
Under review as a conference paper at ICLR 2023

FLAMES2GRAPH: AN INTERPRETABLE FEDER-
ATED MULTIVARIATE TIME SERIES CLASSIFICATION
FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Increasing privacy concerns have led to decentralized and federated machine
learning techniques that allow individual clients to consult and train models col-
laboratively without sharing private information. Some of these applications, such
as medical and healthcare, require the final decisions to be interpretable. One
common form of data in these applications is multivariate time series, where deep
neural networks, especially convolutional neural networks based approaches, have
established excellent performance in their classification tasks. However, promis-
ing results and performance of deep learning models are a black box, and their
decisions cannot always be guaranteed and trusted. While several approaches ad-
dress the interpretability of deep learning models for multivariate time series data
in a centralized environment, less effort has been made in a federated setting.
In this work, we introduce FLAMES2Graph, a new horizontal federated learn-
ing framework designed to interpret the deep learning decisions of each client.
FLAMES2Graph extracts and visualizes those input subsequences that are highly
activated by a convolutional neural network. Besides, an evolution graph is created
to capture the temporal dependencies between the extracted distinct subsequences.
The federated learning clients only share this temporal evolution graph with the
centralized server instead of trained model weights to create a global evolution
graph. Our extensive experiments on various datasets from well-known multi-
variate benchmarks indicate that the FLAMES2Graph framework significantly
outperforms other state-of-the-art federated methods while keeping privacy and
augmenting network decision interpretation.

1 INTRODUCTION

Most machine learning models are trained in a centralized setting and on centrally stored data. This
conventional learning approach, in which the clients share their data to a central server, has several
drawbacks, such as privacy issues in sensitive applications and limited bandwidth on mobile devices.
Moreover, training a single machine learning model on potentially enormous-sized training data on
a centralized server or cloud can become absolutely expensive. A practical method of training
machine learning models on edge can eliminate the need to train them on the cloud. Federated
Learning (FL) Konečnỳ et al. (2016) was introduced to address these issues by only sharing clients’
trained model weights with a server in each round of communication. In its original form, the server
aggregates the weights using the Federated Averaging Algorithm (FedAvg) algorithm and returns
the global model weights to the clients to further use in the next training round. However, training
under the FL setting still has several challenges that require further study, such as dealing with
non-independent identically distributed (non-IID) data among clients (Younis & Fisichella (2022);
Ma et al. (2022)), reducing communication costs (Mills et al. (2019)), handling adversarial attacks
(Mothukuri et al. (2021)), and protecting user data privacy (Geyer et al. (2017)). Furthermore, the
lack of transparency in the federated learning process diminishes trust and limits its adoption by
more clients. It is, therefore, imperative that federated learning approaches be interpretable.

Many recent applications with distributed sensitive data, such as economics forecasting, activity
recognition, and healthcare, deal with data collected from sensors (Ullah & Finch (2013); Wang
et al. (2016); Sharabiani et al. (2017)). This form of data with simultaneous multiple values is

1

Under review as a conference paper at ICLR 2023

Server Node

Client Node Locally Tranied Model

Graph Aggregation

Federation of Nodes Locally Generated Graph

Globally Generated GraphTimeseries data

Generating MHAP

0
40

80
120

160
200

240
280

300

Conv. Layer 1 Signal Conv. Layer 2

Figure 1: Our proposed FLAMES2Graph framework, an interpretable federated convolutional neu-
ral network for multivariate time series data. The figure illustrates four clients that each train a CNN
network and extract the highly activated periods (MHAP) from their data to create an MHAP evolu-
tion graph in round n. The graph is then shared with the server, and the server aggregates the four
clients’ graphs into one global graph. Finally, the clients receive the aggregated graph and use it in
the following training round n+ 1.

called multivariate time series (MTS). Various methods have been developed to classify multivariate
time series data in a centralized scheme: Distance-based algorithms, such as 1-nearest neighbor and
dynamic time warping, have shown reliable performance in case of the correct choice of distance
measure for a specific application (Orsenigo & Vercellis (2010); Seto et al. (2015)). On the other
hand, feature-based methods heavily rely on hand-crafted features (Ye & Keogh (2009); Xing et al.
(2010); D’Urso et al. (2014)). The use of deep learning methods, especially Convolutional Neu-
ral Networks (CNN), has shown promising results for time series data (Ismail Fawaz et al. (2019))
and removes the heavy feature engineering requirement. However, despite their outstanding perfor-
mance, deep learning models’ inner functioning and decisions are ambiguous to users and even their
designers. Lately, few studies have explored the interpretations of deep networks decisions on time
series data in a centralized fashion Cho et al. (2020); Younis et al. (2022).

In this paper, we focus on two major challenges in the federated learning of multivariate time se-
ries: The communication efficiency between clients and the server, where the clients usually con-
nect to the FL server over slow connections (Lee et al. (2012)). Another less investigated chal-
lenge is designing interpretable strategies for deep neural networks in a federated setup. We de-
sign a new graph-based approach called Federated LeArning Multivariate timE Series to Graph
(FLAMES2Graph) to address these challenges. To this end, our framework relies on convolutional
neural networks trained on multivariate time series data to extract representative patterns that acti-
vate neurons in CNNs. We call these representatives Multivariate Highly Activated Period (MHAP)
and group their similar patterns into more general representatives via a clustering method. Instead
of merely considering their occurrence, we create a graph where its nodes represent the extracted
MHAPs cluster medians, and the edges are their occurrence order in an MTS sample. After each
training epoch, the client shares its local graph with the server, which represents the influential sub-
sequences found in the local MTS samples. The server then merges the clients’ local graphs into a
global graph. Figure 1 shows a general overview of our framework. The main contributions of the
FLAMES2Graph framework are as follows:

• FLAMES2Graph is the first framework that offers a federated interpretable deep learning
solution for the multivariate time series classification problem. It extracts and visualizes
the representative patterns of the input data and constructs an MHAP evolution graph that
captures the temporal relationship between the extracted representative patterns.

• Instead of sharing the learning weights, the clients only share their generated local graph
with the central server, which aggregates those local graphs into a global one to improve
the generalization capacity of local clients.

2

Under review as a conference paper at ICLR 2023

• Through extensive experiments on five selected datasets from Baydogan’s archive (Baydo-
gan (2015)), along with HAR (Anguita et al. (2013)) and PAM datasets (Reiss & Stricker
(2012)). we verify the FLAMES2Graph framework’s performance and interpretability.

2 RELATED WORK

In this section, we review the related work: First, we discuss the existing studies related to in-
terpretable time series deep learning methods. Then, we get an overview of the state-of-the-art
federated learning techniques.

2.1 INTERPRETABLE MODELS FOR TIME SERIES DATA

Various approaches have been developed to interpret deep learning models, especially for images
and text data. Current research mainly focuses on post-model interpretability strategies, such as
Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al. (2016)), Layer Relevance
Propagation (LRP) (Montavon et al. (2017)), Class Activation Map (CAM) (Zhou et al. (2016)).
CAM was the first post-hoc method that provided interpretation of the predictions by visualiz-
ing the region of raw input data that activates the network neurons for a given label (Wang et al.
(2017)). Clustered Pattern of Highly Activated Period (CPHAP) (Cho et al. (2020)) is another
post-hoc method that extracts the representative input patterns activated by a trained CNN neurons.
However, these methods were introduced only for univariate time series data. The multi-VISION
framework (Younis et al. (2022)) introduces a method for interpreting multivariate time series data
by extracting the input data that highly activate neurons in a CNN. We use a similar approach to
extract the representative input data from multivariate time series.

Apart from post-model strategies, Dual-stage Attention-Based Recurrent Neural Network method
(DA-RNN) offers an in-model strategy via an input-attention mechanism, captures long-term tempo-
ral dependencies, and selects relevant series for model prediction Qin et al. (2017). The Time2Graph
framework (Cheng et al. (2020)) is another in-model approach with an intrinsically interpretable
strategy that extracts dynamic shapelets from univariate input data through a handcrafted feature
engineering procedure and builds an evolution graph based on the temporal sequence of the ex-
tracted shapelets. Gated Transformer Networks (GTN) was introduced for multivariate time series
by adding gating to transformer networks to explore the GTN attention map (Liu et al. (2021)). An
interpretable CNN-based method was developed by Hsieh et al. (2021) for multivariate time series,
which identifies both signals and time intervals that determine the classifier’s output by adding an
attention mechanism to the extracted features. Our approach differs from previous studies since we
extract the relevant time series subsequences for multivariate time series and construct an evolution
graph of the extracted sequences over time. The benefit of this approach is that no handcraft feature
engineering or domain knowledge is required. In addition, our approach can manage horizontally
distributed data in a federated learning setup instead of in a central system.

2.2 FEDERATED LEARNING

Federated Learning is one of the most widely used decentralized machine learning solutions today
to train data on clients’ edge devices and share only the trained weight (Abdulrahman et al. (2021);
Pang et al. (2021)). FedAvg (McMahan et al. (2017)) is the most commonly used optimization algo-
rithm in federated settings. A FedAvg model consists of a global model that is first downloaded and
then trained using stochastic gradient descent (SGD) on the local dataset of each participating client.
Clients then share their trained model weights with the server, which uses the FedAvg algorithm to
average the clients’ trained model weights. The communication efficiency of FedAvg is one of its
main advantages, as training performance can be maintained while reducing the total number of
bytes transferred. However, FedAvg has the disadvantage of degrading convergence when applied
to non-IID data (Li et al. (2021)). Different researches were proposed to overcome the FedAvg
problem on non-IID data by adding a regularization term to the local optimization or making the
data distribution of the clients IID (Li et al. (2020); Karimireddy et al. (2020); Wang et al. (2020)).

In this paper, we present a personalized federated learning approach. Several personalized federated
learning methods have been proposed, which can be categorized as transfer learning, meta-learning,
personalization layers, and multi-task learning (Kulkarni et al. (2020)). FetchSGD (Rothchild et al.

3

Under review as a conference paper at ICLR 2023

(2020)) is a federated communication-efficient optimization algorithm that compresses gradients in
each communication round with count sketches and sent to a central aggregator. The aggregator
maintains a momentum sketch and an error accumulation sketch, and the weight update in each
round is computed based on the error accumulation sketch. The proposed technique reduces the
communication requirements while fulfilling the quality requirements of federated training. Other
research has also addressed representation learning in federated learning, such as (Liang et al.
(2020); Collins et al. (2021); Oh et al. (2022)). However, none of the above methods addresses
the interpretability of models in the FL setting.

Despite the community’s attention to interpretable models in a centralized environment, the problem
in a decentralized setting is still understudied. Methods such as LIME (Ribeiro et al. (2016)) cannot
be directly applied to the federated setup. SHAP-values (Wang (2019); Zheng et al. (2020)) were
introduced for tree-based models and vertically partitioned data; however, in horizontally partitioned
data, this method is not applicable. Another federated interpretable method shares the generated
dimensionally-reduced intermediate representations of each participating client data Imakura et al.
(2021). In this method, neither the models nor the client data are shared. Recently, the iFedAvg
method was proposed to detect and solve interoperability problems in federated learning based on
tabular datasets (Roschewitz et al. (2021)). None of these methods concentrate on an interpretable
federated setting for multivariate time series, the subject of our current research.

3 FLAMES2GRAPH FRAMEWORK

The overall architecture of our proposed framework is shown in Figure. 1. First, each client ex-
tracts those subsequences of the multivariate input data that highly activate the neurons in sofar
trained CNN (Generate MHAP). Then, each client (“Client Node” in the figure) constructs a graph
with nodes representing these time series representative patterns and edges showing their temporal
dependency in each sample (Section. 3.1). The federated learning server (“Server Node”) then ag-
gregates the clients’ local graph into a global graph and shares it with the clients (Section. 3.2). The
clients then operate on this global graph in the next round (Section. 3.3).

3.1 FL CLIENT EVOLUTION GRAPH

Cho et al. (2020) and Younis et al. (2022) proposed an approach to extract the input time series
periods that highly activated neurons of a trained CNN, with the intuition that decisions of deep
neural networks are influenced by their highly activated neurons. We extend their idea to extract each
FL client node’s multivariate highly activated periods (MHAP) in three steps: First, a convolutional
neural network is trained on the multivariate input data. In parallel, an extended set that contains all
possible signal combinations of the input sample is created. Each potential combination is created
via zero padding of the excluded dimensions. Second, the input set is fed to the trained model to
extract MHAPs. An MHAP is extracted by obtaining the trained CNN’s Highly Activated Neurons
(HAN) and extracting their corresponding signal receptive field from these neurons. Finally, the
MHAPs are clustered to merge similar subsequences, and a cluster median is appointed to each
cluster.

After getting the MHAPs and cluster centers, each client generates an MHAP evolution graph. The
generation of the MHAP evolution graph is inspired by the shapelet evolution graph in Cheng et al.
(2020). However, our MHAP evolution graph differs in nature and construction procedure from the
shapelet evolution graph. As the MHAPs are extracted separately from each CNN layer, we deal with
more than one graph, each representing a CNN layer. The time-dependent graphs are constructed
after obtaining the MHAPs from each network layer. These graphs maintain the occurrence order of
the MHAPs. Then, all of these graphs are merged into a single time-aware MHAP evolution graph.
In the following, the details are discussed.

3.1.1 GENERATE MHAP TIME-AWARE GRAPH

An MHAP graph in each network layer is built as follows: the first MHAP is extracted from the input
data and assigned to the corresponding cluster center. This cluster center represents a node ni in the
graph. Then the subsequent MHAP is extracted and assigned to its cluster center nj , respectively.
Now, a directed edge eij is created between two consecutive nodes, representing the temporal order

4

Under review as a conference paper at ICLR 2023

Algorithm 1 Generating MHAP Evolution Graph

Input: Xtrain:= Multivariate time series data
Output: MTS Evolution Graph, Cluster Median

1: Model←− TrainingCNN (Xtrain)
2: for sample in Xtrain do
3: signaltrain = InputSet(sample)
4: for l in Model layers do
5: for c in l do
6: MHAPlist =extract MHAP (signaltrain)

7: Cluster:= {Kshape(MHAPlist)}
8: Cluster Medianlist.add(Median(Cluster))
9: for l in Model layers do

10: Initialize a graph g with n nodes
11: for s in Xtrain do
12: for all adjacent MHAP in s do
13: Add directed edge ei,i+1

14: Graphlist.add(g)

15: G= merge(Graphlist)
16: return Cluster Medianlist, G

of the MHAPs. The process is repeated for each multivariate sample in the training set to generate a
network layer graph G ultimately.

Each node in the resulted graph represents an MHAP of the current layer, e.g., in the second layer,
an MHAP is generated from k neurons of the first layer. Note that the size of k depends on the kernel
size of the layer. After obtaining the respective graphs of each layer, a merging method compatible
with convolutional layers’ functioning is applied to the graphs’ layers. Thus, we merge each node
in the graph with a node in the previous layer. For example, a node nr in the second layer graph
(red node in Generating MHAP in Figure 1) represents three neurons in the first CNN layer (green,
blue, and white nodes), two of which are the MHAPs of the first layer, nb, ng (the blue and green
nodes, respectively), and hence, available in the first layer graph. Accordingly, we create an edge
ergb between the node nr in the second layer graph and the nodes ng and nb in the first layer graph.

Algorithm 1 describes the process of training a model on the FL client node. The algorithm receives
the input training data and returns the multivariate time series graph and cluster median in a client.
First, the client trains a CNN model for a few epochs and extracts the MHAPs from training data
(lines 1-6), and then a k-shape clustering (Paparrizos & Gravano (2015)) is applied to the MHAP list
to extract cluster medians (line 7-8). K-shape clustering algorithm considers the unique character-
istics of multivariate data, such as phase shift. Similar to k-means, it contains iterative and refining
procedures. A shape-based distance measure accounts for phase shift, and a cross-correlation mea-
sure identifies centroids. The first step in generating a layer graph is to initialize a graph for each
CNN layer with a node size equal to the number of cluster medians for that layer (line 10). Each
MHAP is then processed and assigned to its respective clusters, and two adjacent MHAPs are con-
nected by a directed edge (lines 11-13). The generated layer graph is added to the graphlist (line
14). In the final stage, the algorithm merges the layers graphs into a single graph (line 15).

3.2 FL SERVER GRAPH AGGREGATION

In each round of communication, the server receives the client’s local graphs and cluster medians to
aggregate the client’s local graphs into a global one. For this purpose, the server first determines the
similarities between the nodes of the local graphs using their cluster medians. For example, na1 in
the first local graph may be similar to nb3 in the second graph. The server first determines the node
similarities and then renames the local graphs based on the node similarities. Finally, the graphs
are merged by augmenting the edges of all graphs into one. Figure. 2 shows an example of two
clients’ local graphs with three nodes and the merged graph in the server node. At first, the clients
train their model and generate local MHAP graphs (Figure. 2, step 1), then they share their graphs
with the server node (Figure. 2, step 2). The server then aggregates the received graphs (Figure. 2,

5

Under review as a conference paper at ICLR 2023

a
1

a2
a31

22

1

4

5

a
1

a2
a3

a
1

a2
a3

a
1

a2
a3

Locally tranied model Locally generated graph Globally generated graph

C

A

B

C

A

B

... ...

3

Cleint 1 Cleint n Cleint 1 Cleint n

C

A

B

C

A

BC

A

B

C

A

B

b
1

b2

b3

b
1

b2

b3

b
1

b2

b3

Figure 2: The Client’s node in step 1 trains a model and generates the MHAP evolution graphs. In
step 2, the clients send the graphs to the server. The server aggregates the local client’s graphs in
step 3. The global graph forwarded to the clients in step 4. The clients replace their local graphs
with the updated global graph in step 5.

step 3) such that the most similar cluster centers are merged, e.g., in Figure. 2, the green node from
the first graph, na1, is similar to nb3 in the second graph. The global graph represents this node as
nA with three edges augmented from the first and second local graphs, i.e., eAC , eAB , and eBA.
After merging the client’s local graphs into a global one, the server returns the global graph to all
the clients (Figure. 2, step 4). They will update their local graph into the global one (Figure. 2, step
5) and use it to test their local data in the subsequent communication round.

3.3 FL CLIENT GRAPH EMBEDDING

After the clients receive the updated global graph from the server, the clients apply the Deep-
Walk embedding algorithm (Perozzi et al. (2014)) to extract the graph node representation vectors
Ψ ∈ RD, where D is the embedding size. DeepWalk is a graph neural network algorithm that oper-
ates directly on graph structures and applies a random path traversal technique to identify localized
structures within a network. DeepWalk identifies latent network patterns through random paths in
graphs, which are then learned and encoded by neural networks to generate the final embedding.

The clients use the graph node embedding, Ψ, to convert the test data into segments and make
predictions via the graph. For that, each multivariate sample is divided into segments, with the
corresponding MHAP assigned to each segment. Each MHAP corresponds to one of the graph nodes
ni, therefore, we retrieve the MHAP representation vector, Ψ(ni), and sum them over the segment.
In the next step, all these vectors are merged into a representation vector Φ for the time series sample.
The new vector can then be used as an input to any classifier. Because of the promising performance
of the XGBoost classifier (Chen & Guestrin (2016)), the clients use XGBoost to classify the new
multivariate representations of time series.

4 RESULTS AND DISCUSSION

We report the results of our FLAMES2Graph framework1 on five well-known time-series bench-
marks from the Baydogan archive, and HAR and PAM dataset. (Baydogan (2015)), Our experiments
are conducted on a intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz server with 70GB of RAM.

1Our code can be found at https://gitfront.io/r/user-9180183/MCDypNzyNrQf/
FLAME2Graph/

6

https://gitfront.io/r/user-9180183/MCDypNzyNrQf/FLAME2Graph/
https://gitfront.io/r/user-9180183/MCDypNzyNrQf/FLAME2Graph/

Under review as a conference paper at ICLR 2023

4.1 EXPERIMENTS SETUP

To simulate our federate learning experiments as it is in a real-world scenario, we employ NVIDIA
FLARE2. We set up a server with four clients for each experiment. Our proposed FLAMES2Graph
framework is tested on five datasets from the Baydogan archive (ECG, Wafer, NetFlow, AUSLAN,
and UWave), HAR dataset (Anguita et al. (2013)) which records the daily activity of 30 health vol-
unteers, and the PAM dataset (Reiss & Stricker (2012)) that measures eight different daily activities
using 17 sensors.

For all datasets, we run 5-fold cross-validation with 80% for training, 10% for validation, and 10%
for test data. Each experiment is run for 100 communication rounds. In each round, the client trains
the CNN network for 5 epochs. The graph is tested with an embedding of size 100 and a segment
length of size 10. For all the datasets, the CNN network has three convolutional blocks with 32, 64,
128 filters, a batch normalization, and a Rectified Linear Unit (ReLU) activation function.

FLAMES2Graph is compared with various benchmark approaches and uses the proposed network
architecture and parameters of those benchmark approaches to reproduce similar performance. The
benchmark approaches are:

• FedAvg: is the first baseline method we compare our model with. FedAvg average the
clients trained weights in the central server.

• FedRep: learns a shared data representation across clients as well as a unique local head for
each client. For every representation update, FedRep performs many local updates based
on the low-dimensional local parameters distributed across clients. In every local update,
FedRep runs ten epochs of SGD with momentum to train the local head, followed by one
or five epochs for the representation.

• FetchSGD uses a Count Sketch to compress model updates and benefits from the merge-
able nature of sketches to combine model updates from several clients. Since the Count
Sketch is linear, momentum and error accumulation can be carried out within the sketch.
The goal of FetchSGD framework is to learn a shared data representation across clients
as well as a unique local head for each client. In this algorithm, for every update of the
representation, many local updates are performed based on the low-dimensional local pa-
rameters distributed across clients. FetchSGD framework use a neural network with ReLU
activation, a vanilla Count Sketch, non-zero momentum, and momentum factor masking.

4.2 PREDICTION PERFORMANCE

We compare the accuracy, BalanceAccuracy, F1-score, and Precision performance of
FLAMES2Graph to several comparison methods on various well-known multivariate time series
benchmarks. We run the experiments on four FL clients and report the clients’ average performance.
For each client, we report its mean value of performance from cross-validation. Table 1 shows that
our proposed method outperforms all the other state-of-the-art methods in terms of accuracy, bal-
ance accuracy, F1-score, and Precision on UWave, AUSLAN, PAM, and HAR datasets. On ECG
and Wafer datasets, FLAMES2Graph improves the accuracy by around 10% and 4%, respectively,
compared to the FedAvg and FedRep methods. We observe that FedAvg, FetschSGD, and FedRep
do not show promising results when the dataset dimension is large or the time series sequence length
is considerable. For example, the Uwave dataset time series length is equal to 315, and the dimen-
sions for AUSLAN are equal to 22. Both show lower accuracy, whereas, in the other datasets with
lower dimensions and time series length, the accuracy of FedAvg and FedRep is reasonable. Al-
though the FedAvg and FedRep show satisfactory accuracy results for the Wafer dataset (94%), its
balance accuracy, F1-score and precision indicate lower performance. In summary, the experiment
results show that our proposed framework, FLAMES2Graph enhances the performance of accuracy
for all tested datasets. Also, our method does not merely provide satisfactory classification results
for multivariate time series data. It also provides an interpretable network decision, which we will
show in a case study in the following section.

2FLAIR Documentation:https://nvflare.readthedocs.io/en/main/flare_overview.
html

7

https://nvflare.readthedocs.io/en/main/flare_overview.html
https://nvflare.readthedocs.io/en/main/flare_overview.html

Under review as a conference paper at ICLR 2023

Table 1: The average evaluation metrics for FedAvg, FedRep, FetchSGD, and FLAMES2Graph on
different benchmark datasets. The best performance among all models is highlighted.

Dataset Model Accuracy BalanceACC F1-Score Precision

ECG

FedAvg 0.83 0.63 0.67 0.64
FedRep 0.83 0.37 0.58 0.58

FetchSGD 0.66 0.50 0.52 0.43
FLAMES2Graph 0.93 0.93 0.93 0.87

Wafer

FedAvg 0.94 0.25 0.44 0.44
FedRep 0.94 0.50 0.95 0.95

FetchSGD 0.11 0.50 0.02 0.01
FLAMES2Graph 0.98 0.94 0.96 1.0

NetFlow

FedAvg 0.78 0.19 0.39 0.39
FedRep 0.78 0.44 0.89 0.89

FetchSGD 0.22 0.50 0.08 0.05
FLAMES2Graph 0.88 0.89 0.91 0.93

AUSLAN

FedAvg 0.10 0.10 0.05 0.05
FedRep 0.13 0.13 0.11 0.11

FetchSGD 0.10 0.10 0.05 0.05
FLAMES2Graph 0.92 0.94 0.93 1.0

UWave

FedAvg 0.25 0.12 0.25 0.25
FedRep 0.30 0.16 0.05 0.05

FetchSGD 0.12 0.12 0.03 0.01
FLAMES2Graph 0.63 0.66 0.62 0.64

PAM

FedAvg 0.19 0.22 0.22 0.22
FedRep 0.23 0.12 0.20 0.20

FetchSGD 0.23 0.12 0.09 0.05
FLAMES2Graph 0.65 0.60 0.57 0.58

HAR

FedAvg 0.23 0.24 0.24 0.24
FedRep 0.41 0.25 0.23 0.23

FetchSGD 0.16 0.16 0.05 0.03
FLAMES2Graph 0.91 0.90 0.90 0.91

4.3 CASE STUDY: HAR DATASET

In this section, we take a closer look at the interpretability capacity and the effectiveness of our
proposed FLAMES2Graph framework by envisaging a case study from the HAR dataset. Figuer. 3
illustrates an example in a client node with a walking downstairs label and its extracted MHAP
Figure. 3 (a). These extracted MHAP are represented as nodes with their temporal transitions in
the global MHAP evolution graph obtained from the server Figure. 3 (b). We observe that not
only does the client’s model performance improve by using the FLAMES2Graph framework, but
the client also visualizes the important input subsequences (MHAP) that lead the model to perform
well. This graph visualizes the MHAPs and their temporal order in the input data, which is crucial
in understanding network decisions on time series data.

Figure. 4 (a) shows another example of the HAR dataset with its respective MHAPs, and Fig-
ure. 4 (b) presents the MHAP clusters from the first CNN layer with their cluster medians. In
FLAMES2Graph, the federated clients share their local graph and cluster centers with the server;
however, this does not reveal any significant information about the client’s private data. The length
of the centers (the node in the MHAP graph) corresponds to the first kernel size of the network,
which is usually not comparable to the original length of the time series, and in this example, equals
eight. This means that the length of the center is approximately 3.8% of the total length of the
time series sample. Moreover, the MHAP usually does not extract the entire variate, and it only

8

Under review as a conference paper at ICLR 2023

(a) A Walking Downstairs Sample from HAR Dataset (b) Global MHAP Graph

1 5
2

1

3

4

Z

Y

X

0 50 100 150 200

Figure 3: (a) An example of walking downstairs sample from the HAR dataset with its MHAPs
from the first CNN layer, (b) The third round global MHAP evolution graph with the colored nodes
highlighting the MHAPs of (a).

X

Y

Z

(a) A Sample from HAR Dataset (b) Clustered MHAP from HAR Dataset

-5.0 5.0 1.0 1.50.0

-1.0

-1.0

-0.5

0.0

0.1

0.2
Clausters
 Center

Claustered
 Samples

0 50 100 150 200

Figure 4: (a) Another example of walking downstairs sample from the HAR dataset with its MHAP
from the first CNN layer, (b) The clustered MHAPs with their centroid (black points).

belongs to one variate of a multivariate sample; hence, these centers usually represent a portion of
data dimensions.

5 CONCLUSION

This work introduces a new personalized federated learning framework designed to interpret deep
neural networks for multivariate time series data. We handle interpretability by extracting and vi-
sualizing the essential input subsequences that highly activate network neurons in each client and
build a temporal evolution graph that captures the time dependencies between these sequences.
FLAMES2Graph is novel in its sharing strategy and improves the communication complexity in
federated learning by only sharing the evolution graphs. Our extensive experiments indicate that the
FLAMES2Graph framework outperforms state-of-the-art federated methods. In the future, we will
extend our method by encrypting the graphs and centers sent by the clients to increase the privacy
and security of the model.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Sawsan Abdulrahman, Hanine Tout, Hakima Ould-Slimane, Azzam Mourad, Chamseddine Talhi,
and Mohsen Guizani. A survey on federated learning: The journey from centralized to distributed
on-site learning and beyond. IEEE Internet of Things Journal, 8(7):5476–5497, 2021.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra Perez, and Jorge Luis Reyes Ortiz. A
public domain dataset for human activity recognition using smartphones. In Proceedings of the
21th international European symposium on artificial neural networks, computational intelligence
and machine learning, pp. 437–442, 2013.

Mustafa Gokce Baydogan. Multivariate time series classification datasets, 2015. URL http:
//www.mustafabaydogan.com/. [Accessed: 2022-09-23].

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Ziqiang Cheng, Yang Yang, Wei Wang, Wenjie Hu, Yueting Zhuang, and Guojie Song. Time2graph:
Revisiting time series modeling with dynamic shapelets. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 3617–3624, 2020.

Sohee Cho, Ginkyeng Lee, Wonjoon Chang, and Jaesik Choi. Interpretation of deep tempo-
ral representations by selective visualization of internally activated nodes. arXiv preprint
arXiv:2004.12538, 2020.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared repre-
sentations for personalized federated learning. In International Conference on Machine Learning,
pp. 2089–2099. PMLR, 2021.

Pierpaolo D’Urso, Livia De Giovanni, Elizabeth Ann Maharaj, and Riccardo Massari. Wavelet-
based self-organizing maps for classifying multivariate time series. Journal of Chemometrics, 28
(1):28–51, 2014.

Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
level perspective. arXiv preprint arXiv:1712.07557, 2017.

Tsung-Yu Hsieh, Suhang Wang, Yiwei Sun, and Vasant Honavar. Explainable multivariate time
series classification: A deep neural network which learns to attend to important variables as well
as time intervals. In Proceedings of the 14th ACM International Conference on Web Search and
Data Mining, pp. 607–615, 2021.

Akira Imakura, Hiroaki Inaba, Yukihiko Okada, and Tetsuya Sakurai. Interpretable collaborative
data analysis on distributed data. Expert Systems with Applications, 177:114891, 2021.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Deep learning for time series classification: a review. Data mining and knowledge
discovery, 33(4):917–963, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. In Proc. of
the NIPS Workshop on Private Multi-Party Machine Learning, December 2016.

Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. Survey of personalization techniques for
federated learning. In 2020 Fourth World Conference on Smart Trends in Systems, Security and
Sustainability (WorldS4), pp. 794–797. IEEE, 2020.

Kyunghan Lee, Joohyun Lee, Yung Yi, Injong Rhee, and Song Chong. Mobile data offloading: How
much can wifi deliver? IEEE/ACM Transactions on networking, 21(2):536–550, 2012.

10

http://www.mustafabaydogan.com/
http://www.mustafabaydogan.com/

Under review as a conference paper at ICLR 2023

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos:
An experimental study. 2021. URL https://arxiv.org/abs/2102.02079.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Proceedings of Machine Learning and
Systems, volume 2, pp. 429–450, 2020.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
local and global representations. arXiv preprint arXiv:2001.01523, 2020.

Minghao Liu, Shengqi Ren, Siyuan Ma, Jiahui Jiao, Yizhou Chen, Zhiguang Wang, and Wei
Song. Gated transformer networks for multivariate time series classification. arXiv preprint
arXiv:2103.14438, 2021.

Xiaodong Ma, Jia Zhu, Zhihao Lin, Shanxuan Chen, and Yangjie Qin. A state-of-the-art survey
on solving non-iid data in federated learning. Future Generation Computer Systems, 135:244–
258, 2022. ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.2022.05.003. URL https:
//www.sciencedirect.com/science/article/pii/S0167739X22001686.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Jed Mills, Jia Hu, and Geyong Min. Communication-efficient federated learning for wireless edge
intelligence in iot. IEEE Internet of Things Journal, 7(7):5986–5994, 2019.

Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and Klaus-Robert
Müller. Explaining nonlinear classification decisions with deep taylor decomposition. Pattern
Recognition, 65:211–222, 2017.

Viraaji Mothukuri, Reza M. Parizi, Seyedamin Pouriyeh, Yan Huang, Ali Dehghantanha, and
Gautam Srivastava. A survey on security and privacy of federated learning. Future Genera-
tion Computer Systems, 115:619–640, 2021. ISSN 0167-739X. doi: https://doi.org/10.1016/
j.future.2020.10.007. URL https://www.sciencedirect.com/science/article/
pii/S0167739X20329848.

Jaehoon Oh, SangMook Kim, and Se-Young Yun. Fedbabu: Toward enhanced representation for
federated image classification. In International Conference on Learning Representations, 2022.

Carlotta Orsenigo and Carlo Vercellis. Combining discrete svm and fixed cardinality warping dis-
tances for multivariate time series classification. Pattern Recognition, 43(11):3787–3794, 2010.

Junjie Pang, Yan Huang, Zhenzhen Xie, Qilong Han, and Zhipeng Cai. Realizing the heterogeneity:
A self-organized federated learning framework for iot. IEEE Internet of Things Journal, 8(5):
3088–3098, 2021.

John Paparrizos and Luis Gravano. k-shape: Efficient and accurate clustering of time series. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp.
1855–1870, 2015.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison Cottrell. A dual-
stage attention-based recurrent neural network for time series prediction. In Proceedings of the
26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 2627–2633, 2017.

Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for activity monitoring. In
2012 16th international symposium on wearable computers, pp. 108–109. IEEE, 2012.

11

https://arxiv.org/abs/2102.02079
https://www.sciencedirect.com/science/article/pii/S0167739X22001686
https://www.sciencedirect.com/science/article/pii/S0167739X22001686
https://www.sciencedirect.com/science/article/pii/S0167739X20329848
https://www.sciencedirect.com/science/article/pii/S0167739X20329848

Under review as a conference paper at ICLR 2023

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

David Roschewitz, Mary-Anne Hartley, Luca Corinzia, and Martin Jaggi. Ifedavg: Interpretable
data-interoperability for federated learning. arXiv preprint arXiv:2107.06580, 2021.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient federated learning with
sketching. In International Conference on Machine Learning, pp. 8253–8265. PMLR, 2020.

Skyler Seto, Wenyu Zhang, and Yichen Zhou. Multivariate time series classification using dynamic
time warping template selection for human activity recognition. In 2015 IEEE symposium series
on computational intelligence, pp. 1399–1406. IEEE, 2015.

Anooshiravan Sharabiani, Houshang Darabi, Ashkan Rezaei, Samuel Harford, Hereford Johnson,
and Fazle Karim. Efficient classification of long time series by 3-d dynamic time warping. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 47(10):2688–2703, 2017.

Shahid Ullah and Caroline F Finch. Applications of functional data analysis: A systematic review.
BMC medical research methodology, 13(1):1–12, 2013.

Guan Wang. Interpret federated learning with shapley values. arXiv preprint arXiv:1905.04519,
2019.

Jane-Ling Wang, Jeng-Min Chiou, and Hans-Georg Müller. Functional data analysis. Annual Review
of Statistics and Its Application, 3:257–295, 2016.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the objective in-
consistency problem in heterogeneous federated optimization. In Advances in Neural Information
Processing Systems, volume 33, pp. 7611–7623. Curran Associates, Inc., 2020.

Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch with deep
neural networks: A strong baseline. In 2017 International joint conference on neural networks
(IJCNN), pp. 1578–1585. IEEE, 2017.

Zhengzheng Xing, Jian Pei, and Eamonn Keogh. A brief survey on sequence classification. ACM
Sigkdd Explorations Newsletter, 12(1):40–48, 2010.

Lexiang Ye and Eamonn Keogh. Time series shapelets: a new primitive for data mining. In Pro-
ceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 947–956, 2009.

Raneen Younis and Marco Fisichella. Fly-smote: Re-balancing the non-iid iot edge devices data in
federated learning system. IEEE Access, 10:65092–65102, 2022. doi: 10.1109/ACCESS.2022.
3184309.

Raneen Younis, Sergej Zerr, and Zahra Ahmadi. Multivariate time series analysis: An interpretable
cnn-based model. in press of The 9th IEEE International Conference on Data Science and Ad-
vanced Analytics (DSAA), 2022.

Fanglan Zheng, Kun Li, Jiang Tian, Xiaojia Xiang, et al. A vertical federated learning method for
interpretable scorecard and its application in credit scoring. arXiv preprint arXiv:2009.06218,
2020.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2921–2929, 2016.

12

Under review as a conference paper at ICLR 2023

Table 2: The statistics of the seven selected datasets from Baydogan’s multivariate time series
archive.

Dataset TS-length Classes Dimensions #samples
ECG 152 2 2 200
Wafer 198 2 6 1, 194
NetFlow 997 2 4 1, 337
AUSLAN 136 95 22 2, 565
UWave 315 8 3 4, 478
PAM 600 8 17 5, 333
HAR 206 6 3 10, 299

A APPENDIX

A.1 DATASETS

The Baydogan’s archive (Baydogan (2015)), contains 13 multivariate time series classification
datasets. In this work, we choose five datasets from this archive (UWave, ECG, AUSLAN, Net-
Flow, and Wafer).

Human Activity Recognition (HAR) (Anguita et al. (2013)) dataset recorded daily activities from 30
volunteers and produced six different labels of these activities (walking, walking upstairs, walking
downstairs, standing, sitting, and lying).

PAMAP2 Physical Activity Monitoring (PAM) (Reiss & Stricker (2012)) dataset recorded 18 differ-
ent daily activity using 17 sensors, in this work we use 8 activities which contains more than 500
recorded samples.

Table 2 describes the statistics of each dataset.

A.2 EVALUATION METRICS

Classification tasks are typically evaluated based on accuracy. In cases where there are fewer mi-
nority data points than majority data points, this method may provide acceptable accuracy but may
be biased in favor of the majority class. Several evaluation metrics are used to address this issue, in-
cluding balance accuracy, sensitivity, specificity, Precision, and F1-score . These metrics are defined
in the following manner:

Sensitivity =
TP

TP + FN
, (1)

Specificity =
TN

FP + TN
, (2)

BalanceAccuracy =
sensitivity + specificity

2
. (3)

Precision =
TP

TP + FP
, (4)

F1− score = 2 ∗ Precision ∗ sensitivity
Precision+ sensitivity

. (5)

where TP is True Positive, TN is True Negative, FP is False Positive, FN is False Negative.

13

	Introduction
	Related Work
	Interpretable Models for time series data
	Federated Learning

	FLAMES2Graph Framework
	FL Client Evolution Graph
	Generate MHAP time-aware graph

	FL Server Graph Aggregation
	FL Client Graph Embedding

	Results and Discussion
	Experiments Setup
	Prediction Performance
	Case Study: HAR dataset

	Conclusion
	Appendix
	Datasets
	Evaluation Metrics

