
Greedy Sampling Is Provably Efficient for RLHF

Di Wu
Electrical and Computer Engineering

University of Virginia
Charlottesville, VA 22903
ckk8dy@virginia.edu

Chengshuai Shi
Princeton Language and Intelligence

Princeton University
Princeton, NJ 08540

cs1083@princeton.edu

Jing Yang
Electrical and Computer Engineering

University of Virginia
Charlottesville, VA 22903
yangjing@virginia.edu

Cong Shen
Electrical and Computer Engineering

University of Virginia
Charlottesville, VA 22903
cong@virginia.edu

Abstract

Reinforcement Learning from Human Feedback (RLHF) has emerged as a key tech-
nique for post-training large language models. Despite its empirical success, the
theoretical understanding of RLHF is still limited, as learning the KL-regularized
target with only preference feedback poses additional challenges compared with
canonical RL. Existing works mostly study the reward-based Bradley-Terry (BT)
preference model, and extend classical designs utilizing optimism or pessimism.
This work, instead, considers the general preference model (whose practical rele-
vance has been observed recently) and obtains performance guarantees with major,
order-wise improvements over existing ones. Surprisingly, these results are derived
from algorithms that directly use the empirical estimates (i.e., greedy sampling),
as opposed to constructing optimistic or pessimistic estimates in previous works.
This insight has a deep root in the unique structural property of the optimal policy
class under the KL-regularized target, and we further specialize it to the BT model,
highlighting the surprising sufficiency of greedy sampling in RLHF.

1 Introduction

In recent years, a growing amount of attention has been given to Reinforcement Learning from
Human Feedback (RLHF), an essential component in the post-training stage of large language models
(LLMs) (Bai et al., 2022; Ouyang et al., 2022; Rafailov et al., 2023; Dong et al., 2023; Zhao et al.,
2023). Specifically, RLHF has been one of the key techniques powering the most widely used LLMs
(Achiam et al., 2023; Bai et al., 2022; Touvron et al., 2023; Team et al., 2023). With its tremendous
empirical success, researchers have started to seek a deeper theoretical understanding of RLHF (Zhu
et al., 2023; Xiong et al., 2023).

Compared with canonical reinforcement learning (RL) (Sutton et al., 2018), RLHF has two key
characteristics. First, rather than the absolute reward signals, the learning agent in RLHF commonly
observes preference feedback, since during LLM training, it is easier for human annotators to
compare answers than to provide absolute scores. Second, RLHF commonly considers a target with
an additional penalty term as the Kullback–Leibler (KL) divergence between the learned policy and a
reference policy. This target is often referred to as the KL-regularized RL and in the most common
single-turn scenario, KL-regularized contextual bandits (CB).
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While these two key characteristics pose additional challenges for the analysis of RLHF, interesting
theoretical guarantees have been derived. Based on Zhao et al. (2024), it has been established that
learning in KL-regularized RL/CB can achieve a regret upper bound of O(log(T )) for the online
setting with a time horizon of T (Zhao et al., 2025a), and a sample complexity of O(ε−1) for the
offline setting to obtain an ε-optimal policy with the single-policy coverage (Zhao et al., 2025b),
both of which are instance-agnostic. These results have clear gaps to the traditional lower bounds
of Ω(

√
T ) regret (Auer et al., 2008; Osband and Van Roy, 2016) and Ω(ε−2) sample complexity

(Rashidinejad et al., 2021; Li et al., 2024) in canonical RL.

Despite these advances, two major limitations exist. First, the aforementioned tight performance
bounds are obtained by either assuming direct reward observations (Zhao et al., 2025a,b) or restricting
to the reward-based Bradley-Terry (BT) preference model (Zhao et al., 2024, 2025b). Thus, these
results are not applicable to the general preference model without the concept of rewards, which has
empirically demonstrated appealing flexibility and adaptability (Azar et al., 2024; Munos et al., 2023).
Moreover, although the properties of KL-regularized RL/CB has been leveraged for performance
analyses, they are not fully exploited to facilitate new algorithm designs. Specifically, the proposed
designs still follow the classical principles of optimism (Auer et al., 2002; Abbasi-Yadkori et al.,
2011) or pessimism (Rashidinejad et al., 2021; Jin et al., 2021) in the face of uncertainty.

In light of these two limitations, this work contributes to the theoretical understanding of RLHF by
targeting the general preference model and revisiting the algorithm designs. The main results are
summarized in the following seemingly counter-intuitive statement, which holds for both online and
offline settings and both general and BT preference models:

Greedy sampling with respect to the empirical estimates is provably efficient for RLHF.

This result appears surprising, as directly leveraging the empirical estimates for sampling is typically
undesirable in canonical RL/CB, both online and offline. As we will illustrate in this work, it actually
has a deep root in the theoretical properties introduced by the additional KL-regularization.

Centered on the above statement, the contributions of this work can be summarized as follows:

• Under the general preference model, we demonstrate that for RLHF (in particular, KL-regularized
CB), we can derive a regret upper bound of O(log(T )) with a time horizon of T in the online setting.
Furthermore, in the offline setting, a sample complexity of O(ε−1) can be achieved only requiring
a single-policy coverage. These online and offline guarantees are the first ones of these orders for
the general preference model, largely improving the previous results of orders O(

√
T ) and O(ε−2)

obtained in Ye et al. (2024b), respectively.

• More importantly, the above results are obtained by directly using greedy sampling with respect
to the empirical estimates. As a result, in contrast to previous works that mostly use optimistic
or pessimistic estimates, there is no need for constructing upper and lower confidence bounds,
which is often computationally heavy in general scenarios. This is the first time, to the best of our
knowledge, that the provable efficiency of greedy sampling is established for RLHF, regardless of the
preference models. Technically, this surprising result comes from the fundamental fact that, under
the KL-regularized objective, every candidate optimal policy lies within a bounded likelihood ratio of
the reference policy – a structural property previous studies have largely overlooked.

• To further generalize the above observation, we derive the performance bounds of greedy sampling
under the BT model, which are again of orders O(log(T )) and O(ε−1) for the online and offline
settings, respectively. These results match the upper bounds in previous works (Zhao et al., 2025a,b),
which are derived under optimism and pessimism.

• The theoretical results (i.e., the efficiency of directly using empirical estimates) are corroborated
with simulation results. In particular, under both general and BT preference models, experimental
results demonstrate that the simple greedy sampling approach achieves statistically comparable
performance to prior methods with more sophisticated policy constructions.

2 Problem Formulation and Preliminaries

Based on the standard LLM post-training pipeline of RLHF (Ouyang et al., 2022; Achiam et al.,
2023), this work focuses on the following KL-regularized contextual bandits (CB) problem with
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preference feedback, which is also studied in the previous literature with a theoretical focus (Zhu et al.,
2023; Xiong et al., 2023; Ye et al., 2024b; Zhao et al., 2024, 2025a,b). Specifically, it is considered
that a policy π : X → ∆(A) (i.e., an LLM) takes in a context x ∈ X (i.e., a prompt) and performs an
action a ∈ A (i.e., a response). It is commonly assumed that the context x is independently sampled
from a distribution d0, i.e., x ∼ d0. The goal of the learning agent in RLHF is to find a good policy π
that best aligns with human values.

Preference model. As mentioned in Section 1, to facilitate human annotators, a key characteristic of
RLHF is that the learning agent receives preference feedback over actions (typically action pairs)
instead of direct reward feedback. In particular, given a context x and an action pair (a1, a2), the
learning agent receives a binary feedback y ∈ {0, 1}, with y = 0 meaning a1 is preferred over a2,
denoted as a1 ≻ a2 and y = 0 meaning a2 is preferred over a1, denoted as a2 ≻ a1 (or a1 ≺ a2).

This work first considers the following general preference model, which directly models the prob-
ability of preferring one action over the other given a context. It has attracted increasing attention
recently, due to its empirical flexibility and adaptability (Azar et al., 2024; Munos et al., 2023).

Definition 1 (General Preference Model) A preference model P : X ×A×A → [0, 1] is defined
such that the preference signal y of any action pair (a1, a2) ∈ A × A under any context x ∈ X
follows

y ∼ Ber(P(a1 ≻ a2|x, a1, a2)).

With the definition, it is naturally observed that P(a1 ≻ a2|x, a1, a2) + P(a2 ≻ a1|x, a1, a2) = 1.
To ease the presentation, it is denoted that P ∗(x, a1, a2) := P(a1 ≻ a2|x, a1, a2).

A more commonly considered preference model is the following Bradley-Terry (BT) model (Bradley
and Terry, 1952), which is also studied in this work. It can be observed that the BT model is a special
case of the general preference model by introducing a latent reward function.

Definition 2 (Bradley-Terry Model) The Bradley-Terry model satisfies Definition 1 with the proba-
bility of a1 is preferred than a2 under context x modeled as

P(a1 ≻ a2|x, a1, a2) = exp(R∗(x, a1))

exp(R∗(x, a1)) + exp(R∗(x, a2))
= σ

(
R∗(x, a1)−R∗(x, a2)

)
,

where R∗ : X ×A → [0, 1] is a reward function that captures the performance of one action a ∈ A
under a context x ∈ X as R∗(x, a).

Because the understanding of general preference models remains preliminary and more complex than
that of the BT model, the subsequent discussion focuses primarily on the former, even though our
contributions address both. Also, to facilitate the presentation, we will use GP (resp., BT) to denote
the general preference model (resp., the BT model).

Learning objective. Besides the preference model, the second key characteristic of RLHF is that a
KL-regularized target is typically considered, which originates from its practical implementations
(Ziegler et al., 2019; Ouyang et al., 2022; Bai et al., 2022; Rafailov et al., 2023). In terms of the
general preference model, following Munos et al. (2023); Ye et al. (2024b), a game-theoretical
perspective is taken where two players (referred to as the max-player and the min-player) compete in
a zero-sum game with the following value for a policy pair (π1, π2):

JGP(π
1, π2) := Ex∼d0

Ea1∼π1,a2∼π2

[
P ∗(x, a1, a2)− η−1KL(π1, π0|x) + η−1KL(π2, π0|x)

]
.

In the above definition, η ∈ R is a parameter controlling the regularization and π0 is referred to as
the reference policy, which is typically the model checkpoint after supervised fine-tuning in LLM
training. In addition, the simplified notation KL(π1, π0|x) := KL(π1(·|x)||π0(·|x)) is adopted for
ease of presentation. In general, we consider the reference policy π0 as a non-deterministic policy.

For this game, it has been demonstrated in Munos et al. (2023); Ye et al. (2024b) that there exists a
unique Nash equilibrium (NE) as

(π1,∗, π2,∗) = (π∗
GP, π

∗
GP) = arg max

π1∈Π

arg min
π2∈Π

JGP(π
1, π2),
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where Π := {π : support(π) = support(π0)} is the set of policies sharing the same support as π0 so
that the KL-regularization is meaningful. When there is no ambiguity, we also refer to the NE policy
as the optimal policy with a slight abuse of notion.

As defined in Ye et al. (2024b), the following performance metric is defined for a learned policy π̂1

with J∗
GP := JGP(π

∗
GP, π

∗
GP) as

∆GP(π̂
1) := J∗

GP − min
π2∈Π

JGP(π̂
1, π2),

which is always positive when π̂1 ̸= π∗
GP. A policy π̂1 is said to be ε-optimal if ∆GP(π̂

1) ≤ ε. When
measuring the performance of a sequence of policies {π1

t : t ∈ [T ]} (as in the online learning setting),
the following definition of regret is introduced:

RegretGP(T ) :=
∑

t∈[T ]
∆GP(π̂

1
t ).

With the BT model, while the above definitions can still be applied, it is more convenient to directly
consider the performance in terms of rewards (Xiong et al., 2023; Zhao et al., 2024). Especially, the
value of a policy π is defined as

JBT(π̂) := Ex∼d0Ea∼π

[
R∗(x, a)− η−1KL(π, π0|x)

]
.

The value definition naturally leads to the following performance metric of a learned policy π̂ and
regret of a sequence of policies {π̂t : t ∈ [T ]}:

∆BT(π̂) := J∗
BT − JBT(π̂); RegretBT(T ) :=

∑
t∈[T ]

∆BT(π̂t),

where J∗
BT := JBT(π

∗
BT) with π∗

BT := arg maxπ∈Π JBT(π) as the optimal policy under the BT model.

Notation. To ease the presentation, we also adopt the following notations: under a general preference
model P , the expected probability of preferring an action a over a distribution π is denoted as
by P (x, a, π) := Ea′∼π(·|x)[P (x, a, a′)] and, similarly, the expected probability of preferring a
distribution π1 over the other one π2 as P (x, π1, π2) := Ea1∼π1(·|x),a2∼π2(·|x)[P (x, a1, a2)].

3 Properties of the Optimal Policy Class

In this section, the key properties of the optimal policy class for the KL-regularized CB problem are
discussed, which are vital to the subsequent algorithm designs and analyses. For both the general
preference model and the BT model, the optimal policy class satisfies the following proposition.

Proposition 1 (Optimal Policy Class) For any reward function R∗ and any preference model P ∗,
the corresponding optimal policy π∗

BT and the corresponding NE policy π∗
GP satisfy that

π∗
BT, π

∗
GP ∈ ΠF := {πf : πf (a|x) ∝ π0(a|x) exp(ηf(x, a)),∀f ∈ F}, (1)

where F := {f : f(x, a) ∈ [0, 1],∀(x, a) ∈ X×A} denotes all the functions mapping context-action
pairs to values in [0, 1].

A detailed proof and discussion of Proposition 1, including the two special cases (general preference
model and BT model), can be found in Appendix B. Proposition 1 indicates that the learning agent
only needs to consider the policies in the optimal policy class ΠF . In addition, the following important
lemma characterizing the optimal policy class can be established.

Lemma 1 For any πf ∈ ΠF , it holds that

πf (a|x)
π0(a|x)

∈ [exp(−η), exp(η)], ∀(x, a) ∈ X ×A.

Two major implications arise from Lemma 1. First, any policy in the optimal policy class should
have the same support as the reference policy, and thus be stochastic. Second, the candidate optimal
policies and the reference policy have a bounded ratio between them. These two claims do not hold
in canonical settings of RL or bandits (i.e., without KL-regularization): the optimal policy class is
typically considered to only contain deterministic policies, and thus, the ratio between any two of
them can be infinite.
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4 Greedy Sampling for Online Learning

4.1 Algorithm Design

We consider a set of functions P ⊂ (X ×A×A → R) (and set of functions R ⊂ (X ×A → R)
under the BT model) which provides a set of candidates to approximate P ∗ (and R∗ for the BT
model). The function P in P satisfies P (x, a1, a2) + P (x, a2, a1) = 1, and we formally present the
greedy sampling algorithm for online RLHF in Algorithm 1. In each iteration (Step 4), action a1t
is drawn from the learned greedy sampling policy π̂1

t and a2t from the reference policy π0. After
observing the preference label yi, a standard maximum likelihood estimation (MLE) is performed on
the currently accessible data (Step 6) in the function class P (and R under the BT model)

In Step 7, the algorithm directly updates π̂1
t+1 as the optimal policy with respect to the empirical

estimates from MLE. This policy is referred to as greedy sampling because it uses the empirical
estimate “as is”. This is a major departure from existing online theoretically-sound RLHF designs, all
of which use optimism either by adding a bonus term to the empirical estimates when designing π̂1

t
(Zhao et al., 2025a; Jin et al., 2020) or by sampling a2t from a carefully-constructed enhancer policy
π̂2
t which maximizes the uncertainty relative to the π̂1

t (Ye et al., 2024b; Xiong et al., 2023).

Algorithm 1 Online RLHF with Greedy Sampling
1: Input: parameter η, reference policy π0, GP: preference model class P , BT: reward function classR
2: Initialize π̂1

t ← π0

3: for t = 1, . . . , T do
4: Sample context xi ∼ d0 and two actions a1

t ∼ π̂1
t (·|xi), a

2
t ∼ π0(·|xi)

5: Observe preference label yi ∈ {0, 1}
6: Perform the maximum likelihood estimation with {(xi, a

1
i , a

2
i , yi)}ti=1:

GP : P̂t ← arg max
P∈P

∑
i∈[t]

yi logP (xi, a
1
i , a

2
i ) + (1− yi) logP (xi, a

2
i , a

1
i );

BT : R̂t ← arg max
R∈R

∑
i∈[t]

yi log σ(R(x, a1
i )−R(x, a2

i )) + (1− yi) log σ(R(x, a2
i )−R(x, a1

i ))

7: Obtain π̂1
t+1 ←

{
GP : the NE policy associated with P̂t

BT : the optimal policy associated with R̂t

8: end for

4.2 Theoretical Analysis

The theoretical performance guarantee of greedy sampling in the online setting for RLHF is estab-
lished in this section. Specifically, we derive novel regret bounds for both the general preference
model and the BT model. The standard realizability assumption is first introduced, which indicates
that the true preference model P ∗ is in the considered function class P .

Assumption 1 It is assumed that P is finite, i.e., NP := |P| < ∞, and realizable, i.e., P ∗ ∈ P .

For clarity of presentation, we assume that P has finite cardinality; this assumption can be relaxed to
an infinite function class using standard covering number arguments, as in Zhao et al. (2024).

Furthermore, we introduce the following concept of the Eluder dimension, which serves as a com-
plexity measure of the considered function class.

Definition 3 (Eluder Dimension, General Preference Model) Under the general preference
model, for any Dt−1 = {(xi, a

1
i , a

2
i )}

t−1
i=1 , we define the uncertainty of (x, a1, a2) with respect

to P as

UGP(λ, x, a
1, a2;P,Dt−1) = sup

P1,P2∈P

|P1(x, a
1, a2)− P2(x, a

1, a2)|√
λ+

∑
i∈[t−1](P1(x, a1i , a

2
i )− P2(x, a1i , a

2
i ))

2
,

and the corresponding Eluder dimension as

dGP(P, λ, T ) := sup
x1:T ,a1

1:T ,a2
1:T

∑
t∈[T ]

min
{
1, [UGP(λ, x, a

1
t , a

2
t ;P,Dt−1)]

2
}
.
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Especially, the uncertainty UGP measures how different the newly sampled data (x, a1, a2) is from
the history data Dt, and is widely adopted in the RL literature with general function approximation
(Zhang, 2023; Ye et al., 2024a). The Eluder dimension captures the cumulative effect of out-of-sample
data over T rounds (Zhao et al., 2025a; Russo and Van Roy, 2013; Zhang, 2023).

Theorem 1 (Online, General Preference Model) Under Assumption 1, for any δ > 0, with proba-
bility at least 1− δ, the regret of Algorithm 1 for the general preference model satisfies

RegretGP(T ) = O (exp(η)dGP(P, λ, T ) log(NPT/δ)) .

To the best of our knowledge, Theorem 1 is the first analysis of RLHF under the general preference
model that can achieve an O(log(T )) regret bound. Ye et al. (2024b) has discussed the sample
complexity for the general preference model in online RLHF, whose result implies an O(

√
T ) regret

bound that is significantly improved by the above result. More remarkably, Theorem 1 is achieved by
using only greedy sampling, without the aid of optimism needed in Ye et al. (2024b).

Proof sketch: To ease the presentation, the expectation x ∼ d0 is omitted. To establish the regret
bound, we first analyze the regret that occurs in each step: JGP(π

1,∗, π2,∗) − minπ∈Π JGP(π̂
1
t , π).

Since a direct analysis of this per-step regret is difficult, our first novel idea is to bound it by
JGP(π̃

1
t , π̃

2
t ) − JGP(π̂

1
t , π̃

2
t ) where π̃2

t is the best response of π̂1
t and π̃1

t is the best response of π̃2
t ,

both under the ground-truth preference model P ∗. This conversion is important as it aligns the
min-player’s policy to be the same (i,e., π̃2

t ) in both terms. The second main novelty is to leverage a
decomposition detailed in Lemma 2 that delicately makes use of the power of KL-regularization to
obtain the following bound, where π̂2

t := π̂1
t and πf

t is an auxiliary policy in the optimal policy class:

JGP(π̃
1
t , π̃

2
t )− JGP(π̂

1
t , π̃

2
t ) ≤ ηEa∼πf

t

[(
P̂t−1(x, a, π̂

2
t )− P ∗(x, a, π̃2

t )
)2]

≤ 2ηEa∼πf
t

[(
P ∗(x, a, π̂2

t )− P̂t−1(x, a, π̂
2
t )
)2]

+ 2ηEa∼πf
t

[(
P ∗(x, a, π̃2

t )− P ∗(x, a, π̂2
t )
)2]

.

Both terms on the left-hand side can be further bounded as O(Ea1∼π0,a2∼π0

[(
bt−1(x, a

1, a2)
)2]

)

(ignoring the η dependency) with a confidence interval denoted as bt−1(x, a
1, a2) via a concentration

result between by P ∗ and P̂t−1 (c.f. Lemma 7), where the property stated in Lemma 1 about the
optimal policy class is also leveraged to convert all intermediate policies to π0. Aggregating the
single-step regrets leads to the regret bound RegretGP(T ) = O(dGP(P, λ, T ) log(NPT/δ)). The
complete proof can be found in Appendix D. ■

Next, the analysis is extended to the Bradley-Terry model. Similarly, the corresponding realizability
assumption and the Eluder dimension are introduced.

Assumption 2 It is assumed that R is finite, i.e., NR := |R| < ∞, and realizable, i.e., R∗ ∈ R.

Definition 4 (Eluder Dimension, Bradley-Terry Model) Under the Bradley-Terry model, for any
sequence Dt−1 = {(xi, a

1
i , a

2
i )}

t−1
i=1 , we define the uncertainty of (x, a1, a2) with respect to R as:

UBT(λ, x, a
1, a2;R,Dt−1)

= sup
R1,R2∈R

|R1(x, a
1)−R1(x, a

2)−R2(x, a
1) +R2(x, a

2)|√
λ+

∑t
i=1(R1(x, a1i )−R1(x, a2i )−R2(x, a1i ) +R2(x, a2i ))

2

,

and the corresponding Eluder dimension as

dBT(R, λ, T ) := sup
x1:T ,a1

1:t,a
2
1:T

∑
t∈[T ]

min{1, [UBT(λ, x, a
1
t , a

2
t ;R,Dt−1)]

2}.

Theorem 2 (Online, Bradley-Terry Model) Under Assumption 2, for any δ > 0, with probability
at least 1− δ, the regret of Algorithm 1 for the Bradley-Terry model satisfies:

RegretBT(T ) = O(exp(η)dBT(R, λ, T ) log(NRT/δ)).
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Theorem 2 establishes a logarithmic regret bound for greedy sampling in the Bradley-Terry model,
which shares the same order as the regret achieved by using optimism in Zhao et al. (2025a). The
proof of Theorem 2 largely follows that of Theorem 1 and can be found in Appendix D.2. Finally, we
remark that both theorems focus on the scaling behavior with respect to T . In both the general model
and BT model, greedy sampling achieves logarithmic regret while circumventing the need to solve
the costly optimization problem that is required in optimism/pessimism-based designs, at the cost of
incurring an additional multiplicative factor of exp(η) in the bounds from Theorems 1 and 2. A more
refined analysis of other constants (such as the dependency on η) and comparison with the previous
bounds can be found in the detailed proof in Appendix D.2 as well as the discussion in Appendix A.2.

5 Greedy Sampling for Offline Learning

5.1 Algorithm Design

Algorithm 2 Offline RLHF with Greedy Sampling

1: Input: parameter η, reference policy π0, pre-collected data D0 = {(xi, a
1
i , a

2
i , yi)}mi=1, GP: preference

model class P , BT: reward function classR
2: Perform the maximum likelihood estimation with D0:

GP : P̂ ← arg max
P∈P

∑
i∈[m]

yi logP (xi, a
1
i , a

2
i ) + (1− yi) logP (xi, a

2
i , a

1
i );

BT : R̂← arg max
R∈R

∑
i∈[m]

yi log σ(R(x, a1
i )−R(x, a2

i )) + (1− yi) log σ(R(x, a2
i )−R(x, a1

i ))

3: Obtain π̂ ←

{
GP : the NE policy associated with P̂

BT : the optimal policy associated with R̂

The proposed design for the offline setting with both the general preference model and the BT model
is described in Algorithm 2. Here, MLE is performed with the pre-collected offline dataset D0 (Step
2) and uses the empirical estimates to calculate the output policy π̂ (Step 3), i.e., as a greedy sampling
policy.

5.2 Theoretical Analysis

Although Algorithm 2 relies solely on greedy sampling using the empirical estimates, the theoretical
results in this section guarantee its efficiency. We first introduce the concept of data coverage.

Definition 5 (Data Coverage) Given an offline dataset D, let µ1(a|x), µ2(a|x) be the empirical
distributions of the first action a1 and second action a2 of D, respectively. The coverage coefficient
of D to the reference policy π1, π2 is defined as

C(D, (π1, π2)) = max
a1,a2,x

π1(a1|x)π2(a2|x)
µ1(a1|x)µ2(a2|x)

.

The coverage coefficient (Zhao et al., 2024; Song et al., 2024) measures how well the offline dataset
D covers the policy pair (π1, π2), as this pair in C(D, (π1, π2)) represents the choice of (a1, a2) in
the dataset.

Theorem 3 (Offline, General Preference Model) Suppose that Assumption 1 hold. With probabil-
ity at least 1− δ and for m ≥ 8η(exp(2η) + 4η2 exp(8η))C(D0, (π0, π0)) log(NP/δ)/ϵ, the output
policy of Algorithm 2 is ϵ-optimal.

Theorem 4 (Offline, Bradley-Terry Model) Suppose that Assumption 2 hold. With probability
at least 1 − δ and for m ≥ 6η exp(2η + 1)C(D0, (π0, π0)) log(NR/δ)/ϵ, the output policy of
Algorithm 2 is ϵ-optimal.

We note that both Theorems 3 and 4 guarantee sample complexity O(1/ϵ). To our best knowledge,
Theorem 3 is the first result in offline RLHF with the general preference model that achieves sample
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complexity of O(1/ϵ). For the BT model, Zhao et al. (2025b) also achieves the order of O(1/ϵ)
with pessimism, and our result establishes the same order but only using greedy sampling with
respect to the empirical estimates. This is an important advantage, as a greedy policy needs fewer
computational resources compared to using pessimism in offline RLHF, which requires solving
optimization problems at every step that are often computationally demanding (Zhao et al., 2025b;
Ye et al., 2024b; Zhu et al., 2023).

Similarly to the online case, we present a proof sketch of Theorem 3 in the following, and the proof
of Theorem 4 follows similarly. We defer the complete proofs to Appendix C.

Proof sketch: Similar to the proof of Theorem 1, we can bound the suboptimal gap as

JGP(π
1,∗, π2,∗)− JGP(π̂

1, π̃2) ≤ JGP(π̃
1, π̃2)− JGP(π̂

1, π̃2)

≤2ηEπf′

[(
P ∗(x, a, π̃2)− P̂ (x, a, π̃2)

)2]
+ 2ηEπf′

[(
P̂ (x, a, π̃2)− P̂ (x, a, π̂2)

)2]
.

With this decomposition, we only need to bound the difference of two policies π̂2 and π̃2. The
second novel idea is that these two policies can be connected by P ∗ and the MLE result P̂ . By this
observation, we can bound the regret as

JGP(π
1,∗, π2,∗)− JGP(π̂

1, π̃2) = O
(
Ex∼d0,a1∼µ1,a2∼µ2 [(P̂ (x, a1, a2)− P ∗(x, a1, a2))2]

)
,

where µ1 and µ2 are the corresponding offline data distributions. The remaining analysis is relatively
straightforward, focusing on bounding the deviation of the MLE estimate P̂ from the true parameter
P ∗. This is resolved in Lemma 4, which then completes the proof. ■

(a) Step regret, GP (b) Cumulative regret, GP

Figure 1: The comparison between greedy sampling and optimism under the general preference model.

(a) Step regret, BT (b) Cumulative regret, BT

Figure 2: The comparison between greedy sampling and optimism under the Bradley-Terry model.
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6 Experiment

Experiments are conducted to corroborate the theoretical findings. We primarily focus on the more
challenging online setting, which is also popular in practical LLM development (i.e., using iterative
training as in Xiong et al. (2023); Guo et al. (2024); Xiong et al. (2024)). For both the general
preference model and the BT model, we consider the linear setting with randomly sampled context
vectors and 6 fixed actions. In particular, the general preference model is considered to be a linear one
with dimension k × k × k while the BT model with dimension k × k, where k is set to 5. Detailed
experimental setups and implementation details are deferred to Appendix E.

6.1 Baselines

We particularly compare with previous optimism-based designs in Xiong et al. (2023); Ye et al.
(2024b); Zhao et al. (2025a). For the general preference model, the original method proposed in
Ye et al. (2024b) (i.e., computing an enhancer policy π̂2

t based on uncertainty) is computationally
heavy and difficult to implement. We thus adopt a tournament-style procedure that was used in Ye
et al. (2024b). In particular, a1 is still sampled from the greedy policy π̂t

1 as in Algorithm 1, and
several candidate responses are sampled from π̂t

1 with the best of them adopted as a2, which ensures
a certain level of optimism. Similar rejection-based sampling as in Dong et al. (2023) is also adopted.
To simulate different degrees of optimism, we use 1 and 3 as the number of responses selected in the
tournament.

In the BT model with linear rewards, as considered in Xiong et al. (2023); Zhao et al. (2025a),
closed-form optimism is adopted. In particular, at each step t, the optimistic estimate R̂t(x, a) +
β||ϕ(x, a)− Ex∼d0

[ϕ(x, π0)]||Σ−1
t

is leveraged to construct π̂1
t for sampling the first answer while

the second answer is obtained from π0 as in Algorithm 1, where ϕ(x, a) is the linear feature of
the context-action pair and Σt is the regularized Gram matrix from the collected data. To consider
different levels of optimism, β = 0.3 and 0.5 are used. It is noted that when β equals zero, the bonus
terms vanish, which returns to greedy sampling. In both settings, the regularization coefficient η is
set to 1.

6.2 Results

The experimental results are plotted in Figure 1 and Figure 2. We can see that both the greedy
sampling and the use of optimism (tournament number equals 1 and 3 and the bonus coefficient
β = 0.3 and 0.5) have very similar convergence rate (especially w.r.t. the scaling with T ) for the
training process for both the general preference model and the BT model, which corroborates the
main theoretical results in Section 4, i.e., greedy sampling is provably efficient. Taking a deeper
look, we can see that the cumulative regret of greedy sampling is slightly higher than that of using
optimism as iteration increases. This is aligned with our theoretical result that the greedy sampling
algorithm has a slightly worse constant (see the discussion in Appendix A.2).

7 Related Works

Theoretical studies of bandits and RL. Over the past few years, a fairly comprehensive picture of
canonical bandits and RL has emerged (Lattimore and Szepesvári, 2020; Agarwal et al., 2019). To
obtain sublinear regrets in the online setting, one of the most widely adopted approaches is to use
optimistic estimates, i.e., optimism in the face of uncertainty (Auer et al., 2002; Abbasi-Yadkori et al.,
2011; Azar et al., 2017; Jin et al., 2018, 2020). On the other hand, in the offline setting, the principle
of “pessimism” (i.e., using conservative estimates to construct policies) has become a dominant
approach (Rashidinejad et al., 2021; Xie et al., 2021a,b; Jin et al., 2021; Yin and Wang, 2021; Xiong
et al., 2022), which demonstrates its superiority via only requiring the single-policy coverage (i.e.,
offline data covering the optimal policy). Despite their statistical efficiency, one shortcoming is the
required construction of confidence bounds or optimization within a confidence set, which is typically
computationally infeasible, except in simple settings such as tabular and linear ones. Along this line
of investigation, the theoretical studies on policy gradient methods (especially on proximal policy
optimization (PPO) (Schulman et al., 2017)) are also relevant in terms of the analytical tools, such as
Cai et al. (2020); Zhong and Zhang (2023); Sherman et al. (2023). However, these works still focus
on learning the canonical RL target (i.e., without KL regularization) using the reward feedback.

9



RLHF with the BT model. The Bradley-Terry (BT) model is the most widely adopted preference
model in RLHF and has been the basis for many empirical successes, either using logistic loss for
reward model training (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022; Bai et al.,
2022) or connecting with the KL-regularized objective for direct policy optimization (Rafailov et al.,
2023; Xiong et al., 2024; Rafailov et al., 2024). The majority of theoretical studies on RLHF are
also focused on the BT model, with some early studies investigating the canonical target of reward-
maximization (i.e., without KL regularization) (Pacchiano et al., 2021; Wang et al., 2023; Zhu et al.,
2023; Zhan et al., 2023). Under the KL-regularized contextual bandits (CB) formulation (which
aligns more closely with practical implementations), Xiong et al. (2023) derives the first provably
efficient algorithm of RLHF, which is then followed by a line of works Xie et al. (2024); Zhong
et al. (2024); Cen et al. (2024). Recently, based on the techniques proposed in Zhao et al. (2024), it
is revealed that due to the KL-regularization, sharper performance guarantees can be obtained for
both the online (Zhao et al., 2025a) and offline settings (Zhao et al., 2025b), as detailed in Section 1.
However, these results are still based on designs that utilize optimistic or pessimistic estimates.

RLHF with the general preference model. While the BT model has shown strong empirical success,
recent work increasingly explores more flexible and adaptable preference models that avoid implicit
rewards. In particular, Azar et al. (2024) (IPO) and Munos et al. (2023) (Nash-MD) popularize the
approach of leveraging the general preference model, i.e., directly model preferences among answer
pairs without introducing rewards. The corresponding theoretical analysis dates back to dueling
bandits (Yue and Joachims, 2009; Dudík et al., 2015), which is further extended by Wang et al. (2023)
on the non-KL-regularized target. The most relevant work to our paper is Ye et al. (2024b), which
studies the KL-regularized target under both the online and offline settings using the principles of
optimism and pessimism. This work further improves the performance bounds in Ye et al. (2024b)
and demonstrates the efficiency of directly using greedy sampling. Recent works (Zhang et al., 2024,
2025) also study the general preference model while focusing more on the performance guarantee for
the planning problem instead of the learning one, as in Ye et al. (2024b) and this work.

8 Conclusion

This work investigated reinforcement learning from human feedback (RLHF) under the KL-
regularized contextual bandits framework. Under both the general preference model and the Bradley-
Terry (BT) model, it was demonstrated that the seemingly simple greedy sampling with respect to
empirical estimates is provably efficient. In particular, it achieves regrets of O(log(T )) in the online
setting and sample complexity of O(ε−1) with the single-policy coverage in the offline setting. These
results are reported for the first time under the general preference model, and also match previous
performance bounds under the BT model while eliminating the need for constructing confidence
bounds (thus resulting in much lower computational overhead). The key technical insight is that
KL regularization confines every candidate optimal policy within a bounded likelihood-ratio regime
around the reference policy. Simulation results further corroborated the effectiveness of greedy
sampling across both preference models.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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• The instructions should contain the exact command and environment needed to run to
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work is theoretically focused, and does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


A Discussions

A.1 Broad Impacts

This work focuses on the theoretical study of reinforcement learning from human feedback (RLHF)
and demonstrates that it is provably efficient to use greedy sampling in both the general preference
model and the Bradley-Terry (BT) model, under both the online and offline settings. While acknowl-
edging the need for responsible usage of the proposed method, we do not foresee major negative
societal impacts due to the theoretical nature of this work.

A.2 Limitations and Future Directions

In the following, some directions worth further investigation are listed.

• From the theoretical perspective, it would be interesting to further tighten the obtained
performance bounds of greedy sampling. In particular, as illustrated in the later proof, the
bounds contain multiplicative constants of exp(η), which may be worth further studies on
its necessity.

• On the empirical side, as mentioned in the main paper, the theoretical designs based on
optimism or pessimism are often difficult to implement, as the bonus term or the optimization
in the confidence set can be computationally demanding. With the theoretical guarantees
and some empirical evidence on the effectiveness of greedy sampling in this work, more
empirical, large-scale experiments would be helpful to compare greedy sampling with other
methods further.

• This work focuses on the single-step setting, i.e., a contextual bandit problem, as it is the
most widely adopted RLHF scenario. Still, with a growing interest in performing post-
training in multi-turn scenarios (Xiong et al., 2024), it would be a promising direction to
extend the theoretical results in this work to multi-step RL.

A.3 Comparison to Related Works

Tables 1 and 2 compare our results with prior works, emphasizing the dependence on the horizon T
(for regret) and the sub-optimality gap ε (for sample complexity). It can be observed that under the
general performance model, this work substantially improves the previous results established in Ye
et al. (2024b). Under the BT model, this work matches the previous performance bounds in Zhao
et al. (2025a,b) while not requiring optimism or pessimism. It is noted that in the online setting, the
conversion from regrets to sample complexities is performed via Lemma 14.

Table 1: Comparisons in the online setting under the general preference model and the BT model.

Setting Algorithm Regret Sample Complexity Optimism

GP Ye et al. (2024b) − Õ
(
1/ϵ2

)
✓

Greedy Sampling (Theorem 1) Õ(log(T )) Õ
(
1/ϵ

)
×

BT
Xiong et al. (2023) − Õ

(
1/ϵ2

)
✓

Zhao et al. (2025a) Õ(log(T )) Õ
(
1/ϵ

)
✓

Greedy Sampling (Theorem 2) Õ(log(T )) Õ
(
1/ϵ

)
×

B Optimal Policy Class and Value Decomposition

The optimal policy under the BT model is well-known to be a Gibbs distribution with respect to the
reward function, as stated in the following proposition, whose proof can be found in Zhang (2023,
Proposition 7.16) and Rafailov et al. (2023).

Proposition 2 (Optimal Policy, BT Model) For any reward function R∗, the corresponding optimal
policy π∗

BT satisfies that π∗
BT(a|x) ∝ π0(x|a) exp(ηR∗(x, a)).
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Table 2: Comparisons in the offline setting under the general preference model and the BT model.

Setting Algorithm Sample Complexity Pessimism

GP Ye et al. (2024b) Õ
(
1/ϵ2

)
✓

Greedy Sampling (Theorem 3) Õ
(
1/ϵ

)
×

BT Xiong et al. (2023) Õ
(
1/ϵ2

)
✓

Zhao et al. (2025b) Õ
(
1/ϵ

)
✓

Greedy Sampling (Theorem 4) Õ
(
1/ϵ

)
×

For the general preference model, the following proposition can be established, demonstrating that
the equilibrium policy still follows a similar structure.

Proposition 3 (Equilibrium Policy, General Preference Model) For any preference model P ∗,
the corresponding NE policy π∗

GP satisfies that π∗
GP(a|x) ∝ π0(a|x) exp(ηP ∗(x, a, π∗

GP)).

Proof: Recall that

(π1,∗, π2,∗) = arg max
π1∈Π

arg min
π2∈Π

Ex∼d0
P ∗(x, π1, π2)− η−1KL(π1, π0|x) + η−1KL(π2, π0|x),

and Lemma 4 in Ye et al. (2024b) shows that π1,∗ is equal to π2,∗ and we denote them as π∗
GP. Thus,

we have

π1,∗ = arg max
π1∈Π

Ex∼d0P
∗(x, π1, π2,∗)− η−1KL(π1, π0|x) + η−1KL(π2,∗, π0|x)

= arg max
π1∈Π

Ex∼d0
P ∗(x, π1, π

2,∗)− η−1KL(π1, π0|x),

and

π2,∗ = arg min
π2∈Π

Ex∼d0P
∗(x, π1,∗, π2)− η−1KL(π1,∗, π0|x) + η−1KL(π2, π0|x)

= arg min
π2∈Π

Ex∼d0
P ∗(x, π1,∗, π2) + η−1KL(π2, π0|x)

= arg max
π2∈Π

Ex∼d0
[−P ∗(x, π1,∗, π2)− η−1KL(π2, π0|x)].

Taking R(x, a) = P ∗(x, a, π2,∗) and −P ∗(x, π1,∗, a) in Proposition 2 leads to the desired result.
■

Proposition 1 can then be established by aggregating the above two propositions together.

To facilitate further discussions, the following notation is introduced: for the function f(x, a) :
X ×A → R, it is denoted that

Zf (x) :=
∑
a∈A

π0(a|x) exp(ηf(x, a))

πf (a|x) ∝ π0(a|x) exp(ηf(x, a))
V (π, f) := Ex∼d0,a∼π[f(x, a)− η−1KL(π(·|x)||π0(·||x))].

Also, the closed-form solution to a KL-regularized objective

max
π∈Π

Ex∼d0,a∼π[f(x, a)−KL(π, π0|x)]

is denoted as π∗(a|x) ∝ π0(a|x) exp(ηf(x, a)). Furthermore, when there is no ambiguity, we will
omit x ∼ d0 in the expectation and use the following simplified notation:

Eπ[f(x, a)] := Ex∼d0,a∼π(·|x)[f(x, a)].
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Lemma 2 (Value Decomposition) For any function f∗(x, a), f(x, a) : X ×A → R, we have

V (πf∗ , f∗)− V (πf , f
∗) ≤ η · Eπf′

[(
f(x, a)− f∗(x, a)

)2]
where f ′(·, ·) = γf(·, ·) + (1− γ)f∗(·, ·) for some γ ∈ [0, 1].

Proof: The following proof largely follows Lemma 3.9 in Zhao et al. (2024), which is included here
for completeness. For any function f∗(x, a), f(x, a) : X ×A → R, with

J(f) := logZf (x)− η
∑
a∈A

πf (a|x) ·∆(x, a)

it can be observed that
V (πf∗ , f∗)− V (πf , f

∗)

= Eπf∗

[
f∗(x, a)− 1

η
log

πf∗(a|x)
π0(a|x)

]
− Eπf

[
f∗(x, a)− 1

η
log

πf (a|x)
π0(a|x)

]
=

1

η
Eπf∗

[
log

π0(a|x) · exp
(
ηf∗(x, a)

)
πf∗(a|x)

]
− 1

η
Eπf

[
log

π0(a|x) · exp
(
ηf∗(x, a)

)
πf (a|x)

]
=

1

η
Ex∼d0

[
logZf∗(x)

]
− 1

η
Ex∼d0

[
logZf (x)

]
− Ex∼d0

[ ∑
a∈A

πf (a|x) ·
(
f∗(x, a)− f(x, a)

)]
=

1

η
Ex∼d0 [J(f

∗)− J(f)]

where the first equality follows from the definition of the KL-divergence.

Furthermore, the first derivative of J(f) with respect to ∆(x, a) := f(x, a) − f∗(x, a) can be
obtained as

∂J(f)

∂∆(x, a)
=

∂

∂∆(x, a)

[
logZf (x)− η

∑
a′∈A

πf (a
′|x) ·∆(x, a′)

]
=

1

Zf (x)
· π0(a|x) exp

(
η · f(x, a)

)
· η − η · πf (a|x)

− η ·∆(x, a) ·
π0(a|x) · exp

(
η · f(x, a)

)
Zf (x)

· η + η ·∆(x, a) ·
[
π0(a|x) · exp

(
η · f(x, a)

)]2
[Zf (x)]2

· η

+ η
∑

a′∈A\{a}

π0(a
′|x) · exp

(
η · f(x, a′)

)
Zf (x)

· η ·∆(x, a′) ·
π0(a|x) · exp

(
η · f(x, a)

)
Zf (x)

= −η2πf (a|x)∆f (x, a) + η2
∑
a′∈A

πf (a
′|x)πf (a|x)∆(x, a′).

Then, via the mean value theorem, there exists an f ′(·, ·) = γf(·, ·) + (1 − γ)f∗(·, ·) for some
γ ∈ [0, 1] such that
1

η
Ex∼d0

[J(f∗)− J(f)]

=
1

η
Ex∼d0

[
η2

∑
a∈A

πf ′(a|x) · γ ·
(
f(x, a)− f∗(x, a)

)2]
− 1

η
Ex∼d0

[
γη2

∑
a1∈A

∑
a2∈A

πf ′(a1|x)πf ′(a2|x)
(
f(x, a1)− f∗(x, a1)

)(
f(x, a2)− f∗(x, a2)

)]
≤ η · Eπf′

[(
f(x, a)− f∗(x, a)

)2]
where the last inequality holds since∑

a1∈A

∑
a2∈A

πf ′(a1|x)πf ′(a2|x)
(
f(x, a1)− f∗(x, a1)

)(
f(x, a2)− f∗(x, a2)

)
=

[
Ea∼πf′ (·|x)[f(x, a)− f∗(x, a)]

]2 ≥ 0.

The proof is then concluded. ■
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C Proofs for Offline Greedy RLHF

While we heavily focus on the online setting in the main paper, we will start with the proofs for the
offline setting before those for the online setting in order to facilitate the presentation of the analyses.

C.1 General Preference Model

We first introduce the following lemmas to bound the error of the maximum likelihood estimates.

Lemma 3 Given the training data D = {(xi, a
1
i , a

2
i , yi)}ni=1, with probability 1− δ and the MLE

estimator P̂ satisfies that
n∑

i=1

(P̂ (xi, a
1
i , a

2
i )− P ∗(xi, a

1
i , a

2
i ))

2 ≤ log
NP

δ
.

Proof: For any fixed function P ∈ P , we first upper bound its logarithmic moment generating
function as

logE exp

( n∑
i=1

log
P (yi|xi, a

1
i , a

2
i )

P ∗(yi|xi, a1i , a
2
i )

)

= logE exp

( n−1∑
i=1

log
P (yi|xi, a

1
i , a

2
i )

P ∗(yi|xi, a1i , a
2
i )

)
+ log 2Eyn|xn,a1

n,a
2
n

√
P (yn|xn, a1n, a

2
n)

P ∗(yn|xn, a1n, a
2
n)

= logE exp

( n−1∑
i=1

log
P (yi|xi, a

1
i , a

2
i )

P ∗(yi|xi, a1i , a
2
i )

)
+ log

(
1−H

(
P (yn|xn, a

1
n, a

2
n)∥P ∗(yn|xn, a

1
n, a

2
n)
)2)

≤ logE exp

( n−1∑
i=1

log
P (yi|xi, a

1
i , a

2
i )

P ∗(yi|xi, a1i , a
2
i )

)
−H

(
P (yn|xn, a

1
n, a

2
n)∥P ∗(yn|xn, a

1
n, a

2
n)
))2

≤ . . . ≤ −
n∑

i=1

H
(
P (yi|xi, a

1
i , a

2
i )∥P ∗(yi|xi, a

1
i , a

2
i )
))2

, (2)

where H(P ||Q) is the Hellinger distance defined by

H(P ||Q)2 :=

∫
Ω

(√
p(z)−

√
q(z)

)2

dµ(z).

We continue to lower-bound the Hellinger distance by
n∑

i=1

(
H(P (yi|xi, a

1
i , a

2
i )∥P ∗(yi|xi, a

1
i , a

2
i )
))2

≥
n∑

i=1

(
TV(P (yi|xi, a

1
i , a

2
i )∥P ∗(yi|xi, a

1
i , a

2
i )
))2

=

n∑
i=1

(P (xi, a
1
i , a

2
i )− P ∗(xi, a

1
i , a

2
i ))

2, (3)

where the inequality uses the fact that for any distribution p, q, H(p, q) ≥ TV(p, q) according to
Theorem B.9 of Zhang (2023).

Then, by invoking Lemma 10, we obtain for any P ∈ P , with probability at least 1− δ,
n∑

i=1

log
P (yi|xi, a

1
i , a

2
i )

P ∗(yi|xi, a1i , a
2
i )

≤ log(NP/δ) + logE exp

( n∑
i=1

log
P (yi|xi, a

1
i , a

2
i )

P ∗(yi|xi, a1i , a
2
i )

)

≤−
n∑

i=1

H
(
P (yi|xi, a

1
i , a

2
i )∥P ∗(yi|xi, a

1
i , a

2
i )
))2

+ log(NP/δ)

≤−
n∑

i=1

(P (xi, a
1
i , a

2
i )− P ∗(xi, a

1
i , a

2
i ))

2 + log(NP/δ),
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where the second inequality uses Eqn. (2), and the last inequality uses Eqn. (3). By taking P as P̂ ,
since P̂ is the MLE, we get

n∑
i=1

(P̂ (xi, a
1
i , a

2
i )− P ∗(xi, a

1
i , a

2
i ))

2 ≤
n∑

i=1

log
P ∗(yi|xi, a

1
i , a

2
i )

P̂ (yi|xi, a1i , a
2
i )

+ log(NP/δ)

≤ log(NP/δ),

which concludes the proof. ■

Lemma 4 Consider two arbitrary policies π1, π2, and a set of data {(xi, a
1
i , a

2
i , yi)}ni=1 generated

i.i.d. from the general preference model P ∗ and policies π1, π2. Suppose that P̂ is the MLE estimate,
with probability at least 1− δ, it holds that

n

2
Ex∼d0,a1∼π1,a2∼π2 [(P̂ (x, a1, a2)− P ∗(x, a1, a2))2] ≤ 2 log

NP

δ
.

Proof: By the multiplicative Chernoff bounds (refer to Lemma 11 and Remark 2), with probability at
least 1− δ, for any P ∈ P , we have

n

2
Ex∼d0,a1∼π1,a2∼π2 [(P (x, a1, a2)− P ∗(x, a1, a2))2]

≤
n∑

i=1

(P (xi, a
1
i , a

2
i )− P ∗(xi, a

1
i , a

2
i ))

2 + log(
NP

δ
).

Taking P = P̂ and using Lemma 3, we can get
n

2
Ex∼d0,a1∼π1,a2∼π2 [(P̂ (x, a1, a2)− P ∗(x, a1, a2))2]

≤
n∑

i=1

(P̂ (xi, a
1
i , a

2
i )− P ∗(xi, a

1
i , a

2
i ))

2 + log(
NP

δ
)

≤ 2 log(
NP

δ
),

which concludes the proof. ■

We are now ready to prove Theorem 3.

Proof: [Proof of Theorem 3] The following notations are first introduced:

(π1,∗, π2,∗) = arg max
π1∈Π

arg min
π2∈Π

Ex∼d0
P ∗(x, π1, π2)− η−1KL(π1, π0|x) + η−1KL(π2, π0|x),

(π̂1, π̂2) = arg max
π1∈Π

arg min
π2∈Π

Ex∼d0
P̂ (x, π1, π2)− η−1KL(π1, π0|x) + η−1KL(π2, π0|x),

π̃2 = arg min
π∈Π

Ex∼d0
P ∗(x, π̂1, π) + η−1KL(π, π0|x) = arg min

π∈Π
JGP(π̂

1, π),

π̃1 = arg max
π∈Π

Ex∼d0P
∗(x, π, π̃2)− η−1KL(π, π0|x) = arg max

π∈Π
JGP(π, π̃

2),

and it can be noticed that the suboptimal gap can be de-composited as

JGP(π
1,∗, π2,∗)− JGP(π̂

1, π̃2)

=[JGP(π
1,∗, π2,∗)− JGP(π

1,∗, π̃2)] + [JGP(π
1,∗, π̃2)− JGP(π̃

1, π̃2)] + [JGP(π̃
1, π̃2)− JGP(π̂

1, π̃2)]

≤JGP(π̃
1, π̃2)− JGP(π̂

1, π̃2),

where the inequality holds as the first two terms are negative due to the above definitions.

Recall that we have

π1,∗(a|x) ∝ π0(a|x) exp(ηP ∗(x, a, π2,∗)), π2,∗(a|x) ∝ π0(a|x) exp(−ηP ∗(x, π1,∗, a)).
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With Lemma 2, we can get

JGP(π̃
1, π̃2)− JGP(π̂

1, π̃2)

=Ex∼d0P
∗(x, π̃1, π̃2)− η−1KL(π̃1, π0|x) + η−1KL(π̃2, π0|x)

− (Ex∼d0
P ∗(x, π̂1, π̃2)− η−1KL(π̂1, π0|x) + η−1KL(π̃2, π0|x))

=Ex∼d0,a∼π̃1P ∗(x, a, π̃2)− η−1KL(π̃1, π0|x)
− (Ex∼d0,a∼π̂1P ∗(x, a, π̃2)− η−1KL(π̂1, π0|x))

≤ηEx∼d0,a∼πf′ [(P
∗(x, a, π̃2)− P̂ (x, a, π̂2))2]

≤2ηEπf′

[(
P ∗(x, a, π̃2)− P̂ (x, a, π̃2)

)2]
+ 2ηEπf′

[(
P̂ (x, a, π̃2)− P̂ (x, a, π̂2)

)2]
.

Then, it can be bounded that

Eπf′

[(
P ∗(x, a, π̃2)− P̂ (x, a, π̃2)

)2]
=Ex∼d0,a1∼πf′

[(
Ea2∼π̃2 [P ∗(x, a1, a2)− P̂ (x, a1, a2)]

)2]
≤Ex∼d0,a1∼πf′ ,a2∼π̃2

[(
P ∗(x, a1, a2)− P̂ (x, a1, a2)

)2]
≤ exp(2η)Ex∼d0,a1∼π0,a2∼π0

[(
P ∗(x, a1, a2)− P̂ (x, a1, a2)

)2]
≤ exp(2η)C(D0, (π0, π0))Ex∼d0,a1∼µ1,a2∼µ2

[(
P ∗(x, a1, a2)− P̂ (x, a1, a2)

)2]
≤4 exp(2η)C(D0, (π0, π0))

n
log(NP/δ)

where the first inequality is putting the square into the expectation, the second inequality is by
Lemma 1, the third inequality is by the assumption of data coverage, and the final inequality is by
Lemma 4.

For the other term 2ηEπf′

[(
P̂ (x, a, π̃2)− P̂ (x, a, π̂2)

)2]
, we bound that by several steps. First, it is

noticed that

π̂2(a|x) ∝ π0(a|x) exp(−ηP̂ (x, π̂1, a)), π̃2(a|x) ∝ π0(a|x) exp(−ηP ∗(x, π̂1, a)),

and we correspondingly define

Z ′(x) =
∑
a

π0(a|x) exp(−ηP̂ (x, π̂1, a)), Z ′′(x) =
∑
a

π0(a|x) exp(−ηP ∗(x, π̂1, a)).

It can be observed that

|Z ′(x)− Z ′′(x)| = |
∑
a

π0(a|x)[exp(−ηP̂ (x, π̂1, a))− exp(−ηP ∗(x, π̂1, a))]|

≤ η|
∑
a

π0(a|x)(P̂ (x, π̂1, a)− P ∗(x, π̂1, a))|

= η|Ea1∼π̂1,a2∼π0
[P̂ (x, a1, a2)− P ∗(x, a1, a2)]| (4)

where the inequality is from the mean value theorem and the fact that the bound of the derivative of
exp (−ηx) with respect to x is bounded in [−η,−η exp(−η)] for x ∈ [0, 1].

With the following relationship

1 =
∑
a

π0(a|x) ≥ Z ′(x), Z ′′(x) ≥
∑
a

π0(a|x) · exp(−η) = exp(−η), (5)
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it can be established that

|P̂ (x, a′, π̃2)− P̂ (x, a′, π̂2)|

= |
∑
a

(π̃2(a|x)− π̂2(a|x))P̂ (x, a′, a)|

≤
∑
a

|π̃2(a|x)− π̂2(a|x)|

=
∑
a

|π0(a|x) exp(−ηP ∗(x, π̂1, a))

Z ′′(x)
− π0(a|x) exp(−ηP̂ (x, π̂1, a))

Z ′(x)
|

≤ exp(η)
∑
a

|π0(a|x) exp(−ηP ∗(x, π̂1, a))− Z ′′(x)π0(a|x) exp(−ηP̂ (x, π̂1, a))

Z ′(x)
|

≤ exp(η)
∑
a

|π0(a|x)(exp(−ηP ∗(x, π̂1, a))− exp(−ηP̂ (x, π̂1, a))|

+ exp(η)
∑
a

|Z
′(x)− Z ′′(x)

Z ′(x)
π0(a|x) exp(−ηP̂ (x, π̂1, a))|

≤ η exp(η)
∑
a

π0(a|x)|(P ∗(x, π̂1, a)− P̂ (x, π̂1, a))|

+ exp(η)
∑
a

π0(a|x)
η|Ea1∼π̂1,a2∼π0

[P̂ (x, a1, a2)− P ∗(x, a1, a2)]|
exp(−η)

≤ η exp(η)Ea∼π0 |Ea′∼π̂1 [P̂ (x, a′, a)− P ∗(x, a′, a)]|
+ η exp(2η)|Ea1∼π̂1,a2∼π0

[P̂ (x, a1, a2)− P ∗(x, a1, a2)]|
≤ η exp(3η)Ea∼π0

|Ea′∼π0
[P̂ (x, a′, a)− P ∗(x, a′, a)]|

+ η exp(4η)|Ea1∼π0,a2∼π0
[P̂ (x, a1, a2)− P ∗(x, a1, a2)]|

≤ 2η exp(4η)Ea1∼π0
Ea2∼π0

[|P̂ (x, a1, a2)− P ∗(x, a1, a2)|],

where the second inequality is from Equation (5), the fourth inequality is from Equations (5) and (4),
and the last two inequalities are by Lemma 1.

Thus, we have

(P̂ (x, a′, π̃2)− P̂ (x, a, π̂2))2

≤4η2 exp(8η)Ea1∼π0
Ea2∼π0

[(P̂ (x, a1, a2)− P ∗(x, a1, a2))2] (6)

≤4η2 exp(8η)C(D0, (π0, π0))Ea1∼µ1Ea2∼µ2 [(P̂ (x, a1, a2)− P ∗(x, a1, a2))2].

Combining the above results, we get

JGP(π
1,∗, π2,∗)− JGP(π̂

1, π̃2)

≤2ηC(D0, (π0, π0))(exp(2η) + 4η2 exp(8η))Ex∼d0,a1∼µ1,a2∼µ2 [(P̂ (x, a1, a2)− P ∗(x, a1, a2))2]

≤8ηC(D0, (π0, π0))(exp(2η) + 4η2 exp(8η))

m
log

(
NP

δ

)
,

and when

m ≥ 8ηC(D0, (π0, π0))(exp(2η) + 4η2 exp(8η))

ϵ
log

(
NP

δ

)
,

the suboptimal gap is less than ϵ. ■

C.2 The Bradley-Terry Model

Similarly, under the BT model, we start with bounding the estimation error of the MLE.
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Lemma 5 Given the training data D = {(xi, a
1
i , a

2
i , yi)}ni=1, with probability 1− δ and the MLE

estimator R̂ satisfies the following estimation:
n∑

i=1

[
R̂(xi, a

1
i )− R̂(xi, a

2
i )−

(
R∗(xi, a

1
i )−R∗(xi, a

2
i )
)]2

≤ 2e log

(
NR

δ

)
.

Proof: Substituting P (xi, a
1
i , a

2
i ) with σ(R(xi, a

1
i )−R(xi, a

2
i )) in Lemma 3, we immediately get

n∑
i=1

[
σ
(
R̂(xi, a

1
i )− R̂(xi, a

2
i )
)
− σ

(
R∗(xi, a

1
i )−R∗(xi, a

2
i )
)]2

≤ log

(
NR

δ

)
.

With the fact that σ′(r) = σ(r)(1− σ(r)) ≥ 1
2e (as the reward is assumed to be bounded in [0, 1]), it

can be established that
n∑

i=1

[
R̂(xi, a

1
i )− R̂(xi, a

2
i )−

(
R∗(xi, a

1
i )−R∗(xi, a

2
i )
)]2

≤2e

n∑
i=1

[
σ(R̂(xi, a

1
i )− R̂(xi, a

2
i ))− σ

(
R∗(xi, a

1
i )−R∗(xi, a

2
i )
)]2

≤2e log

(
NR

δ

)
,

which concludes the proof. ■

Lemma 6 Consider arbitrary policies π1, π2, and a set of context-action pairs {(xi, a
1
i , a

2
i , yi)}ni=1

generated i.i.d. from the BT model where a1i ∼ π1, a2i ∼ π2. Suppose that R̂ is the MLE estimator.
We have with probability at least 1− δ,

Ex∼d0,a1∼π1,a2∼π2

[(
R̂(x, a1)− R̂(x, a2)− (R∗(x, a1)−R∗(x, a2))

)2] ≤ 6e

n
log

(
NR

δ

)
.

Proof: Similar to the proof of Lemma 4, with probability at least 1− δ, for any R ∈ R, we have
n

2
Ex∼d0,a1∼π1,a2∼π2

[(
R(x, a1)−R(x, a2)− (R∗(x, a1)−R∗(x, a2))

)2]
≤

n∑
i=1

(
R(xi, a

1
i )−R(xi, a

2
i )− (R∗(xi, a

1
i )−R∗(xi, a

2
i ))

)2
+ log

(
NR

δ

)
.

By taking R = R̂ and using Lemma 5, we can get
n

2
Ex∼d0,a1∼π1,a2∼π2

[(
R̂(x, a1)− R̂(x, a2)− (R∗(x, a1)−R∗(x, a2))

)2]
≤

n∑
i=1

(
R̂(xi, a

1
i )− R̂(xi, a

2
i )− (R∗(xi, a

1
i )−R∗(xi, a

2
i ))

)2
+ log

(
NR

δ

)
≤ (2e+ 1) log

(
NR

δ

)
≤ 3e log

(
NR

δ

)
,

which proves the lemma. ■

Proof: [Proof of Theorem 4] First, the output policy π̂ satisfies

π̂ = arg max
π∈Π

Eπ[R̂(x, a)−KL(π, π0|x)]

= arg max
π∈Π

Eπ[R̂(x, a)− b(x)−KL(π, π0|x)],
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for any function b(x), which means the policies induced by R̂(x, a) and R̂(x, a)− b(x) are the same.
Thus, with

b(x) := Ea′∼π0(·|x)[R̂(x, a′)−R∗(x, a′)]

and Lemma 2, we have

JBT(π
∗)− JBT(π̂)

≤ ηEπf′ [(R̂(x, a)− b(x)−R∗(x, a))2]

= ηEx∼d0,a1∼πf′ [(R̂(x, a1)−R∗(x, a1)− Ea2∼π0
(R̂(x, a2)−R∗(x, a2)))2]

= ηEx∼d0,a1∼πf′ [(Ea2∼π0
[R̂(x, a1)−R∗(x, a1)− (R̂(x, a2)−R∗(x, a2))])2]

= ηEx∼d0,a1∼πf′ ,a2∼π0
[(R̂(x, a1)−R∗(x, a1)− (R̂(x, a2)−R∗(x, a2)))2]

≤ η exp(2η)Ex∼d0,a1∼π0,a2∼π0
[(R̂(x, a1)−R∗(x, a1)− (R̂(x, a2)−R∗(x, a2)))2]

≤ η exp(2η)C(D0, (π0, π0))Eµ1,µ2 [(R̂(x, a1)−R∗(x, a1)− (R̂(x, a2)−R∗(x, a2)))2]

≤ 6η exp(2η + 1)C(D0, (π0, π0)) log

(
NR

δ

)
1

m
, (7)

where the last three inequalities use Lemma 1, Lemma 6 and Definition 5. Taking

m ≥ 6η exp(2η + 1)C(D0, (π0, π0)) log

(
NR

δ

)
/ϵ,

we have JBT(π
∗)− JBT(π̂) ≤ ϵ. ■

D Proofs for Online RLHF with Greedy Sampling

D.1 General Preference Model

Define bGPt (x, a1, a2) = min{1, βT ;GP · UGP(λ, x, a
1, a2;Pt,Dt)} and

Pt =

{
P ∈ P :

t∑
i=1

(P (x, a1i , a
2
i )− P̂t(x, a

1
i , a

2
i ))

2 + λ ≤ β2
T ;GP

}
,

where β2
T ;GP = 2 log(NPT/δ) and λ ≤ β2

T ;GP/2.

Lemma 7 Under Algorithm 1, we have with probability at least 1− δ for all t ∈ [T ], the uniform
optimism event that Et = {P̂t(x, a

1, a2) + bGPt (x, a1, a2)− P ∗(x, a1, a2) > 0,∀(x, a1, a2) ∈ X ×
A×A} holds true.

Proof: By Lemma 3, we have that, for all t ∈ [T ] with probability at least 1− δ

n∑
i=1

(P̂ (xi, a
1
i , a

2
i )− P ∗(xi, a

1
i , a

2
i ))

2 ≤ log

(
NPT

δ

)
=

1

2
β2
T ;GP. (8)

Hence, we deduce that for any (x, a1, a2) ∈ X ×A×A,

|P̂t(x, a
1, a2)− P ∗(x, a1, a2)| ≤ sup

P1,P2∈Pt

|P1(x, a
1, a2)− P2(x, a

1, a2)|√
λ+

∑t
i=1(P1(x, a1i , a

2
i )− P2(x, a1i , a

2
i ))

2

·

√√√√λ+

t∑
i=1

(P̂t(x, a1i , a
2
i )− P ∗(x, a1i , a

2
i ))

2

≤ UGP(λ, x, a
1, a2;Pt,Dt)

√
λ+

1

2
β2
T ;GP

≤ UGP(λ, x, a
1, a2;Pt,Dt)βT ;GP,
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which concludes the proof. ■

Proof: [Proof of Theorem 1] Similar to the proof in the offline setting, we define
(π̂1

t , π̂
2
t ) = arg max

π1∈Π

arg min
π2∈Π

Ex∼d0
[P̂t−1(x, π

1, π2)− η−1KL(π1, π0|x) + η−1KL(π2, π0|x)],

π̃2
t = arg min

π∈Π
Ex∼d0

P ∗(x, π̂1
t , π) + η−1KL(π, π0|x),

π̃1
t = arg max

π∈Π
Ex∼d0P

∗(x, π, π̃2
t )− η−1KL(π, π0|x).

Conditioning on the event ∪t∈[T ]Et in Lemma 7, we can bound the desired regret as follows. For
each step, as shown in the proof of the offline setting, we have

JGP(π
1,∗, π2,∗)− JGP(π̂

1
t , π̃

2
t ) ≤ ηEπf

t

[(
P̂t−1(x, a, π̂

2
t )− P ∗(x, a, π̃2

t )
)2]

. (9)

By Lemma 7, we can bound Equation (9) as:

Eπf
t

[(
P ∗(x, ·, π̃2

t )− P̂t−1(x, ·, π̂2
t )
)2]

≤Eπf
t

[(
P ∗(x, ·, π̃2

t )− P ∗(x, ·, π̂2
t ) + P ∗(x, ·, π̂2

t )− P̂t−1(x, ·, π̂2
t )
)2]

≤2Eπf
t

[(
P ∗(x, ·, π̃2

t )− P ∗(x, ·, π̂2
t )
)2

+
(
P ∗(x, ·, π̂2

t )− P̂t−1(x, ·, π̂2
t )
)2]

=2Eπf
t

[(
P ∗(x, ·, π̃2

t )− P ∗(x, ·, π̂2
t )
)2]

+ 2Eπf
t

[(
P ∗(x, ·, π̂2

t )− P̂t−1(x, ·, π̂2
t )
)2]

≤2Eπf
t

[(
P ∗(x, ·, π̃2

t )− P ∗(x, ·, π̂2
t )
)2]

+ 2Eπf
t

[(
bGPt−1(x, ·, π̂2

t )
)2]

≤8η2 exp(8η)Ea1∼π0
Ea2∼π0

[(P̂ (x, a1, a2)− P ∗(x, a1, a2))2] + 2Eπf
t

[(
bGPt−1(x, ·, π̂2

t )
)2]

≤(8η2 exp(8η) + 2 exp(2η))Ea1∼π0
Ea2∼π0

[(
bGPt−1(x, a

1, a2)
)2]

)

≤(8η2 exp(9η) + 2 exp(3η))Ea1∼π1
t
Ea2∼π0

[(
bGPt−1(x, a

1, a2)
)2]

),

where the bound of Eπf
t

[(
P ∗(x, ·, π̃2

t )− P ∗(x, ·, π̂2
t )
)2]

follows the technical analysis in the offline
setting (refer to Equation (6)) and the last two inequalities follow Lemma 1.

Thus, we have

RegretGP(T ) =
∑
t∈[T ]

JGP(π
1,∗, π2,∗)− JGP(π̂

1
t , π̃

2
t )

≤ (8η3 exp(9η) + 2η exp(3η))
∑
t∈[T ]

Ex∼d0,a1∼π1
t ,a

2∼π0
[bGPt−1(x, a

1, a2)2]

≤ (8η3 exp(9η) + 2η exp(3η))
∑
t∈[T ]

Ex∼d0,a1∼π1
t ,a

2∼π0
[min{1, UGP(λ, x, a

1, a2;Pt,Dt)}2]β2
T ;GP

≤ 4η exp(3η)(4η2 exp(6η) + 1) log(NPT/δ)dGP(P, λ, T ).

Therefore, we have the final result
RegretGP(T ) = O(log(NPT/δ)dGP(P, λ, T )),

where

dGP(P, λ, T ) := sup
x1:T ,a1

1:T ,a2
1:T

T∑
t=1

min{1, [UGP(λ, xt, a
1
t , a

2
t ;P,Dt−1)]

2}.

■

D.2 The Bradley-Terry Model

Similar to the proof for the general preference model, we define bBTt (x, a1, a2) = min{1, βT ;BT ·
UBT(λ, x, a

1, a2;Rt,Dt)} and

Rt = {R ∈ R :

t∑
i=1

(R̂t(xi, a
1
i )− R̂t(xi, a

2
i )− (R∗(xi, a

1
i )−R∗(xi, a

2
i )))

2 + λ ≤ β2
T ;BT},

where β2
T ;BT = 4e log(NRT/δ) and λ ≤ β2

T ;BT/2.
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Lemma 8 Under Algorithm 1, we have with probability at least 1− δ for all t ∈ [T ], the uniform
optimism event that

Et = {R̂t(x, a
1)− R̂t(x, a

2) + bBTt (x, a1, a2)− (R∗(x, a1)−R∗(x, a2)) > 0,

∀(x, a1, a2) ∈ X ×A×A}
holds true.

Proof: By Lemma 5, for all t ∈ [T ], with probability at least 1− δ,
t∑

i=1

[
R̂(xi, a

1
i )− R̂(xi, a

2
i )−

(
R∗(xi, a

1
i )−R∗(xi, a

2
i )
)]2

≤ 2e log

(
NRT

δ

)
=

1

2
β2
T ;BT.

Hence, we deduce that for any (x, a1, a2) ∈ X ×A×A,

|R̂t(x, a
1)− R̂t(x, a

2)− (R∗(x, a1)−R∗(x, a2))|

≤ sup
R1,R2∈R

|R1(x, a
1)−R1(x, a

2)−R2(x, a
1) +R2(x, a

2)|√
λ+

∑t
i=1(R1(xi, a1i )−R1(xi, a2i )−R2(xi, a1i ) +R2(xi, a2i ))

2

·

√√√√λ+

t∑
i=1

(R̂t(xi, a1i )− R̂t(xi, a2i )− (R∗(xi, a1i )−R∗(xi, a2i )))
2

≤ UBT(λ, x, a
1, a2;Rt,Dt)

√
λ+

1

2
β2
T ;BT

≤ UBT(λ, x, a
1, a2;Rt,Dt)βT ;BT,

which concludes the proof. ■

Proof: [Proof of Theorem 2] Conditioning on the event ∪t∈[T ]E in Lemma 8, we can bound the
desire regret as follows. For single-step regret, from the analysis for the offline setting (Equation (7)),
we have

JBT(π
∗)− JBT(π̂t)

≤ηEx∼d0,a1∼πf′ ,a2∼π0
[(R̂t−1(x, a

1)−R∗(x, a1)− (R̂t−1(x, a
2)−R∗(x, a2)))2]

≤ηEx∼d0,a1∼πf′ ,a2∼π0
[bBTt−1(x, a

1, a2)2]

≤η exp(2η)Ex∼d0,a1∼π1
t ,a

2∼π0
[bBTt−1(x, a

1, a2)2],

where the last inequality is by Lemma 1. Thus

RegretBT(T ) =
∑
t∈[T ]

JBT(π
∗)− JBT(π̂t)

≤ η exp(2η)
∑
t∈[T ]

Ex∼d0,a1∼π1
t ,a

2∼π0
[bBTt−1(x, a

1, a2)2]

≤ η exp(2η)
∑
t∈[T ]

Ex∼d0,a1∼π1
t ,a

2∼π0
[min{1, UBT(λ, x, a

1, a2;Rt,Dt)}2]β2
T ;BT

≤ 4η exp(2η + 1) log(NRT/δ) sup
x1:T ,a1

1:T ,a2
1:T

T∑
t=1

min{1, [UBT(λ, x, a
1, a2;R,Dt−1)]

2}

≤ 4η exp(2η + 1) log(NRT/δ)dBT(R, λ, T ),

which concludes the proof. ■

Remark 1 The above theoretical results indicate that the greedy algorithms suffer from some extra
constant of η (e.g. exp(η)) compared to using optimism. At the same time, as we have discussed in the
main paper, the bonus terms in optimism are usually computationally intensive, whereas the greedy
policy enjoys less computational complexity. Additionally, it is unclear whether these additional
dependencies on η are fundamental – we will explore how to tighten these bounds in future work.
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E Experiment Details

E.1 Implementation Considerations of the General Preference Model

Nash equilibrium oracle approximation via an iteration method. Given a function P ∈ P , the
Nash equilibrium is

(π1,∗
P , π2,∗

P ) = (πP , πP ) = arg max
π1∈Π

min
π2∈Π

JGP(π
1, π2). (10)

However, Equation (10) does not have a closed form, which poses a challenge in the experiment. We
note that it can be transformed to a fixed-point problem by Proposition 3:

πP = f(πP ), f(π) =
π0(a|x) exp(η

∑
a′ π(a′|x)P (x, a, a′))∑

a π0(a|x) exp(η
∑

a′ π(a′|x)P (x, a, a′))
.

In this spirit, we use the iteration method to solve the above fixed-point problem, and the iteration has
been shown to converge to the fixed-point (i.e., the Nash point) in our experiment.

Achieve optimism by enhancer and rejection sampling. One way to achieve optimism is by
choosing π2 as the enhancer that maximizes the uncertainty to π1 (Ye et al., 2024b; Xiong et al.,
2023). Our experiment also adopts this method to simulate the online RLHF with optimism. In
the general case, π2 does not admit a closed form. Thus, we use a tournament-style procedure to
get the best response (and reject all other responses), and take the best responses at π2 (Ye et al.,
2024b; Dong et al., 2023). The number of tournament competitors can be used to control the level of
optimism.

E.2 Experiment Setup

In both the general preference model and the BT model, we limit the scope to the linear case and
assume the action and context are vectors in Rk. In the general preference model, we parameterize
the preference oracle P ∗ ∈ P by a tensor M (with size k × k × k), and in the Bradley-Terry model,
we parameterize the reward function R∗ ∈ R by a matrix W (with size k × k). We give the exact
form below.

General preference model. We parameterize the preference oracle P ∈ P by a tensor M (with
size k × k × k) as

P : X ×A×A → [0, 1], (x, a1, a2) 7→ (a1)T (xM)a2

(a1)T (xM)a2 + (a2)T (xM)a1
∈ [0, 1].

Bradley-Terry model. We parameterize the reward function R ∈ R by a matrix W (with size
k × k) as

R : X ×A → [0, 1], (x, a) 7→ xTWa.

For implementation, we choose k = 5 and first uniformly randomly sample from [0, 1] to construct the
ground-truth preference model parameters M∗ and W ∗. We similarly sample 6 vectors from [0, 1]5

as the action set A. In each iteration, we randomly sample a vector from the uniform distribution
in [0, 1]5 as the context vector, and then we sample action pairs (a1, a2) based on the policies. We
run the trajectory for T iterations and repeat the experiments 5 times, computing the averages and
standard deviations.

E.3 Additional Experiments

To study the influence of the regularization coefficient η, we further conduct experiments evaluating
the performance of the algorithm under different η values. The experiment setting remains the same
as Section E.2. We choose η = 1, 2, 3 in the greedy sampling algorithm under both the general
preference model and the BT model. The results are presented in Figure 3. We can see that under all
η values, the greedy sampling converges as our theorem has suggested.
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(a) Step regret, GP (b) Cumulative regret, GP

Figure 3: The comparison of different regularization coefficients η under the general preference model.

(a) Step regret, BT (b) Cumulative regret, BT

Figure 4: Comparison of different regularization coefficients η under the Bradley-Terry model.

F Auxiliary Lemmas

Lemma 9 (Freedman’s Inequality) Let M,v > 0 be fixed constants. Let {Xi}ni=1 be a stochastic
process, {Gi}i be a sequence of σ-fields, and Xi be Gi-measurable, while almost surely

E[Xi|Gi] = 0, |Xi| ≤ M, and
n∑

i=1

E[X2
i |Gi−1] ≤ v.

Then for any δ > 0, with probability at least 1− δ, it holds that

n∑
i=1

Xi ≤
√
2v log(1/δ) +

2

3
M log(1/δ).

Lemma 10 (Martingale Exponential Inequalities) Consider a sequence of random functions
ξ1(Z1), . . . , ξt(Zt), . . . with respect to filtration {Ft}. We have for any δ ∈ (0, 1) and λ > 0:

P

[
∃n > 0 : −

n∑
i=1

ξi ≥
log(1/δ)

λ
+

1

λ

n∑
i=1

logE
Z

(y)
i

exp(−λξi)

]
≤ δ,

where Zt = (Z
(x)
t , Z

(y)
t ) and Zt = (Z1, . . . , Zt).
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Lemma 11 (Multiplicative Chernoff Bounds) Assume that X ∈ [0, 1] with EX = µ. Then for all
ϵ > 0,

P
(
X̄n ≥ (1 + ϵ)µ

)
≤ exp

[−2nµϵ2

2 + ϵ

]
P
(
X̄n ≤ (1− ϵ)µ

)
≤ exp

[−2nµϵ2

2

]
.

Moreover, for t > 0, we have

P
(
X̄n ≥ µ+

√
2µt

n
+

t

3n

)
≤ exp(−t).

Proof: Refer to the proof of Corollary 2.18 in Zhang (2023).

Remark 2 The multiplicative Chernoff bounds (Lemma 11) can be expressed as follows. With
probability at least 1− δ:

µ ≤ X̄n +

√
2µ ln(1/δ)

n
.

It implies that for any γ ∈ (0, 1):

X̄n ≥ (1− γ)µ− ln(1/δ)

2γn
.

■

Lemma 12 Suppose a, b ≥ 0. If x2 ≤ a+ b · x, then x2 ≤ 2b2 + 2a.

Proof: By solving the root of quadratic polynomial q(x) := x2−b ·x−a, we obtain max{x1, x2} =

(b+
√
b2 + 4a)/2. Hence, we have x ≤ (b+

√
b2 + 4a)/2 provided that q(x) ≤ 0. Then we further

have

x2 ≤ 1

4

(
b+

√
b2 + 4a

)2

≤ 1

4
· 2

(
b2 + b2 + 4a

)
≤ 2b2 + 2a. (11)

■

Lemma 13 Let X be a random variable and 0 ≤ X ≤ M , we have

Var(X) ≤ ME(X).

Proof: From the Bhatia-Davis inequality, we have

Var(X) ≤ (M − E(X))E(X) ≤ ME(X).

■

Lemma 14 (Online-to-batch conversion) If an algorithm has a sublinear regret of c† · log T , then
the algorithm finds an ϵ-optimal policy with at most Θ̃

(
c†/ϵ

)
samples, where Θ̃ omits logarithmic

terms of c†/ϵ. Here c† is a problem-dependent constant.

Proof: We denote the policy sequence as {π1, · · · , πT }. Then, by definition of regret, we know

Regret(T ) = TV ∗
1 (x1)−

T∑
t=1

V πt

1 (x1)

≤ c† log T.
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We consider the uniform policy π̃ := Uniform(π1, · · · , πT ). It follows that

V ∗
1 (x1)− V π̃

1 (x1) = V ∗
1 (x1)−

1

T

T∑
t=1

V πt

1 (x1) ≤ c†
log T

T
.

It suffices to prove that

c†
log T

T
≤ ϵ,

which is equivalent to solving
T ≤ exp(Tϵ/c†).

By using the Lambert W function, we can prove that

T ≥ W (1)c†

ϵ
,

where W (1) ≥ log(1/ϵ)− log log(1/ϵ). ■
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