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ABSTRACT

Training agents to control a dynamic environment is a fundamental task in AI. In
many environments, the dynamics can be summarized by a small set of events that
capture the semantic behavior of the system. Typically, these events form chains or
cascades. We often wish to change the system behavior using a single intervention
that propagates through the cascade. For instance, one may trigger a biochemical
cascade to switch the state of a cell.
We introduce a new learning setup called Cascade. An agent observes a system with
known dynamics evolving from some initial state. The agent is given a structured
semantic instruction and needs to make an intervention that triggers a cascade of
events, such that the system reaches an alternative (counterfactual) behavior. We
provide a test-bed for this problem, consisting of physical objects.
We devise an algorithm that learns to efficiently search in exponentially large
semantic trees. We demonstrate that our approach learns to follow instructions to
intervene in new complex scenes.

1 INTRODUCTION

Teaching agents to understand and control their dynamic environments is a fundamental problem in
AI. It becomes extremely challenging when events trigger other events. We denote such processes
as cascading processes. Cascading processes are prevalent in man-made systems. For example, in
assembly lines, when one task is completed, e.g., construction of gears, it may trigger another task,
e.g. building the transmission system. Cascading processes are also abundant in natural environments,
e.g. chemical reactions. A major goal with cascading processes is to intervene and steer them towards
a desired goal. For example, in biochemical cascades, one tries to control chemical cascades in a cell
by providing chemical signals.

This paper addresses the problem of reasoning about a cascading process and controlling its qualitative
behavior. We describe a new counterfactual reasoning setup called “Cascade”, which is trained via
supervised learning. At inference time, an agent observes a dynamical system, evolving through a
cascading process that was triggered from some initial state. The goal of the agent is to steer the
system toward a different, counterfactual, configuration. That target configuration is given as a set of
qualitative constraints about the end results and the intermediate properties of the cascade. To satisfy
the goal, the agent may intervene with the system at a single, specific point in time by changing the
state of one specific element (the “pivot”).

Steering a cascading process is hard. In many cascading processes, a slight change in one part of
the system can make a qualitative effect on the outcome. This may lead to an exponential number of
potential cascades. This “butterfly effect” (Lorenz, 1993) is typical in cascading systems.

Technical insights. Our approach is based on two key ideas. First, instead of modeling the continuous
dynamics of the system, we reduce the search space by focusing on a small number of discrete,
semantic events. In a billiard game, these events would be collisions of balls. To do this, we design a
representation called an “Event Tree” (Figure 2). We build a tree of possible future events, where
the root holds the initial world-state. Each child node corresponds to a possible future subsequent
event from its parent. Our second idea is to learn how to efficiently search over the event tree. This is
critical because the tree grows exponentially with its depth. We learn a function that assigns scores
to tree nodes conditioned on the instruction and use these scores to prioritize the search. We also
derived a Bayesian correction term to guide the search with the observed cascade.
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Figure 1: An experimental test bed for the Cas-
cade setup. Input 1 (the unsatisfied cascade):
A set of balls is observed moving in a confined
space, colliding with each other, with walls, and
with static pins (grey & black). Collisions yield
a cascade of events (arrows). Input 2: A com-
plex instruction describes a desired “counterfac-
tual” cascade of events and its constraints. Out-
put (the satisfied cascade): The agent intervenes
and sets the (continuous, 2D) initial velocity of
the purple ball (the “pivot”) to achieve the goal,
satisfying the constraints. Only keyframes are
shown. See full videos here: https://youtu.
be/u1Io-ZWC1Sw (Anonymous)

Input 1: An observed cascade.
t=1.42: 
purple ball hits the right-wall

t=2.04: 
purple hits gray pin

t=3.04: 
yellow hits cyan

t=4.44: 
cyan hits gray pin

Output: A solution.
t=3.35: 
yellow hits red

t=1.75: 
purple ball hits the cyan ball

t=2.24: 
purple hits yellow

t=4.85: 
yellow hits black pin

Input 2: An instruction.
All the balls are in 
motion, in all frames.

Arrows “       ” highlight 
the event of each frame.

Modelling system dynamics with forward models. A forward model describes the evolution of
the dynamic systems in small time steps. There is extensive literature on learning forward models
from observations in physical systems (Fragkiadaki et al., 2016; Battaglia et al., 2016; Lerer et al.,
2016; Watters et al., 2017; Janner et al., 2019). Recent work also studied learning forward models for
cascades (Qi et al., 2021; Girdhar et al., 2021). However, once the forward model has been learned,
the desired initial condition of the system is found by an exhaustive search. Here, we show that
exhaustive search fails for complex cascades and with semantic constraints (Section 4). Therefore,
our paper focuses on learning to search, rather than on learning the forward model.

Contributions. This paper proposes a novel approach for learning to efficiently search for a complex
cascade in a dynamical system. Our contributions are: (1) A new learning setup, Cascade, where an
agent observes a dynamical system and then changes its initial conditions to meet a given semantic
goal. (2) Learning a principled probabilistic scoring function over a semenatic Event Tree, for
searching efficiently over the space of interventions. (3) A Bayesian formulation leveraging the
observed cascade to guide the search in the event tree toward a counterfactual outcome.

Related work: PHYRE, Virtual Tools, and CREATE Bakhtin et al. (2019); Allen et al. (2020); Jain
et al. (2020) are benchmarks for physical reasoning. Their setup is a sequential decision reinforcement
learning setup, allowing exploration and multiple retries, which are not allowed in our setup. Second,
in the prior benchmarks, all tasks have to satisfy the same final goal. Finally, the current paper focuses
on the search problem, rather than on learning a forward model. Roussel et al. (2019) focused on
robustly tuning the simulator configuration given a known cascade. Our work focuses on finding a
cascading configuration given a partial semantic description. Pertsch et al. (2020); Jayaraman et al.
(2019) learned from video data to predict key-frames, but rely on a visual end frame.

2 THE “Cascade” LEARNING SETUP

Cascade is a supervised learning problem. At inference, the agent is provided with a dynamical
system and two inputs: (1) A sequence of events called the “observed cascade” together with the
respective initial condition of the system. (2) An instruction that describes desired semantic properties
(”constraints”) of the solution. The observed cascasde does not satisfy the instruction. The agent is
asked to intervene by controlling the state of one “pivot element” at a specific point in time.

At the training phase, we are only given “successful” labeled samples. Each sample consists of (1) an
instruction; and (2) the initial state of the system except the controllable pivot. The ”label” (y) of
each sample is the initial state of the pivot, which yields the desired behavior of the system. During
training, we do not provide examples of failing sequences together with a successful sequence. At
test time, a novel sample is drawn, describing an unseen dynamical system and instruction; and an
observed cascade roll-out that fails to fulfill the instruction.

Our test bed: We introduce a new simulated test bed that abstracts away from specific applications.
An agent observes a physical world with several moving and static objects going through a cascade of
events (Figure 1 top), and it is given a complex instruction “Push: purple ball . . . ”. It then manipulates
the direction and speed of the purple ball (Figure 1 bottom) manifesting a new cascading process that
satisfy the complex set of constraints given by the instruction.

2

https://youtu.be/u1Io-ZWC1Sw
https://youtu.be/u1Io-ZWC1Sw


Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

3 METHODS a)

b)

�

�����

�����

��

��� = [(cyan, purple), (red, black) ]
���    = �|Q � =                   ,                 , …  

��� = � �� | �� ∈ ��, � ∈ ��� 

��    = [(cyan, purple)]
��   = �| Q � =                    , … .    

��   = � �� | �� ∈ �����, � ∈ �� 

����� = [] 
����� = � 

feasible dynamic 
configurations 

����� = { }

Figure 2: (a) The Event Tree data structure, illus-
trated according to our test-bed. S is the collision
sequence of a node; Y is the intervention subset of
a node; W is the node’s world-state. See Section 3.
(b) Tessellation of the intervention space.

The Cascade setup presents three major chal-
lenges: First, our model needs to identify se-
mantic events, but simulations of dynamical sys-
tems typically follow fixed and small timesteps,
which are indifferent to events. Second, the set
of constraints and dynamical systems is compo-
sitional and large. The agent needs to generalize
to different systems and configurations that were
not observed in training. Third, We aim to use
failed cascade examples which are only avail-
able during inference (counterfactual setup).

To address the first challenge, we develop a
representation that focuses on key “semantic”
events of the dynamics (e.g., collisions). We
build a tree of possible outcomes such that a
path in the tree captures a realizable cascade of
events. To address the second challenge, we
learn a scoring function that assigns values to tree nodes conditioned on the instruction. At inference
time, we use the predicted scores to search efficiently over the space of interventions. To address
the third challenge, we develop a Bayesian formulation that allows to integrate the “counterfactual”
information with the score predictions.

The Event Tree: A tree of possible futures The data structure we use to represent the search
problem is the Event Tree. We represent the system behavior at the semantic level. These could be
any key interactions between system components, e.g., a collision between two objects.

Each node corresponds to a sequence of semantic events, the node’s prefix of semantic events. Each
node has a unique prefix. The node’s children correspond to realizable continuations of this sequence.
Each node is also associated with a subset of interventions Yu that share the same sequence of
preceding events. Notably, while different interventions within a node result in the same prefix, they
may result in different subsequent events after the prefix. The root node describes the set of possible
interventions at t = 0, Y , and its sequence of events Sroot is empty. See Figure 2, top.

We propose an event-driven forward model f(·). It takes as input a state and outputs the next
immediate semantic event. Expanding the tree can be viewed as a tessellation refinement of the
intervention space Y . At each step, we pick one cell and split it into multiple cells, where each child
cell represents a different event that occurs after a shared sequence of events, represented by the
parent cell. See Appendix I for details.

The score function. The number of nodes in such trees grows exponentially with the tree depth and
exceeds billions of nodes even in our basic setup. We prioritize which node to expand by learning a
score function for nodes, conditioned on the instruction g. There are three key challenges in learning
a score function. First, we do not have ground-truth (target) scores for tree nodes. A naive choice for
setting scores would set the score of the node that represents the ground-truth sequence to 1, and set
all other scores to zero (“All-or-None”). However, this provides little guidance for searching the tree,
as no signal is provided until the search hits the target node. Second, the training data contains only
positive examples of correctly designed plans. Finally, we wish to leverage the information about the
faulty observed cascade, but a faulty cascade is only observed during inference time.

To address these three challenges we design a principled probabilistic approach for the score function.
We train our model to predict the likelihood that a sample from Yu, when rolled out, will satisfy the
instruction g, V (u) = Pr (Q(y) satisfies g|y ∈ Yu, g). Here, nodes on the path from the root to u∗

are assigned monotonically increasing scores. The architecture is described in the appendix.

Counterfactual update for the score function. During inference, we observe a cascade that does not
satisfy the instruction and are asked to retrospectively suggest a better solution. How can the observed
cascade be used to find a solution? We use a Bayesian formulation and treat the model predictions as
a prior for the true score, and the information about the observed cascade as evidence. Our model
learns to estimate the unconditioned score function V (·). In the appendix, we show that we can
express the Bayesian update of the scores in terms of V (uobs), V (u), V (u|Suobs doesn’t satisfy g) =
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ACO (3 constraints)Figure 3: Comparing ROSETTE with ROSETTE-
max-l for 2 levels of instruction complexity and
for two levels of “count” instructions. ROSETTE
performs better in complex scenarios.

Tree Simulator
Success Success

Random NA 17.6 ± 0.3%
Deepset Regression NA 18.4 ± 0.5%
(Qi et al., 2021) NA 21.1 ± 0.9%
Cross Entropy NA 20.9 ± 0.4%
SEQUENTIAL 52.4 ± 0.6% 43.1 ± 0.3%

ROSETTE (Ours) 60.8 ± 0.3% 48.8 ± 0.3%

Table 1: Success rates of our approach and
baselines. TREE is not applicable to the first
three baselines since they do not use an event
tree.

V (u)− V (uobs) · fr(yobs, yu, where fr(uobs, u) = Pr(y ∈ Yuobs |y ∈ Yu) is the probability that an
intervention y ∈ Yu will result in sequence with prefix Suobs .

Inference Our agent searches the tree for the maximum scored node uMAX . Then, it randomly
selects an intervention from its intervention subset y ∈ YuMAX

. We limit the tree search to expand
only 80 nodes, whereas in our test bed a full event tree, have billions of nodes. We consider two
variants. Maximum likelihood search: The agent performs a tree search that expands the most likely
nodes, and Counterfactual search: We apply the Bayesian correction term to the predicted score of
every node along the observed sequence.

4 EXPERIMENTS

We performed a detailed qualitative and quantitative analysis1 (Appendix B). We compared our
approach to SOTA baselines and human performance. An ablation study appears in the appendix.

Compared Methods: We compared the following methods. (1) ROSETTE (Reasoning On
SEmanTic TreEs): Our approach described in Section 3. Search uses the “counterfactual” variant of
the tree search. (2) ROSETTE-max-l.: Like #1, but using “Maximum likelihood search”. (3) (Qi
et al., 2021), The SOTA on PHYRE. For a fair comparison we replace their learned forward model by
the full simulator of Makoviychuk et al. (2021). Hence, this baseline benefitted from using an exact
forward model. (4) Cross Entropy: A standard planner (de Boer et al., 2005; Greenberg et al., 2022)
that optimizes the objective function learned by compared method (3). Similarly to (3), this baseline
had access to the exact model. (5) Sequential: Using a sequential representation for a tree chain,
instead of a DAG. (6) Deep Sets regression: We embed the objects’ initial positions and velocities
using the permutation-invariant “Deep Sets” architecture (Zaheer et al., 2017), (7) Random: Sample
interventions at random from an estimated distribution of ground-truth interventions.

Evaluation metrics: We use two success metrics, Simulator success rate: The success rate when
rolling out the predicted intervention using a physical simulator (Makoviychuk et al., 2021). This
metric mimics experimenting in the real world. Tree success rate (where applicable): Each node
in the tree represents a sequence of events. A tree based algorithm selects a node. A “tree success”
is when the selected node’s sequence satisfy the instruction. This evaluates the performance of the
score function and tree search, independently from errors introduced due to the forward model.

Table 1 describes the Tree and the Simulator success rates of ROSETTE and compared methods.
ROSETTE achieves the highest success rate for both the “Tree” success rate (60.8%) and the
“Simulated” success rate (48.8%). Achieving ∼80% conversion rate from Tree to Simulated. The
random baseline success rate is (17.6%), which is close to the performance of the regression model.
We conjecture that the regression model fails, because it can’t represent the outcomes as ROSETTE
can. We further measured refinements of our metrics by conditioning on various properties of the
instruction and scene (Fig. 3). We discuss the baselines’ results in Appendix A.1.

Human evaluation. We conducted a user study with Amazon Mechanical Turk. We designed a
game, where a player is given a video of the observed cascade and is asked to select one of 44
combinations of orientations (11) and speeds (4). ROSETTE achieves the highest average success
rate (43.3%± 1.3%) compared to human success rate of 23.9%± 2.6%. Appendix C, describes the
experiment design and further analysis of the results.

1Examples: link #1, link #2, link #3.
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A ADDITIONAL RESULTS

Here we describe additional results and provide further discussion.

A.1 BASELINE RESULTS DISCUSSION

(Qi et al., 2021) baseline: We believe that the (Qi et al., 2021) baseline fails for three main reasons:
(1) The baseline does not use an event-based representation. (2) It employs a classifier that is trained
to provide an all-or-none signal, rather than guiding the search. The ablation study (Table ??, right)
demonstrates the importance of guiding the search (compare “Ours” 59.7% vs “All-or-None” 33.5%
) (3) The baseline architecture cannot reason over the temporal DAG structure of a cascade, as our
GNN can. The importance of capturing the DAG structure is demonstrated when comparing “Our”
(60.8%) to the SEQUENTIAL baseline (52.4%) (Table ??, left)

Existing Planners: We wish to provide further insight into why it is challenging to apply existing
planners to this setup. The main challenge is that the optimization objective is given in semantic terms
about the end goal. To apply a Cross-Entropy-Method (CEM) planner, we derive a corresponding
objective function by training a classifier that checks if the goal was achieved for a given scene and
plan. Specifically, we used the existing SoTA PHYRE classifier Qi et al. (2021). A main drawback is
that classifiers provide an “all or none” signal, hence fail in guiding the planner through optimization.
Conversely, our approach provides a score (Eq. ??) that monotonically increases through the tree,
and it is constructed to assist the search.

B QUALITATIVE EXAMPLES

Here we provide links to qualitative examples that we uploaded to YouTube. They are best viewed in
×0.25 slow motion. The YouTube account we use is anonymous.

For each episode, we show a side-to-side video of the observed cascade, the ROSETTE successful
case, and ROSETTE-max-l failure case. The instruction is displayed on top of each video.

• Push: cyan ball, Target: blue hits red, Bottleneck: cyan hits bottom wall, Chain Count: 6
In this example, ROSETTE semantically follows the first 10 collisions (in chonological
order) as in the observed cascade. It then diverges from the observed cascade, making
the blue hit the red. The cyan pivot comes into play already on the 1st collision, and the
agent adjusts its velocity such that it shall yield the goal. The ROSETTE-max-l baseline,
hits the target, however it fails with the count constraint. The bottleneck collision occurs,
but not on the chain from the pivot to the target. See the complete video here: https:
//youtu.be/RCKFBRrCRw0

• Push: cyan ball, Target: green hits red, Bottleneck: purple hits red, Chain Count: 4
In this example, ROSETTE semantically follows the first 5 collisions (in chonological
order) as in the observed cascade. The cyan pivot comes into play on the 3rd collision.
It then diverges from the observed cascade, and follows another chain of events, making
the purple hit the red, and concluding with the target hit within 4 collisions in the chain
that started at the cyan ball. This task is too hard for the ROSETTE-max-l baseline,
as it completely fails to satisfy the instruction. See the complete video here: https:
//youtu.be/4s9MmY2J__I

• Push: green ball, Target: green hits cyan, Bottleneck: green hits purple, Chain Count: 5
In this example, ROSETTE semantically follows the first 6 collisions (in chonological order)
as in the observed cascade. It then diverges from the observed cascade, making the green hit
the purple, fulfiling the bottleneck constraint. The cyan pivot comes into play only on the 6th
collision, and the agent adjusts its velocity such that both the target and the count constraint
will by satisfied. The ROSETTE-max-l baseline, hits the bottleneck, however it fails to hit
the target. See the complete video here: https://youtu.be/iMedd_7YndQ

• Push: yellow ball, Target: cyan hits red, Bottleneck: purple hits red, Chain Count: -
In this example, ROSETTE semantically follows the first 5 collisions (in chonological order)
as in the observed cascade. The yellow pivot comes into play only on the 5th collision,
and the agent adjusts its velocity to satisfy the bottleneck constraint and the target. The
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ROSETTE-max-l baseline, completely fails in this task. See the complete video here:
https://youtu.be/QLMTD6R2Z54

• Push: red ball, Target: blue hits red, Bottleneck: red hits bottom wall, Chain Count: -
In this example, ROSETTE semantically follows the first 4 collisions (in chonological order)
as in the observed cascade. The red pivot comes into play already on the 2nd collision,
and the agent adjusts its velocity to satisfy the bottleneck constraint and the target. The
ROSETTE-max-l baseline, satisfy the bottleneck but does not satisfy the target. See the
complete video here: https://youtu.be/vT1ivd1ECJs

• Push: yellow ball, Target: blue hits purple, Bottleneck: blue hits right wall, Chain Count: -
In this example, ROSETTE semantically follows only the first 2 collisions (in chonological
order) as in the observed cascade. The red pivot comes into play on the 3rd collision,
and the agent adjusts its velocity to satisfy the bottleneck constraint and the target. The
ROSETTE-max-l baseline, completely fails in this task. See the complete video here:
https://youtu.be/rgzWBfx-LqY

Importantly, these examples demonstrate the usefulness of the observed cascade for tree search.
ROSETTE followed the observed cascade along the part of the path that was useful to satisfy the
instruction. It diverged from the path when necessary, and found a solution when long cascades were
essential, while ROSETTE-max-l struggled.

Finally, we note that this observation is also quantitatively supported: As we show in Figure ?? and
Figure A.4. When conditioning the Tree Success rate on producing long cascades, with Chain count
constraint values greater or equal to 5, ROSETTE performs at 34.8± 0.8%, while ROSETTE-max-l
performs at 31.3 ± 1.1%, showing ∼11.1% improvement. For Chain count values smaller than 5,
they are statistically equivalent 75.1± 0.4% and 75.4± 0.4%.

C USER STUDY

We conducted a user study with Amazon Mechanical Turk (AMT) using 30 test episodes. We
designed a game where a player (rater) is given a video of the observed cascade and is asked to select
one of 44 combinations of orientations (11) and relative speeds (4) (magnitude of velocity). One
combination of orientation and speed was aligned with the ground-truth solution, and the rest were
spaced in relation to that solution. In an offline stage, we tested which of the other orientations and
speeds satisfy the goal and included those as valid solutions. We allowed the players to freely replay
the observed video. We paid 1$ per game.

Figure A.1 shows one test episode. The upper panel provides an instruction that states the goal of
that specific episode. On the left, we provide a set of simple guidelines. The center panel provides
the observed (failed) video. The right panel shows the initial frame, overlaid with the set of possible
orientations and a set of HTML radio buttons to select the orientation and speed. The upper tab
provides a set of four examples with solutions and explanations. Those examples are given in
Figure A.2.

To maintain the quality of the queries, we only picked users with AMT “masters” qualification,
demonstrating a high degree of approval rate over a wide range of tasks. Furthermore, we also
executed a qualification test with a few curated episodes that are very simple. To qualify users,
we made sure they do not randomly pick an answer by only qualifying users who completed 5
episodes and had a single error at most. Additionally, we deleted queries from one qualified user, who
submitted answers at a rate of 3-4 episodes per minute, as we qualitatively observed that it should
take 1-3 minutes to complete an episode.

Qualified users received a bonus of 0.5$, accompanied with the following message:

Thank you for doing the qualification batch for our colliding balls game.
Our full study is now online. You can start doing it. Please remember to PLAY
THE VIDEO and use it to decide about your answer. And also, take another look
at the examples, as they can provide more intuition about the task.

11 players have passed our qualification tests, playing 25 episodes on average. Table 2 compares the
human success rate with ROSETTE and a Random baseline. Showing Average, Median and Best
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Figure A.1: One test episode of the user study. See Section C for details.

statistics. For the Median and Best statistics, we only included users who played a minimum number
of 20 episodes (8 of 11 users).

Average Median Best

Random 17.6 ± 1.1%
Humans 23.9 ± 2.6% 25% 41.4%

ROSETTE 43.3 ± 1.3% 43.3% 46.7%

Table 2: Success rate statistics for the user study. ± error denotes the standard error of the mean
(S.E.M) across the samples.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 HYPERPARAMETER TUNING

We train the model and baselines for 15 epochs. Batch size was set to 8192 to maximize the GPU
memory usage. We use the PyTorch’ default learning rate for Adam (Kingma & Ba, 2015) (0.001).
For inference, we set Nobserved to 9, the maximal tree depth to 30, we sample 106 initial states and
expand 80 nodes per episode which takes ∼13 seconds. The GNN uses 5 layers, with a hidden state
dimension of 128. Hyper parameters were tuned one at a time, during an early experiment on a
validation set.

D.2 RANDOM BASELINE

We sample an intervention at random from an estimated distribution of ground-truth interventions.
The distribution is estimated by calculating a 2D-histogram with 30 × 30, and approximating the
distribution within each bin to be uniform.

D.3 DEEPSET REGRESSION BASELINE

Overview: For the Deepset regression baseline, we embed the instruction and the initial world state to
predict a continuous intervention. We use the permutation-invariant “Deep Sets” architecture (Zaheer
et al., 2017), and use an L2 loss with respect to ground-truth interventions in the “counterfactual”
training samples.

9
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Figure A.2: Examples provided in the user study. See Section C for details.
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The input to the Deepset architecture (Zaheer et al., 2017) is a set of feature vectors. Each feature
vector corresponds to a dynamic or static object in the scene. The output is a vector ∈ R2, for
predicting the controlled velocity of the pivot object.

Feature representation: Each feature vector in the set is represented by a concatenation of the
following fields [obj feat(o), instruction emb, position, velocity], where obj feat(o) is defined
by Eq. (1), instruction emb, is defined by Eq. (4), position, velocity are the initial position and
velocity of the object, as given by the observed cascade.

Labels and loss: For ground-truth labels, we use the ground-truth velocity of the solution. We use a
L2 loss comparing the ground-truth labels with the output of the Deepset architecture.

D.4 (QI ET AL., 2021) BASELINE

Overview: Qi2021 is the state-of-the-art approach for solving PHYRE. It uses a learned forward
model, a learned goal-satisfaction classifier, and exhaustive search. For a fair comparison with our
analytic event-driven forward model, we replace their learned forward model by a full simulator
(Makoviychuk et al., 2021).

Therefore, for the goal-satisfaction classifier, in each frame, we replace the set of input feature vectors
coming from the region-proposal-interaction-network (RPIN) of (Qi et al., 2021) by a set of feature
vectors corresponding to each object in the scene, and its kinematic state as given by the simulator.
To condition the classifier on the goal, we concatenate the instruction representation to each feature
vector.

Feature representation: Each feature vector of an object in a frame, is represented by a con-
catenation of the following fields [obj feat(o), instruction emb, position, velocity, time], where
obj feat(o) is defined by Eq. (1), instruction emb, is defined by Eq. (4), position, velocity, time
are the respective readings from the simulator in the frame.

Positive and Negative examples: For training the goal-satisfaction classifier with positive examples,
we use the simulation of the solution cascade. For negative examples, we use the simulation of the
observed cascade.

Classifier Architecture: We use the classifier architecture of (Qi et al., 2021), as provided in their
public implementation, with the following adaptations: (1) We replace the RPIN representation by
the simulator-driven representation described above. (2) We allow replacing the last fully connected
layer by a multi-layer-perceptron (MLP) (3) We allowed more than four equally spaced input frames.

Simulator configuration: The RPIN forward model is a fixed timestamp model, working at 1
frame-per-second. In the full simulator we used (Makoviychuk et al., 2021), we observed that it does
not perform well in such a coarse-grained resolution, making objects to sometimes go through the
walls. Therefore, we increased the simulator resolution to 10 frames-per-second.

Hyperparam search: We searched for the best hyper-parameters configuration that minimizes the
validation loss over the following ranges: Number of MLP hidden-layers ∈ [0, 1, . . . 6], Number of
input frames ∈ [4, 6, 10, 20], batch-size ∈ [128, 256]. Number of training epoch was set according to
early stopping on the validation set.

Finally, we used the following hyper-parameters to evaluate the model performance on the test set:
Number of MLP hidden-layers = 2, Number of input frames = 4 (as in (Qi et al., 2021) paper),
batch-size=128, Number of training epoch = 17.

Evaluation: For evaluation, we randomly selected a subset of 208 episodes (10% of the test subset),
because inference for a single episodes took ∼5.5 minutes.

D.5 CROSS ENTROPY BASELINE

Overview: The cross entropy method is a black box optimizer for solving optimization problems.
We used (Qi et al., 2021) baseline’s classifier as our objective function. At each step, we sampled
100 points and updated the sampling distribution based on their score. We have repeated this process
for 100 iterations, and chosen the highest scored intervention for evaluation. Our code is based on a
standard implementation Greenberg et al. (2022) of the cross entropy method.
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For evaluation, we randomly selected a subset of 208 episodes (10% of the test subset), because
inference for a single episodes took ∼4 minutes.

D.6 SEQUENTIAL BASELINE

We used the validation set to select the number of layers for this baseline, ∈ [5, 10, 20, 30]. There
wasn’t any significant difference when using 5 or 10 layers, and the success rate degraded for 20 or
30 layers. Therefore, we used 5 layers for evaluating performance on the test set.

D.7 ABLATION STUDY

We also carry a thorough ablation study. First, we explore alternative approaches to label
node scores along the ground-truth sequence. Linear: Linearly increases the score by V (u) =
depth(u)/depth(u∗). Step: Give a fixed medium score to nodes along the sequence, and a maximal
score to the target node: V (u) = 0.5 + 0.51u∗(u). All-or-None: Sets V (u) = 1u∗(u), this baseline
is equivalent to the naive approach discussed in Section 3. Second, we compare the “Counterfactual”
search to the “Maximum Likelihood” search by comparing their performance on a dataset that in-
cludes more complex instructions. This dataset includes a third constraint. We partition the dataset
to “Easy” and “Hard” instructions, and compare these search methods on both types of instructions.
We describe this dataset in the appendix. Last, we test how ablating parts of the instruction affects the
ROSETTE model performance.

Ablation experiments: We highlight some key observations.(1) Table ?? shows the advantage
of the probabilistic formulation of the score function (ROSETTE-max-l), compared to the several
heuristics described in Section 4. The strongest baseline (“Linear”) only reaches 48.7% vs. 59.7%
for ROSETTE-max-l. (2) The All-or-None variant establishes the value of event-drivenness. It is
similar to a classifier-based search like Qi et al. (2021), but uses an underlying event-driven forward
model instead of a fixed time stamp model as in Qi et al. (2021). Comparing the two, we see that
using EDFM with current SOTA improves the success rate, from 21% to 33.5%. (3) Comparing
ROSETTE-max-l to the All-or-None variant further establishes value of learning to search, which
improves the success rate from 33.5% to 59.7%. (3) Figure ?? quantifies the benefit gained by using
“Counterfactual” search (ROSETTE) over Maximum-Likelihood search (Section ??). ROSETTE
shows a relative improvement of 7.7% (45.1% vs 41.9%) for complex instructions. (4) Table 3
(Appendix A) allows an in-depth examination of the strengths and weaknesses of ROSETTE, across
4 types of ablations, as described in Section 4. First, we observe that the sequential baseline can
find target collisions that depend on a bottleneck collision, as well as ROSETTE. However, it fails
with “count” instructions (46.3% vs 60.8%), since it has no capacity for that reasoning task. Second,
we observe that ROSETTE is able to effectively use the instruction, as removing any part of the
instruction hurts the success rate.

UNCONSTRAINED BOTTLENECK COUNT B & C

ROSETTE (OURS) 76.5 ± 0.8% 68.5 ± 1.0% 60.8 ± 0.7% 49.5 ± 0.5%
-COUNT 75.8 ± 0.9% 68.4 ± 0.8% 6.1 ± 0.6% 17.1 ± 0.5%
-BOTTLENECK 76.4 ± 0.9% 21.5 ± 1.1% 61.1 ± 1.2% 34.1 ± 0.7%
-COUNT -BOTTLENECK 76.6 ± 0.8% 21.4 ± 1.1% 6.1 ± 0.5% 4.2 ± 0.3%
-FULL 60.8 ± 0.5% 32.7 ± 0.9% 11.7 ± 0.5% 6.6 ± 0.1%
SEQUENTIAL 77.9 ± 0.4% 66.9 ± 1.3% 46.3 ± 1.3% 36.5 ± 1.3%

Table 3: Ablation study. In red, results that perform much worse than ROSETTE.

We further measured refinements of our metrics by conditioning on various properties of the instruc-
tion and scene (Fig. 3). (1) Condition tree success rate on instruction type: Unconstrained: The
instruction only specifies target collisions. Bottleneck: also contains an “bottleneck” constraint.
Count: contains a “count” constraint. B&C: contains both “bottleneck” and “count” constraints. (2)
Condition tree success rate on complex scenarios: (2.1) Instructions with 2 or more constraints are
marked as “Hard”, and the rest as “Easy”; (2.2) Instructions with a “count” constraint value ≥ 5 are
considered hard. Complex scenario conditioning was evaluated on the complex instruction dataset.
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Figure A.3: Illustrates transforming a sequence of events (top) to a DAG (bottom). It corresponds to
the video in Figure 1 bottom.
Using the main dataset demonstrate a similar trend (See appendix K). We discuss the baselines’ in
Appendix A.1, and we provide qualitative examples in Appendix B.

We report the “count” and “bottleneck” ablations by zeroing their respective features in the instruction
and using the same model weights that were used to report the performance of the ROSETTE model.
We did not retrain the model for these cases because the ROSETTE model was trained to handle
these cases, as is evident by the “Unconstained” metric.

For ablating the “full” instruction, we retrained the model, while completely zeroing the representation
vector of the input instruction.

E IMPLEMENTATION DETAILS OF THE MODEL OF THE SCORE FUNCTION

A model for the score function. The model takes as inputs the instruction g and sequence of
events Su , and predicts a scalar score v(u). A naive approach is to represent Su as a sequence.
However, such representation may not convey well the relations describing the cascade of events. For
illustration, in the following sequence of collision events [(A, B), (C, D), (A, E)], the collision (A,E)
is driven by (A,B), because A is common for both, while (C,D) is less relevant for describing the
events that lead to (A,E). Instead, we transform each sequence to a Directed Acyclic Graph (DAG)
that captures relations in the cascade of events (Figure A.3).

We use a Graph Neural Network (GNN) to parameterize our score function. We represent the graph
as a tuple (A,X,E, z) where A ∈ {0, 1}n×n is the graph adjacency matrix, Y ∈ Rn×d is a node
feature matrix, E ∈ Rm×d′

is an edge feature matrix, and z ∈ Rd′′ is a global graph feature. we
chose to use a popular message passing GNN model (Battaglia et al., 2018) that maintains learnable
node, edge and global graph representations.

Architecture The model is composed of several message passing layers, Lk ◦ · · · ◦ L1 where each
Li updates all representations, i.e.:
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Xi+1, Ei+1, zi+1 = Li(A,Xi, Ei, zi; θi),

Each layer Li updates the features sequentially: the node and edge features are updated by aggregating
local information, while the global feature is updated by aggregating over the whole graph. We
denote the parameters of the MLPs that are used in a layer Li as θi, and note that these are the only
learnable parameters in the model. At the last layer i = k we use a single dimension for the global
feature, i.e., d′ = 1, which is then used as the score of the event node.

Feature representation We describe next the feature representation of the inputs to the node feature
matrix Y , the edge feature matrix E, and the global graph feature z.

We start by describing a feature representation of any of the dynamic and static objects in the scene:
An object o feature representation, noted by obj feat(o), is a concatenation of the following fields

obj feat(o) = [one hot(o), is stationary, is active,

instruct inner prod, bottleneck ind, count, count ind], (1)

where one hot(o) is a one-hot vector ∈ R12, as represented by the instruction; is stationary
indicates whether the object is stationary; is active means that in the context of a current collision, the
object dynamics were coming from a collision chain that included the pivot; instruct inner prod
is the results of an inner product of one hot(o) with each of the 5 object representations at the
instruction embedding (Section H.3). Finally, bottleneck ind, count, count ind are copied from
the instruction embedding.

The graph node and edge features are derived from the DAG representation (Figure A.3). Each
row of the node feature matrix Y concatenates the two objects that participate at a collision
[obj feat(obja), obj feat(objb)]. Each row at the edge feature matrix E represents obj feat(o) of
the object on that edge.

Last, the global feature z is a copy of the instruction embedding Eq. (4).

Training data For calculating the training labels of the score function, we traverse the semantic tree
along the ground-truth sequence of the solution cascade and collect the positive labels using Eq. (??).
If the event tree cannot reproduce the solution sequence of a sample (due to errors accumulated by
the event-driven forward model), then Eq. (??) cannot be calculated, and we drop that sample from
the training set. We collect negative examples (with V = 0) by (1) taking the child nodes that diverge
from the path to the ground-truth solution. (2) Traverse a random path along the tree with the same
length as the ground truth sequence, and set the score of all the nodes along that path to 0. Note that
setting the scores of every node along these paths to V = 0 is a heuristic and may introduce some
label noise with respect to negative examples. Additional research may be required to analyze the
label-noise consequences and address it.

F COUNTERFACTUAL UPDATE FOR THE SCORE FUNCTION

In this section, we derive the expression of the score function update according to the observed
cascade (Eq. (??)). We start the derivation by repeating the preliminary derivation steps introduced in
the main text in more detail.

During inference, we observe a cascade that does not satisfy the instruction, and are asked to
retrospectively suggest a better solution. How can the information can be used to find a better
solution? The probabilistic score function allows us to formalize this problem in a Bayesian setting.
We treat the model predictions as a prior for the true score, and the information about the observed
cascade as evidence. We then ask how to update the score function given the observed evidence.
Formally, we condition Eq. (??) by the evidence, V (u|Suobs doesn’t satisfy g).

We denote the set of interventions that satisfy the instruction g as Gg ⊂ Y , and the evidence by E.
Note that an equivalent definition for the unconditioned score function V (·) is

V (u) = Pr (Q(y) satisfies g|y ∈ Yu, g)

= Pr (y ∈ Gg|y ∼ U (Yu))
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Our evidence is that for a particular ỹ ∈ Yobs, we have ỹ /∈ Gg . Now, by definition, every y, y′ ∈ Yobs

share the same observed cascade Suobs . Therefore, the evidence E can be equally formulated as
y′ /∈ Gg for any y′ sampled uniformly from Yuobs , y′ ∼ U(Yuobs). For brevity, we set Yobs = Yuobs .

The conditioned score function is then,

Pr (y ∈ Gg|y ∼ U (Yu) , E)

We use the law of total probability and write,

Pr (y ∈ Gg|y ∼ U (Yu) , E)

=Pr (y ∈ Ggy ∼ U (Yu) , E, y ∈ Yobs) Pr (y ∈ Yobs|y ∼ U (Yu) , E)

+Pr (y ∈ Gg|y ∼ U (Yu) , E, y ∈ Y c
obs) Pr (y ∈ Y c

obs|y ∼ U (Yu) , E)

=Pr (y ∈ Gg|y ∼ U (Yu ∩ Yobs) , E) Pr (y ∈ Yobs|y ∼ U (Yu) , E)

+Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs) , E) Pr (y ∈ Y c

obs|y ∼ U (Yu) , E)

Furthermore,

Pr (y ∈ Yobs|y ∼ U (Yu) , E) = Pr (y ∈ Yobs|y ∼ U (Yu))

Pr (y ∈ Y c
obs|y ∼ U (Yu) , E) = Pr (y ∈ Y c

obs|y ∼ U (Yu))

As the conditioned event y ∈ Yobs is independent of E.

The relations between node Uobs and u can be one of the three: a) the observed node is a descendant
of u (and therefore Yu ∩ Yobs = Yu) b) u and the observed node belong to different branches, and
therefore Yu∩Yobs = ∅, or c) u is a descendant of the observed node (and therefore Yu∩Yobs = Yobs).
However, uobs represents a complete cascade rather than a partial sequence, and therefore the observed
node does have any children, and we can ignore c).

Let us consider each case separately.

u and the observed node are along different paths. In this case,

Yu ∩ Yobs = ∅
Yu ∩ Y c

obs = Yu

Pr (y ∈ Y c
obs|y ∼ U (Yu)) = 1

Pr (y ∈ Yobs|y ∼ U (Yu)) = 0,

and we’re left to evaluate Pr (y ∈ Gg|y ∼ U (Yu) , E). Since the evidence in this case provides
information about a set that y is not conditioned on, it is independent of y, and therefore we conclude
with,

Pr (y ∈ Gg|y ∼ U (Yu) , E) = Pr (y ∈ Gg|y ∼ U (Yu)) = V (u)

u is a descendant of the observed node. Here,

Yu ∩ Yobs = Yobs

Pr (y ∈ Yobs|y ∼ U (Yu)) = fr(yobs, yu)

In this case,

Pr (y ∈ Gg|y ∼ U (Yu) , E)

=Pr (y ∈ Gg|y ∼ U (Yu ∩ Yobs) , E) fr(yobs, yu)

+Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs) , E) (1− fr(yobs, yu))

=Pr (y ∈ Gg|y ∼ U (Yobs) , E) fr(yobs, yu)

+Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs) , E) (1− fr(yobs, yu)) (2)
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Now,

Pr (y ∈ Gg|y ∼ U (Yobs) , E)

=Pr (y ∈ Gg|y ∼ U (Yobs) , {∀y′ ∈ Yobs, y
′ /∈ Gg})

=0

Since the evidence indicates that for every y′ ∈ Yobs the resulting sequence Suobs does not satisfy the
goal. Furthermore,

Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs) , E) = Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c

obs)) (3)

As E does not add information when we sample from (Yu ∩ Y c
obs).

Therefore,

Pr (y ∈ Gg|y ∼ U (Yu) , E) = Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs)) (1− fr(yobs, yu))

Now

Pr (y ∈ Gg|y ∼ U (Yu)) = Pr (y ∈ Gg|y ∼ U (Yu ∩ Yobs)) fr(yobs, yu)

+ Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs)) (1− fr(yobs, yu))

Namely,

V (u) = V (uobs) · fr(yobs, yu) + Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs)) (1− fr(yobs, yu))

or

Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs)) =

V (u)− V (uobs) · fr(yobs, yu)
1− fr(yobs, yu)

.

Plugging this back to Eq. 3 we obtain:

Pr (y ∈ Gg|y ∼ U (Yobs) , E) = V (u)− V (uobs) · fr(yobs, yu)

which is our final result.

G RELATION TO CAUSAL-INFERENCE

The DAG representation (Section 3) is useful for graphically representing one instance of a cascade,
but we intentionally avoid naming it a Causal DAG, because it can’t represent dependencies between
events that are not explicitly observed in the video. E.g., in the example [(A, B), (C, D), (A, E)] in
Section 3, it may be that (A,E) depends on (C,D) because C blocks D from reaching to E before A
do. The event tree can simulate this behaviour, while the DAG (C,D) ; (A,B)-¿(A,E) is unaware of it.
From a formal causal inference perspective (Pearl, 2000), our event tree is the part of our approach
that can be related to the formal ”Structured” Causal Model (SCM). As it is a generative model that
reflects the data generation process; it can account for complex dependencies between events; and
every edge corresponds to a function, namely, the event-driven forward model.

H DATA GENERATION DETAILS

H.1 VIDEO GENERATION DETAILS

In this section, we describe the generation process of the dynamical scene. We first create an
“unperturbed” video. Then, we perturb the video by modifying the velocity of a specific element,
which will be later designated as the pivot. We let the perturbed video roll out, validate that it
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is indeed semantically different than the unperturbed video, and label it as the “observed” video.
The unperturbed video can now be used as reference for our instruction generation process. It is a
realization of a specific, complex, semantic chain of events that is both semantically different than the
perturbed (“observed”) video and is also feasible, e.g, by setting the intervention value as to revert
the perturbation. This flow guarantees that we can ask meaningful instructions on the “observed” that
are guaranteed to be realizable.

The unperturbed video. We construct the unperturbed video by iteratively adding spheres and
collisions in a physical simulator (IsaacGym (Makoviychuk et al., 2021)) increasing the video
complexity. We start by placing a sphere in the confined four-walled space and assign it a random
velocity.

The dynamics of a sphere moving freely in a confined square area can be expressed analytically. We
pick a random time t1, hitting velocity, and hitting angle for the first collision. We analytically solve
for the initial position and velocity at t0 = 0 that will result in the a collision at t1 with the specific
hitting velocity and angle. We assign these value to a randomly colored sphere.

Due to discrepancies between the simulator dynamics and the kinematic analytic model, we roll out
the dynamical system in the simulator, and record the system state immediately after a collision.

We continue adding spheres iteratively. Given a state at ti, we randomly select a sphere Oi from the
existing spheres, collision time ti+1, hitting angle and velocity. We solve analytically and find the
initial position and velocity at t0 = 0 that will result in a collision with Oi corresponding parameters.
We roll out the dynamical system, and update the velocities and positions records after each collision
with the empirical values from the simulator.

Our simple kinematic model assumes the target sphere and the newly added move freely. However,
other spheres may cross their trajectories, resulting in an a collision that will distract the spheres from
their designated path. However, this simply means that the planned random collision was replaced by
a different collision. Since we update our records of the resulting collisions and corresponding output
velocities and positions using the simulator, this does not pose any serious limitations.

The observed video. We pick a random sphere from the set of spheres and assign it a different
velocity at t = 0. We roll out the system in the simulator and log all resulting collisions. We validate
that the resulting collision sequence is different than the unperturbed video collision sequence. We
now have two videos that differ only in the initial velocity of a specific sphere, but result in a
substantially different semantic chain of events.

H.2 INSTRUCTION GENERATION DETAILS

We describe the instruction generation process when given an “observed” video, and a “counterfactual”
video that displays an alternative cascade of events.

Given a ground-truth video, its sequence of collisions, and a pivot, we randomly sample an instruction:
Starting by randomly sampling a target collision from the sequence. And then, we randomly sample
up to two constraints that accompany the goal. For constructing the constraints, we first represent
the sequence of collisions using a DAG, in a similar fashion as described in Figure A.3, then
we use standard NetworkX functionality (Hagberg et al., 2008) for graph traversal: (1) We use
“dag.ancestors()” to get a list of nodes for the “bottleneck” constraint. (2) We use ”all simple paths()”
to count the nodes in a chain reaction between the pivot and the target collision.

To avoid trivial goals, we drop an instruction if it is fulfilled by the observed video (rather than the
“counterfactual” video). We sample up to 5 unique instructions for each scene (∼4 on average).

H.3 INSTRUCTION FEATURE REPRESENTATION

We assume perfect lexical perception, and provide the agent with the a structured vector representation
of each instruction, by concatenating the following fields:

instruction emb = [target obj a, target obj b, pivot obj, bottleneck obj a,

bottleneck obj b, bottleneck ind, count, count ind], (4)
where target obj a, target obj b are the object representations of the target collision. pivot obj
represents the pivot. bottleneck obj a, bottleneck obj b, bottleneck ind represent the two “bottle-
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neck” objects and a binary indicator scalar. If an “bottleneck” constraint is not applicable for an
instruction, we them all to 0. count, count ind are 2 scalar values: One for the number of collisions
of the chain “count” constraint, and another used as a binary indicator for the “count” constraint.
Similarly if a “count” constraint is not applicable for an instruction, we set both count and count ind
to 0.

Finally, note that each object is represented by a one-hot vector ∈ R12, because the environment has
12 types of unique objects: 6 colored balls, 2 static pins, and 4 walls.

H.4 COMPLEX INSTRUCTIONS DATASET

For the complex instructions dataset, we add a third object centric constraint that counts the number
of interactions a specific object makes on the paths from the pivot to the target collision. It resembles
constraining the amount of resources available per instance on a logistic chain. With an additional
constraint we can test our approach on a more challenging task that has a large variety of instructions
that have 2 or more constraints. We split the evaluation set to “Hard” instructions that have 2 or
more constraints, and “Easy” instruction with 0-1 constraints. We generated instructions for the same
scenes as in the main dataset, which yields ∼4.5 instructions per scene. The test set consists of 2190
episodes, where 54% are “Hard” instructions.

I THE FORWARD MODEL

In our physical setup, the dynamics are prescribed by the position and velocity cji = (posji , vel
j
i ), j =

1 . . . n of each of n objects in the environment. The world state wu
i of a node u is then a tuple

wu
i = (c1i , c

2
i , ...c

n
i , ti), (5)

where for the root node ti = 0 for all xi.

The forward module takes as input a world state wi it outputs the next semantic event (s′), and a state
f(wi) = w′

i = (c′
1
i , c

′2
i , ...c

′n
i , t

′
i) immediately after the predicted semantic event at t′i. The section

is divided into three parts. First, we describe the analytical equations that control if two objects will
collide. Then we show how can leverage the analytic model to efficiently branch out from a node in
the event tree. Finally, we fill in the missing details and present the full forward model.

The collision detector. Assume two spheres i = α, β moving freely on a plane with an initial
velocity of vi and position ri at t = 0. Each sphere has a radius of li. If the two sphere collide, then,
at the moment of collision, the spheres intersect at a single point. We can use a simple geometric
calculation to find their planar distance. The distance between the center of spheres is lα + lβ , while
the vertical distance between the two centers is |lα − lβ |. The resulting planar distance is then:

d =
√
(lα + lβ)2 − (lα − lβ)2 = 2

√
lαlβ . (6)

Therefore, in order to check if the spheres collide, we can check if the planar distance between the
two spheres is ever equal to d,

∥r(t)∥2 = ∥rα + vα · t− rβ − vβ · t∥2 = d2 (7)

This is a quadratic equation in t, which we can solve for analytically. If the discriminant is non-
negative, the collision time corresponds to the smaller root. The spheres’ velocities immediately after
the collision are given by:

v′
1 = v1 − 2m2

m1 +m2

⟨v1 − v2,y1 − y2⟩
∥y1 − y2∥2

· (y1 − y2) (8)

v′
2 = v2 − 2m2

m1 +m2

⟨v1 − v2,y1 − y2⟩
∥y1 − y2∥2

· (y2 − y1) (9)

Likewise, it is trivial to obtain an analytical expression for the collision time and output velocity of a
collision between a freely moving sphere and each of the static walls bounding the spheres (should
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the collision occur). The sphere’s velocity in the direction orthogonal to the walls flips, while the
parallel velocity remains the same.

Parallelizing collision detection. The collision detector provides an analytic condition that validates
whether a specific collision occurs.

(∆r ·∆v)2 − 4(∥∆r∥2 − d2)∥∆v∥2 > 0 (10)

Eqs. 6-10 can be solved in parallel for multiple tuples of (r1,v1, r2,v2) on a GPU using packages
such as PyTorch. Given an intervention set of Yu, and a corresponding world-state set Wu, we iterate
over all possible collisions Sij = (Oi, Oj). For each collision between object i and j we can apply
our collision detector by extracting the corresponding coordinates ciw, c

j
w, tw from w ∈ Wu (Eq 5).

We can do in parallel for all world states w ∈ Wu. If a collision is predicted, we construct a new
node child u′ of u. We associate with it the interventions for which the collision detector returned a
non-null time for the collision, Y ′

u, the corresponding set of post-collision world state W ′
u, and the

event sequence S′
u = concat(Su, (Oi, Oj))

The complexity is quadratic in the number of object rather than linear in the number of interventions.
This allows us to apply our algorithm with a high number of interventions, and therefore enable us to
consider delicate sequences of collision that would require refined ”trick shots”.

This approach considers every two objects Oi, Oj as moving freely. However, another object in the
environment, e.g, Ok, may interact with Oi (without loss of generality) before the collision. This
necessarily means that the collision time tik precedes tij . In order to account for this, we hold an
additional structure that maintains the minimal collision time for every w ∈ Wu. We update it as we
iterate over all possible collisions. Then, we associate each w ∈ Wu and its corresponding y ∈ Yu to
the event node corresponding to the collision with the earliest collision time.

J ADDITIONAL SETUPS

Here, we present examples for additional setups for which our formalism can be applied.

J.1 LOGISITICS

While logistics is a complex field, we describe a simple model that captures the essential components
of a logistics problem.

Consider a large logistics enterprise that needs to coordinate shipping from multiple locations. The
enterprise has multiple carriers (e.g, trucks or airplanes) vi, i = 1..m and routes them between
logistic centers at rj , j = 1..n.

A plan is a schedule for each carrier τj , where a schedule τj is a sequence of arrivals and departures
between various logistic centers,

τj = {(r0j , t0in, t0out), (r1j , t1in, t1out), ...}

Not all plans are feasible. Each carrier can travel at a range of velocities, resulting in a range of
arrival times to the possible destinations. Carriers can exchange cargo is they are present at the same
logistic center.

Now, assume a logistic center is suddenly shut down. Rescheduling all carriers is unfeasible, as some
may be already committed to a route, or may not be easily diverted (e.g., are airborne). Furthermore,
recomputing a new plan for the complete enterprise might be computationally heavy. Finally, it
seems reasonable that re-planning of only the routes of carriers that were suppose to arrive to the
closed logistic center may be enough. We denote those k carriers as the rescheduled carriers. Note
that while only some of routes may be re-planned, other carriers might be affected as well due to a
cascade of delays or even cargo exchange cancellations.

Such re-planning may be constrained by semantic instruction. For example: ”Carrier X should only
make two deliveries”, ”Carrier Y should meet carrier Z before meeting Carrier W”, etc. .
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We now cast this problem into our general framework, described in Section 3. An event is the arrival
or departure of a carrier to a logistic center. Each intervention y ∈ Y is a set of plans the rescheduled
carriers,

y = (τ0, τ1, ..., τk).

A world state wj is the position of the k carriers at different time ((p0j , t
0
j ), ..., (p

k
j , t

k
j )) The forward

model takes as input a world state and outputs all world state that obey the following two rules: 1)
At least one carrier moved to a different logistic center. 2) The transition of carriers follow physical
constraints. If carrier i can move at velocity range [vimin, v

i
max] and it moves between two logistics

centers ra and rb, then the transition time must be in[
∥ra − rb∥
vimax

,
∥ra − rb∥
vimin

]
. (11)

For simplicity, we assume that there is no cargo limit.

The expressions for the induced probability, Eqs. ?? -??, remains the same.

J.2 FAILURE CASCADES IN POWER GRIDS

Cascading failures in power grid may cause large blackout with substantial economical damage
Schäfer et al. (2018). Cascading Power failures may be induced due to random fluctuations and can
develop on orders of seconds. Human operators or complex control mechanism may not be able
react in time. The transmission system operator may use an event-driven forward model to find fast
automated reactions for unseen dynamical configurations to avoid cascading failures.

Here, semantic events are failures of nodes (nodes; e.g., transformers, power generators, etc.) or
power lines (edges). Power flow follows a known set of ODE for a given grid (eqs 14-15 in Schäfer
et al. (2018)):

d

dt
θi = ωi, (12)

Ii
d

dt
ωi = Pi − γiωi +

N∑
j=1

Kij sin (θj − θi) , (13)

where, θi, ωi are the dynamical variable at node i, Pi is the power input (or output) at node i, and
Kij is a weighted adjacency matrix representing the grid connectivity. If at some point in time the
flow Fij exceeds the powerline capacity αkij , α ∈ [0, 1] (eqs 1-2), the line fails. This condition can
be formally written as

Fij (t) = Kij sin (θj (t)− θi (t)) > αKij .

If the line fails, the dynamics are governed by a new effective coupling matrix Kij, and the dynamics
in Eqs. 12-13 changes accordingly.

A failure of a node may induce outage to some region. The transmission system operator (TSO)
might define goals such as “no more than three failures”, “the maximal number of affected people
should be less than n”, “these highly important nodes should not fail” etc.

J.3 EVOLUTION OF NATURAL DISASTERS

Finally, another use case is the evolution of natural disasters. Zuccaro et al. (2018) provides a full
description of an event tree. It models transitions between events like a “seismic shock” which
can lead to “landslide” and result with “traffic accident”, and how taking preventive measures like
“evacuate population” can influence the total damage caused by the crisis.

K COMPLEX SCENARIO CONDITIONING FOR THE MAIN DATASET

In Figure A.4 we provide the results for complex scenario conditioning for the main dataset (with
two type of constraints). The results demonstrate a similar trend as in the complex instruction dataset
in Figure ??.
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AC (2 constraints)
Figure A.4: Comparing “Counterfactual” search (ROSETTE) with “Maximum likelihood” search
(ROSETTE-max-l) for 2 levels of instruction complexity (“Hard”: 2 or more constraints) and for two
levels of “count” instructions (“5+”: 5 or more ). Here we use the main dataset. Using the observed
cascade, ROSETTE performs better in complex scenarios.
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