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ABSTRACT

It has become standard to solve NLP tasks by fine-tuning pre-trained language
models (LMs), especially in low-data settings. There is minimal theoretical un-
derstanding of empirical success, e.g., why fine-tuning a model with 108 or more
parameters on a couple dozen training points does not result in overfitting. We
investigate whether the Neural Tangent Kernel (NTK)—which originated as a
model to study the gradient descent dynamics of infinitely wide networks with
suitable random initialization—describes fine-tuning of pre-trained LMs. This
study was inspired by the decent performance of NTK for computer vision tasks
(Wei et al., 2022). We extend the NTK formalism to Adam and use Tensor Pro-
grams (Yang, 2020b) to characterize conditions under which the NTK lens may
describe fine-tuning updates to pre-trained language models. Extensive experiments
on 14 NLP tasks validate our theory and show that formulating the downstream
task as a masked word prediction problem through prompting often induces kernel-
based dynamics during fine-tuning. Finally, we use this kernel view to propose
an explanation for the success of parameter-efficient subspace-based fine-tuning
methods.

1 INTRODUCTION

It is now customary to solve most supervised natural language processing (NLP) tasks such as
topic classification and textual entailment by fine-tuning a pre-trained language model (e.g., Devlin
et al. (2019); Liu et al. (2020b); Clark et al. (2020); Raffel et al. (2020); Joshi et al. (2020)). We
lack theoretical understanding of this fine-tuning paradigm. Why do we not see over-fitting when
fine-tuning a very large language model using a couple dozen instances of the supervised task? Why
is fine-tuning so sensitive to details such as whether or not we include a prompt (e.g., adding “It
was [great/terrible]” for sentiment analysis (Schick & Schütze, 2021; Gao et al., 2021)? Why does
restricting optimization to a low-rank subspace of model parameters (Hu et al., 2021; Li et al., 2018;
Aghajanyan et al., 2021) still result in performance comparable to full fine-tuning? Answering such
questions requires understanding how the sequence of parameter updates changes in various scenarios,
e.g., the addition of a prompt, or the introduction of randomly initialized parameters. The current
theory of deep learning, at first sight, seems too primitive to address such questions, especially since
fine-tuning has to start from a parameter initialization inherited from pre-training.

Recently, Wei et al. (2022) suggested replacing fine-tuning with Neural Tangent Kernel (NTK),
an idea invented for the study of infinite-width deep neural networks (Jacot et al., 2018; Du et al.,
2019) and previously applied to solving vision tasks with infinitely wide ConvNets (Arora et al.,
2019). They note that the NTK can be defined for any neural model f and any initialization θ0 by
representing an input ξ by the gradient it induces∇f(ξ; θ0), which yields a kernel matrix:

K(ξ, ξ′) = ⟨∇f(ξ; θ0),∇f(ξ′; θ0)⟩. (1)

This kernel is well-defined for any parameter vector θ0. However, for an infinite-width network
initialized with θ0 sampled from a suitably-scaled Gaussians, it can be shown that the kernel matrix
is unchanged during gradient descent, which turns the classification task into a form of kernel
regression with respect to this kernel (Jacot et al., 2018). In the fine-tuning setting, however, the
initialization θ0 is inherited from the pre-trained network, and not sampled from the Gaussian
distribution. Nevertheless, Wei et al. (2022) found that kernel regression using this “empirical NTK”
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(eNTK) defined with the inherited θ0 performs well, achieving classification accuracy within 6%
absolute of actual fine-tuning on several image recognition tasks. In other words, their work hints
that mathematical understanding of the fine-tuning phenomenon (e.g., its sample efficiency) could go
via the theory of kernel classifiers.

The current paper furthers an empirical and theoretical understanding of the pre-training and fine-
tuning (FT) paradigm for NLP tasks. Our contributions are:

1. We formally extend the standard NTK theory developed for gradient descent to characterize
kernel-based dynamics when training with Adam. See Section 3.1.

2. We use Tensor Programs formally extend infinite-width analysis to account for a pre-trained
initialization and characterize conditions under which fine-tuning can exhibit kernel behavior.
See Section 3.2.

3. We perform extensive experiments on 14 diverse NLP tasks and find that the inclusion of a
meaningful prompt often allows FT optimization dynamics to be described by kernel-based
dynamics. See Section 4.

4. We straightforwardly apply the kernel view of FT dynamics to formally analyze the success of
fine-tuning methods that update in a low-rank subspace of model parameters (e.g., LoRA, Hu
et al. (2021)). See Appendix C.

2 PRELIMINARIES

We consider masked language models (MLMs), such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2020b), which are trained to minimize the cross-entropy loss on independently predicting
masked tokens. We focus on fine-tuning (FT) methods, which adapt the pre-trained model to a new
input distribution SFT using additional training on the C-way downstream classification task.

1. Standard FT (Devlin et al., 2019; Liu et al., 2020b): To solve a C-way downstream classification
task, initialize and learn a new classifier head Γ : Rn → RC on top of the contextual [CLS]
embedding, denoted h[CLS]. In this case, the model output f : SFT → RC for the eNTK
construction is f(s) = Γ(h[CLS](s)).

2. Prompt-based FT (Schick & Schütze, 2021; Gao et al., 2021): Add a natural language prompt
(e.g. “This is [MASK].”) in addition to the downstream task input, and use the pre-trained
MLM to fill in the masked token. Compute the logits over task-relevant words (e.g., “great” and
“terrible”) using the corresponding columns of Φ, denoted Φ̃ ∈ Rn×C . These logits will serve as
surrogates to solve the downstream task. In this case, the model output f : SFT → RC for the
eNTK construction is f(s) = Φ̃⊤h[MASK](s).

To study kernel dynamics, we consider a neural network f(ξ; θ) that takes input ξ and computes a
scalar output1 using θ as the parameters. Gradient-based updates to the model parameters involve com-
puting a loss function ℓ and ∂ℓ

∂θ , which is decomposed as ∂ℓ
∂f

∂f
∂θ . The first term is defined as the output

derivative (Definition 2.1), and the second term is used to define kernel behavior (Definition 2.2),
adapting the notion of lazy regime (Woodworth et al., 2020)) to an arbitrary initialization.
Definition 2.1 (Output Derivative). The output derivative χ(ξ, y, θ) for a network f with parameters
θ, loss function ℓ, and input ξ with label y is defined as χ(ξ, y, θ) = ∂ℓ(f(ξ;θ),y)

∂f . We also define the
output derivative applied at time t as χt = χ(ξt, yt, θt−1), where ξt is the input at time t with label
yt. For ease of notation, we often absorb y into ξ and write χ(ξ, θ) and χ(ξ, f) interchangeably.
Definition 2.2 (Kernel Behavior). Let θt be the parameters after t steps of training by a gradient-based
optimization algorithm, and let ξ be an arbitrary fixed input. We say this training process of the
network demonstrates kernel behavior if the following properties are satisfied.

1. Linearization: The change of the network can be well-approximated by its first order Taylor
expansion, i.e., f(ξ; θt)− f(ξ; θt−1) ≈ ⟨∇f(ξ; θt−1), θt − θt−1⟩;

1Note that for C-way classification, f outputs a vector in RC . We say f exhibits kernel behavior if the
Linearization and Fixed Features properties hold for every component of f . The subsequent definition of a kernel
analog also generalizes to a vector output, where νt is a vector in RC and K(A)(ξ, ξt) is a matrix in RC×C .
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2. Fixed Features: The gradient at step t is approximately the same as before training, i.e.,
∇f(ξ; θt) ≈ ∇f(ξ; θ0).

∇f denotes the gradient of f w.r.t. θ. “Closeness to kernel behavior” is quantified using the difference
in the quantities on the two sides of the≈ symbol. We formalize the approximations in Definition D.3.

Past work (Jacot et al., 2018) has shown that if gradient-based training exhibits kernel behavior, then
the function change can be expressed in terms of a fixed kernel (i.e., the kernel analog).

Definition 2.3 (Kernel Analog). Suppose optimization of the parameters θ of a model f using the
gradient-based update algorithm A exhibits kernel behavior (Definition 2.2). Then, we say that a
kernel K(A) is the kernel analog of the optimization algorithm A if for every t > 0, there exists νt
such that for any input ξ,

f(ξ; θt)− f(ξ; θt−1) ≈ −νtK(A)(ξ, ξt) (2)

where ξt is the training input2 of step t, θt is the parameter after step t.

Jacot et al. (2018) showed that K(SGD) is the kernel analog for SGD.

Definition 2.4 (Neural Tangent Kernel K(SGD)). K(SGD)(ξ, ξ′) = ⟨∇f(ξ; θ0),∇f(ξ′; θ0)⟩

3 THEORY

3.1 KERNEL DERIVATION FOR ADAM

Computing the eNTK requires using the kernel analog (Definition 2.3) of the chosen optimization
algorithm A. Previous work has shown that in the early stages of training, full-batch (Ma et al., 2022)
and mini-batch (Malladi et al., 2022) Adam updates reduce to coordinate-wise normalization on the
gradient, defined below as SignGD.

Definition 3.1 (SignGD). SignGD is a gradient-based optimization algorithm that updates parameters
as θt = θt−1 − η sign(∇ℓt(ξt; θt−1)), where sign is applied element-wise.

We define the sign-based kernel below and prove it to be the correct kernel analog for SignGD.

Definition 3.2 (Asymmetric SignGD Kernel). K(A-SignGD)(ξ, ξ′) = ⟨∇f(ξ; θ0), sign(∇f(ξ′; θ0)⟩.
Theorem 3.3 (Informal version of Theorem D.4). If a network is trained with SignGD and exhibits
kernel behavior (Definition 2.2), then the training dynamics follow

f(ξ; θt)− f(ξ; θt−1) ≈ −η sign(χt)K(A-SignGD)(ξ, ξt),

where χt is the output derivative (Definition 2.1).

We solve the asymmetric kernel regression as suggested in He et al. (2022), but the difficulties of
solving the kernel regression problem with an asymmetric kernel (Appendix A.3) motivate us to also
use the symmetric SignGD kernel.

Definition 3.4 (SignGD Kernel). K(SignGD)(ξ, ξ′) = ⟨sign(∇f(ξ; θ0)), sign(∇f(ξ′; θ0))⟩

3.2 PROMPT-BASED FINE-TUNING CAN EXHIBIT KERNEL BEHAVIOR

We analyze how prompt-based FT can exhibit kernel behavior (Definition 2.2) as the network width
grows large. First, we formalize how changing the architecture width impacts pre-training.

Definition 3.5 (Pre-Training Scheme). A pre-training scheme (X ,A,Fn) with width n contains the
dataset X , optimizer A and its hyperparameters, and a model architecture Fn. Let fn ∼ (X ,A,Fn)
denote a model resulting from training the architecture Fn on the dataset X with optimizer A.

The reliance of the architecture on the width is given by Tensor Programs (Yang, 2020a): for example,
in a Transformer, n corresponds to the embedding dimension. Analogous to Saunshi et al. (2021), we

2For simplicity, we assume the batch size is 1.
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Task type ——- sentiment ——- polarity subj. —topic clf.— ——– entailment ——– – para. detect. –
Num. classes C 2 5 2 2 2 2 6 4 3 3 2 2 2 2

eNTK solvable ✓ ✓ ✓ ✓ (✓) ✓ ✓ (✓) ✓ ✓ ✓
Linearization ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fixed Features ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Kernel behavior ✓ ✓ ✓ ✓ ✓ (✓) ✓ ✓ ✓

Table 1: In our experiments, 9 out of 14 tasks induce kernel behavior during few-shot prompt-based
fine-tuning. We test whether the eNTK solves the task and if the Linearization and Fixed Features
properties of kernel behavior (Definition 2.2) hold. We say the eNTK solves the task if the kernel
analog achieves a performance within 5% of the fine-tuning method in at least 2/4 settings (in
parentheses: only in 1/4 settings; results are shown in Table 4). We say that Linearization is satisfied
if the linearized model (see Appendix B.2) improves the pre-trained model by at least 50% of the
amount that fine-tuning improves it (Figure 2), and we say that Fixed Features is satisfied if the
average element-wise distance between the kernels before and after fine-tuning are less than 1.0
(Table 6).

reason that prompting transforms the downstream task into a fill-in-the-blank problem, and thus the
downstream task can be viewed as a subcase of the pre-training task. We then assume that a wider
pre-trained network will be better at filling in masked tokens and that an infinitely wide pre-trained
network can solve the downstream task perfectly when using a suitable prompt.
Definition 3.6 (Natural Task in the Infinite-Width Limit). A downstream task Ξ is natural with
respect to a pre-training scheme (X ,A,Fn) if, for any pre-trained model fn ∼ (X ,A,Fn) and any
downstream example (ξ, y) ∈ Ξ,

lim
n→∞

χ(ξ, y, fn) = 0. (3)

We assume that the network can be written as a Tensor Program (Yang, 2019; 2020a;b), which is
sufficiently general to allow our theory to describe many complex architectures (e.g., Transformers).
The network must also be (1) stable: its output does not grow with width (i.e., the infinite-width limit
is meaningful), and (2) non-trivial: its output can be updated during fine-tuning. The below theorem
formalizes the intuition that if the pre-trained network is already decent at solving the downstream
task, the network needs to only mildly adapt to solve the downstream task. Notably, we extend
standard NTK theory to account for an arbitrary initialization and to characterize early-stage training
with Adam using results from Section 3.1.
Theorem 3.7 (Informal version of Theorem D.5). Assume the downstream task Ξ is natural in the
infinite-width limit with respect to a pre-training scheme (X ,A,Fn), and the model f ∼ (X ,A,Fn)
is stable, non-trivial, and can be written as a Tensor Program. Then prompt-based FT of f will
exhibit the Linearization and Fixed Features properties of kernel behavior (Definition 2.2).

4 EXPERIMENTS

We compute the eNTK as described in Section 2 for different optimization algorithms and FT settings.
eNTK performance being comparable to FT performance is a necessary but not sufficient condition
for FT to exhibit kernel behavior (Definition 2.2), so we also directly measure if the Linearization
and Fixed Features properties hold (Appendix B.2). Our experiments are on 14 NLP tasks in the
few-shot setting with manual prompt templates from Gao et al. (2021). We summarize our results in
Table 1. We find that the eNTK can solve 11 out of 14 tasks comparably to prompt-based fine-tuning,
out of which 9 induce kernel behavior during fine-tuning. For tasks that the eNTK cannot solve, we
conjecture that the prompt is not well-designed for the task (in the sense of Definition 3.6), forcing
the pre-trained model to adapt more during FT. Our results show that FT optimization dynamics
depend on the downstream task and the inclusion of a meaningful prompt. Additional implementation
details, results, and discussion are in Appendices A and B.
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A EXPERIMENTAL DETAILS

A.1 DATASETS AND PROMPTS

Dataset C #Train #Test Type Prompt
SST-2 2 67,349 872 sentiment <S1> It was [MASK] . {great, terrible}
SST-5 5 8,544 1,000 sentiment <S1> It was [MASK] . {great, good, okay, bad, terrible}
MR 2 8,662 1,000 sentiment <S1> It was [MASK] . {great, terrible}
CR 2 3,175 500 sentiment <S1> It was [MASK] . {great, terrible}
MPQA 2 8,606 1,000 opinion polarity <S1> It was [MASK] . {great, terrible}
Subj 2 8,000 1,000 subjectivity <S1> This is [MASK] . {subjective, objective}
TREC 6 5,452 500 question cls. [MASK] : <S1> {Description, Expression, Entity,

Human, Location, Number}
AG News 4 120,000 7,600 news topic <S1> This article is about [MASK] news. {world, sports, business, tech}
MNLI 3 392,702 1,000 NLI <S1> ? [MASK] , <S2> {Yes, Maybe, No}
SNLI 3 549,367 1,000 NLI <S1> ? [MASK] , <S2> {Yes, Maybe, No}
QNLI 2 104,743 1,000 NLI <S1> ? [MASK] , <S2> {Yes, No}
RTE 2 2,490 277 NLI <S1> ? [MASK] , <S2> {Yes, No}
MRPC 2 3,668 408 paraphrase <S1> [MASK] , <S2> {Yes, No}
QQP 2 363,846 1,000 paraphrase <S1> [MASK] , <S2> {Yes, No}

Table 2: The statistics and prompts of the datasets we used in our experiments. The choices of
prompts are adapted from Gao et al. (2021) and include a template and a set of label words that can
fill in the [MASK]token. <S1> and <S2> refer to the first and the second (if any) input sentence.

Table 2 shows the set of downstream tasks, which are adapted from Gao et al. (2021). We consider
8 single sentence classification datasets (SST-2 (Socher et al., 2013), SST-5 (Socher et al., 2013),
MR (Pang & Lee, 2005), CR (Hu & Liu, 2004), MPQA (Wiebe et al., 2005), Subj (Pang & Lee,
2004), TREC (Voorhees & Tice, 2000), and AG News (Zhang et al., 2015)), and 6 sentence pair
datasets (MNLI (Williams et al., 2018), SNLI (Bowman et al., 2015), QNLI (Rajpurkar et al., 2016),
RTE (Dagan et al., 2005; Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009),
MRPC (Dolan & Brockett, 2005) and QQP3. Our datasets represent 6/8 datasets of the GLUE
benchmark Wang et al. (2019) (SST-2, MNLI, QNLI, RTE, MRPC, QQP).

In contrast to Gao et al. (2021), we add AG News as an additional multi-label classification task, and
make two modifications to the test sets. First, we split CR into 500 test examples and 3,175 training
examples to ensure enough training examples for our 512-shot experiments and secondly, we limit
the test sizes to 1,000 examples to speed up kernel evaluations.

To generate k-shot few-shot datasets, the original training data is used to randomly sample k examples
per label for training and another, separate k examples per label for the validation set. Unless otherwise

3https://www.quora.com/q/quoradata/
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stated, we usually run experiments over 5 seeds of few-shot data sets. We directly use the ‘manual’
prompt templates and label words proposed by Gao et al. (2021), which are reproduced in Table 2.
We do include any demonstrations in our prompts.

A.2 COMPUTING THE KERNEL

We use functorch (He & Zou, 2021) to compute the eNTK for RoBERTa-base (125M parameters),
using a mix of backward-mode auto-differentiation for computing the jacobians and forward-mode
auto-differentiation for computing jacobian-vector products (Novak et al., 2022) . Note that K(SignGD)

cannot be computed via jacobian-vector products and requires substantially more memory and
run-time in practice.

A.3 SOLVING THE KERNEL

In the standard NTK setting, the initial output of the model f(·; θ0) contains no information about
solving the task, because θ0 is a random initiaization. However, in the prompted FT setting, we expect
the pre-trained model to be able to solve the downstream task well even before any fine-tuning occurs
(see Table 8). So, we add the pre-trained model’s output to the output from the kernel. Furthermore,
we run a grid search over scaling the labels in order to take advantage of any pre-existing knowledge
the model has about the downstream task. In particular, the kernel regression is based on the ℓ2
distance to the ground truth one-hot vector, but the pre-trained model outputs the logits which will be
used for cross-entropy loss. Scaling the one-hot vector by f0 helps align its scaling with the logits.
Our hyperparameter grid for f0 can be found in Table 3, where ∞ corresponds to not using the
pre-trained model logits when solving the kernel.

Solving Multi-Class Tasks There are several options for how to solve C-way classification tasks
(C > 2). We perform the most general one, which scales with C2. Each logit is treated as an
independent output of the network, essentially scaling the size N of the original dataset by a factor of
C. With CN examples, the kernel now has shape CN × CN . The labels are also scaled up to treat
the multi-class problem as many binary classification problems. Solving the multi-class task this way
allows the kernel regression model to view relationships between different logits.

Symmetric Kernel Given a symmetric kernel K ∈ RN×N , we solve the kernel regression problem.
In particular, we use the representer theorem to write that the empirical risk minimizer of the loss can
be expressed as a linear combination of the kernel features computed on the train set.

h∗(·) = argmin
h∈HK

1

N

N∑
i=1

ℓ(h(xi), yi) ↔ h∗(·) =
N∑
i=1

αiK(·, xi)

for a given loss function ℓ. The symmetric SignGD and SGD kernels train αi via gradient descent to
minimize a regularized logistic loss on the downstream task. We search over a grid of regularization
strengths chosen proportional to ∥K∥op, see Table 3. For a test input x, the kernel outputs the
prediction h(x) =

∑
i αiK(x, xi).

Asymmetric Kernel We write how to solve the kernel regression problem with an asymmetric
kernel, developed in He et al. (2022), here. Consider the augmented linear system:[

I/γ H
H⊤ I/γ

] [
α
β

]
=

[
1
1

]
where Hij = yiϕs(xi)

⊤ϕt(xj)yj with ϕs and ϕt as the two different feature maps and yi as the
label for the ith example. In our setting, ϕs is the gradient of the datapoint, and ϕt is the sign of the
gradient. Define ω∗ and ν∗ as

ω∗ =
∑
i

β∗
i yiϕt(xi)

ν∗ =
∑
i

α∗
i yiϕs(xi)

9
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Solving this system yields two discriminant functions:

fs(x) = K(x,X)(β∗ ⊙ Y )

ft(x) = K(X,x)(α∗ ⊙ Y )

where K(xi, xj) = ⟨ϕs(xi), ϕt(xj)⟩.
We can thus create one discriminant function as cfs(x) + (1 − c)ft(x) where c ∈ [0, 1] is some
hyperparameter. When ϕs = ϕt, we see that fs = ft and we reduce to the standard kernel problem
(though with repeated equations). Note that per He et al. (2022), this system is only meaningful in
terms of stationary points when training α and β using the least squares loss.

We now leverage some specific knowledge about the NTK setting. In particular, we know that we
should only use fs as the predictor in order to correctly represent a new test input in the kernel analog
for SignGD.

Experiment Hyperparameters Values

SGD FT Batch size {2, 4, 8} ×
Learning rate {1e−4, 5e−4, 1e−3, 5e−3, 1e−2}

SGD-LoRA FT Batch size {4, 16} ×
Learning rate {1e−4, 1e−3, 1e−2} ×

(rLoRA, αLoRA) {(8, 16)}
Adam FT Batch size {2, 4, 8} ×

Learning rate {1e−5, 2e−5, 5e−5}
Adam-LoRA FT Batch size {4, 16} ×

Learning rate {1e−5, 4e−5, 4e−4}
(rLoRA, αLoRA) {(8, 16)}

K(SGD), K(SignGD) Kernel regularization {0, 0.001, 0.01, 0.1, 1} ×
f0 scaling {10, 100, 1000, 10000,∞}

K(A-SignGD) Kernel regularization {0, 0.001, 0.01, 0.1, 1} ×
f0 scaling {10, 100, 1000, 10000,∞} ×

Kernel γ {0.01, 0.1, 1, 10} ×
Kernel c {1}

Table 3: The hyperparameter grids used in our experiments.

Hyperparameters and Implementation We follow Gao et al. (2021) in using the few-shot valida-
tion set to search over hyperparameters and finding the best hyperparameter per few-shot dataset. We
use value ranges given by Gao et al. (2021) and Hu et al. (2021), and search over a wider range of
values for SGD. Table 3 shows the hyperparameter grids for fine-tuning and the kernel method.

Gao et al. (2021) train for 1000 steps in the 16-shot setting, and validate the performance every 100
steps to take the best checkpoints. As we consider varying values of k, we use the formula of training
for 32kC steps and validating every 4kC steps, where C is the number of classes in the dataset. This
gives a comparable number of training and validation steps for binary tasks in the 16-shot setting.

B DISCUSSION OF EXPERIMENTS

B.1 EXPERIMENTAL INSIGHTS

Prompting is critical for eNTK to match FT performance. We measure the eNTK performance
in the standard and prompt-based FT settings across SST-2, MR, CR, QNLI, QQP and RTE. (Figure 1).
In the standard FT setting, K(SGD) and SGD-FT demonstrate a gap of up to 16% absolute on tasks
that exhibit only a 3% gap in the prompt-based setting (ablations in Appendix B.6). These results
agree with our theoretical analysis that tasks must use a meaningful prompt in order to induce kernel
behavior (Definition 3.6).

SGD performs comparably to Adam in prompt-based FT. Table 4 shows that Adam and SGD
perform within 4% absolute of each other when using a prompt, suggesting that known difficulties in
optimizing transformers with SGD (Li et al., 2022; Zhang et al., 2020; Liu et al., 2020a) do not play
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SST-2 MR CR QNLI RTE QQP40

60

80

100

Standard K(SGD)

Standard K(SGD)

Prompt SGD FT
Prompt K(SGD)

Figure 1: Comparing SGD-FT and K(SGD) performance in the standard and the prompt-based settings
(Section 2) suggests that kernel behavior (Definition 2.2) can only arise when using a prompt. In
standard FT, we initialize the new classification head (i.e., Γ) using the linear probing solution.
Performance is measured by accuracy, or by F1 in QQP, and is averaged over 5 random seeds for
k = 64.

SST-2 SST-5 MR CR MPQA Subj TREC AG News MNLI SNLI QNLI RTE MRPC QQP0

25

50

75

PT
Lin.
FT

Figure 2: Accuracies of zero-shot pre-trained model (PT), linearized model (Lin., see Definition 2.2)
and fine-tuned model (FT). Tasks that induce the Linearization property of kernel behavior (Defini-
tion 2.2) will show that Lin. performance recovers a substantial amount of the Adam FT performance.
We plot the median and range of the test accuracies across 5 seeds and data splits for k = 64.

a substantial role during prompt-based FT. Indeed, we expect that the benefit of Adam over SGD is
reduced when the task is simple enough to induce kernel behavior.

Prompt-based eNTK matches FT in most tasks. We compare SGD-FT to K(SGD) and Adam-FT
to K(A-SignGD) in Table 4. We observe that for 10 out of 14 tasks, the kernel analog can achieve
accuracy within 10% of the corresponding FT performance for k = 16 and k = 64.

B.2 MEASURING KERNEL BEHAVIOR

The eNTK can often solve the task comparably to fine-tuning (Table 4), suggesting that these tasks
may induce kernel behavior (Definition 2.2). We take additional measurements to provide further
empirical evidence that FT can be described by kernel behavior.

The Linearization property holds for all tasks the eNTK can solve. If FT exhibits kernel
behavior (Definition 2.2), then the function after FT should be close to the first order Taylor expansion
around the pre-trained model:

f(ξ; θFT) ≈ f(ξ; θPT) + ⟨∇f(ξ; θPT), θFT − θPT⟩
where θPT is the model parameters after pre-training, θFT is the model parameters after fine-tuning on
the downstream task, and ξ is sampled from the test set. Figure 2 summarizes how this linearized
model performs in comparison to the pre-trained and fine-tuned models.

Pre-trained models perform significantly better than random on many single-sentence downstream
tasks (e.g., SST-2, MR, and CR) but close to random on most sentence-pair tasks (e.g., QNLI, RTE,

11
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k-shot Method SST-2 SST-5 MR CR MPQA Subj TREC AG News

16 SGD-FT 89.0(1.5) 44.6(1.4) 83.2(2.4) 93.3(0.2) 83.3(1.3) 88.5(2.6) 80.3(7.2) 84.2(1.1)

K(SGD) 88.3(0.3) 43.6(2.2) 84.7(1.5) 93.2(0.9) 76.4(2.7) 88.6(1.3) 56.0(9.2) 82.1(2.0)

Adam-FT 88.3(1.2) 45.4(2.6) 81.3(6.1) 93.0(1.6) 82.8(2.2) 87.4(2.1) 79.6(6.1) 84.0(1.6)

K(SignGD) 88.3(0.5) 42.2(3.9) 84.3(1.5) 93.7(0.5) 76.7(3.3) 89.2(2.0) 58.1(6.5) 82.3(1.6)

K(A-SignGD) 88.3(0.4) 43.7(1.7) 84.9(1.1) 93.4(0.5) 74.6(3.5) 88.6(1.8) 22.7(2.8) 83.6(1.0)

64 SGD-FT 89.7(0.4) 45.8(2.1) 85.6(1.1) 94.3(0.5) 84.8(0.8) 92.9(0.5) 93.2(1.0) 86.8(0.7)

K(SGD) 89.2(1.0) 46.0(1.3) 86.4(0.6) 93.7(0.4) 81.2(0.9) 91.4(0.7) 77.8(2.3) 85.6(0.7)

Adam-FT 89.3(0.7) 48.5(2.0) 86.0(0.4) 93.7(0.8) 84.6(0.9) 92.7(0.6) 92.6(1.3) 86.8(1.1)

K(SignGD) 89.1(0.5) 49.1(1.6) 85.6(1.0) 93.9(0.2) 79.0(5.8) 92.4(0.5) 82.0(1.4) 85.9(0.7)

K(A-SignGD) 88.9(0.9) 43.6(2.2) 85.6(1.0) 94.0(0.3) 81.8(1.1) 91.8(1.1) 21.0(4.3) 86.2(0.3)

(a) Single-sentence tasks

k-shot Method MNLI SNLI QNLI RTE MRPC QQP

16 SGD-FT 59.2(2.7) 65.7(2.7) 62.1(3.1) 60.0(5.5) 73.9(2.7) 62.1(2.3)
K(SGD) 53.0(3.0) 57.8(2.3) 60.1(3.3) 60.0(4.7) 73.4(5.6) 58.2(0.9)
Adam-FT 56.8(2.9) 64.6(4.1) 63.1(3.5) 57.6(6.3) 77.6(3.1) 61.8(4.5)
K(SignGD) 53.8(1.2) 54.9(2.7) 59.5(3.1) 55.4(4.2) 75.6(1.2) 60.7(2.2)
K(A-SignGD) 51.9(4.0) 54.9(3.1) 56.0(1.9) 59.8(4.0) 75.2(2.6) 59.4(2.0)

64 SGD-FT 68.7(1.7) 77.3(0.9) 72.8(2.2) 68.9(2.5) 82.8(1.2) 69.2(1.3)
K(SGD) 60.4(1.8) 65.5(1.6) 67.3(1.6) 66.5(2.5) 79.2(2.5) 66.4(1.7)
Adam-FT 67.9(1.0) 76.9(1.4) 74.2(3.2) 67.3(2.7) 80.9(1.2) 69.8(0.6)
K(SignGD) 60.8(1.7) 64.1(2.3) 65.4(1.7) 63.8(1.8) 77.4(2.3) 63.7(4.4)
K(A-SignGD) 58.5(1.7) 66.8(1.1) 66.5(1.1) 63.8(2.2) 77.3(2.0) 66.1(3.4)

(b) Sentence-pair tasks

Table 4: Prompt-based FT and prompt-based eNTK performance with different formulas on the
LM-BFF test set (Gao et al., 2021). The kernel analog performs comparably to FT on many tasks
but fails if the prompt is poorly designed (i.e., MPQA, TREC, SNLI, and MNLI). Performance is
measure by average test accuracy over 5 k-shot splits for all tasks except MRPC and QQP, where it is
F1.

MRPC, and QQP).4 The linearized model recovers more than 50% amount of the improvement from
FT for all tasks the eNTK could solve (Table 4).

The Fixed Features property holds for all tasks the eNTK can solve. We empirically test if the
Fixed Features property (Definition 2.2) holds for tasks that the eNTK can solve by measuring the
relative distance between K(SGD) computed before and after FT (Table 6). Tasks that the eNTK can
solve exhibit low (i.e., less than 1) distances, indicating the Fixed Features property likely holds.

Entailment tasks exhibit anomalous optimization characteristics. Although pre-trained models
perform much better than random on MNLI and SNLI, we find that the eNTK cannot solve these tasks
very well (Table 4 and Figure 2). Similarly, although the pre-trained model demonstrates near-random
performance on QNLI and RTE, we find that the eNTK can solve these tasks. Moreover, although
QNLI and RTE could sometimes be solved by the eNTK, the results suggest they do not induce the
Linearization property of kernel behavior very strongly. Altogether, these findings suggest a deeper
mystery around the fine-tuning dynamics when solving entailment tasks.

4Subj, MNLI, and SNLI are outliers to this trend.
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B.3 TASKS WITHOUT KERNEL BEHAVIOR

TREC, MNLI, SNLI, and MPQA do not induce kernel behavior.5 Our theoretical analysis suggests
that when the prompt and label words do not format the task as a subcase of pre-training, then the task
will not be natural in the infinite-width limit (Definition 3.6) and hence will not induce kernel behavior.
Considering the prompt templates shown in Appendix A.1, we suggest that the TREC prompt (simply
a colon) provides insufficient signal to the model to perform question type classification. For MNLI
and SNLI, we observe that connecting the premise and hypothesis with the label word “Maybe” for
neutral examples results in ungrammatical sentences. Furthermore, the prompt used for sentiment
and polarity tasks is designed to follow a complete sentence or substantial phrase, so it is less natural
when used with MPQA examples, which are often only one or two words. See Appendix B.6 for
ablations.

B.4 ADDITIONAL EXPERIMENTS

Tables 7 and 8 contain the numerical results corresponding to Figures 1 and 2 respectively, and also
report results for k = 64. Table 6 measures how well the Fixed Features property holds for different
tasks. A smaller value suggests that the condition for kernel behavior (Definition 2.2) is satisfied
more strongly.

B.5 SOLVABLE TASK EXPERIMENTS

We run a preliminary empirical test to verify if various tasks are solvable in the infinite-width limit (see
Definition 3.6). Intuitively, the assumption states that wider models (with all other architecture and
pre-training hyperparameters fixed) will solve the downstream task better in a zero-shot fashion, and
in the limit, an infinitely wide model will solve the task perfectly. The cheap empirical test involves
measuring the average output derivative χ of the loss w.r.t. the model output (see Definition 2.1
for a definition of χ) over the entire dataset for two models of different widths. We note that our
paper uses RoBERTa-base (n = 768) for experiments, so a natural choice for a wider model would
be RoBERTa-large (n = 1024). However, RoBERTa-large is also deeper than RoBERTa-base, and
indeed, in general, it is difficult to find two publicly available pre-trained models with different widths
and fixed depth. We nevertheless present the table of χ values for several downstream tasks measured
on RoBERTa-base and RoBERTa-large in Table 5.

Model size SST-2 MR CR MPQA Subj QNLI RTE MRPC QQP
Base (n = 768) 0.32 0.32 0.26 0.38 0.43 0.48 0.48 0.56 0.49
Large (n = 1024) 0.32 0.25 0.25 0.40 0.46 0.48 0.47 0.52 0.52

Table 5: We measure the average output derivative (Definition 2.1) in the prompt-based FT setting for
RoBERTa-base and RoBERTa-large.

B.6 ROBUSTNESS TO CHOICE OF PROMPT

We explore different choices of prompt and label words in Table 9. When using the results of the
prompt and label search from Gao et al. (2021), we find that the kernel approximation matches
fine-tuning well,. However, the choice of prompt does matter and K(SGD) performs poorly with the
minimal “null prompts” from Logan IV et al. (2022) on sentiment classification datasets, where the
prompt is merely “<S1> [MASK]” and the label words remain {great, terrible}. We hypothesize this
failure is because the task is no longer solvable in the infinite width limit (Definition 3.6).

5The eNTK can solve AG News although FT does not exhibit kernel behavior. This finding suggests that our
theory holds for the prompt used with AG News, but the grid search over learning rates results in FT that does
not exhibit kernel behavior. In particular, the success of the eNTK suggests the task can be solved with a very
small learning rate, but the FT trajectory achieving the best performance uses a larger learning rate and thus
exhibits more complex dynamics.
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k-shot SST-2 SST-5 MR CR MPQA Subj TREC AG News
16 0.44(0.14) 0.51(0.17) 0.41(0.13) 0.43(0.16) 0.41(0.08) 0.43(0.28) 2.02(0.85) 1.87(1.42)

64 0.41(0.07) 0.73(0.07) 0.45(0.22) 0.52(0.08) 0.42(0.13) 0.60(0.17) 1.59(0.23) 1.45(0.53)

(a) Single-sentence tasks.

k-shot MNLI SNLI QNLI RTE MRPC QQP
16 0.67(0.16) 0.66(0.07) 0.48(0.10) 0.59(0.22) 0.63(0.21) 0.46(0.10)
64 0.86(0.16) 0.65(0.03) 0.58(0.12) 0.57(0.06) 0.86(0.08) 0.56(0.10)

(b) Sentence-pair tasks.

Table 6: Average element-wise relative distance ofK(SGD) computed on the pre-trained and best model
fine-tuned with Adam. A smaller value indicates a higher likelihood that the Fixed Features property
of kernel behavior (Definition 2.2) holds when performing fine-tuning. Distances are averaged across
5 seeds for each value of k and measured on the LM-BFF test set (Gao et al., 2021).

k-shot Prompt Method SST-2 MR CR QNLI RTE QQP
16 Prompt Adam-FT 88.3(1.2) 81.3(6.1) 93.0(1.6) 63.1(3.5) 57.6(6.3) 61.8(4.5)

SGD-FT 89.0(1.5) 83.2(2.4) 93.3(0.2) 62.1(3.1) 60.0(5.5) 62.1(2.3)

Kernel SGD 88.3(0.3) 84.7(1.5) 93.2(0.9) 60.1(3.3) 60.0(4.7) 58.2(0.9)

Standard Adam-FT 78.1(4.2) 69.0(6.0) 83.9(5.2) 56.7(3.6) 51.1(3.8) 58.5(5.6)

SGD-FT 77.6(4.3) 64.8(5.2) 86.6(2.6) 51.6(1.8) 50.2(2.1) 57.0(4.6)

Kernel SGD 62.3(6.4) 61.2(4.0) 67.5(2.3) 50.3(1.4) 48.7(2.0) 50.8(5.0)

64 Prompt Adam-FT 89.3(0.7) 86.0(0.4) 93.7(0.8) 74.2(3.2) 67.3(2.7) 69.8(0.6)

SGD-FT 89.7(0.4) 85.6(1.1) 94.3(0.5) 72.8(2.2) 68.9(2.5) 69.2(1.3)

Kernel SGD 89.2(1.0) 86.4(0.6) 93.7(0.4) 67.3(1.6) 66.5(2.5) 66.4(1.7)

Standard Adam-FT 86.1(1.2) 83.9(1.9) 92.6(1.0) 71.5(4.5) 53.9(4.2) 65.0(3.6)

SGD-FT 85.6(1.9) 83.4(1.7) 92.6(1.1) 65.8(4.2) 53.6(2.5) 64.5(3.7)

Kernel SGD 77.7(2.8) 73.6(2.0) 82.6(4.4) 54.4(1.5) 50.0(4.4) 48.4(19.3)
512 Prompt Adam-FT 90.7(1.2) 88.6(0.6) 94.8(0.3) 82.6(1.2) 75.4(3.0) 75.7(0.9)

SGD-FT 91.8(0.4) 89.0(0.6) 94.6(0.6) 82.5(0.5) 76.1(1.2) 76.0(1.0)

Kernel SGD 90.2(0.4) 88.2(0.5) 94.3(0.2) 75.1(0.7) 71.4(2.0) 70.7(1.7)

Standard Adam-FT 91.4(0.7) 88.4(0.8) 94.1(0.6) 82.2(0.3) 72.6(1.9) 76.1(0.8)

SGD-FT 91.0(0.4) 88.7(0.5) 95.6(0.4) 81.6(1.5) 72.0(2.2) 75.8(0.6)

Kernel SGD 84.9(2.3) 83.0(1.3) 92.1(0.7) 68.0(1.2) 56.5(3.1) 68.9(1.1)

Table 7: Fine-tuning performance in the standard FT setting, where the contextual embedding of the
[CLS] token is used for classification, and the prompt-based FT setting, where a prompt is added
and the embedding for the [MASK] token is used (see Section 2). In standard FT, we initialize the
new classification head (i.e., Γ) using the linear probing solution. This table gives the figures in
Figure 1, and also relates SGD fine-tuning performance to the more common fine-tuning with Adam.
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SST-2 SST-5 MR CR
k-shot Lin. FT Lin. FT Lin. FT Lin. FT

0 —— 79.0 —— —— 32.6 —— —— 71.9 —— —— 86.2 ——
16 87.5(1.3) 88.3(1.2) 41.8(4.1) 45.4(2.6) 84.3(1.8) 81.3(6.1) 93.3(0.6) 93.0(1.6)

64 88.6(0.4) 89.3(0.7) 42.9(2.2) 48.5(2.0) 85.0(0.2) 86.0(0.4) 94.0(0.5) 93.7(0.8)

MQPA Subj TREC AG News
k-shot Lin. FT Lin. FT Lin. FT Lin. FT

0 —— 68.2 —— —— 54.6 —— —— 27.4 —— —— 68.7 ——
16 75.6(3.1) 82.8(2.2) 82.9(4.7) 87.4(2.1) 30.4(7.2) 79.6(6.1) 57.8(18.3) 84.0(1.6)

64 75.6(2.3) 85.0(0.2) 78.9(14.0) 92.7(0.6) 31.2(13.0) 92.6(1.3) 67.5(12.2) 86.8(1.1)

(a) Single-sentence tasks.

MNLI SNLI QNLI
k-shot Lin. FT Lin. FT Lin. FT

0 —— 48.1 —— —— 49.8 —— —— 51.2 ——
16 43.6(6.4) 56.8(2.9) 47.2(9.3) 64.6(4.1) 57.5(2.3) 63.1(3.5)

64 55.1(4.8) 67.9(1.0) 56.9(5.7) 76.9(1.4) 60.4(5.3) 74.2(3.2)

RTE MRPC QQP
k-shot Lin. FT Lin. FT Lin. FT

0 —— 53.1 —— —— 41.7 —— —— 42.7 ——
16 55.4(6.7) 57.6(6.3) 57.7(11.6) 68.9(2.4) 57.5(10.3) 61.7(6.5)

64 59.6(2.9) 67.3(2.7) 64.2(2.2) 73.8(1.7) 61.7(9.4) 72.7(1.8)

(b) Sentence-pair tasks.

Table 8: Accuracies of pre-trained model (0-shot), linearized model (Lin., see Definition 2.2) and
fine-tuned model (FT). Tasks that exhibit the Linearization property of kernel behavior (Definition 2.2)
during fine-tuning will show that Lin. performance recovers a substantial amount of the gain in
performance achieved by performing fine-tuning with Adam. Accuracies are averaged across 5
fine-tuning seeds for each value of k and measured on the test set. This table corresponds to the bar
chart in Figure 2.

k-shot Prompt + label format Method SST-2 MR CR QNLI RTE QQP
16 Manual

(Gao et al., 2021)
Adam-FT 88.3(1.2) 81.3(6.1) 93.0(1.6) 63.1(3.5) 57.6(6.3) 61.8(4.5)
SGD-FT 89.0(1.5) 83.2(2.4) 93.3(0.2) 62.1(3.1) 60.0(5.5) 62.1(2.3)
K(SGD) 88.3(0.3) 84.7(1.5) 93.2(0.9) 60.1(3.3) 60.0(4.7) 58.2(0.9)

Prompt + label search
(Gao et al., 2021)

Adam-FT 88.1(0.8) 81.6(3.8) 92.8(0.4) 56.3(3.8) 58.6(4.6) 58.6(4.5)
SGD-FT 89.2(1.2) 80.1(1.8) 93.2(0.5) 58.7(4.8) 61.6(2.6) 59.0(1.4)
K(SGD) 88.6(1.1) 78.5(1.2) 93.5(0.7) 56.7(1.7) 57.4(5.5) 60.2(2.0)

Null prompts
(Logan IV et al., 2022)

Adam-FT 87.6(0.9) 82.6(0.6) 92.8(0.6) 59.0(2.9) 56.4(4.7) 57.5(5.2)
SGD-FT 88.1(0.7) 82.8(3.6) 93.4(0.7) 59.0(3.4) 54.1(1.6) 57.6(5.5)
K(SGD) 78.3(4.3) 78.7(1.8) 91.7(0.8) 55.8(2.7) 55.5(2.3) 57.4(1.8)

Table 9: We experiment with different prompt formats and label words: using the top result of an
automatic prompt search performed on RoBERTa-large (Table E.1 in Gao et al. (2021)); and minimal
null prompts (Table A3, Logan IV et al. (2022)), which add no additional text to the prompt. We find
that our observations are robust to the choice of prompt, with the exception of the more unnatural
“null prompts” on sentiment tasks (SST-2, MR, CR), which show a substantial gap between K(SGD)

and fine-tuning. We report F1 for QQP and accuracy otherwise, and average the metrics over 5 seeds.
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C EFFICACY OF SUBSPACE-BASED FINE-TUNING METHODS

We study subspace-based fine-tuning methods, which apply updates to only a low-dimensional
subspace of the high-dimensional model parameter space during fine-tuning. Although theoretical
analysis of these methods seems complex, the kernel view admits a simple interpretation. We directly
apply the Johnson-Lindenstrauss (JL) lemma in Johnson (1984), which guarantees inner product
preservation under random projections, to suggest why LoRA (Hu et al., 2021) works. Similar
analysis yields results on parameter-subspace FT methods used to study intrinsic dimension (Li et al.
(2018); Aghajanyan et al. (2021), see Appendix E).
Definition C.1 (A-LoRA FT (Hu et al., 2021)). Let A be a gradient-based optimization algorithm.
For every weight matrix W ∈ Rm×n, choose k ≪ m and initialize B ∈ Rm×k with i.i.d. zero-mean
Gaussian values and A ∈ Rk×n as 0. Set the weight to be W + BA. To fine-tune, fix W at its
pre-trained value and train only A and B using A.

We show that if SGD FT exhibits kernel behavior, then so does SGD-LoRA FT, and SGD-LoRA FT
using a sufficiently large k does not modify the kernel or the dynamics.
Theorem C.2 (Informal version of Theorem E.5). Let K(SGD) be the kernel analog (Definition 2.3) to
SGD FT and K(SGD)

LoRA be the kernel analog to SGD-LoRA FT on a downstream task Ξ with N examples.
Then, with high probabililty, K(SGD)

LoRA (i, j) ≈ K(SGD)(i, j) for all i, j ∈ [N ].

Proof sketch. Consider an individual layer in the network and a task input ξ ∈ Ξ. LoRA causes
∇Bf(ξ; θ) to be a random projection of∇W f(ξ; θ), where∇B denotes the gradient with respect to
B, and∇Af(ξ; θ) = 0 since B is initialized to zero. The rest of the proof follows from applying JL
to all input pairs ξ, ξ′ to show the inner product (and thus, the kernel entry) is preserved.

Remark C.3. Theorem C.2 states that the kernel analog of SGD-FT is unchanged by LoRA in both
prompt-based and standard FT. However, the theorem only provides an explanation for the success
of A-LoRA FT when A FT exhibits kernel behavior. Therefore, as per Sections 3.2 and 4, we
consider this theorem to only be meaningful when considering prompt-based SGD and prompt-based
LoRA-SGD.
Table 11 verifies that prompt-based SGD FT and SGD-LoRA FT achieve similar performance on
several tasks, and K(SGD)

LoRA achieves performance similar to K(SGD).
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D KERNEL BEHAVIOR AND THE PARAMETRIZATION

Neural network training can exhibit either kernel behavior or feature learning behavior. These were
described in Woodworth et al. (2020) as the lazy regime and active regime, respectively, when
training from a random initialization. Kernel behavior provides a tractable tool to study the training
of neural networks, but it is not believed to be a complete description of practical deep learning
settings. In particular, kernel behavior implies the feature (i.e., gradient) of the neural networks
remains unchanged in the overparameterized setting, which is not true in practical pre-training of
large models.

Yang & Hu (2021) showed how the initialization variance, multiplier, and learning rate for each
parameter can move training from the kernel behavior to the feature learning behavior. They further
developed the Maximal Update Parametrization (abbreviated MUP or µP) where every parameter is
updated maximally (in terms of scaling with width) while keeping the network stable. Yang et al.
(2022) then extends µP to Transformers with Adam optimization, and showed empirically that for
pre-training of large language models using µP, the optimal hyperparameters remain the same when
increasing width. It allows more comprehensive hyperparameter searches on a smaller model and
direct transfer of the resulting optimal hyperparameters to the larger model, resulting in markedly
improved pre-training performance.

This section discusses two of our formal results: Theorems 3.3 and 3.7. In general, we consider the
overparameterized setting in which the width of the network goes to infinity. Additionally, we assume
that when initializing a weight matrix of the model, each entry of the matrix is drawn from i.i.d.
Gaussian distribution. In particular, we model a pre-trained model as a non-random initialization that
arose from training starting at a random initialization. We use Tensor Programs (Yang, 2020b) for
our formal results.

This section is organized as follows. In Appendix D.1, we introduce the basic notation and ideas
around Tensor Programs as well as the assumptions we need to make in order for an infinite-width
limit to be interesting to study. Then, Appendix D.2 gives the formal proof for the kernel analog to
SignGD (Theorem 3.3). In Appendix D.3, we provide a formal proof of how fine-tuning can exhibit
kernel behavior (Theorem 3.7). The proof relies heavily on Tensor Programs, so we additionally
provide a more accessible and intuitive sketch on linear networks in Appendix D.5. Finally, in ??, we
show that standard FT can exhibit kernel behavior when studying the infinite-width limit, though
experiments in Table 7 suggest otherwise. This contradiction between theory and practice suggests
that realistic finite-width networks are too far from infinite width ones when performing standard FT.
Nevertheless, wider models may exhibit kernel behavior when performing standard FT.

D.1 PRELIMINARIES

Notations Let ξ ∈ Rdin be the input of the network. Let n be the hidden dimension of the network
and dout be the output dimension of the network. We define the network as a function of the following
form:

f(ξ; {U i}i, {W j}j , V ) = V ⊤h(ξ; {U i}i, {W j}j),

where ξ is the input, U i ∈ Rn×din are the input weight matrices, W j ∈ Rn×n are hidden weight
matrices, V ∈ Rn×dout is the output weight matrix, and h(ξ; {U i}i, {W j}j) ∈ Rn is the input of last
layer (readout layer). 6 We writeM as the set of weight matrices, i.e.,M = {U i}i ∪ {W j}j ∪ {V }.
For M ∈M, let ∇Mf(ξ) be the gradient of f w.r.t. M at input ξ.

To simplify the notation, we assume din = 1 in this section. We will note when an extension to
din > 1 requires a non-trivial step. For any weight matrix M ∈M, let γM be the multiplier of M ,
such that M is multiplied by γM before performing matrix multiplication. Let ηM be the learning
rate of the weight M . Let σ2

M be the variance of entries of M at initialization, so each entry of M
is drawn N (0, σ2

M ) independently. Since our focus is the prompt-based fine-tuning, we assume no
change is made to the network at the beginning of fine-tuning, and the learning rates for pre-training
and fine-tuning are the same unless otherwise noted.

6We are able to describe transformers (without weight tying) in the definition. The bias can be regarded as
input weights assuming there is a coordinate in ξ that is always 1.
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Because we are considering the infinite-width limit, f(ξ; {U i}i, {W j}j , V ) actually represents a
series of increasingly wide networks {fn(ξ; {U i,n}i, {W j,n}j , V n)}n>0 of the same architecture,
but fn has a hidden dimension n. We use the notation f to include the model architecture, the training
optimizer of the model, and γM , ηM , σM for every weight matrix M in the model.

Let Mt be the weight matrix at time step t of training. If the network is pre-trained, we let M−1

be the weight matrix before pre-training, and M0 be the parameters right after pre-training. Let
∆Mt = Mt −Mt−1 be the change each training step induces. Let ft be the network at step t that

ft(ξ) = f(ξ; {U i
t}i, {W j

t }j , Vt).

Let ξt, yt be the training input and target at step t, and let the loss function at step t be ℓ(ft−1(ξt), yt).
For ease of notation, we often absorb yt into ℓ and denote ℓt(ft−1(ξt)) ≜ ℓ(ft−1(ξt), yt). Let
χt = ℓ′t(ft−1(ξt)) be the derivative of the loss function, as defined in Definition 2.1. We assume ℓ′′t
(second derivative of ℓt) is bounded7, which is satisfied when ℓ is mean square loss or cross entropy
loss.

Big-O Notation For a series of scalar random variables c = {cn}n>0 and a function e : N→ R, we
say c = Θ(e(n)) if there exist A,B such that for sufficiently large n, |cn| ∈ [Ae(n), Be(n)] almost
surely. For a series of vector random variables x = {xn}n>0, we say that x is coordinate-wise Θ(na),
or x = Θ(e(n)) if this series of scalar random variables {∥xn∥2/

√
n}n>0 is Θ(e(n)). Similarly for

the notation O(e(n)), Ω(e(n)), and o(e(n)). For convenience, we assume every e(n) in this section
is equal to na for some a.

Tensor Programs We refer reader to see Section 7 of Yang & Hu (2021) for detailed explanation
and full definition of Tensor Programs. Here, we provide a simple overview of Tensor Programs:

Definition D.1 (Definition 7.1 of Yang & Hu (2021)). A Tensor Program is a sequence of Rn-vectors
and R-scalars inductively generated via one of the following ways from an initial set C of random
scalars, V of random Rn vectors, and a setW of random Rn×n matrices.

MatMul Given W ∈ Rn×n and x ∈ Rn, we can generate Wx ∈ Rn or W⊤x ∈ Rn.

Nonlin Given ϕ : Rk × Rl → R, previous scalar θ1, . . . , θl ∈ R and vector x1, . . . , xk ∈ Rn,
we can generate a new vector

ϕ(x1, . . . , xk; θ1, . . . , θl) ∈ Rn

where ϕ(−; θ1, . . . , θl) applies coordinate-wise to each “α-slice ” (x1
α, . . . , x

k
α).

Moment Given the same setup as above, we can also generate a new scalar

1

n

n∑
α=1

ϕ(x1
α, . . . , x

k
α; θ1, . . . , θl) ∈ R.

Yang (2019; 2020a); Yang & Littwin (2021); Yang et al. (2022) show that Tensor Programs can
express the computation, SGD/Adam optimization, and the kernel of almost any general architecture.

The key result of the Tensor Programs is that we can represent the coordinates of any vector x in the
Tensor Program with a random variable Zx, and represent any scalar θ with a deterministic scalar θ̊.
There is a way to define all θ̊ and Zx correspond to the Tensor Program (cf. Definition 7.3 in Yang
& Hu (2021)), and the Master Theorem of the Tensor Program shows that θ → θ̊ when n→∞ (cf.
Theorem 7.4 in Yang & Hu (2021)).

Although it is in general hard to compute Zx and θ̊, it allows us to reason about the scales of vectors
in the training of a network.

7For C-way classification, the assumption is extended to its multivariate version: each entry of Hessian of ℓt
is bounded.
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Assumptions Related to Tensor Programs. Since we are studying the infinite width limit and
using Tensor Programs as our framework, there are some mild assumptions that we need in order to
apply Tensor Programs and results in Yang & Hu (2021).
Assumption D.2. We assume the network f satisfies the following

a) The forward pass of f in the infinite-width limit can be written as Tensor Programs.

b) The hidden vectors have Θ(1) coordinates at initialization.

c) The hidden vectors have O(1) coordinates during training.

d) For any training scheme8 and any constant t and any input ξ, ft(ξ) = O(1).

e) There exist a training scheme and some constant t and input ξ such that ft(ξ) − f0(ξ) =
Θ(1).

f) The activation function of f is tanh or σ-gelu for a small enough σ (so it approximates
ReLU), where

σ-gelu(x) =
1

2
xerf(σ−1x) + σ

e−σ−2x2

2
√
π

+
x

2
.

Furthermore, we have two assumption on SignGD:

g) SignGD is approximated as the sign function being replaced with ϵ-sign for small enough
ϵ when updating parameters, where ϵ-sign(x) = x

|x|+ϵ is smoothed version of sign. We
assume using different ϵ when computing the sign of ∇Mf , so that ϵ for ∇Mf match the
maximum scale of∇Mf .

h) The ratio between the learning rate of SignGD in prompt-based fine-tuning and the learn-
ing rate of pre-training matches the maximum χ after pre-training. That is, we as-
sume ηM = Θ(ηPT

M · χmax) where ηPT
M is learning rate of pre-training for SignGD, and

χmax = max(ξ,y)∈Ξ χ(ξ, y, f0).

b), c), d) and e) in Assumption D.2 together recover the definition of nontrivial stable network in
Yang & Hu (2021). b) and c) ensure that the pre-activations in the network are not too large, so
that activation functions (e.g., tanh) are not trivialized to always output ±1. b) ensures that the
pre-activations in the network are not too small at initialization, so the activation function is not
trivialized to its first-order Taylor expansion. d) ensures the network output is bounded. e) ensures
that the network is not frozen during training (i.e., learning can occur).

f) and g) in Assumption D.2 assures all non-linear functions that appear in the Tensor Programs is
pseudo-Lipschitz, which is required for the Master Theorem of Tensor Programs. g) also assures that
ϵ-sign is not trivialize to 0 or sign when∇Mf ̸= Θ(1).

h) in Assumption D.2 assures when χ = o(1), updates of SignGD in fine-tuning is not of bigger scale
than SGD. It is also observed in practice that the optimal learning rate for fine-tuning is smaller than
the learning rate for pre-training.

D.2 SIGNGD KERNEL DERIVATION

Definition D.3 (Formal Definition of Kernel Behavior). We say that this network training process
demonstrates kernel behavior if the following properties are satisfied.

1. Linearization: The change of the network can be approximated by its first order Taylor
expansion, i.e.,

lim
n→∞

ft(ξ)− ft−1(ξ)

χmax
= lim

n→∞

∑
M∈M

〈
∇Mft−1(ξ),

∆Mt

χmax

〉
;

where χmax = max(ξ,y)∈Ξ χ(ξ, y, f0), Ξ is the training dataset.

8Training scheme means a sequence of training examples {(ξt, yt}t>0, and loss function ℓ(ft(ξt), yt).
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2. Fixed Features: The gradients at step t are approximately the same as before training, i.e.,

∀M ∈M, lim
n→∞

∥∇Mft(ξ)−∇Mf0(ξ)∥22
maxξ′ ∥∇Mf0(ξ′)∥22

= 0.

Note that we define Linearization with both LHS and RHS divided by χmax so it is meaningful for
the case of χ = o(1). We do the same thing in the following theorem.
Theorem D.4 (SignGD Kernel). If SignGD training of f demonstrates kernel behavior, then under
Assumption D.2,

lim
n→∞

ft(ξ)− ft−1(ξ)

χmax
= lim

n→∞

∑
M∈M

−η̃M ⟨∇Mf0(ξ), ϵ-sign(∇Mf0(ξt))⟩ ,

where η̃M = ηM sign(χt)/χmax.

Note if ηM = η, the RHS of the equation above equals to

−η sign(χt)

χmax
⟨∇f0(ξ), ϵ-sign(∇f0(ξt)⟩ ≈ −

η sign(χt)

χmax
K(A-SignGD)(ξ, ξt),

where the approximation comes from the difference between ϵ-sign and sign.

Proof. By the update rule of SignGD, ∆Mt

χmax
= −η̃M ϵ-sign(∇Mft−1). It suffices to prove

η̃M ⟨∇Mft(ξ), ϵ-sign(∇Mft(ξt))⟩ = η̃M ⟨∇Mf0(ξ), ϵ-sign(∇Mf0(ξt))⟩
when n→∞.

Since

η̃M ⟨∇Mft(ξ), ϵ-sign(∇Mft(ξt))⟩ − η̃M ⟨∇Mf0(ξ), ϵ-sign(∇Mf0(ξt))⟩
= η̃M ⟨∇Mft(ξ)−∇Mf0(ξ), ϵ-sign(∇Mft(ξt))⟩+ (4)

η̃M ⟨∇Mft(ξ), ϵ-sign(∇Mft(ξt))− ϵ-sign(∇Mf0(ξt))⟩+ (5)
η̃M ⟨∇Mft(ξ)−∇Mf0(ξ), ϵ-sign(∇Mft(ξt))− ϵ-sign(∇Mf0(ξt))⟩ , (6)

we only need to prove Equations (4) to (6) are all 0 when n→∞.

Let ξ∗ = argmaxξ′ ∥∇Mf0(ξ
′)∥22 be the input of maximum gradient scale, then by Fixed Features,

we have
∥∇Mft(ξ)−∇Mf0(ξ)∥2

∥∇Mf0(ξ∗)∥2
= o(1). (7)

Since ϵ-sign(x)− ϵ-sign(y) ≤ |x− y|/ϵ,
∥ϵ-sign(∇Mft(ξ))− ϵ-sign(∇Mf0(ξ))∥2 ≤ ∥∇Mft(ξ)−∇Mf0(ξ)∥2/ϵ. (8)

Combined with ∥∇Mf0(ξ
∗)∥2/

√
N = Θ(ϵ) (N is the number of entries of M , this is by g) of

Assumption D.2), we have

∥ϵ-sign(∇Mft(ξ))− ϵ-sign(∇Mf0(ξ))∥2
∥ϵ-sign(∇Mf0(ξ∗))∥2

≤ ∥∇Mft(ξ)−∇Mf0(ξ)∥2/ϵ
∥ϵ-sign(∇Mf0(ξ∗))∥2

by eq. (8)

=
∥∇Mft(ξ)−∇Mf0(ξ)∥2

∥∇Mf0(ξ∗)∥2
· ∥∇Mf0(ξ

∗)∥2/
√
N

ϵ∥ϵ-sign(∇Mf0(ξ∗))∥2/
√
N

=
∥∇Mft(ξ)−∇Mf0(ξ)∥2

∥∇Mf0(ξ∗)∥2
·Θ(1) = o(1). (9)

By d) in Assumption D.2, and consider the training scheme that sets ξ1 = ξ∗ and the loss function ℓt
so χ1 = Θ(1), then

f1(ξ
∗)− f0(ξ

∗)

χ1
= −ηM sign(χ1)

χ1
⟨∇Mf0(ξ

∗), ϵ-sign(∇Mf0(ξ
∗))⟩ = O(1).
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By h) in Assumption D.2, the scale of η̃M is identical across different training scheme, so we have

−η̃M ⟨∇Mf0(ξ
∗), ϵ-sign(∇Mf0(ξ

∗))⟩ = O(1).

And it is easy to see that η̃M∥∇Mf0(ξ
∗)∥2∥ϵ-sign(∇Mf0(ξ

∗))∥2 has the same scale as
η̃M ⟨∇Mf0(ξ

∗), ϵ-sign(∇Mf0(ξ
∗))⟩, which is O(1).

Given Equations (7) and (9), we are about to prove Equations (4) to (6) divided
by η̃M∥∇Mf0(ξ

∗)∥2∥ϵ-sign(∇Mf0(ξ
∗))∥2 are all 0 when n → ∞. Provided that

η̃M∥∇Mf0(ξ
∗)∥2∥ϵ-sign(∇Mf0(ξ

∗))∥2 = O(1), it will imply Equations (4) to (6) are all 0 when
n→∞, thus conclude our whole proof.

For Equation (4),

η̃M ⟨∇Mft(ξ)−∇Mf0(ξ), ϵ-sign(∇Mft(ξt))⟩
η̃M∥∇Mf0(ξ∗)∥2∥ϵ-sign(∇Mf0(ξ∗))∥2

≤ ∥∇Mft(ξ)−∇Mf0(ξ)∥2∥ϵ-sign(∇Mft(ξt))∥2
∥∇Mf0(ξ∗)∥2∥ϵ-sign(∇Mf0(ξ∗))∥2

=
∥∇Mft(ξ)−∇Mf0(ξ)∥2

∥∇Mf0(ξ∗)∥2
= o(1). by eq. (7)

Similarly, for Equation (5),

η̃M ⟨∇Mft(ξ), ϵ-sign(∇Mft(ξt))− ϵ-sign(∇Mf0(ξt))⟩
η̃M∥∇Mf0(ξ∗)∥2∥ϵ-sign(∇Mf0(ξ∗))∥2

≤ ∥ϵ-sign(∇Mft(ξ))− ϵ-sign(∇Mf0(ξ))∥2
∥ϵ-sign(∇Mf0(ξ∗))∥2

= o(1), by eq. (9)

and for Equation (6),

η̃M ⟨∇Mft(ξ)−∇Mf0(ξ), ϵ-sign(∇Mft(ξt))− ϵ-sign(∇Mf0(ξt))⟩
η̃M∥∇Mf0(ξ∗)∥2∥ϵ-sign(∇Mf0(ξ∗))∥2

≤ ∥ϵ-sign(∇Mft(ξ))− ϵ-sign(∇Mf0(ξ))∥2
∥ϵ-sign(∇Mf0(ξ∗))∥2

· ∥∇Mft(ξ)−∇Mf0(ξ)∥2
∥∇Mf0(ξ∗)∥2

= o(1). by eqs. (7) and (9)

D.3 PROMPT-BASED FINE-TUNING

Prompt-based fine-tuning uses the pre-trained network directly without substituting or adding any
parameters. Therefore, without any additional assumptions, the behaviors of fine-tuning and pre-
training are the same from the perspective of the Tensor Programs. We thus adopt the assumption that
χ = o(1) before fine-tuning (Definition 3.6). Without the assumption, the fine-tuning of f will not
exhibits kernel behavior if the pre-training is in feature learning regime. Intuitively, this assumption
is believable because wider pre-trained networks can solve downstream tasks better. In this section,
we prove that prompt-based fine-tuning exhibits kernel behavior when this assumption holds.
Theorem D.5. If the downstream task Ξ is natural for network f , that is,

χmax ≜ max
(ξ,y)∈Ξ

χ(ξ, y, f0) = o(1),

then under Assumption D.2, the fine-tuning of f exhibits kernel behavior (Definition D.3).

Below we provide a proof that is heavily based on Tensor Programs and the analysis in Yang & Hu
(2021). For readers who are not familiar with Tensor Programs, we provide intuitive examples in the
next few subsections, where we focus on a three-layer linear network parameterized with µP.

Proof. The high-level proof consists of two parts: 1) we prove after each step, the update of the
function f is O(χt). Combined ℓ′′t always bounded by some constant C, we can inductively prove
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χt ≤ χ(ξt, yt, f0) + C · |ft−1(ξt)− f0(ξt)| = O(χmax) for all t. 2) Given χt = O(χmax) = o(1),
we show the fine-tuning exhibits kernel behavior.

We first prove the theorem under the assumption that the network is a multilayer perceptron and the
optimizer is SGD, which is the same setting as Yang & Hu (2021). We will later extend this to more
general cases.

Consider the following L-hidden-layer perceptron:

h1(ξ) = Uξ,

and
xl(ξ) = ϕ(hl(ξ)), hl+1(ξ) = W l+1xl(ξ), for l = 1, . . . , L− 1,

and
f(ξ) = V xL(ξ).

Following Yang & Hu (2021), we let the learning rate for every parameter equal to ηn−c. Let
W 1 = U and WL+1 = V , and for l = 1, . . . , L+ 1, we parametrize W l as W l = γlw

l for actual
trainable parameter wl, and we initialize each coordinate wl i.i.d. from N (0, σ2

l ). The setting covers
all possible parameterizations based on Lemma D.6. For convenience, we assume γl = n−al and
σl = n−bl . Without loss of generality, we further assume that χmax = Θ(n−d). Below, we will also
inductively show χt = O(n−d) by showing |ft+1 − ft| = O(n−d).

By Theorem 3.3 of Yang & Hu (2021), stable network implies

r ≜ min(aL+1 + bL+1, 2aL+1 + c) + c− 1 +
L

min
l=1

[2al + I(l = 1)] ≥ 0.

Also by Theorem 3.8 of Yang & Hu (2021), for nontrivial stable network (included in Assump-
tion D.2), if r > 0 then there exists a kernel K such that

ft+1(ξ) = ft(ξ)− ηχtK(ξ, ξt),
which is very close to our definition of kernel behavior. In fact, we will prove that they are equivalent
in the fine-tuning case.

Since χt = O(n−d) for fine-tuning, it is equivalent to set the learning rate to ηn−c−d and replace χt

with χ̂t = ndχt = O(1). Formally, we are considering the following training scheme: at the pre-
training stage, r ≥ 0 (so it could demonstrate feature learning or kernel behavior); at the fine-tuning
stage, c is increased to c′ ≜ c+ d > c, thus, the corresponding r is increased to be strictly greater
than 0. Therefore, it suggests kernel behavior with following caveats.

Do we handle the case of different learning rates during pre-training and fine-tuning? The
answer is effectively YES, because the above scheme is equivalent to training from scratch with
learning rate ηnc−d. First of all, the scale of the update on W l, hl, xl and f are all multiplied by
n−d when switching from the pre-training stage (ηn−c learning rate) to the fine-tuning stage(ηn−c−d

learning rate). The scales are exactly the same as training from scratch with ηn−c−d learning rate
except bL+1 needs to be changed to b′L+1 ≜ min(bL+1, aL+1 + c). Note this change of bL+1 does
not affect the fact that r is updated to r′ ≜ r + d > 0.

Does r′ > 0 formally imply our definition of kernel behavior (Definition D.3)? The answer is
YES. We first prove Fixed Features in Definition D.3. The gradient of matrix W l is equal to outer
product between∇hlf (gradient w.r.t. hl) and xl−1. Let dhl

t be the normalized gradient w.r.t. hl at
step t (so dhl

t = Θ(1)), and xl
t be the xl at step t (xl

t = Θ(1) without normalization). It suffices to
prove dhl

t − dhl
0 = O(1) and xl

t − xl
0 = o(1). The later was proved by Proposition H.27 of Yang &

Hu (2021). To prove dhl
t − dhl

0 = O(1), we let dxl
t be the the normalized gradient w.r.t. xl at step t,

and compute the scale of dhl
t − dhl

t−1 and dxl
t − dxl

t−1 inductively from l = L to l = 1. We obtain
that they both has the same scale of

n−min(2aL+1+c−aL+1−b′L+1,aL+1+bL+1+c′−1+minL
m=l+1 2am) ≤ n−min(0,r′) = 1,

the inequality is because b′L+1 ≤ aL+1 + c and r′ ≤ aL+1 + bL+1 + c′ − 1 + minLm=l+1 2am.

Second, we prove Linearization in Definition D.3. We need to first make a slight modification to
the Tensor Program in Yang & Hu (2021), that is, changing the computation of ft(ξ)− ft−1(ξ) to
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nd(ft(ξ)− ft−1(ξ)). By Theorem H.32 of Yang & Hu (2021) and its definition of Σ, we can show
that

lim
n→∞

nd(ft(ξ)− ft−1(ξ)) = lim
n→∞

L+1∑
l=1

ηn−c χt

n−d
⟨∇W lft−1(ξ),∇W lft−1(ξt)⟩

= lim
n→∞

L+1∑
l=1

〈
∇W lft−1(ξ),

∆W l
t

n−d

〉
.

This is exactly Linearization in Definition D.3 if we multiply n−d/χmax on both side. Meanwhile, it
also implies ft(ξ)− ft−1(ξ) = O(n−d).

From SGD to SignGD. Since sign(xy) = sign(x) sign(y), the update of matrix W l can still be
written as outer product of two vectors, i.e., ∆W l

t = ηn−c−d sign(χt) sign(∇hlft−1)⊗ sign(xl−1
t−1).

After applying sign, the scale of vector changes. If the parametrization is the same, the scales
of vectors using SignGD will be different from those using SGD. This can be easily resolved by
changing learning rates for each parameter (as in Assumption D.2), so the scaling change brought by
sign is corrected. Furthermore, as also mentioned in Assumption D.2, we need to approximate sign
by a smoothed version ϵ-sign so the Master Theorem of Tensor Programs can still apply.

Extension to universal architectures. The theorem can apply to any network whose first forward
pass can be written as Tensor Programs. Given this condition, the forward pass, backward pass, and
kernel of any step can be written as Tensor Programs (Yang, 2020a;b). To analyse the scaling of the
Tensor Program will need the following steps:

1. Extension to general computation graph. We can still inductively reason about the scale
of preactivations and activations by the topological order of the computation graph; and
similarly reason about the gradient by the reverse topological order.

2. Extension to weight sharing. We may use weights multiple times in a forward pass. The
preactivations, activations and their gradients will not be affected. Only the update of a
weight is now a sum of several vector outer product depending on the number of occurrence
of the weight.

D.4 µP FOR SGD AND SIGNGD

In the following subsections, we provide more intuition for Theorem D.5. Although we consider
all types of pre-trained models, we are mostly interested in models with feature learning behavior,
because it is likely not true that gradients can be approximated as fixed throughout the entirety of
pre-training. For pre-trained models with kernel behavior, it is obvious that fine-tuning with the
same settings as pre-training (i.e., prompt-based FT) will also exhibit kernel behavior. Furthermore,
Theorem H.17 of Yang & Hu (2021) proved that if the last layer is replaced with a freshly initialized
layer (i.e., standard FT), fine-tuning from a pre-trained models with kernel behavior is the same as
training on the downstream task from scratch.

Among all the pre-training schemes that exhibit feature learning behavior, µP is special because
each parameter (except the last layer) can on its own push the model to perform feature learning.
Therefore, to build an intuitive description of fine-tuning behavior, we assume that the model was
pre-trained by µP. We note again that our main result does not require this assumption.

The formulation of µP contains three sets of hyperparameters: initial variance of M , multiplier of M
and learning rate of M for M ∈ {U i}i ∪ {W j}j ∪ {V }. However, even if we restrict these three
hyperparameters to be in the form of nα, µP is not unique, because there is one degree of freedom
for each weight according to the following lemma.
Lemma D.6 (Lemma J.1 of Yang et al. (2022)). Consider a weight matrix M with learning rate C,
initialized as M ∼ N (0, B2), and with a multiplier A. Then for any γ > 0, ft(ξ) stays fixed for all t
and ξ if we set
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• A← Aγ,B ← B/γ,C ← C/γ2 if training with SGD.

• A← Aγ,B ← B/γ,C ← C/γ if training with Adam.

Note the conclusion about Adam in Lemma D.6 also extends to SignGD.

With Lemma D.6, we can always set the multiplier of any weight matrix M to be 1, which leave
us only the initialization variance σ2

M and learning rate ηM . Furthermore, in terms of the scale at
initialization and the scale of updates, µP for SGD and SignGD are entirely the same. The only
difference would be learning rate. We provide details in Table 10 (recall M−1 is the weight M at
initialization of pre-training, ∆M0 = M0 −M−1 is the overall change of weight in pre-training.
We further assume χt = Θ(n−d) for all t, thus ηMnd is the scale of learning rate for SignGD in
pre-training).

coordinate-wise scale M = U i M = W j M = V
M−1 Θ(1) Θ(1/

√
n) Θ(1/n)

∆M0 Θ(1) Θ(1/n) Θ(1/n)
ηM for SGD Θ(n) Θ(1) Θ(1/n)

ηM · nd for SignGD/Adam Θ(1) Θ(1/n) Θ(1/n)

Table 10: Scales of initialization, update and learning rate for µP in pre-training.

Since we have different learning rate for different M , the kernel that we care is defined as

K(ξ, ξ′) =
∑

M∈M
η′M ⟨∇W f(ξ), ϕ(∇W f(ξ′))⟩ ,

where ϕ is identity if the algorithm is SGD, ϕ = sign if the algorithm is SignGD, η′M = ηM for SGD,
η′M = ηMnd for SignGD. We use η′M to keep K(ξ, ξ′) = Θ(1).

And we want to prove the dynamic of the network follows

ft(ξ)− ft−1(ξ)

n−d
→ −χ̃tK(ξ, ξt) when n→∞,

where χ̃t = n−dχt for SGD, and χ̃t = sign(χt) for SignGD. In any case, χ̃t = Θ(1).

D.5 PROMPT-BASED FINE-TUNING: A LINEAR EXAMPLE

As an intuitive example, we consider a three-layer linear network

f(ξ;U,W, V ) = V ⊤WUξ.

For simplicity, we train the network with SGD, and freeze V so ηV = 0. Then we have ∇Uf =
W⊤V ξ⊤ and∇W f = V (Uξ)⊤. We assume |⟨ξ, ξ′⟩| > 0 for any ξ, ξ′.

In what follows, we will prove that for pre-training f cannot be written as the first-order Tay-
lor expansion (i.e., it exhibits feature learning). Then we will prove that it is the opposite for
fine-tuning. In fact, if we only look at one gradient step, the only higher order term equals to
ηW ηUχ

2
t∥V ∥2⟨ξt, ξ⟩ft−1(ξ) = Θ(χ2

tft−1(ξ)), where ft−1(ξ) is mostly Θ(1), χt is mostly Θ(1) in
pre-training9 and o(1) in fine-tuning (by Definition 3.6).

Zero step (Pre-training) We model the pre-training of f as one step of training with χ0 =
Θ(1). Then we have ∆U0 = −ηUχ0W

⊤
−1V ξ⊤0 , and ∆W0 = −ηWχ0V (U−1ξ0)

⊤. Since W⊤
−1 is

independent from V , we have W⊤
−1V = Θ(1/n), thus ∆U0 = Θ(1) matching Table 10. On the

other hand, it is obvious that ∆W0 = Θ(1/n) because V = Θ(1/n) and U = Θ(1), also matching
Table 10.

9ft(ξ) is Θ(1) unless t = −1 or there are coincidental cancellations. χt is Θ(1) in pre-training until f
memorizes the whole pre-training dataset when n → ∞.
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Then the function is now

f0(ξ) = V ⊤(W−1 +∆W0)(U−1 +∆U0)ξ

= V ⊤(W−1 − ηWχ0V (U−1ξ0)
⊤)(U−1ξ − ηUχ0W

⊤
−1V ⟨ξ0, ξ⟩)

= V ⊤W−1U−1ξ − ηUχ0∥W⊤
−1V ∥22⟨ξ0, ξ⟩ − ηWχ0∥V ∥2⟨U−1ξ0, U−1ξ⟩

+ ηW ηUχ
2
0∥V ∥2⟨ξ0, ξ⟩V ⊤W−1U−1ξ.

It is not difficult to see that ηUχ0∥W⊤
−1V ∥22⟨ξ0, ξ⟩, ηWχ0∥V ∥2⟨U−1ξ0, U−1ξ⟩, and

ηW ηUχ
2
0∥V ∥2⟨ξ0, ξ⟩ are all Θ(1). Unfortunately, here V ⊤W−1U−1ξ = f−1(ξ) = o(1) in the

infinite-width limit, but if we train one more step, it is easy to see that all four terms of f0 is Θ(1).
Therefore, pre-training with µP exhibits feature learning.

First step At the first step of fine-tuning, we have ∆U1 = −ηUχ1W
⊤
0 V ξ⊤1 and ∆W1 =

−ηWχ1V (U0ξ1)
⊤. The function can be written as

f1(ξ) = V ⊤(W0 +∆W1)(U0 +∆U1)ξ,

and

f1(ξ)− f0(ξ) = V ⊤∆W1U0ξ + V ⊤W0∆U1ξ + V ⊤∆W1∆U1ξ. (10)

Note that the sum of the first and second terms is exactly −χ1K(ξ, ξ1).
Plug in ∆W1 = −ηWχ1V (U0ξ1)

⊤ into the first term of eq. (10),

V ⊤∆W1U0ξ = −ηWχ1V
⊤V (U0ξ1)

⊤U0ξ = Θ(χ1),

because

(U0ξ1)
⊤U0ξ = (U−1ξ1 +∆U0ξ1)

⊤(U−1ξ +∆U0ξ)

= ⟨U−1ξ1, U−1ξ⟩ − ηUχ0⟨ξ1, ξ0⟩f−1(ξ)− ηUχ0⟨ξ, ξ0⟩f−1(ξ1) + ∥∆U0∥2⟨ξ1, ξ⟩
= Θ(n).

Plug in ∆U1 = −ηUχ1W
⊤
0 V ξ⊤1 into the second term of eq. (10), we have

V ⊤W0∆U1ξ = −ηUχ1V
⊤W0W

⊤
0 V ξ⊤1 ξ = Θ(χ1)

because

V ⊤W0W
⊤
0 V = ∥(W−1 +∆W0)

⊤V, (W−1 +∆W0)
⊤V ∥22

= ∥W⊤
−1V ∥22 + η2Wχ2

0∥V ∥42∥U−1ξ0∥22 − 2ηWχ0∥V ∥22f−1(ξ0) = Θ(1/n).

The third term of eq. (10) equals

ηUηWχ2
1V

⊤V (U0ξ1)
⊤W⊤

0 V ξ⊤1 ξ = ηUηWχ2
1∥V ∥2⟨ξ1, ξ⟩f0(ξ1) = Θ(χ2

1),

because f0(ξ1) = Θ(1) unlike f−1(ξ) in the “zero step” analysis. Therefore, f1(ξ)−f0(ξ)
χ1

→
−K(ξ, ξ1).

Second step At the second step of fine-tuning, we have ∆U2 = −ηUχ1W
⊤
1 V ξ⊤2 , and ∆W2 =

−ηWχ1V (U1ξ2)
⊤ and

f2(ξ)− f1(ξ) = V ⊤∆W2U1ξ + V ⊤W1∆U2ξ + V ⊤∆W2∆U2ξ. (11)

Assuming χ2 and χ1 share the same order, then when n→∞,

f2(ξ)− f1(ξ)

χ2
→ V ⊤∆W2U1ξ/χ2 + V ⊤W1∆U2ξ/χ2

= − ηWV ⊤V (U1ξ2)
⊤U1ξ − ηUV

⊤W1W
⊤
1 V ξ⊤2 ξ

→ − ηWV ⊤V (U0ξ2)
⊤U0ξ − ηUV

⊤W0W
⊤
0 V ξ⊤2 ξ

= −K(ξ, ξ2).
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tth step Same as the second step by noting ∆Ut, ∆Wt always have smaller order than ∆U0 and
∆W0.

D.6 LORA FT EXHIBITS KERNEL BEHAVIOR

Note Theorem D.5 works for any architecture, including LoRA. In order to apply the theorem to
LoRA FT, we need to set the initialization and learning rate of the matrices A and B in LoRA
correctly so that they satisfy Assumption D.2.

Here we provide a relatively straightforward way to accomplish this (assuming only intermediate
layers use LoRA):

• Let k = αn where α is a small constant irrelevant to n.
• Let the initialization scale of A be Θ(1/

√
n).

• Let the learning rate of A and B be Θ(1) for SGD, Θ(n−1−d) for SignGD / Adam.

In short words, the initialization and learning rate follows µP as in Table 10 by treating A and B as
one of W j . This setup easily generalizes to the case where U and V also use LoRA.

E SUBSPACE-BASED FINE-TUNING METHODS

Experimental results related to LoRA FT are presented in Table 11. These results show that SGD-FT
and SGD-LoRA FT perform similarly in the few-shot setting for many tasks, although the original
experiments in Hu et al. (2021) focused on Adam. The closeness of K(SGD) and K(SGD)

LoRA to their
respective fine-tuning methods suggests that FT and LoRA FT can be described by kernel dynamics.
Moreover, we show that K(SGD) and K(SGD)

LoRA achieve similar performance to each other, providing
empirical evidence for the claim in Theorem C.2 that LoRA preserves the kernel.

k-shot Method SST-2 MR CR QNLI RTE QQP
16 SGD-FT 89.0(1.5) 83.2(2.4) 93.3(0.2) 62.1(3.1) 60.0(5.5) 62.1(2.3)

SGD-LoRA FT 89.1(0.6) 82.7(2.0) 92.6(0.8) 57.1(3.3) 58.2(2.9) 59.8(3.0)

K(SGD) 88.3(0.3) 84.7(1.5) 93.2(0.9) 60.1(3.3) 60.0(4.7) 58.2(0.9)

K(SGD)
LoRA 88.1(0.4) 84.9(1.4) 93.1(1.0) 59.4(3.7) 56.2(5.8) 58.2(3.2)

64 SGD-FT 89.7(0.4) 85.6(1.1) 94.3(0.5) 72.8(2.2) 68.9(2.5) 69.2(1.3)

SGD-LoRA FT 90.0(0.2) 85.7(1.2) 93.9(0.7) 73.8(2.7) 69.1(1.8) 68.3(2.4)

K(SGD) 89.2(1.0) 86.4(0.6) 93.7(0.4) 67.3(1.6) 66.5(2.5) 66.4(1.7)

K(SGD)
LoRA 89.2(0.7) 85.7(1.5) 93.6(0.4) 66.0(1.6) 63.5(3.5) 63.9(4.5)

Table 11: Performance of prompt-based SGD FT and prompt-based SGD-LoRA FT, along with
their kernel analogs K(SGD) and K(SGD)

LoRA , on a subset of tasks. SGD FT and SGD-LoRA FT achieve
comparable performance, and K(SGD) and K(SGD)

LoRA also achieve comparable performance to each
other. We report F1 for QQP and accuracy otherwise, and average the metrics over 5 seeds. These
experiments support Theorem C.2.

E.1 INTRINSICDIMENSION FT

We discuss IntrinsicDimension FT (Li et al., 2018; Aghajanyan et al., 2021) here. When analyzed
through the kernel, IntrinsicDimension FT and LoRA FT induce similar transformations in the
optimization dynamics, but the former was originally proposed as a way to measure the difficulty of
downstream tasks, and the latter was proposed as an alternative fine-tuning method.
Definition E.1 (A-IntrinsicDimension FT (Li et al., 2018; Aghajanyan et al., 2021)). Let θ ∈ RM be
the model parameters and fix a random projection Π ∈ RM×k. Set θ to θ +Πθ̂, where θ̂ ∈ Rk. To
fine-tune, fix θ at its pre-trained value and only train θ̂.

We show a similar result for IntrinsicDimension FT as for LoRA FT: using a sufficiently large
k ≥ Θ(logN/ϵ2) ensures that each element of the kernel is relatively unchanged.
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Theorem E.2 (IntrinsicDimension FT preserves K(SGD)). Let Π be a random matrix with each entry
draw i.i.d fromN (0, 1/k). Let K(SGD)

ID ∈ RN×N be the kernel analog to SGD-IntrinsicDimension FT
(Definition E.1) on a downstream task Ξ. Additionally, assume K(SGD)(i, j) ≤ c for any i, j ∈ [N ].
Then,

Pr
[
∃i, j ∈ [N ], |K(SGD)

ID (i, j)−K(SGD)(i, j)| ≥ cϵ
]
≤ 4N2 exp(−(ϵ2 − ϵ3)k/4).

E.2 PROOFS

A key step of the proof is to show that if A FT exhibits kernel behavior, then so does A-LoRA FT.
We show this step in Appendix D.6, since it invokes the Tensor Programs framework again. Now that
we know FT follows kernel dynamics, we can move to showing how LoRA and IntrinsicDimension
FT modify the kernel.

We restate the Johnson-Lindenstrauss lemma, which preserves inner products under random projec-
tion.
Lemma E.3 (Corollary of Johnson-Lindenstrauss, Johnson (1984)). Let u, v ∈ Rd such that ∥u∥2 ≤ c
and ∥v∥2 ≤ c. Let h(x) = 1√

k
Ax, where A ∈ Rk×d with each entry sampled i.i.d. from N (0, 1) or

U(−1, 1). Then,
Pr[|u · v − h(u) · h(v)| ≥ cϵ] ≤ 4 exp(−(ϵ2 − ϵ3)k/4)

Proof for Theorem E.2. Note ∇θ̂f = Π⊤∇θf , and

K(SGD)
ID (i, j)−K(SGD)(i, j) = ⟨∇θ̂f(ξi; θ),∇θ̂f(ξj ; θ)⟩ − ⟨∇θf(ξi; θ),∇θf(ξj ; θ)⟩.

The rest follows Lemma E.3 by setting u = ∇θf(ξj ; θ), v = ∇θf(ξi; θ), and union bounding all i, j
pairs.

We can now look at LoRA (Hu et al., 2021) for a simple fully connected layer. The construction
modifies each layer independently and only acts on fully connected layers, so this is the only part
of the kernel that can change when parametrizing updates as in LoRA. For ease of notation, for any
parameter or hidden vector w, we use dw to denote∇wf(ξ; θ), dw(i) to denote∇wf(ξi; θ), and wi

denotes the resulting w when input is ξi.
Lemma E.4 (LoRA SGD Kernel). Let h = Wx + BAx as defined in the paper, where x ∈ Rn,
W ∈ Rm×n, B ∈ Rm×k, and A ∈ Rk×n with k ≪ n. B is initialized to 0 and A is initialized with
i.i.d. zero-mean Gaussian samples. SGD Training with LoRA (i.e., fixing W and allowing A and B
to be updated) yields the kernel K(SGD)

LoRA , whereas full FT with SGD yields the kernel K:

K(SGD)
LoRA = dHdH⊤ ⊙ (XA⊤AX⊤) K(SGD) = dHdH⊤ ⊙ (XX⊤)

where dH ∈ RN×m has dh(i) in the ith row and X ∈ RN×d has xi in the ith row.

Proof. We start by noting the well-known fact that dW = dh ⊗ x, where dh is the gradient to h
and ⊗ is the cross product. Thus, K = dHdH⊤ ⊙ (XX⊤). In the LoRA setting, dA = 0 and
dB = dh⊗Ax. Because we are in the kernel setting, B = 0 and thus, dA = 0, throughout training.
So,

KLoRA(i, j) = ⟨dB(i), dB(j)⟩ = ⟨dh(i), dh(j)⟩⟨Axi, Axj⟩.
Analogous reasoning yields

K(SGD)(i, j) = ⟨dh(i), dh(j)⟩⟨xi, xj⟩.

Theorem E.5 (K(SGD)
LoRA is likely not far from K(SGD)). Let K(SGD)

LoRA ∈ RN×N and K(SGD) ∈ RN×N be
defined as in Lemma E.4. Additionally, assume that ∥dh∥2 ≤ c, ∥x∥2 ≤ c for any ξ in the downstream
dataset. Then,

Pr
[
∃i, j ∈ [N ], |K(SGD)

LoRA (i, j)−K(SGD)(i, j)| ≥ c2ϵ
]
≤ 4N2 exp(−(ϵ2 − ϵ3)k/4).
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Proof. By Lemma E.4,

|K(SGD)
LoRA (i, j)−K(SGD)(i, j)| = |⟨dh(i), dh(j)⟩(⟨Axi, Axj⟩ − ⟨xi, xj⟩)|

≤ c|⟨Axi, Axj⟩ − ⟨xi, xj⟩|.
The rest of the proof follows from Lemma E.3 and union bound.

Remark E.6. Theorem E.5 shows when k ≥ 20c4 logN/ϵ2, with high probability, the difference
between the two kernels is smaller than ϵ. Although Theorem E.5 focuses on a simple fully connected
layer, the conclusion easily extends to the case where LoRA is applied L times in the model because
LoRA components are independent of each other:

Pr
[
∃i, j ∈ [N ], |K(SGD)

LoRA (i, j)−K(SGD)(i, j)| ≥ Lc2ϵ
]
≤ 4N2 exp(−L(ϵ2 − ϵ3)k/4).

The requirement of k becomes k ≥ Θ(Lc4 logN/ϵ2).
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