i + Sm−1, Candidate state
Intf-E(∗) [E] Interface energy btw ∗ and Sm−1

||*|| [E] Stored energy of a subgraph
ŷj∗ [I] j-th integrity scores of a subgraph

Integrity Check. Annealer expands candidates to
communities iteratively. For the m-th iteration, we
need to check the current state Sm−1’s integrity
scores by Eq. 6. If ŷ1Sm−1

< max(ŷ1,2,3Sm−1
), we deem

the Sm−1 has already reached the stable or over-
grown state, we thus stop the growth.

Interface Energy Check. As mentioned in Sec. 4.2,
to surpass the interface barrier, subgraphs need to
consume extra energy. For an extendable node vei ∈
V e, we merge all cliques containing vei as Ce

i , the
corresponding expanded candidate Sc

i is constructed by combining Ce
i with Sm−1. Due to the

interface energy barrier, the stored energy summation of the current state Sm−1, merged clique Ce
i ,

and their interface energy Intf-E(vei) (defined in Eq. 5) should be larger than the stored energy of the
expanded candidate. We therefore require the following interface energy constraint:

||Ce
i ||+ ||Sm−1||+ |Ce

i | ∗ Intf-E(vei) ≥ ||Sc
i ||, (10)

where |Ce
i | is the number of nodes inside Ce

i , but outside Sm−1.

5.2 SELECTION OF CLIQUE FOR MERGING

To develop a more cohesive community with fewer outliers, we select the candidate with the highest
stored energy as the next state Sm. The annealing process continues until it either reaches the
overgrown state or the maximum step count is reached:

||Sc
k|| = arg max

i∈|V e|
(||Sc

i ||); Sm = Sc
k. (11)

However, merely selecting the merged clique with the highest stored energy may lead to a local
optimum. To address this issue, we employ the simulated annealing algorithm, which accepts sub-
optimal solutions with certain probabilities. Specifically, the weighting probabilities are defined
based on the energy differences between the potential expanded states and the initial states:

{P1, . . . , P|V e|} = Softmax(D1, . . . , D|V e|),

Di = ||Sc
i || − ||Sm−1||.

(12)

With a pre-defined temperature probability function Ptemp(|Sc
i |), where |Sc

i | is the node number of
Sc
i . The candidate is selected if its weight score exceeds Ptemp(|Sc

i |) (the function will be illustrated
in App. H). Accordingly, the updated state Sm is determined as follows:

Ŝc
i = {Sc

i |Pi > Ptemp(|Sc
i |)}, (i ∈ {1, . . . , |V e|}),

Sm =
⋃
{Sc

i |1(Ce
i , Sm−1, S

c
i) = 1}, Sc

i ∈ Ŝc
i ,

(13)

where the indicator function 1(Ce
i , Sm−1, S

c
i) = 1, if the requirement in Eq.10 is satisfied.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.3 SHIFTING OF COMMUNITY CORE

The Nucleus Proposer utilizes cliques for matching, potentially resulting in sub-optimal community
center selections. To dynamically identify prospective cliques during growth, we determine if a
merged clique Ce

i could serve as a superior community core by calculating its integrity scores using
Eq. 6. If the integrity score ŷ2Ce

i
of Ce

i surpasses that of the previous state ŷ2Sm−1
and all other

extendable nodes, the center will be shifted to Ce
i and a new annealing cycle will be initiated, as

illustrated in Fig. 2, where the center of community 1 has been adjusted.

6 EXPERIMENT AND ANALYSIS

Dataset. Our datasets include Amazon (Product), DBLP (Citation), and LiveJournal (Social Network),
each containing a graph and 5,000 labeled communities. We also compare with classic unsupervised
methods in Table 13 and 15, and test model under Non-Clique (Bipartite) setting in Table 16. We
used two experimental settings:

Setting 1 (from CLARE): We strictly replicated from Wu et al. (2022); Zhang et al. (2020) to ensure
a fair comparison. In this setting, communities above the 90-th percentile in size were excluded, and
1,000 communities were then sampled. Additionally, 5,000 edges were added between two graphs
from different datasets to create a hybrid graph (e.g., A/D). The A/D task was to identify communities
only from A (No D community should be found) within the hybrid graph.

Setting 2: Concerning about the ability of finding communities under different sizes, in this setting,
no community exclusions, link insertions, or hybrid networks. This setting can better study the impact
of large community sizes. We sorted communities by size and conducted 15 experiments to evaluate
the model’s performance across different community sizes. The split setting: training (9%), validation
(1%), and testing sets (90%). Detailed information about the datasets can be found in App. E.

Baselines & Metrics. We compare CLANN with the following models: BigClam (Unsupervised)
Yang & Leskovec (2013) and its assisted version BigClam-A, ComE (Unsupervised) Cavallari et al.
(2017), CommunityGAN Jia et al. (2019), vGraph (Unsupervised) Sun et al. (2019), Bespoke Bakshi
et al. (2018), SEAL Zhang et al. (2020), and CLARE Wu et al. (2022). NP stands for Nucleus
Proposer (directly using clique candidates as predictions). Top 4 models are selected for adaptability
analysis. We follow the evaluation metrics (bi-matching F1, Jaccard, and ONMI) in Bakshi et al.
(2018); Chakraborty et al. (2017); Jia et al. (2019), each metric’s definition is provided in the App. G.

6.1 OVERALL PERFORMANCE

Table 3: F1 Scores (Jacc., OMNI in Table 9). A/D:
find A’s communities in A+D. Bold/Underline:
1st/2nd best scores. N/A: not converge in 2 days.
We conduct 5 experiments for NP and CLANN,
the average std is less than 0.0323.

Model A D L A/D D/A D/L L/D
BigClam .6885 .3217 .3917 .1759 .2363 .0909 .2183

BigClam-A .6562 .3242 .3934 .1745 .2346 .0859 .2139
ComE .6569 N/A N/A N/A N/A N/A N/A

Com-GAN .6701 .3541 .4067 .0204 .0764 .0251 .0142
vGraph .6895 .1134 .0429 .0769 .1002 .0131 .0206
Bespoke .5193 .2956 .1706 .0641 .2464 .0817 .1893
SEAL .7252 .2914 .4638 .2733 .1317 .1906 .2291

CLARE .7730 .3835 .4950 .3988 .2901 .2480 .2894
NP .7809 .3979 .3655 .4586 .3850 .3334 .2435

CLANN .9055 .4701 .5144 .6578 .4355 .3373 .3932

We compared CLANN with different baseline
models in Table 3. CLANN significantly out-
performs other models in various metrics. On
single datasets, CLANN improves the F1 score
by an average of 14.54% over the top SOTA
models; for hybrid datasets, the increase aver-
ages 46.74%, with scores nearly doubling those
of the closest competitors in some cases. Prob-
abilistic methods struggle on hybrid datasets as
they rely on statistical distributions that align
well within single datasets but fail to capture the
nuances between two combined datasets.

Bespoke and SEAL rely on the initial core’s
quality, while CLARE lacks accuracy as many
community cores don’t fit the K-hop ego net-
work structure. Additionally, most nodes lie
outside labeled communities, adding noise to later stages. However, as Fig. 7 shows, almost all
communities comprise internal cliques, enhancing the effectiveness of our Nucleus Proposer. Further-
more, most methods limit candidate numbers due to computational constraints, leading to sub-optimal
centers. The Transitive Annealer, with its lower computational costs, can handle more candidates,
reducing the likelihood of forming sub-optimal communities in the second stage.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6.2 ABLATION STUDY

Table 4: F1 scores (Jaccard, OMNI scores are in Tab. 10)
of different schemes. Engy., Intf., Cons., and Intg. stand
for energy, interface, consistency, and integrity losses. (+:
add new scheme). NP: Nucleus Proposer with hyperbolic
geometry. +Infc: Filter out candidates by interface energy.
+SA: Simulated Anneal. +C-E: Clique-wise operation.
+TA: Transitive Annealer.

Engy. +Intf. +Cons. +Intg. NP +Infc +SA +C-E +TA
A .7515 .7582 .7795 .7796 .7809 .8023 .8241 .8654 .9055
D .3370 .3556 .3590 .3613 .3979 .4287 .4399 .4415 .4701
L .3266 .3267 .3310 .3657 .3655 .3920 .4184 .4713 .5144

A/D .3841 .3890 .4099 .4118 .4586 .4834 .5083 .5820 .6578
D/A .2497 .2671 .2562 .2689 .3850 .3921 .4020 .4222 .4355
D/L .2312 .2433 .2497 .2492 .3334 .3332 .3316 .3300 .3373
L/D .1923 .2019 .2057 .2056 .2435 .2668 .2876 .3311 .3932

Effectiveness of Crystallization Kinet-
ics. We analyze the contribution of var-
ious loss functions in crystallization ki-
netics and the results are shown in Ta-
ble 4. Engy. acts as a baseline, fo-
cusing on the graph’s energy but ne-
glecting interactions with neighboring
nodes and inner component relation-
ships. Intf. considers interactions be-
tween the graph and neighboring nodes,
which is crucial for community integra-
tion and exclusion. Cons. aims to en-
sure embedding robustness by requiring
the sum of the embeddings of a com-
munity’s two largest cliques close to the
community embedding. Intg. evaluates community status, although achieving minimal performance
boosts, it is essential for guiding the Transitive Annealer, informing about the potential oversizing or
undersizing of communities.

Effectiveness of Transitive Annealer. The Transitive Annealer modules significantly enhance
performance across various aspects, as shown in Table 4: +Infc excludes candidate cliques that
violate the interface energy criteria, effectively pruning irrelevant cliques to boost efficiency and
community detection quality. +SA utilizes a simulated annealing algorithm to merge neighboring
candidates, refining the candidate set to achieve a more optimal community structure. +C-E shows
performance gains by leveraging the full interconnectivity of cliques. +TA indicates that the initial
candidates may not always be the best choices, as it dynamically identifies better community centers.

6.3 ADAPTABILITY EVALUATION

Table 5: Adaptability comparison on Amazon dataset
with different community sizes and numbers.

Metric C-GAN Bespoke SEAL CLARE NP CLANN

A
-1

k F1 .3446 .9644 .8331 .9086 .8339 .9905
Jacc. .2097 .9463 .7472 .8483 .7927 .9905

ONMI .0000 .9411 .7467 .8676 .7426 .9905

A
-2

k F1 .4160 .9163 .7026 .9140 .7508 .9601
Jacc. .3103 .8879 .5915 .8661 .6803 .9452

ONMI .1947 .8936 .6099 .8787 .6569 .9490

A
-3

k F1 .5003 .8794 .4414 .8853 .6783 .9452
Jacc. .4023 .8328 .3490 .8213 .5848 .9203

ONMI .3386 .8463 .3151 .8281 .5707 .9306

A
-4

k F1 .5551 .8199 .3866 .8583 .6214 .9177
Jacc. .4491 .7607 .2976 .7841 .5129 .8764

ONMI .4150 .7714 .2706 .7895 .4354 .8957

A
-5

k F1 .6602 .7298 .2381 .6927 .5223 .8084
Jacc. .5635 .6575 .1623 .5897 .4241 .7428

ONMI .5694 .6432 .0700 .5725 .3529 .7418

Table 5 presents the adaptability compari-
son of CLANN across different community
sizes and numbers. The results demonstrate
superior performance of CLANN across all
datasets. As the community size increases, all
models’ performance tends to decrease. How-
ever, CLANN’s decrease is much less pro-
nounced than other models, suggesting better
adaptability to complex structures. The results
also apply to the other two datasets in Table 11
and 12. CLANN offers a more nuanced and ac-
curate representation of community structures,
which could better capture the intricacies of
community formation and evolution by bal-
ancing stored energy with interface energy.

6.4 EFFICIENCY EVALUATION

Table 6: NP: NP runtime, Clq: clique core
number, T/S-(avg): total/average annealing
runtime/step.

NP(s) # Clq T(s) T-avg(s) S S-avg
A 35.2 4,995 112.1 0.022 11267 2.26
D 78.5 16,990 291.3 0.017 17984 1.06
L 147.9 30,000 945.5 0.032 37574 1.25

A/D 38.1 29,040 717.0 0.025 42732 1.47
D/A 75.9 5,775 124.2 0.022 9037 1.56
D/L 109.8 30,000 453.5 0.015 20329 0.68
L/D 212.3 30,000 839.2 0.028 42082 1.40

As shown in Table 6, the total and average number of
steps taken to anneal candidates underlines the model’s
efficiency again. The annealing process is a fine-tuning
mechanism, making it more adaptable and versatile.
The fact that CLANN can efficiently anneal all candi-
dates, regardless of the quantity, indicates its superior
handling of candidate communities compared to mod-
els like CLARE and SEAL. These models often limit
the number of candidates, which might hinder their
ability to detect all possible communities accurately.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

LiveJournalDBLPAmazon

R
un
tim
e(
s)

BeSpoke Com-GAN SEAL CLARE NP CLANN

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

Figure 4: Runtime analysis. Nodes with bigger sizes
stand for the best performance.

In addition, we compare the runtime with
different community sizes. As shown in
Fig. 4, CLANN achieves the best perfor-
mance with much greater efficiency. This
efficiency comes from three points: (1) Pre-
liminary Core Filter prevents unnecessary
clique searching; (2) Nucleus Proposer only
checks possible cliques rather than all nodes’
k-hop ego-networks; (3) Transitive Annealer
refine candidate structure on clique-wise op-
eration. Fig. 10 shows the runtime of each
module.

6.5 PARAMETER ANALYSIS

Engergy-Based Loss

Loss AmplificationLoss AmplificationLoss Amplification

Consistency-Based Loss Interface-Based Loss

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

Figure 5: F1 scores of different loss weights.

As illustrated in Fig. 5, we conduct a de-
tailed loss weight analysis, where we first
normalized the three loss items to the same
magnitude. Then, for the target loss item,
we varied its weight γ{E,C,I} across a range
of values (0.01, 0.1, 1, 10, 100) to evaluate
its influence on the final results. The analy-
sis demonstrates that our model remains sta-
ble and robust across different loss weights.

6.6 CASE VISUALIZATION

We provide a detailed case analysis in Fig. 6. This analysis examines the annealing process across
different community sizes. For small-sized communities, we may not need the annealing process,
particularly when the community is a clique. In cases of larger community size, based on the
clique-wise operation, CLANN can merge two cliques in a single step, thus converge efficiently. For
large community, CLANN can also efficiently identify most of the core nodes, with errors typically
occurring at the periphery. These peripheral errors usually involve nodes with either a single link to
the main body or those that have multiple connections but do not truly belong to the core community.

Small Size
(1 Steps)

Large Size
(Over-Include)

Large Size
(Mis-Include)

Small Size
(No Adjustment)

Middle Size
(3 Steps)

A
nn

ea
le

r

Figure 6: Case analysis on different community sizes. Our model takes only at most 3 steps to get the
final communities for cases.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel community detection method CLique ANNealing (CLANN) inspired
by the linking of the annealing process and community detection. Inconsistency in community cores
and poor scalability are key challenges in semi-supervised community detection. To address these
issues, CLANN introduces two main components: the Nucleus Proposer and the Transitive Annealer.
The Nucleus Proposer enhances consistency between core candidates and actual community cores
by incorporating crystallization kinetics into clique-based optimization. Meanwhile, the Transitive
Annealer employs a learning-free growth process to boost scalability. Comprehensive evaluations
highlight CLANN’s superior performance, while also shedding light on the underlying mechanisms.
Additionally, adaptability analysis underscores the model’s applicability to real-world scenarios.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Emmanuel Abbe. Community detection and stochastic block models, 2023.

Arash A Amini, Aiyou Chen, Peter J Bickel, and Elizaveta Levina. Pseudo-likelihood methods for
community detection in large sparse networks. 2013.

Arjun Bakshi, Srinivasan Parthasarathy, and Kannan Srinivasan. Semi-supervised community detec-
tion using structure and size. In IEEE ICDM 2018), pp. 869–874. IEEE, 2018.

Vandana Bhatia and Rinkle Rani. Dfuzzy: a deep learning-based fuzzy clustering model for large
graphs. Knowledge and Information Systems, 57(1):159–181, 2018.

Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural deep clustering
network. In Proceedings of the web conference 2020, pp. 1400–1410, 2020.

Chen Cai and Yusu Wang. A simple yet effective baseline for non-attributed graph classification.
arXiv preprint arXiv:1811.03508, 2018.

James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al. Hyperbolic geometry.
Flavors of geometry, 31(59-115):2, 1997.

Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, and Qingming Huang. Geometry
interaction knowledge graph embeddings. In AAAI 2022, volume 36, pp. 5521–5529, 2022.

Sandro Cavallari, Vincent W Zheng, Hongyun Cai, Kevin Chen-Chuan Chang, and Erik Cambria.
Learning community embedding with community detection and node embedding on graphs. In
CIKM 2017, pp. 377–386, 2017.

Tanmoy Chakraborty, Ayushi Dalmia, Animesh Mukherjee, and Niloy Ganguly. Metrics for commu-
nity analysis: A survey. ACM Computing Surveys (CSUR), 50(4):1–37, 2017.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Low-
dimensional hyperbolic knowledge graph embeddings. arXiv preprint arXiv:2005.00545, 2020.

Junyang Chen, Zhiguo Gong, Jiqian Mo, Wei Wang, Cong Wang, Xiao Dong, Weiwen Liu, and
Kaishun Wu. Self-training enhanced: Network embedding and overlapping community detection
with adversarial learning. IEEE Transactions on Neural Networks and Learning Systems, 33(11):
6737–6748, 2021.

Jiafeng Cheng, Qianqian Wang, Zhiqiang Tao, Deyan Xie, and Quanxue Gao. Multi-view attribute
graph convolution networks for clustering. In IJCAI 2021, pp. 2973–2979, 2021.

Jiujun Cheng, Xiao Wu, Mengchu Zhou, Shangce Gao, Zhenhua Huang, and Cong Liu. A novel
method for detecting new overlapping community in complex evolving networks. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 49(9):1832–1844, 2018.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

Siemon C de Lange, Marcel A de Reus, and Martijn P van den Heuvel. The laplacian spectrum of
neural networks. Frontiers in computational neuroscience, 7:189, 2014.

Shaohua Fan, Xiao Wang, Chuan Shi, Emiao Lu, Ken Lin, and Bai Wang. One2multi graph
autoencoder for multi-view graph clustering. In WWW 2020, pp. 3070–3076, 2020.

Thomas Gerald, Hadi Zaatiti, Hatem Hajri, Nicolas Baskiotis, and Olivier Schwander. A hyperbolic
approach for learning communities on graphs. Data Mining and Knowledge Discovery, 37(3):
1090–1124, 2023.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. NeurIPS
2019, 32, 2019.

Sumit Kumar Gupta and Dhirendra Pratap Singh. Cbla: A clique based louvain algorithm for
detecting overlapping community. Procedia Computer Science, 218:2201–2209, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

Hoyeon Jeong, Yoonbee Kim, Yi-Sue Jung, Dae Ryong Kang, and Young-Rae Cho. Entropy-based
graph clustering of ppi networks for predicting overlapping functional modules of proteins. Entropy,
23(10):1271, 2021.

Yuting Jia, Qinqin Zhang, Weinan Zhang, and Xinbing Wang. Communitygan: Community detection
with generative adversarial nets. In WWW 2019, pp. 784–794, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Janez Konc and Dušanka Janezic. An improved branch and bound algorithm for the maximum clique
problem. proteins, 4(5):590–596, 2007.

Jussi M Kumpula, Mikko Kivelä, Kimmo Kaski, and Jari Saramäki. Sequential algorithm for fast
clique percolation. Physical review E, 78(2), 2008.

Guanling Lee, Sheng-Lung Peng, Shih-Wei Kuo, and Yi-Chun Chen. Mining frequent maximal
cliques efficiently by global view graph. In 2012 9th International Conference on Fuzzy Systems
and Knowledge Discovery, pp. 1362–1366. IEEE, 2012.

Huan Li, Ruisheng Zhang, Zhili Zhao, and Yongna Yuan. An efficient influence maximization
algorithm based on clique in social networks. IEEE Access, 7:141083–141093, 2019.

Li Lu, Yunhong Gu, and Robert Grossman. dmaximalcliques: A distributed algorithm for enumerating
all maximal cliques and maximal clique distribution. In ICDM Workshops 2010, pp. 1320–1327.
IEEE, 2010.

Dongsheng Luo, Jingchao Ni, Suhang Wang, Yuchen Bian, Xiong Yu, and Xiang Zhang. Deep
multi-graph clustering via attentive cross-graph association. In WSDM 2020, pp. 393–401, 2020.

Jian Ma and Jianping Fan. Local optimization for clique-based overlapping community detection in
complex networks. IEEE Access, 8:5091–5103, 2019.

Sumana Maity and Santanu Kumar Rath. Extended clique percolation method to detect overlapping
community structure. In ICACCI 2014, pp. 31–37. IEEE, 2014.

Aaron F McDaid, Derek Greene, and Neil Hurley. Normalized mutual information to evaluate
overlapping community finding algorithms. arXiv preprint arXiv:1110.2515, 2011.

Nikhil Mehta, Lawrence Carin Duke, and Piyush Rai. Stochastic blockmodels meet graph neural
networks. In ICML 2019, pp. 4466–4474. PMLR, 2019.

Selim Mimaroglu and Murat Yagci. Clicom: Cliques for combining multiple clusterings. Expert
Systems With Applications, 39(2):1889–1901, 2012.

Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the overlapping community
structure of complex networks in nature and society. nature, 435(7043):814–818, 2005.

Yin Pang and Kan Li. An energy model for network community structure detection. In Advanced
Data Mining and Applications: 9th International Conference, ADMA 2013, Hangzhou, China,
December 14-16, 2013, Proceedings, Part I 9, pp. 410–421. Springer, 2013.

Paulo Rangel Rios, Fulvio Siciliano Jr, Hugo Ricardo Zschommler Sandim, Ronald Lesley Plaut, and
Angelo Fernando Padilha. Nucleation and growth during recrystallization. Materials Research, 8:
225–238, 2005.

Arindam Sarkar, Nikhil Mehta, and Piyush Rai. Graph representation learning via ladder gamma
variational autoencoders. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 5604–5611, 2020.

Oleksandr Shchur and Stephan Günnemann. Overlapping community detection with graph neural
networks. arXiv preprint arXiv:1909.12201, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hua-Wei Shen, Xue-Qi Cheng, and Jia-Feng Guo. Quantifying and identifying the overlapping
community structure in networks. Journal of Statistical Mechanics: Theory and Experiment, 2009
(07):P07042, 2009.

Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, and Jian Tang. vgraph: A generative
model for joint community detection and node representation learning. NeurIPS 2019, 32, 2019.

Michael Svendsen, Arko Provo Mukherjee, and Srikanta Tirthapura. Mining maximal cliques from a
large graph using mapreduce: Tackling highly uneven subproblem sizes. Journal of Parallel and
distributed computing, 79:104–114, 2015.

Xixi Wu, Yun Xiong, Yao Zhang, Yizhu Jiao, Caihua Shan, Yiheng Sun, Yangyong Zhu, and Philip S
Yu. Clare: A semi-supervised community detection algorithm. In ACM SIGKDD 2022, pp.
2059–2069, 2022.

Jaewon Yang and Jure Leskovec. Overlapping community detection at scale: a nonnegative matrix
factorization approach. In WSDM 2013, pp. 587–596, 2013.

Qingfu Zhang, Jianyong Sun, and Edward Tsang. An evolutionary algorithm with guided mutation
for the maximum clique problem. IEEE transactions on evolutionary computation, 9(2):192–200,
2005.

Xingyi Zhang, Congtao Wang, Yansen Su, Linqiang Pan, and Hai-Feng Zhang. A fast overlapping
community detection algorithm based on weak cliques for large-scale networks. IEEE Transactions
on Computational Social Systems, 4(4):218–230, 2017.

Yao Zhang, Yun Xiong, Yun Ye, Tengfei Liu, Weiqiang Wang, Yangyong Zhu, and Philip S Yu.
Seal: Learning heuristics for community detection with generative adversarial networks. In ACM
SIGKDD 2020, pp. 1103–1113, 2020.

Zhiwei Zhang, Lin Cui, Zhenggao Pan, Aidong Fang, and Haiyang Zhang. A triad percolation
method for detecting communities in social networks. Data Science Journal, 17:30–30, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A CLIQUE-BASED MODULARITY AND LOSS IN COMMUNITY DETECTION

Community Structure: In all the datasets we used, the labeled communities inherently contain at
least one clique. This aligns with the natural formation of communities, where tightly-knit groups of
nodes (cliques) are common. Also, as shown in Fig. 7, all communities harbor at least one internal
clique. Using these motifs (cliques) as starting points is thus more effective than traversing all nodes
to locate suitable community centers Shen et al. (2009); Lu et al. (2010); Svendsen et al. (2015).

Besides, we design the homophily score in Fig. 8 to describe how central the nodes inside a community
are. The score is calculated by using the number of neighbor nodes in the same community divided
by the community size. We can see clique nodes have much higher homophily scores than those
outside cliques.

Amazon DBLP LiveJournal

Co
m

m
. R

at
io

3 4 5 6 7 8 9 10

1.00

0.50

0.00

1.00

0.50

0.00
3 4 5 6 7 8 9 10

1.00

0.50

0.00
3 4 5 6 7 8 9 10

Figure 7: Accumulative proportion to community’s max inner clique size.

Modularity Consideration: For the reason why cliques are used as the starting point, we can refer
to modularity, which is calculated as the summation of the term

(
ai,j − ki·kj

2m

)
× δ(i, j) over all

pairs of nodes i and j, where ai,j represents the actual connection between nodes i and j, ki and
kj are the degrees of nodes i and j, and m is the total number of edges in the graph. The δ(i, j)
function is 1 if nodes i and j are in the same community, and 0 otherwise. In a clique, every pair of
nodes is connected, making the term

(
ai,j − ki·kj

2m

)
positive for all node pairs within the clique. This

positive contribution is maximized when all nodes of the clique are treated as a single community,
and breaking a clique into smaller communities reduces the overall modularity because it decreases
the number of positive contributions in the summation.

Energy-Based Loss: To understand why the modularity of a clique with size k is always greater than
that of a sub-clique with size k − 1, consider the modularity formula in detail. When you remove
a node from a k-clique to form a (k − 1)-clique, you also remove all the edges connected to that
node. This reduces the number of positive terms in the modularity summation. Specifically, for
each node pair (i, j) within the original clique, the term

(
ai,j − ki·kj

2m

)
contributes positively to the

modularity when i and j are connected (which is always true in a clique). By removing a node from
the community, you reduce the number of such positive contributions, thereby lowering the overall
modularity. Therefore, the modularity of the original k-clique is always greater than that of any
(k − 1)-clique derived from it.

Interface-Based Loss: When expanding a community, the new additions must bring more benefit
than the loss incurred. Referring to the term

(
ai,j − ki·kj

2m

)
, the first term ai,j is positive if there is

an edge between nodes i and j, but the second term ki·kj

2m is always negative because it subtracts
from the overall modularity. This means that if the newly added node j has strong connections to the
existing community (resulting in more positive ai,j values), it can potentially overcome the negative
contribution from the ki·kj

2m term, leading to an overall positive gain in modularity. Conversely, if
most of the connections ai,j are zero, the gains from adding the node would not compensate for the
loss, aligning the energy-based crystallization principle with modularity.

Consistency-Based Loss: Consistency is a natural property of well-structured communities. Better
community structures tend to have tighter internal links, making it easier for a node’s information
to integrate into the community during GNN encoding. Particularly in cliques, all neighbors are
one-hop neighbors of each other, ensuring strong consistency.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Ho
m
op

hil
y

Amazon DBLP LiveJournal
Figure 8: Homophily scores of community nodes inside (orange) and outside (blue) cliques.

Integrity-Based Loss: In practical scenarios, communities labeled by experts may not always align
with the criterion of maximum modularity. Therefore, we introduce an additional loss to incorporate
expert knowledge, recognizing that a community structure deemed appropriate by experts may not
always correspond to the highest modularity score.

B EXPLANATION OF CRYSTALLIZATION KINETICS PRINCIPLES

If we compare a network to a crystal lattice structure, nodes signify atoms, and edges depict atomic
bonds. Within an amorphous lattice structure, if we select and scrutinize a random area, we can
find defects and deformations in it. This scenario mirrors constructing a subgraph from randomly
chosen connected nodes, deemed a community. The so-called ‘defects’ or ‘deformations’ essentially
represent mis-included or mis-excluded nodes within the community.

In the process of crystallization, annealing is a heat treatment that mitigates dislocations, repositions
them into a configuration with lower energy, and promotes the formation of better grain boundaries.
According to Rios et al. (2005), this process practically eradicates all dislocations prompted by
deformation through the migration of grain boundaries. In the context of community detection, our
proposed CLANN model emulates this annealing process. ‘Defects’ and ‘deformations’ within the
network undergo ‘annealing’ to form well-structured communities by correctly including and exclud-
ing nodes. This process mirrors the organic adjustment of a crystal’s structure, where misalignments
are rectified, and a more coherent and unified formation emerges.

• Stored Energy is Determined by the Grain Size and Defect Concentration: In a crys-
talline structure, the material itself and those defects (such as dislocations, vacancies, and
grain boundaries) store a significant portion of the energy. This energy is termed ‘stored
energy’. The size of the crystal grain and the concentration of these defects, therefore,
largely influence the stored energy in the system. Also, the larger the grain, the higher the
probability of containing defects, which leads to an increase in stored energy.

• Crystallographic Directions Should be Consistent: A well-crystallized crystal signifies
that a material has a regular, repeating arrangement of atoms with minimal defects. As
shown in Fig. 3, one characteristic of such a material is the consistency in crystallographic
directions across grains, allowing for more uniform physical properties. On the other hand,
if two crystal subgrains share the same crystallographic direction, they are very likely to
form a more integrated grain. For instance, these consistent crystallographic directions can
influence how the crystal behaves under stress or how it conducts heat or electricity.

• Stored Energy and Boundary Interface Energy Barrier Decide the Crystal Growth:
Crystal growth depends on minimizing the material’s total energy, which comprises the
energy within the crystal itself and the energy at the interface or grain boundary. The driving
force for the growth of a crystal subgrain is the reduction of energy density among the whole
grain. If the energy barrier at the grain boundary is high, it might impede the grain’s growth,
even if there’s a significant reduction in the energy within the crystal itself. Therefore, both
the crystal’s energy and the energy at the interface play a crucial role in determining whether
the crystal will continue to grow.

• Stored Energy and Defect Concentration Decide the Integrity: For a selected area, if
the area is full of well-crystallized crystals, we will get a larger average grain size and
smaller defect concentration. Otherwise, there will be a smaller grain size and larger defect
concentration, as there are more grain boundaries in this area. The comparison is shown in
Fig. 3.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C COMPLEXITY ANALYSIS

Let N represent the number of nodes and M the specified number of cores. The entire model consists
of three main components:

Preliminary Core Filter: This component identifies appropriate community center nodes using a
simple Multi-Layer Perceptron (MLP) model. The training data is constructed based on betweenness
centrality, but it is computed only on a few small sub-graphs, making the computation trivial and
negligible compared to other parts of the model. Calculating the scores for all nodes to determine
their suitability as community centers has a time complexity of N .

Nucleus Proposer: The primary time complexity of the Nucleus Proposer arises from clique
preparation. Since the Nucleus Proposer only prepares cliques for specific nodes selected by the Core
Filter, we thus only need to find the max cliques for these M selected nodes. For each node, we
need to find its neighbor nodes (O(N)) and check all edges among them (O(N2)). The worst-case
complexity is then O(M · (N +N2)), which simplifies to O(N2).

Transitive Annealer: As detailed in Algo. 2, each iteration of the Transitive Annealer involves 4
main steps (blue comments):

1. Check Expandability: Check the integrity score of the current state, thus O(1).
2. Collect Extendable Nodes: Check all extendable neighboring nodes, in a worst-case O(N).
3. Check Nucleus Transition: Check the transition condition, thus O(1).
4. Check Interface Requirement: Similar to Step 2, in a worst-case O(N).

If the maximum number of iterations is C, the total time complexity for Transitive Annealer is:
C(O(N) + O(N)) → O(N). The total time complexity of CLANN is thus O(N) + O(N) +
O(N2)→ O(N2).

For runtime and convergence analysis, as illustrated in Fig. 4 and 10, CLANN’s total runtime is
better than most compared methods. The convergence behavior of the Transitive Annealer is shown
in Table 6. In most cases, the Transitive Annealer converges within 3 steps. The case analysis in
the appended PDF shows CLANN’s behaviors under 5 settings with different community sizes, and
CLANN will converge in at most 3 steps for all of them, which further justifies CLANN’s scalability.

D PRELIMINARIES OF HYPERBOLIC GEOMETRY

Hyperbolic geometry encompasses several conformal models Cannon et al. (1997). Based on its
widespread use in deep learning and computer vision, we operate on the Poincaré ball. The Poincaré
ball is defined as (Dn

c , gD
n
c), with manifold Dn

c = {x ∈ Rn : c||x|| < 1} and Riemannian metric:

gDc
x = (λc

x)
2gE =

2

1− c||x||2
In, (14)

where gE = In denotes the Euclidean metric tensor and c is a hyperparameter governing the curvature
and radius of the ball. Segmentation networks operate in Euclidean space and to be able to operate on
the Poincaré ball, a mapping from the Euclidean tangent space to the hyperbolic space is required.
The projection of a Euclidean vector x onto the Poincaré ball is given by the exponential map with
anchor v and the Möbius addition ⊕c :

expc
v(x) = v ⊕c (tanh(

√
c
λc
v||x||
2

)
x√
c||x||

),

v ⊕c w =
(1 + 2c⟨v, w⟩+ c||w||2)v + (1− c||v||2)w

1 + 2c⟨v, w⟩+ c2||v||2||w||2
.

(15)

In practice, v is commonly set to the origin, simplifying the exponential map to:

expc0(x) = tanh(
√
c|||x|)(x/(

√
c||x||)). (16)

Besides, vector addition is not well-defined in the hyperbolic space (adding two points in the Poincaré
ball might result in a point outside the ball). Instead, Möbius addition also provides an analog to

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 7: Dataset statistics of community number #Ĉ, vertex number #V , edge number #E,
max(average) community size CM/A, the logarithm of edge number/vertex number log(E/V), and
coverage ratio Rc. A, D, and L stand for Amazon, DBLP, and LiveJournal, respectively. Additionally,
Est.α represents the estimated α value of degree power law fit.

#Ĉ #V #E CM/A log(E/V) Rc Est.α
A 1,000 6,926 17,893 30/9.4 1.37 0.812 12.91
D 1,000 37,020 149,501 16/8.4 2.01 0.221 2.86
L 1,000 69,860 911,179 30/13.0 3.71 0.169 3.21

A+D 2,000 43,946 172,394 30/8.9 1.97 0.128 2.95
D+A 2,000 43,946 172,394 30/8.9 1.97 0.186 2.95
D+L 2,000 106,880 1,070,680 30/10.7 3.32 0.077 3.30
L+D 2,000 106,880 1,070,680 30/10.7 3.32 0.111 3.30

Euclidean addition for hyperbolic space. Also, using hyperbolic embeddings, we should use the
hyperbolic distance with the explicit formula:

dc(x, y) =
1√
|c|

acosh
(
1 +

2∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
. (17)

E DATASET STATISTICS

We utilize two dataset configurations. Initially, we adhere strictly to the data preparation and
evaluation procedures of Wu et al. (2022); Zhang et al. (2020), involving three single datasets
(Amazon(A), DBLP(D), and Livejournal(L)) and two hybrid datasets ("Amazon+DBLP"(A+D) and
"DBLP+Livejournal"(D+L)). From a total of 5, 000 communities, communities exceeding the 90-th
percentile size are excluded, and 1, 000 are randomly selected for experiments with 9%, 1%, and 90%
designated as training, validation, and testing sets, respectively. For hybrid datasets, we introduce
5, 000 cross-network links between datasets like Amazon and DBLP, testing the model’s ability to
identify diverse community types. For instance, in the A/D setting, 90 Amazon communities are used
for training, 10 for validation, and the rest for testing.

Additionally, to evaluate CLANN’s adaptability to varying community sizes and numbers, each
dataset is sorted by community size without excluding any community, forming 5 subsets such as
"A-1k" for the smallest 1,000 communities to "A-5k" for all labeled communities. Split ratios are
consistent with the first setting. Details of these arrangements are provided in Tab. 7 and Tab. 8.

F PRELIMINARY CORE FILTER

The Nucleus Proposer needs to prepare all nodes’ cliques. However, for large graphs, finding all
cliques is prohibitively time-consuming. To address this challenge, we develop a preliminary selection
mechanism for large graphs before the Nucleus Proposer. Concretely, for each community, nodes
with the highest betweenness centrality are labeled as community cores. The remaining nodes are
considered peripheral nodes and labeled as 0. To characterize the feature of node v, we concatenate
the original representation fa

v and the average original features f̄a
v of v’s neighbors. We train the

preliminary classifier with communities from the training set:

ycv = σ(W c[fa
v ||f̄a

v] + bc), (18)

where ycv is the prediction for node v. σ(·), W c, and bc are the activation function, weight parameters,
and bias of the classifier. After feeding all nodes’ features into the classifier, clique computations are
exclusively performed for the top M nodes and their neighbors in several hops. By employing this
preliminary filter, we significantly reduce the time required for clique computation.

For betweenness calculation, while it is computationally expensive, we do not calculate it for all
nodes. Instead, we calculate betweenness only for nodes within the training communities, which

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Dataset statistics of different community numbers (1k-5k). The meanings of each notation
are identical to the previous table. Additionally, Est.α represents the estimated α value of degree
power law fit.

#V #E CM/A log(E/V) Rc Est.α
A-1k 1,032 1,156 4 / 3.3 0.11 0.767 26.41
A-2k 2,819 4,596 7 / 4.3 0.49 0.776 17.50
A-3k 5,401 10,878 10 / 5.6 0.70 0.790 19.98
A-4k 9,478 22,522 18 / 7.5 0.87 0.800 8.83
A-5k 19,905 54,618 328 / 13.5 1.01 0.840 4.48
D-1k 26,027 88,945 6 / 6.0 1.23 0.224 3.32
D-2k 47,416 181,396 7 / 6.3 1.34 0.254 3.04
D-3k 70,529 280,695 9 / 6.8 1.38 0.270 3.24
D-4k 97,435 397,563 12 / 7.6 1.41 0.288 3.30
D-5k 216,556 829,388 7,556 / 22.4 1.34 0.431 6.65
L-1k 10,252 25,724 6 / 4.2 0.92 0.356 5.59
L-2k 37,967 274,146 13 / 6.7 1.98 0.293 2.44
L-3k 100,435 1,097,204 21 / 10.0 2.39 0.234 2.56
L-4k 234,820 3,401,944 35 / 14.3 2.67 0.177 4.03
L-5k 439,450 7,431,647 1,441 / 27.8 2.83 0.192 2.69

comprise just 9% of the labeled communities. We extract each training community as a subgraph
and only calculate betweenness within this subgraph. Subsequently, we use this neural network to
identify community centers in the whole graph without needing to calculate betweenness for every
node again, thus significantly reducing computational cost.

G EVALUATION METRICS & BASELINE

Evaluation Metrics. By convention, we select the bi-matching F1 and Jaccard scores Bakshi et al.
(2018); Chakraborty et al. (2017); Jia et al. (2019); Zhang et al. (2020) as evaluation metrics. Given
N generated communities {Ċj} and M ground truth communities {Ĉi}, scores are computed as:

1

2
(
1

N

∑
i

max
j

δ(Ĉi, Ċj) +
1

M

∑
j

max
i

δ(Ċj , Ĉi)), (19)

where δ(., .) can be F1 or Jaccard function. Besides, we use the overlapping normalized mutual
information (ONMI) McDaid et al. (2011) as a supplementary metric, the overlapping version of the
NMI score. It is derived from the normalized mutual information, adjusted to ensure that it ranges
between 0 and 1, where 0 indicates no correlation between the two community assignments, and 1
indicates a perfect match. For more information on ONMI, please refer to McDaid et al. (2011).

Baselines. We give details of our baseline methods of community detection:

• BigClam Yang & Leskovec (2013)1 is designed for large-scale overlapping community
detection. It recognizes densely connected overlaps between communities to enhance
accuracy and scalability.

• BigClam-A Bakshi et al. (2018) stands for BigClam-Assisted, where BigClam is imple-
mented on graphs modified by adding extra edges between nodes in the same community.
These extra edges serve as additional constraints to the BigClam algorithm.

• ComE Cavallari et al. (2017)2 leverages a synergistic loop between community and node
embeddings to enhance graph visualization, community detection and node classification on
multiple real-world datasets

1https://github.com/RobRomijnders/bigclam
2https://github.com/andompesta/ComE

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• CommunityGAN Jia et al. (2019)3 utilizes a Generative Adversarial Net (GAN) to generate
the most likely motifs and optimize vertex embeddings, which indicate membership strength
in communities.

• vGraph Sun et al. (2019)4 is a probabilistic generative model that leverages a mixture model
approach to represent nodes as combinations of communities.

• Bespoke Bakshi et al. (2018)5 is a semi-supervised algorithm that leverages community
membership information and node metadata to identify unique patterns in communities
beyond traditional structures.

• SEAL Zhang et al. (2020)6 uses a GAN to learn community detection heuristics from data,
featuring a specialized GNN for generating communities and a seed selector for enhanced
accuracy.

• CLARE Wu et al. (2022)7 incorporates a Community Locator and Community Rewriter,
utilizing deep reinforcement learning for community structure refinement.

H IMPLEMENTATION DETAILS

CLANN is implemented in Pytorch 2.1.0, PyG 2.4.0 with Python 3.9, and DeepSNAP 0.2.1. All
experiments are conducted on AMD EPYC 7763 64-core Processor with 256GB of memory and a
single NVIDIA RTX A5000 with 24GB of memory. In CLANN, the graph encoder is implemented
by a 3-layer GCN with sum-pooling, and the hidden layers dimension d is 64 (identical to previous
works), with a total of 104783 (0.1M) parameters. The size of the model’s checkpoint is 424 KB. Its
weight parameters are optimized using Adam Kingma & Ba (2017) optimizer with 10 epochs and a
learning rate of 1e−3 by default. m in Tab. 1 is set to be 25, as we aim to maintain the structure with
at least a smallest clique (k=3). For example, if we have a k=4 clique, by removing 25% of the nodes,
we can still retain a k=3 clique. λclq in Consistency-Based Loss is set to be 2. Loss coefficients
γ{E,C,I} are set to keep each loss item in the same magnitude. The temperature probability function,
Ptemp(|Sc

i |) = Φ
(

|Sc
i |−µ
σ

)
, represents a normal distribution where µ is the mean and σ is the standard

deviation of the training community size.

Preliminary Core Filter is trained with training communities. For our largest dataset, lj-5k, it took
63.56 seconds for training and selection (betweenness is not calculated on the whole graph but on the
community sub-graph, which usually only contains 30 nodes). All the competing methods are based
on their publicly available official source code and are trained using the recommended optimization
and hyperparameter settings in the original papers.

I SUPPLEMENTARY PARAMETERS ANALYSIS

Candidate Size Rate. As previously noted, the initial candidates generated by the Nucleus Proposer
might not represent the optimal community centers. Therefore, we increased the candidate pool for
the Transitive Annealer. Fig. 9 illustrates the comparison across various Candidate Size Rates. The
model exhibits improved performance when annealing a broader set of candidates rather than solely
relying on those provided by the Nucleus Proposer. In most instances, achieving superior community
center detection necessitates annealing four times the number of candidates suggested by the Nucleus
Proposer."

J MODULE RUNTIME ANALYSIS

We analyze the runtime performance of three different modules – Clique Prepare, Nucleus Proposer,
and Transitive Annealer – across three separate datasets in Fig. 10. The datasets vary in size from
1, 000 to 5, 000 communities.

3https://github.com/SamJia/CommunityGAN
4https://github.com/sunfanyunn/vGraph
5https://github.com/yzhang1918/bespoke-sscd
6https://github.com/FDUDSDE/SEAL
7https://github.com/FDUDSDE/KDD2022CLARE

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.30

0.40

0.50

0.60

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Amazon DBLP LiveJournal

Candidate Size Rate Candidate Size Rate Candidate Size Rate

Figure 9: F1 performance of different candidate size rates and std rates.

1000 2000 3000 4000 50001000 2000 3000 4000 50001000 2000 3000 4000 5000

Amazon DBLP LiveJournal

Figure 10: Runtime of different modules.

The runtime of the Clique Preparation module increases exponentially with the complexity of the
graph. For instance, in the LiveJournal dataset, runtime rises from 1.57 seconds for 1,000 communities
to 35,712.81 seconds for 5,000 communities, demonstrating substantial exponential growth as the
community size and complexity increase. In contrast, the Nucleus Proposer module exhibits a more
linear relationship with graph complexity. In the Amazon dataset, for example, runtime increases
steadily from 7.09 seconds for 1,000 communities to 110.19 seconds for 5,000 communities, reflecting
a consistent and predictable scaling with increasing community sizes.

The Transitive Annealer module’s runtime initially increases exponentially with the complexity of the
graph but tends to stabilize or converge at higher community numbers. For the LiveJournal dataset,
runtime escalates from 32.28 seconds at 1,000 communities to 880.61 seconds at 5,000 communities,
showing a tapering growth as it approaches larger datasets.

For smaller datasets, the major computational burden is attributed to the Transitive Annealer, where
its runtime significantly surpasses that of other modules at initial community sizes. However, for
larger real-world datasets, the Clique Preparation module becomes a significant bottleneck due to its
exponential increase in runtime. In such scenarios, considering simpler motifs may be a promising
choice to mitigate computational challenges and optimize performance.

K PERFORMANCE ON NON-CLIQUE, SPARSE, AND NOISY DATASETS

We evaluate CLANN’s performance on non-clique structures, including bipartite graphs (3 collabora-
tion and 3 co-purchase networks) and scatter-core networks as shown in Tables 16. To adapt CLANN
for these graphs, cliques were replaced with scatter-based cores, resulting in CLANN(S). These
experiments demonstrate that CLANN(S) maintains robust performance under non-clique and noisy
conditions. The scatter-core approach effectively handles lower-density and overlapping community
structures, addressing concerns regarding CLANN’s reliance on cliques and extending its adaptability
to diverse network types.

Additionally, as shown in Table 17, we conduct experiments on 15 datasets across three scenarios
(Scatter-Core, Barabási-Albert, and NoisyDBLP datasets) to further evaluate CLANN(S)’s effective-
ness in diverse settings. These scenarios simulate non-clique, scale-free, and noisy communities to
assess the model’s generalizability.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

K.1 ADAPTABILITY TO BIPARTITE NETWORKS

CLANN(S) shows significant improvement in bipartite networks by replacing clique-based cores with
scatter cores. As shown in Table 16, CLANN(S) achieves the highest F1 scores across all datasets,
including 0.5241 on CL1 and 0.5051 on CP2, outperforming CLARE and NP(S). This highlights
CLANN(S)’s ability to identify community structures in networks lacking cliques, further validating
its adaptability to non-clique environments.

K.2 SCATTER-CORE NETWORKS (0 CLIQUES)

Scatter-core datasets were generated with 100,000 nodes distributed across varying community sizes
(1K to 5K). For each community, nodes were connected as random tree structures to avoid clique,
and inter-community edges were added while avoiding triangle formation. CLANN outperformed
SOTA in all scatter-core datasets, achieving F1 scores up to 0.3011, highlighting its robustness in
detecting coherent communities in sparse and minimally connected environments.

K.3 BARABÁSI-ALBERT NETWORKS (<300 CLIQUES)

Barabási-Albert (BA) datasets, characterized by scale-free structures, were created with 100,000
nodes divided across varying community sizes (1K to 5K). High-degree nodes served as seeds, with
connected nodes progressively added to maintain community growth. This process preserved the
hierarchical and hub-dominated topology typical of BA networks. CLANN consistently outperformed
SOTA, demonstrating its adaptability to scale-free structures.

K.4 NOISYDBLP DATASETS

NoisyDBLP datasets were constructed by adding 10% noise (random edge additions and removals)
to DBLP networks while preserving community connectivity. Across varying community sizes (1K
to 5K), CLANN maintained stable performance, outperforming SOTA with F1 scores ranging from
0.4157 to 0.4742. This demonstrates the model’s resilience to noise and overlapping structures.

The experimental results validate CLANN(S)’s generalizability and robustness across diverse network
types, including scatter-core, bipartite, scale-free, and noisy graphs. By effectively adapting to
different cores and maintaining strong performance in sparse, heterogeneous, and noisy environments,
CLANN demonstrates its versatility as a robust community detection framework.

Table 9: Performance (Jaccard and ONMI) Comparisons with SOTA models.

Dataset BigClam BigClam-A ComE Com-GAN vGraph Bespoke SEAL CLARE NP CLANN

Ja
cc

ar
d

A 0.5874 0.5623 0.5691 0.6045 0.5721 0.4415 0.6792 0.6827 0.7227 0.8600
D 0.2186 0.2203 N/A 0.2830 0.0645 0.2593 0.2143 0.3132 0.3266 0.3703
L 0.3102 0.3076 N/A 0.3183 0.0222 0.1324 0.3795 0.4027 0.3025 0.4382

A/D 0.1102 0.1095 N/A 0.0109 0.0421 0.0488 0.2419 0.3241 0.4238 0.6247
D/A 0.1485 0.1478 N/A 0.0610 0.0555 0.2135 0.0879 0.2166 0.3337 0.3601
D/L 0.0523 0.0485 N/A 0.0120 0.0066 0.0756 0.1485 0.1893 0.2864 0.2893
L/D 0.1505 0.1464 N/A 0.0097 0.0105 0.1503 0.1907 0.2308 0.1970 0.3356

O
N

M
I

A 0.5865 0.5625 0.5570 0.6040 0.5532 0.4129 0.6862 0.7015 0.7404 0.8781
D 0.1113 0.1110 N/A 0.2324 0.0020 0.2347 0.1603 0.2600 0.2799 0.3253
L 0.2696 0.2641 N/A 0.3171 <1e-4 0.1024 0.3695 0.3703 0.2768 0.4273

A/D 0.0305 0.0334 N/A <1e-4 <1e-4 0.0364 0.2475 0.3126 0.4261 0.6277
D/A 0.0471 0.0477 N/A 0.0523 <1e-4 0.1780 0.0380 0.1566 0.3108 0.3261
D/L 0.0113 0.0065 N/A <1e-4 <1e-4 0.0723 0.1155 0.1331 0.2648 0.2777
L/D 0.0858 0.0795 N/A 0.0053 <1e-4 0.1248 0.1906 0.2012 0.1808 0.3279

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 10: Jaccard and ONMI Scores of different loss function and annealer schemes.

Dataset Engy. +Intf. +Cons. +Intg. NP +Infc +SA +C-E +TA

Ja
cc

ar
d

A 0.6925 0.7006 0.7228 0.7631 0.7227 0.7458 0.7696 0.8148 0.8600
D 0.2749 0.2836 0.2932 0.2979 0.3266 0.3485 0.3452 0.3468 0.3703
L 0.2590 0.2609 0.2660 0.3062 0.3025 0.3258 0.3491 0.3984 0.4382

A/D 0.3520 0.3550 0.3839 0.3983 0.4238 0.4452 0.4666 0.5453 0.6247
D/A 0.1955 0.2028 0.2107 0.2163 0.3337 0.3370 0.3391 0.3556 0.3601
D/L 0.1762 0.1762 0.2008 0.1932 0.2864 0.2790 0.2817 0.2839 0.2893
L/D 0.1495 0.1583 0.1607 0.1601 0.1970 0.2226 0.2508 0.2971 0.3356

O
N

M
I

A 0.7075 0.7298 0.7411 0.7789 0.7404 0.7641 0.7887 0.8335 0.8781
D 0.2454 0.2547 0.2610 0.2623 0.2799 0.3046 0.3110 0.3137 0.3253
L 0.2355 0.2374 0.2401 0.2748 0.2768 0.3011 0.3254 0.3805 0.4273

A/D 0.3517 0.3566 0.3801 0.4023 0.4261 0.4483 0.4705 0.5481 0.6277
D/A 0.1597 0.1743 0.1717 0.1819 0.3108 0.3115 0.3115 0.3179 0.3261
D/L 0.1476 0.1504 0.1596 0.1608 0.2684 0.2666 0.2677 0.2696 0.2777
L/D 0.1319 0.1399 0.1446 0.1453 0.1808 0.2109 0.2787 0.3210 0.3279

Table 11: Adaptability comparison on DBLP dataset with different community sizes and numbers.

Dataset Metrics Com-GAN Bespoke SEAL CLARE NP CLANN

DBLP-1k
F1 0.1031 0.4259 0.0306 0.4755 0.2808 0.5547

Jaccard 0.0822 0.3977 0.0181 0.3843 0.2061 0.5142
ONMI 0.0665 0.3681 0.0024 0.3463 0.1335 0.4745

DBLP-2k
F1 0.0823 0.4383 0.0877 0.4922 0.2749 0.5200

Jaccard 0.0656 0.4096 0.0666 0.4011 0.2032 0.4701
ONMI 0.0548 0.3794 0.0444 0.3609 0.1443 0.4326

DBLP-3k
F1 0.0776 0.4380 0.1637 0.5105 0.3068 0.5464

Jaccard 0.0606 0.4000 0.1048 0.4163 0.2337 0.4801
ONMI 0.0494 0.3656 0.0256 0.3710 0.1924 0.4613

DBLP-4k
F1 N.A 0.4187 0.4611 0.4993 0.2117 0.5343

Jaccard N.A 0.3736 0.3979 0.4008 0.1527 0.4608
ONMI N.A 0.3483 0.3934 0.3399 0.1173 0.4409

DBLP-5k
F1 N.A 0.3193 0.2684 0.2893 0.1883 0.4688

Jaccard N.A 0.2744 0.2097 0.2246 0.1352 0.4064
ONMI N.A 0.2453 0.1948 0.1714 0.0981 0.3711

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 12: Adaptability comparison on LiveJournal dataset with different community sizes and
numbers.

Dataset Metrics Com-GAN Bespoke SEAL CLARE NP CLANN

LiveJournal-1k
F1 0.2922 0.4266 0.4193 0.5614 0.5563 0.6297

Jaccard 0.2192 0.3532 0.3470 0.4561 0.4820 0.5512
ONMI 0.1728 0.3051 0.3164 0.4426 0.4545 0.5457

LiveJournal-2k
F1 0.1442 0.4312 0.3182 0.5547 0.5513 0.5916

Jaccard 0.1175 0.3687 0.2391 0.4587 0.4752 0.5075
ONMI 0.1076 0.3441 0.1654 0.4525 0.4675 0.4999

LiveJournal-3k
F1 N.A 0.3903 0.2497 0.5480 0.3378 0.5717

Jaccard N.A 0.3331 0.1818 0.4557 0.2830 0.4867
ONMI N.A 0.3160 0.1225 0.4345 0.2672 0.4840

LiveJournal-4k
F1 N.A 0.4099 0.1701 0.5224 0.3169 0.5462

Jaccard N.A 0.3497 0.1159 0.4275 0.2697 0.4580
ONMI N.A 0.3335 0.0548 0.3969 0.2606 0.4470

LiveJournal-5k
F1 N.A 0.4298 0.1744 0.4350 0.2804 0.4758

Jaccard N.A 0.3634 0.1210 0.3460 0.2402 0.3904
ONMI N.A 0.3286 0.0644 0.3043 0.2398 0.3724

Table 13: F1 Score compared with unsupervised methods under Setting 1. For Spectral clustering
methods, we present the best results among DBSCAN, HDBSCAN, and OPTICS. Additionally, Est.
α represents the estimated α value of degree power law fit. N/A: not converge in 2 days.

Est.α SBM N-SBM O-SBM Louvain Label Prop. Spectral CLANN
A 12.91 0.3058 0.0371 0.0319 0.8226 0.7789 0.8226 0.9055
D 2.86 0.0924 0.0000 0.0068 0.1986 0.3777 0.3070 0.4701
L 3.21 0.1601 0.0000 N/A 0.4201 0.4801 0.4806 0.5144

A/D 2.95 0.0847 0.0371 0.0055 0.1206 0.4710 0.1575 0.6578
D/A 2.95 0.0876 0.0000 0.0057 0.1000 0.3606 0.1400 0.4355
D/L 3.30 0.0332 0.0000 N/A 0.0599 0.3346 0.0946 0.3373
L/D 3.30 0.1317 0.0000 N/A 0.2224 0.3849 0.3699 0.3932

Table 14: Runtime (in seconds) comparison with unsupervised methods under Setting 1.

Dataset SBM N-SBM Louvain Label Prop. DBSCAN HDBSCAN OPTICS CLANN
A 4.4 4.5 0.3 0.2 0.1 0.2 5.1 112.1
D 23.3 109.1 3.2 1.9 1.5 3.0 51.4 291.3
L 190.2 605.7 15.8 7.0 6.0 4.9 147.7 945.5

A/D 30.2 132.5 4.6 2.2 2.1 3.7 70.3 717.0
D/A 34.2 190.4 3.8 2.4 2.0 3.6 70.2 124.2
D/L 224.9 856.9 20.9 11.0 19.2 8.8 314.5 453.5
L/D 261.3 863.3 17.4 9.5 19.1 12.6 318.6 839.2

Table 15: F1 Score compared with top-3 unsupervised methods under Setting 2. Lv:Louvain, Lp:
Label Propagation, Sp: Spectral, CL: CLANN.

Est.α Lv Lp Sp CL Est.α Lv Lp Sp CL Est.α Lv Lp Sp CL
A1 26.41 .8546 .8609 .8546 .9905 D1 3.32 .2160 .3976 .3322 .5547 L1 5.59 .4334 .5579 .4713 .6297
A2 17.50 .8538 .8612 .8538 .9601 D2 3.04 .2185 .4246 .3521 .5200 L2 2.44 .4416 .5661 .5192 .5916
A3 19.98 .8391 .8369 .8391 .9452 D3 3.24 .1952 .4333 .3451 .5464 L3 2.56 .4384 .5624 .5232 .5717
A4 8.83 .8230 .8271 .8230 .9177 D4 3.30 .1811 .4303 .3631 .5343 L4 4.03 .4258 .5249 N/A .5462
A5 4.48 .7997 .7237 .7989 .8084 D5 6.65 .1839 .3697 N/A .4688 L5 2.69 .4438 .4747 N/A .4758

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 16: F1 Score on general and bipartite graphs. Original CLANN can’t be implemented on
bipartite network, we build NP(S) and CLANN(S) by changing the core from clique to scatter (S). CL
is collaboration network, where nodes are scientists and research papers. CP is co-purchase network,
where modes are customers and products.

A (F1) D (F1) L (F1) CL1 CL2 CL3 CP1 CP2 CP3
CLARE 0.7730 0.3835 0.4950 0.4278 0.3612 0.4278 0.2158 0.2228 0.2017

NP 0.7809 0.3979 0.3655 N/A N/A N/A N/A N/A N/A
CLANN 0.9055 0.4701 0.5144 N/A N/A N/A N/A N/A N/A
NP (S) 0.6306 0.4615 0.4349 0.4190 0.3683 0.3500 0.3814 0.4312 0.3341

CLANN (S) 0.8933 0.4739 0.5154 0.5241 0.4477 0.5494 0.4312 0.5051 0.4923

Table 17: Robustness of CLANN in Diverse Network Environments: F1 Performance on Scatter,
Barabási-Albert, and NoisyDBLP Datasets with Scaling Community Structures (1K-5K Communi-
ties)

Scatter Datasets
Community 1K 2K 3K 4K 5K

Node 64,020 100,000 100,000 100,000 100,000
Edge 66,665 200,000 200,000 200,000 200,000
CLARE 0.1929 0.1522 0.1904 0.2153 0.2394
CLANN 0.3100 0.1567 0.2824 0.2980 0.3011

Barabási-Albert Datasets
Community 1K 2K 3K 4K 5K

Node 100,000 100,000 100,000 100,000 100,000
Edge 200,000 200,000 200,000 200,000 200,000
CLARE 0.1291 0.1871 0.2160 0.2458 0.2589
CLANN 0.1922 0.2513 0.2992 0.3300 0.3307

NoisyDBLP Datasets
Community 1K 2K 3K 4K 5K

Node 25,968 47,318 70,425 97,270 215,912
Edge 88,949 181,547 280,586 397,201 829,877
CLARE 0.3308 0.3608 0.3660 0.3753 0.2837
CLANN 0.4157 0.4475 0.4742 0.4398 0.3539

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 1: Nucleus Proposer
Input :Graph G, Training communities C, Recorded Clique Set Q, Max Epoch EM , Loss

Contribution Coefficients γ{E,C,I}, Learning Rate α, Initial State Number M .
Output :Initial State Sinit, Graph Encoder H , Status Classifier Parameters W k

p , bkp (in Eq. 6)
1 Epoch: e← 1, Sinit ← {};
2 while e < EM do
3 // Prepare positive and negative batches
4 Sample a1, a2, a3 from C;
5 Sample b, c from a1;
6 S ← {a1, a2, a3, b, c};
7 // Calculate Energy, Consistency, and Interface losses
8 lossE ←lossESize(S) + lossEDefc(S);
9 lossC ←lossC(S);

10 lossI ←lossI (S);
11 // Update encoder
12 H := H − α▽ (γElossE + γC lossC + γI lossI);
13 while e < EM do
14 // Prepare positive and negative batches
15 Sample a1, a2, a3 from C;
16 Sample b, c from a1;
17 S ← {a1, a2, a3, b, c};
18 // Calculate Integrity loss
19 lossG ←lossG(S);
20 // Update Status Classifier
21 W k

p , b
k
p := W k

p , b
k
p − α▽ lossG;

22 // Select initial states
23 Clique Embedding Set hQ ← H(Q);
24 for c ∈ C do
25 Community Embedding hc ← H(c);
26 Embedding Distance dc,Q ← ||hc − hQ||;
27 Sort dc,Q with ascending order;
28 Append first ⌊M/|C|⌋ Cliques into Sinit;
29 return Sinit, H

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 2: Transitive Annealer
Input :Initial state Sinit, Max Step M .
Output :Annealed community Ŝ.

1 Ending Flag: Fend ← False;
2 while Fend ̸= True do
3 // Check Expandability
4 Ŝ ← Sinit;
5 ŷSinit

← Integrity score of Sinit;
6 if ŷ1Sinit

< max(ŷSinit) then
7 Break ;
8 // Collect Extendable Nodes and Calculate Properties
9 Extendable nodes set V e = {ve1, . . . , ve|V e|};

10 Extendable Node Properties Eex ← {};
11 for vei ∈ V e do
12 Ce

i ← merge all cliques of vei and exclude nodes in Sinit;
13 Calculate properties and append to Eex;
14 // Check Nucleus Transition
15 k ← max(Integrity Scores);
16 if ŷ2Sinit

< ŷ2Ce
i

then
17 Sinit ← Ce

k;
18 Continue ;
19 // Check Energy Score and Interface Requirement
20 Node score Pex ← Softmax(Norm Difference List);
21 for i← 1 to |V e| do
22 Energy Flag FE ← Pex[i] ≥ Ptemp(|Ŝ ∪ Ce

i |));
23 Interface Flag FI ← Interface Energy Check;
24 if FE and FI then
25 // Update State
26 Ŝ ← Ŝ ∪ Ce

i ;

27 M ←M − 1;
28 if Ŝ = Sinit or M ≤ 0 then
29 Fend ← True;

30 return Ŝ

26

	Introduction
	Related Work
	Overlapping Community Detection with Un/Semi-supervised Methods
	Clique-based Methods

	Problem Definition and Pipeline
	Nucleus Proposer
	Linking Crystallization to Community Detection
	Implementation of Crystallization Kinetics
	Graph Encoder

	Transitive Annealer
	Potential for Further Growth of the Current State
	Selection of Clique for Merging
	Shifting of Community Core

	Experiment and Analysis
	Overall Performance
	Ablation Study
	Adaptability Evaluation
	Efficiency Evaluation
	Parameter Analysis
	Case Visualization

	Conclusion and Future Work
	Clique-Based Modularity and Loss in Community Detection
	Explanation of Crystallization Kinetics Principles
	Complexity Analysis
	Preliminaries of Hyperbolic Geometry
	Dataset Statistics
	Preliminary Core Filter
	Evaluation Metrics & Baseline
	Implementation Details
	Supplementary Parameters Analysis
	Module Runtime Analysis
	Performance on Non-Clique, Sparse, and Noisy Datasets
	Adaptability to Bipartite Networks
	Scatter-Core Networks (0 Cliques)
	Barabási-Albert Networks (<300 Cliques)
	NoisyDBLP Datasets

