
Automatic Detection of NoSQL Injection Using
Supervised Learning

Md Rafid Ul Islam∗, Md. Saiful Islam†, Zakaria Ahmed‡, Anindya Iqbal§, and Rifat Shahriyar¶

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology

Dhaka, Bangladesh

Email:∗rfd.009@gmail.com, †saifulislam@cse.buet.ac.bd, ‡zakaria.buet13@gmail.com,
§anindya@cse.buet.ac.bd, ¶rifat@cse.buet.ac.bd,

Abstract—With the advancement in big data, NoSQL
databases are enjoying ever-growing popularity. The increasing
use of this technology in large applications also brings security
concerns to the fore. Historically, SQL injection has been one of
the major security threats over the years. Recent studies reveal
that NoSQL databases also have become vulnerable to injections.
However, NoSQL security is yet to receive the attention it deserves
from the industry or academia. In this work, we develop a tool
for detecting NoSQL injections using supervised learning. To the
best of our knowledge, our developed training dataset on NoSQL
injection is the first of its kind. We manually design important
features and apply various supervised learning algorithms. Our
tool has achieved 0.93 F2-score as established by 10-fold cross-
validation. We also apply our tool to a NoSQL injection gen-
erating tool, NoSQLMap and find that our tool outperforms
Sqreen, the only available NoSQL injection detection tool, by
36.25% in terms of detection rate. The proposed technique is
also shown to be database-agnostic achieving similar performance
with injection on MongoDB and CouchDB databases.

Index Terms—NoSQL, Injection, Database Security, Mon-
goDB, CouchDB, Automatic Detection, Machine Learning, Su-
pervised Learning

I. INTRODUCTION

NoSQL (Not only SQL) is an alternative to traditional SQL.

NoSQL databases give us the ability to work with large sets of

distributed data with greater efficiency. Applications requiring

high performance and scalability can be effectively developed

using NoSQL databases. NoSQL is able to process a very

large amount of data and distribute them across computing

clusters faster than SQL databases [1]. Along with providing

high scalability and high performance, NoSQL is designed

to deal with large volumes of rapidly changing structured or

unstructured data, a flexible data model for big data, object-

oriented programming, and the like. Because of these benefits,

these databases are getting popular for large-scale cloud and

web applications. Google, Facebook, Adobe, eBay, Cisco, etc.

are using NoSQL databases for their web applications1.

SQL injection attack is one of the oldest and most fatal

security threats. Even today, many large organizations are

frequently falling prey to SQL injection into their traditional

SQL databases. Keizer [2] mentions that hackers stole more

than 450,000 login credentials from Yahoo by exploiting an

1https://www.mongodb.com/who-uses-mongodb

SQL injection vulnerability in their servers in 2012. Seals [3]

shows that SQL injection attack was used to steal the personal

details of 156,959 customers from British Telecommunications

company TalkTalk’s servers in 2015. Hacker0 et al. [4] show

that it is possible to steal bitcoin with SQLi. Hence, this is

still a major security threat.

Researchers found that NoSQL databases also face the risk

of being affected by injection attacks [5]. NoSQL injection

vulnerability is reported by Diaspora [6] in its social commu-

nity framework in 2010. Sullivan [7] demonstrates JavaScript

query based code injection attacks for MongoDB. As NoSQL

databases are getting more and more popular, vulnerability

issue is also becoming a major concern. An article published

in 2015 shows that about 40,000 web apps that use MongoDB

databases are vulnerable to injection attacks2. According to

OWASP top 10 security ranking of 2017, injection is the

topmost security threat for applications and NoSQL injections

are among them3 4.

Since NoSQL injection is a relatively new type of threat,

there has not been adequate work addressing this problem.

Existing works mostly discuss the types of attacks that are

applicable to NoSQL. For example, Ron et al. [8] and Hou et

al. [9] show some ways to generate injection queries. These

works only discuss the types and severe effects of NoSQL

injection and present some mitigation techniques that can be

applied in the development phase of a system. Based on the

literature, these injections can be classified into four types -

PHP array injection, NoSQL OR injection, Javascript based

injection, piggybacked queries.

Basic protection against injection would be input sanitiza-

tion. However, it does not save applications from all types of

injections. Since the injection completes the query string by

balancing the start and end of each string in the query, this type

of injection works even if PHP string sanitization is applied

on the query. For example, OR-injection also works after

sanitization since it also balances out the string quotations.

So, to protect applications from the risk of NoSQL injection,

2https://www.securityweek.com/thousands-mongodb-databases-found-
exposed-internet

3https://www.owasp.org/index.php/Top 10-2017 Top 10
4https://www.owasp.org/index.php/Top 10-2017 A1-Injection

760

2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.00113

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:04:15 UTC from IEEE Xplore. Restrictions apply.

it is important that an automated NoSQL injection detection

tool is developed.

Eassa et al. [10] attempt automatic detection of NoSQL

injection using a syntactic parser. Joseph et al. [11] design a

tool using non-deterministic finite automata. They test their

tools against a very small number of injections. Joseph et

al. only mention two examples in their study which cover

only trivial javascript injections. Eassa et al. can only detect

PHP array injections. Diglossia [12] detects injection based

on processing the part of the query containing user input. This

approach involves converting user inputs to shadow characters

and then detecting injections applying a dual parser which

is based on the shadow characters. These studies are not

well described and we failed to implement these models. The

tools and datasets are also not available. So, the evidence

and outcomes of these studies are not enough to convince us

that the necessity for developing a reliable automatic NoSQL

injection detection tool is addressed.

Sqreen [13] provides several publicly available tools for

security monitoring and protection monitoring including sup-

port for NoSQL injection detection. However, Sqreen severely

fails to detect Javascript based injection and piggybacked

queries. Another weakness of this tool is it takes almost 10-

20 seconds to detect an injection. Incorporating this tool may

lead to slowing down the server extremely. So, an acceptable

automatic detection tool is yet to be designed which is very

important for dealing with attacks once a system is already

deployed.

Recent success of supervised learning in automatic fraud

and malware detection motivated us to explore this direction.

Guruswamy [14] explains in his article on Forbes why machine

learning models are better than rule-based systems. While

rule based detection approaches suffer from possible attacks

beyond the coverage of the rules, machine learning based

approaches are likely to train themselves with properties of

injections that are not visible while formulating the rules.

Hence, they can detect new types of injection when attacked.

Since no benchmark dataset is available for NoSQL injection

queries, we first generate a dataset of benign and malicious

MongoDB queries with extensive study of available relevant

resources. The literature is far from being enriched. So, we are

able to find a very small dataset to train our model which is

not sufficient. We manually generate a large number of benign

and injection queries. Then we manually augment our dataset

by applying cross-overs (combining parts of two queries) and

mutations (tweaking one element of a query) over the existing

dataset. We validate the generated queries by developing a

simple, vulnerable website which works on top of a MongoDB

database. While replicating the experiments for CouchDB

database, we follow the same procedure. Finally, Our dataset

contains 1004 MongoDB (including 203 injections) and 350
CouchDB (including 50 injections) queries. We model the

detection problem as a binary classification (benign query and

injection query) problem and use this dataset to train popular

supervised learning methods i.e., decision tree (ID3) [15],

random forest [16], AdaBoost [17], neural network [18], [19],

support vector machine (SVM) [20], k nearest neighbor (IBk)

[21], and XGBoost [22]. We evaluate their performance using

10-fold cross-validation. Based on the experimental results on

MongoDB, we have found that a model trained with a neural

network provides the highest mean recall (92.94%) along with

91.87% mean accuracy, 93.55% mean precision, and 0.9343

mean Fβ (β = 2) score.

For CouchDB dataset, despite dataset size is smaller by

65.12%, Fβ score degrades by 3.85% only on average; which

indicates that our approach is database-agnostic and can easily

be extended to other NoSQL databases as well.

Note that in the context of threat detection, recall measures

the percentage of the vulnerable components correctly pre-

dicted as such and is widely considered an effective criterion

for recommending a model. Fβ (β = 2) score combines the

recall and precision measures and imposes lower weight on

precision.

We also generate a separate test dataset containing injec-

tions only using a NoSQL injection generation tool named

NoSQLMap5. The set of queries are independent of our

training dataset and direct output of NoSQLMap without any

kind of manual processing. We find that our tool can detect

36.25% more injections than Sqreen.

In summary, the specific contributions of our work are:

• We generate a dataset of 1354 NoSQL queries (including

around 75% benign and 25% injection) and validate the

dataset by practically testing on a local server. To the best

of our knowledge, this is the first labeled dataset of this

kind.

• We design 19 features for classifying benign and injection

queries. These features seem to be highly effective as our

tool performs quite good despite being trained on a small

number of samples.

• We demonstrate that popular supervised learning models

can effectively solve the NoSQL detection problem.

• We provide a publicly available tool and describe how to

integrate our tool with an existing mechanism. To the

best of our knowledge, our tool performs better than

any publicly available tool of this kind. To encourage

reproduction, we release the dataset and tool6.

The remainder of the paper is organized as follows. Section II

introduces NoSQL injection, its threat, and different types. We

discuss studies in relevant fields in Section III. In Section IV,

we describe our approach towards the design of an automated

tool for detecting injections. In Section V, we evaluate the

performance of our tool. In Section VI, we present how our

tool can be integrated with a web application. We show the

comparison of our tool with existing ones in Section VII.

Finally, Section VIII concludes the paper.

II. PRELIMINARIES

In this section, we demonstrate the risks of NoSQL

databases and how NoSQL injection attacks are executed.

5https://github.com/codingo/NoSQLMap
6https://github.com/anonymous1363101/nosql-injection-detection

761

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:04:15 UTC from IEEE Xplore. Restrictions apply.

Later, we introduce different types of NoSQL injections we

intend to detect.

A. NoSQL Injection

NoSQL database is a schema-free database that supports

easy replication, simple API, and high consistency. This type

of database provides higher performance and speed and con-

sumes fewer resources. The most common data models in

NoSQL databases are column-based, document-based, key-

value mapping-based, graph-based, and multi-model. NoSQL

databases, such as MongoDB, CouchDB, etc, are yet to be

robust against security attacks. Malicious users can exploit

these security vulnerabilities to execute privilege escalation

attacks to get access to other user accounts of same or higher

privilege levels. When NoSQL is first introduced, it is thought

to be free of injections, unlike the traditional SQL databases.

But later the works by Hou et al. [23], Okman et al. [24], and

Ron et al. [8] show that NoSQL databases are also vulnerable

to some injections similar to SQL injections.

In 2015, three students of University of Saarland, Germany

showed that about 40,000 MongoDB databases on the internet

are vulnerable7. They claimed to be able to get read and write

access to thousands of databases containing sensitive customer

data from web shops without any special hacking tools. They

reported the existence of many MongoDB web servers that

remain vulnerable to injection attacks.

OWASP8 and an IBM study [8] have also shown that

NoSQL databases are vulnerable to injection attacks, although

they do not use traditional SQL syntax.

Consider the following script for a login form where user

inputs username and password.

$collection->find(array(

“username” => $ GET[‘username’],

“password” => $ GET[‘password’]

));

When a user provides the username and password, it

sends an http request. For example, if username is admin

and password is 12345678, the corresponding http request is

login.php?username=admin&password=12345678

The script matches the username and password and returns

true if both are correct. Now, an attacker can alter the query

by passing an array as input like this,

login.php?username[$ne]=null&password[$ne]=null

This creates the following MongoDB query,

$collection->find(array(

“username” => array(“$ne” => null),

7https://www.securityweek.com/thousands-mongodb-databases-found-
exposed-internet

8https://www.owasp.org/index.php/Testing for NoSQL injection

TABLE I
PHP ARRAY INJECTION EXAMPLE

Database Type Query Injection

MongoDB db.logins.find({ username: { $ne: 1 },
password:{ $ne: 1 } })

{ $ne: 1 }

CouchDB POST /users/ find HTTP/1.1 Accept:
application/json Content-Type: applica-
tion/json Host: localhost:5984 { “selec-
tor”: { “username”: { “$ne”: null } }
}

{ “$ne”: null }

“password” => array(“$ne” => null)

));

This query eventually exposes all the entries where username

and password are not null. Thus an attacker is able to get

unauthorized information from MongoDB.

An attacker may also append an additional query with

the original one by manipulating input. For example, when

username is G. R. R. Martin the query is,

db.doc.find({ username: ‘G. R. R. Martin’ })

Now, if an attacker put G. R. R. Mar-

tin’});db.dropDatabase(); db.insert({username: ‘dummy’,

password: ‘dummy as username, the following query will

be executed:

db.doc.find({ username: ‘G. R. R. Martin’});
db.dropDatabase(); db.insert({username: ‘dummy’,

password: ‘dummy’})

MongoDB treats this query as three independent queries

instead of one and runs all of them. Here, the second query

deletes the database completely which is disastrous.

Sqreen [13] shows that it is very easy to attack a MongoDB

database using injection and change the content of the database

if no security measure is taken by the developer9. A Node.js

application with JSON data format is also vulnerable if no

security mechanism is applied.

B. Types of NoSQL Injections

Here, we introduce 4 types of injections applicable to

NoSQL. Although all types of injections are possible for Mon-

goDB, we find that only 2 types are applicable to CouchDB.

1) PHP Array Injection: The Table I shows a scenario

where user input in a login form is exploited to execute an

injection attack. PHP array injections inject PHP codes into

an application so that the query conditions are modified. When

the server executes this modified query, the attacker gains

information that is not supposed to be retrieved by the original

query.

2) NoSQL OR Injection: Unlike SQL queries, JSON struc-

ture makes ‘OR injections’ hard in MongoDB and CouchDB,

9https://blog.sqreen.io/mongodb-will-not-prevent-nosql-injections-in-
your-node-js-app/

762

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:04:15 UTC from IEEE Xplore. Restrictions apply.

TABLE II
OR INJECTION EXAMPLE

Database Type Query Injection

MongoDB db.doc.find({ username: ‘tolkien’,
$or:[{}, { ‘a’: ‘a’,password:
‘’}], $comment: ‘successful
MongoDBinjection’})

’, $or:[{}, { ‘a’:
‘a’,password: ‘’}],
$comment: ‘successful
MongoDBinjection

CouchDB POST /users/ find HTTP/1.1 Accept:
application/json Content-Type: applica-
tion/json Host: localhost:5984 { “selec-
tor”: { “username”: “vchaulk0”, “$or”:
[{ “password”: “12345” }, { “pass-
word”: { “$ne”: “null” } }] } }

”, “$or”: [{
” }, { “password”: { “$ne”:
“null” } }]

TABLE III
JAVASCRIPT INJECTION

Query Injection

db.stores.mapReduce (function() { for
(var i = 0; i ¡ this.items.length; i++)
{ emit(this.name, this.items[i].a); }
},function(kv) { return 1; }, { out:
‘x’ }); db.injection.insert ({success:1});
return 1;db.stores.mapReduce (function() {
{ emit(1,1); } }, function(name, sum) { return
Array.sum(sum); }, { out: ‘totals’ });”

a); } },function(kv) {
return 1; }, { out: ‘x’ });
db.injection.insert ({success:1});
return 1;db.stores.mapReduce
(function() { { emit(1,1

but still, it is possible to bypass security procedures by

injecting an always true condition (for example, an empty

string) using ‘OR’ keyword.

In Table II, we find that an empty expression is attached

to the input using an OR condition. An empty expression is

always true and consequently, it makes the password check

ineffective.

3) JavaScript Based Injection: An attacker can forcefully

return true or put a condition inside $where operator that

always results as true. For example, if there is a condition like

‘’ == ‘’, it will always give true value. As MongoDB allows

execution of JavaScript codes in order to perform complex

queries, it is also possible to inject malicious commands by

manipulating JavaScript functions. This type of injection is not

possible in CouchDB. An example is shown in Table III.
4) Piggybacked Queries: In MongoDB, attackers can ex-

ploit assumptions in the interpretation of escape sequences and

special characters (such as termination characters like carriage

return [CR], line feed [LF], closing braces, and semicolons)

to end a query and insert additional harmful queries like

db.dropDatabase() to be executed by the database, which

can lead to disastrous effects like deleting all users from the

database. CouchDB does not have this type of injections. Table

IV shows an injection of this type.

III. RELATED WORKS

Database and web security are among the most threatening

areas in information security. Albeit many works have been

performed on SQL injection, it is still one of the major vul-

nerabilities of a database. Some of the notable SQL injection

attack incidents are presented in Table V.
SOFIA [25] is a programming-language and source-code

independent tool which also can be used with various attack

generation tools. While most approaches detect user inputs

TABLE IV
PIGGY-BACKED QUERY

Query Injection

db.doc.find({ username: ‘G. R.
R. Martin’}); db.dropDatabase();
db.insert({username: ‘dummy ’,
password: ‘dummy ’})

’}); db.dropDatabase(); db.insert(
{username: ‘dummy ’, password:
‘dummy

TABLE V
SQL INJECTION DAMAGE STATISTICS

Organization Damage Year

Yahoo 450,000 plain text passwords stolen 2012

LinkedIn 6.5 million hashed passwords hacked 2012

Bitcoin Hacker shows bitcoin can be stolen with SQLi 2016

Arizona voter database Data of 200,000 voters stolen 2016

Qatar National Bank Sensitive financial information leaked 2016

Hetzner South Africa Over 40,000 customer details including bank
accounts leaked

2017

in SQL statements and compare them with safe user inputs

to detect injection, this method parses SQL statements and

creates parse trees, which are fed to a clustering algorithm.

Then the tree edit distance is used to measure the distance

among the parse trees. The challenge of this approach is to

learn to characterize benign SQL statements so that it can

accurately identify one from an injection attack statement.

Most of the automatic detection studies use parsing based

analysis [26] [27]. In recent years, supervised learning has

becoming popular for automatic fraud or malware detection

with high accuracy. Impression fraud detection by Haider et

al. [28], Android malware detection by Amos et al. [29],

JavaScript malware detection by Wang et al. [30], malicious

web content detection by Hou et al. [31], web application

vulnerability prediction by Shar et al. [32], predicting cross-

site scripting (XSS) security vulnerabilities by Gupta et al.

[33], and predicting vulnerable software components via text

mining by Scandariato et al. [34] are some of the examples.

In spite of the growing popularity of NoSQL databases,

there are few recent works pointing out its security issues.

Leavitt et al. [35] discusses issues such as limitations, advan-

tages, concerns, and doubts regarding NoSQL databases. Ron

et al. [8] lists some possible types of code injection in NoSQL

databases. Swathy Joseph and Jevitha Kp [11] discuss an

automata-based approach to prevent NoSQL injections. Eassa

et al. [10] proposes a tool called ‘NoSQL Racket’ which can

detect only ‘PHP array injections’ by comparing code static

code analysis and runtime code analysis. Hong et al. [36]

proposes a parse tree based injection detection mechanism for

NoSQL databases. Okman et al. [24] reviews two of the most

popular NoSQL databases (Cassandra and MongoDB) and out-

lines their main security features and problems. Some existing

works only address injection detection in queries from trusted

client applications. For example, Diglossia [12] converts user

input to shadow characters and employs a methodology to

separate user input from the query. Then, based on user input

763

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:04:15 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
SOURCES USED FOR COLLECTING NOSQL BENIGN QUERIES

https://docs.mongodb.com/manual/,

https://www.tutorialspoint.com/mongodb/,

https://www.journaldev.com/6221/mongodb-findandmodify-example,

http://php.net/manual/en/mongocollection.findandmodify.php ,

https://specify.io/how-tos/find-documents-in-mongodb-using-the-mongo-shell,

http://no-fucking-idea.com/blog/2012/04/01/using-map-reduce-with-mongodb/ ,

http://thejackalofjavascript.com/mapreduce-in-mongodb/ ,

http://www.querymongo.com/ ,

https://stackoverflow.com/questions/30435073/mysql-to-mongodb-query-

conversion-issue ,

https://stackoverflow.com/questions/27915598/how-to-convert-group-by-

having-query-from-mysql-to-mongodb-in-phalcon ,

https://stackoverflow.com/questions/42692413/sql-query-convert-to-mongodb ,

http://docs.couchdb.org/en/2.1.1/

analysis, they detect injections. Hou et al. [23] also proposes

a strategy to prevent injections, which also depends on the

proper control of client application.

IV. DESIGN OF DETECTION MODEL

In this study, we have used feature based supervised learning

classifiers to detect injections. To train the classifiers, we

had to generate our own dataset since there is no labeled

dataset on NoSQL injection available. The methodology for

the development of the proposed tool is shown in Figure 1.

A. Training Dataset Generation

Since the literature is far from being rich, we first generate

a dataset of benign and malicious MongoDB queries with

extensive study of available relevant resources. So, we are able

to find a very small dataset to train our model which is not

sufficient. The benign queries are collected from MongoDB

and CouchDB official sites and some other links (Table VI).

And, the injection data is collected from popular security

sites, blogs, and studying the state of the art works (Table

VII). Then, we manually generate a large number of benign

and injection queries by augmenting the dataset by applying

cross-overs (combining parts of two queries) and mutations

(tweaking one element of a query) over the existing dataset.

We validate the generated queries by developing a simple, vul-

nerable website which works on top of a MongoDB database.

While replicating the experiments for CouchDB database,

we follow the same procedure. Finally, Our dataset contains

1004 MongoDB (including 203 injections) and 350 CouchDB

(including 50 injections) queries.

In our dataset, we have included all 4 types mentioned in

Section II-B, i.e. PHP array injection, NoSQL OR injection,

JavaScript-based injection, and piggybacked queries. We have

tried to create a balanced dataset, but the number of ‘OR

injection’ is less than the other injections in our dataset. The

reason is the absence of many variations in ‘OR injection’ like

we have found in other types of injections. In Table VIII, we

present some examples and the distribution of different types

of injections in our training dataset. The details of these four

types of injections have already been discussed in Section II.

TABLE VII
SOURCES USED FOR COLLECTING NOSQL INJECTION QUERIES

https://www.idontplaydarts.com/2010/07/mongodb-is-vulnerable-to-

sql-injection-in-php-at-least/,

https://zanon.io/posts/nosql-injection-in-mongodb,

http://blogs.adobe.com/asset/files/2011/04/NoSQL-

But-Even-Less-Security.pdf,

http://www.syhunt.com/?n=Articles.NoSQLInjection,

http://docs.mongodb.org/manual/faq/developers/#how-does-mongodb-address-

sql-or-query-injection,

http://php.net/manual/en/mongocollection.find.php,

http://blog.websecurify.com/2014/08/hacking-nodejs-and-mongodb.html,

http://blog.websecurify.com/2014/08/attacks-nodejs-and-mongodb-part-to.html,

https://security.stackexchange.com/questions/83231/mongodb-nosql-

injection-in-python-code,

https://www.infoq.com/articles/nosql-injections-analysis,

https://www.owasp.org/index.php/Testing for NoSQL injection

We have generated a labeled dataset for both MongoDB and

CouchDB. MongoDB dataset contains more samples because

it is being used by many web applications and thus its benign

and injection examples more available. Table IX contains the

summary of our dataset.

B. Feature Design

Selecting appropriate features are very important for any

feature-based supervised learning classifier. We have designed

19 features to start with. Then we have selected the 10 highest

ranked features based on information gain and correlation. It

is to be noted that any individual feature will not dictate the

decision of detection, rather in combination with other features

they yield a weighted outcome of the classifier that determines

our prediction. The designed features and the intuitions behind

choosing these are briefly explained below.

• Contains Empty String: A lot of NoSQL injections use

an empty string to create a condition that evaluates to

true for most database entries.

• Contains Injection Payload: A payload file contains some

common substrings or signatures of NoSQL injections.

We have taken the original NoSQL injection payload

file from cr0hn’s GitHub repository10. Then we have

added a few more of injection payloads found on the web.

• Contains Not Equal: $ne keyword is present in most of

the PHP array injections.

• Contains Comparison: find(), find.sort(), $eq, $gt, $gte,

$lt, $lte, $ne, $in, and $nin are used to select the relevant

entries that a user needs. These keywords are found in

most NoSQL injections, as well as benign queries.

• Contains Logical Operator: $or, $and, $not, and $nor

keywords are found to be used to create always true

10https://github.com/cr0hn/nosqlinjection wordlists/blob/master/
mongodb nosqli.txt

764

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:04:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Conceptual model of our solution strategy

TABLE VIII
MONGODB AND COUCHDB INJECTION QUERIES SUMMARY

Injection Type No of Samples Example

PHP array injection 134 db.logins.find({ username: { $ne: 1 }, password: { $ne: 1
} })

OR Injection 20 db.users.find({ username: “dummy”, $or: [{}, { pass-
word: “” }]})

JavaScript based Injection 43 db.users.find({username: ‘admin’, $where:
function(){return 1}})//’, password: ‘abcd’})

Piggybacked queries 56 db.users.find({username: ‘’});db.users.drop();
db.users.insert({username:‘rafid’, password: ‘rafid’})

TABLE IX
MONGODB AND COUCHDB DATASET STATISTICS

Database Query Type No of Samples in Dataset

MongoDB
Benign 801

Injection 203

CouchDB
Benign 300

Injection 50

statements.

• Contains Evaluation Query Operation: Most JavaScript

and some PHP injections contain $where, $mod, $regex,

and $text command.

• Presence of ;return, return true, and return 1: Diglossia

[12] shows that some injections are possible using return

command. But most JavaScript benign queries contain

return, too. We have found three variants that are most

of the times considered malicious. These are - ;return,

return true, and return 1.

• New Query: If a new query starts after another where

should have been only one query, it is a type of injection

called ‘Piggy Backing’.

• Always True Expression: /./, /.*/ etc indicate ‘any’ in

regular expression. When they are used as injection the

query becomes true for every entry in the database.

Thus, privacy breach may happen.

• Contains Element Query Operations: MongoDB element

query operations e.g., $exisits and $type are strategically

used in injection attacks.

765

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:04:15 UTC from IEEE Xplore. Restrictions apply.

• Null comparison: Most NoSQL injections contain null.

If null is present inside the query, then it may be

comparing something with null which always yields true

in NoSQL (e.g. MongoDB) syntax.

• Targets Table: createTable() and showTable() commands

can respectively create a new table or show the current

table. Both of which can be used as malicious commands

to create an access point or to get confidential data.

• Alters Collection: createCollection() and drop()

commands affect the database directly. These are

usually not allowed to be performed through user input

or input from a Rest API.

• Drop Database: dropDatabase() command deletes the

entire database and its entries.

• Update query: $update and $save commands can change

the data entries.

• Remove query: An attacker can use the $remove

command to remove important data from a database.

• Limit keyword: Limit keyword is used to restrict access

to all data entries. But attackers can exploit it to get

access to more data than they have access to.

• Infinite Loop: while(true) will send the server to execute

an infinite loop which may be used to commit a denial

of service attack.

• Contains ;}//: Diglossia [10] showed that ;}// can be

used tactically for stronger Javascript attacks. Hence, if

a query contains ;}//, it has a higher possibility of being

an injection.

C. Feature Selection

We use WEKA’s ClassifierSubsetEval [37] with

J48(decision tree) [38], IBK(k nearest neighbor) [21]

classifiers, and greedy step-wise search with backward

elimination to select and rank 10 out of initially designed 19
features based on information gain and correlation (Table X)

separately. This is done by combining both our dataset of

MongoDB and CouchDB.

We select these 10 features to improve the performance of

our classifiers and find that reducing feature dimension sig-

nificantly improves our model in terms of accuracy, precision,

recall, and Fβ (β = 2) score.

V. EVALUATION AND RESULTS

In this section, we discuss the evaluation methods and

present the performance measures of different classifiers.

TABLE X
FEATURE RANKING BY INFORMATION GAIN AND CORRELATION

Rank By Information Gain By Correlation

1 Contains Comparison Contains Comparison

2 New Query New Query

3 Contains Empty String Contains Empty String

4 Contains Not Equal Contains Not Equal

5 Contains Payload Contains Payload

6 Presence of Return Always True Expression

7 Always True Expression Presence of Return

8 Evaluation Query Operation Evaluation Query Function

9 Contains Logical Operator Element Query Operation

10 Element Query Operation Contains Logical Operator

A. Evaluation Methodology

We design the detection problem as a binary classification

(where the two classes are Benign and Injection) using 10
selected features mentioned in Table X. We use supervised

learning classifiers such as - decision tree based ID3 algo-

rithm [15], artificial neural network [18], [19] with back-

propagation, random forest [16], AdaBoost [17], k nearest

neighbor (IBk) [21], support vector machines (SVM) [20],

and XGBoost [22]. We investigate the performance of the

classifiers using 10-fold cross-validation. In 10-fold cross-

validation, the dataset is randomly partitioned into 10 equal

folds. Then one of the folds is selected as the validation set

and the remaining 9 folds are selected to train the classifier. We

repeat it 10 times to use each of the folds as the validation

set exactly once. The final estimation is the average of the

10 results from the folds. We also test our model with a

separate test dataset where injections are generated using

the NoSQL injection generation tool named NoSQLMap11

(both MongoDB and CouchDB). This tool is not used while

generating our original dataset.

Our training dataset is imbalanced. For MongoDB dataset

of 1004 queries, the ratio of benign to malignant queries is

3.95 : 1. And, for CouchDB dataset of 350 queries this ratio of

benign to malignant is 6 : 1. Hence, we use oversampling with

SMOTE (synthetic minority oversampling technique) [39] to

improve the ratio of benign and malignant queries to 1.13 : 1
(for MongoDB) and 1.1 : 1 (for CouchDB). We tune SMOTE

parameters such as SMOTE percentage to 250% and Number

of Neighbors to 2 for the MongoDB dataset and SMOTE

percentage to 450% for CouchDB dataset. Table XII shows

the performance measures after applying oversampling.

We experiment with the 7 classifiers tuning their hyper-

parameters to obtain better trained models. Based on the

consistency of performance metrics on training and validation

sets, we can claim that our model is not overfitted. The

parameter values given in Table XI are found to be optimal

for each classifier.

11https://github.com/codingo/NoSQLMap

766

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:04:15 UTC from IEEE Xplore. Restrictions apply.

TABLE XI
PARAMETERS USED FOR SEVEN CLASSIFIERS

Classifier Parameter Name Value

Decision Tree(ID3) No Parameters Null

Random Forest

Size Per Bag 100

Number of Iterations 200

Number of Trees 200

AdaBoost

Classifier Used J48

Number of Iterations 1000

Use Resampling True

Percentage of Weight Mass
to base

100

Neural Network

Learning Rate 0.05

Maximum Epochs 2000

Number of Hidden Layers 4

Number of Nodes in Hidden
Layer

10, 10, 6, 10

SVM

Type of SVM C-SVM, C = 1

Kernel Function e
−γ|u−v|2

Class Weights {1, 1}

k Nearest Neighbor Number of Neighbors 5

XGBoost
Maximum Depth 2

Objective Function binary logistic

We ensure a wide coverage of different types of classifiers

that are commonly used for similar problems.

B. Results

The results of our selected feature set (Table X) with respect

to evaluation measures such as accuracy, precision, recall, and

Fβ score for 7 classifiers are given in Table XII. These results

are obtained using the oversampled dataset. Before applying

oversampling, the precision has been 89.06% (for MongoDB),

94.68% (for CouchDB) and recall has been 76.65% (for

MongoDB) and 64.4% (for CouchDB), respectively. After

oversampling, we see that recall has increased for both datasets

with only a slight decrease in precision in CouchDB.

We observe from Table XII that even though precision

is higher in other classifiers, recall and F2 score is higher

in neural network. As even one injection query execution

can compromise the whole system, we think recall is the

most important measure in this case. That is why we choose

Fβ (β = 2) score with less weight on precision to be our

deciding performance measure. With the highest F2 score,

neural network is selected as our representative model for

detecting NoSQL injections for both MongoDB and CouchDB.

We also calculate the confidence interval of classification

error for neural network from our 10-fold cross-validation

results. We use the Wilson Score Interval [40] to calculate

the confidence interval denoted by I to assess the reliability

of the result.

I = error ± const×

√
error× (1− error)

N
(1)

TABLE XII
PERFORMANCE MEASURES OF 10-FOLD CROSS-VALIDATION OF

DIFFERENT CLASSIFIERS

Dataset Classifier Accuracy Precision Recall F2 Score

MongoDB

Decision Tree
(ID3)

91.6642% 93.4370% 92.6929% 0.932872

Random Forest 91.8772% 93.5465% 92.9375% 0.932460

AdaBoost (boost-
ing with J48)

91.7880% 93.4722% 92.8735% 0.933518

Neural Network 91.8772% 93.5537% 92.9392% 0.934302

SVM 89.4552% 91.0479% 91.5189% 0.91

k Nearest Neigh-
bor

91.6196% 93.3030% 92.7668% 0.931952

XGBoost 89.5101% 90.79104% 87.9179% 0.884429

CouchDB

Decision Tree
(ID3)

88.3333% 90.7801% 85.3333% 0.896358

Random Forest 88.5666% 90.8256% 85.8% 0.897641

AdaBoost (boost-
ing with J48)

88.6333% 90.8386% 85.9333% 0.898132

Neural Network 88.6667% 90.8451% 86.00% 0.898328

SVM 85.2% 84.6685% 85.9667% 0.849250

k Nearest Neigh-
bor

88.6667% 90.8451% 86.0% .898328

XGBoost 85.36% 85.00% 84.06% .842463

TABLE XIII
CONFIDENCE INTERVAL OF CLASSIFICATION ERRORS OF THE

CLASSIFIERS

Dataset Classifier Confidence Interval of
Classification Error

MongoDB Neural Network [7.9974%, 8.0501%]

CouchDB Neural Network [11.2297%, 11.4368%]

In (1), error implies the classification error, const is the

constant value that defines the likelihood and N is the number

of observations used to evaluate the model. The constant value

we have used is 1.96 for 95% likelihood.

Table XIII shows the result of the confidence interval of

classification error of neural network for 95% likelihood. For

neural network classifier on MongoDB dataset, the value of

confidence interval implies that there is a 95% likelihood that

the true classification error of the model is in the interval

[7.9974%, 8.0501%] for unseen data.

VI. DEPLOYMENT STRATEGY

Our proposed tool will work as a server plugin. It works

in two steps. First, a listener listens to the port where the

server communicates with the NoSQL database and forwards

it to the port our tool (classifier) listens on. For example, if

the server code sends a query to MongoDB on port 100 and

our tool listens on port 101, our listener which intercepts the

data coming through port 100 will forward the query to port

101. Next, our tool filters and sends only the benign query

back to MongoDB’s port 100. Hence, every query would be

filtered through our tool before running in a NoSQL database

management system. The conceptual model of the proposed

system is presented in Figure 2.

767

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:04:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Conceptual model of our proposed system

account populatedb userdata orderdata

10

15

20
20

18 18

16

13

10

12

8

N
u
m

b
er

o
f

in
je

ct
io

n
s

d
et

ec
te

d
(O

u
t

o
f

2
0
)

Our tool Sqreen

Fig. 3. Performance comparison between Sqreen and our tool

VII. COMPARATIVE STUDY

We have used an independent third-party tool,

NoSQLMap12 to generate injections for testing our tool

against injection attacks outside our original dataset.

NoSQLMap has three sample databases such as shops,

customers, and appUserData. This tool also provides four

vulnerable web applications such as account, populatedb,

userdata, orderdata. We have generated 20 injections through

NoSQLMap for each of these four web applications and

tested the generated injections for Sqreen [13] and our tool.

Sqreen has detected 13, 10, 12, and 8 injections for each

test set and our tool has detected 20, 18, 18, and 16 injections,

respectively. The performance comparison between the two

tools is shown in Figure 3. The detection rate of our method

is 36.25% higher on average than Sqreen.

Sqreen’s NoSQL injection detection support is only avail-

able for Ruby and Node.js based servers. On the contrary,

12https://github.com/codingo/NoSQLMap

our tool is platform independent. Sqreen supports only one

NoSQL database, i.e., MongoDB. On the contrary, our scheme

can be extended to work with other NoSQL databases with

minor adjustments as we have already demonstrated it with

CouchDB.

From a careful study, we have found that Sqreen can

detect only a few types of injections and fails against some

important ones. It can detect some PHP array injections and

OR injections, however, is helpless against JavaScript-based

injections(Table - III) and piggy-backed injections(Table - IV).

Our scheme can detect all of these with moderate accuracy,

as the designed supervised learning approach does not rely on

any particular syntax structure.

We also have found some studies on detecting NoSQL

injection attacks. The works of Eassa et al. [10] and Joseph

et al. [11] are the most relevant ones. However, they have

not released their tools and hence we could not compare with

those.

VIII. CONCLUSION AND FUTURE WORKS

Despite having significant security risks, prevention of

NoSQL injection is not getting the attention it deserves. In

this work, we propose an automated system to detect any

type of query which may lead to NoSQL injection attack and

demonstrate the performance of the system for MongoDB and

CouchDB databases. Our major contribution is the generation

of the labeled dataset containing around 1350 NoSQL queries.

We explore multiple machine learning methods with careful

tuning of hyper-parameters for classification and present the

performance of these methods in terms of accuracy, precision,

recall, and Fβ score. We can claim that our system can detect

most of the injections based on extensive experiments. As

detecting an injection is our major concern, we recommend

neural network as the most effective method as it provides the

highest recall and F2 score. We also compare our study with

the only available tool, Sqreen and observe that our system

significantly outperforms it.

To the best of our knowledge, this is the first work to

propose a methodology based on supervised learning which

can detect NoSQL injection attacks. Our tool provides high

accuracy and enables server injection vulnerability testing by

professionals without disclosing the confidential application

code of an enterprise. However, the automatic design of

features from relevant literature can be an interesting research

direction, but it is quite impossible as the relevant corpus is

very small. A larger dataset is also more likely to improve the

performance. We leave these issues as possible future works.

ACKNOWLEDGMENT

We want to express our gratitude to the authors of ‘SOFIA:

an automated security oracle for black-box testing of SQL

injection vulnerabilities’ for providing their dataset on benign

SQL queries. We also want to thank Vladimir de Turckheim

and other members of Sqreen team for providing us valuable

instructions on using their tool and other information. And

768

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:04:15 UTC from IEEE Xplore. Restrictions apply.

last but not least, we thank Samsung for supporting us by

their research grant ”Code Review Usability Measurement”.

REFERENCES

[1] MongoDB, “Nosql databases explained,”
https://www.mongodb.com/nosql-explained.

[2] G. Keizer, “Yahoo fixes password-pilfering bug, explains who’s at risk,”
2012.

[3] T. Seals, “Sql injection possible vector for talktalk breach,” Infosecurity
Magazine, 10 2015, accessed: December 02, 2017.

[4] e. . hacker0 (25), oumar (57), “How i hacked hundreds of bitcoins! ama,”
Steemit, 8 2016, accessed: December 02, 2017.

[5] “Infoq,” https://www.infoq.com/articles/nosql-injections-analysis, 1
2017.

[6] “Security lessons learned from the diaspora launch,”
http://www.kalzumeus.com/2010/09/22/security-lessons-learned-from-
the-diaspora-launch.

[7] B. Sullivan, “Server-side javascript injection,” Senior Security Re-
searcher, Adobe Secure Software Engineering Team, 6 2011.

[8] A. Ron, A. Shulman-Peleg, and E. Bronshtein, “No sql, no injection?
examining nosql security,” arXiv preprint arXiv:1506.04082, 2015.

[9] B. Hou, Y. Shi, K. Qian, and L. Tao, “Towards analyzing mongodb nosql
security and designing injection defense solution,” in Big Data Security
on Cloud (BigDataSecurity), IEEE International Conference on High
Performance and Smart Computing (HPSC), and IEEE International
Conference on Intelligent Data and Security (IDS), 2017 IEEE 3rd
International Conference on. IEEE, 2017, pp. 90–95.

[10] A. M. Eassa, O. H. Al-Tarawneh, H. M. El-Bakry, and A. S. Salama,
“Nosql racket: A testing tool for detecting nosql injection attacks
in web applications,” International Journal of Advanced Computer
Science and Applications, vol. 8, no. 11, 2017. [Online]. Available:
http://dx.doi.org/10.14569/IJACSA.2017.081178

[11] S. Joseph and K. Jevitha, “An automata based approach for the pre-
vention of nosql injections,” in International Symposium on Security in
Computing and Communication. Springer, 2015, pp. 538–546.

[12] S. Son, K. S. McKinley, and V. Shmatikov, “Diglossia: detecting
code injection attacks with precision and efficiency,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 1181–1192.

[13] Sqreen, “Web application and user protection,” https://www.sqreen.io.

[14] K. Guruswamy, “Data science: Machine learning vs. rules based sys-
tems,” Forbes, Dec 2015.

[15] C. Jin, L. De-Lin, and M. Fen-Xiang, “An improved id3 decision tree
algorithm,” in Computer Science & Education, 2009. ICCSE’09. 4th
International Conference on. IEEE, 2009, pp. 127–130.

[16] T. K. Ho, “Random decision forests,” in Proceedings of the Third
International Conference on. IEEE, 1995.

[17] S. R. Freund Y., “A desicion-theoretic generalization of on-line learning
and an application to boosting,” in Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg, 2005, pp. 23–37.

[18] J. J. Hopfield, “Artificial neural networks,” IEEE Circuits and Devices
Magazine, vol. 4, no. 5, pp. 3–10, 1988.

[19] Y. LeCun, “A theoretical framework for back-propagation,” in Artificial
Neural Networks: concepts and theory, P. Mehra and B. Wah, Eds. Los
Alamitos, CA: IEEE Computer Society Press, 1992.

[20] N. Cristianini and J. Shawe-Taylor, “An introduction to support vector
machines,” 2000.

[21] D. Aha and D. Kibler, “Instance-based learning algorithms,” Machine
Learning, vol. 6, pp. 37–66, 1991.

[22] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting
system,” CoRR, vol. abs/1603.02754, 2016. [Online]. Available:
http://arxiv.org/abs/1603.02754

[23] B. Hou, K. Qian, L. Li, Y. Shi, L. Tao, and J. Liu, “Mongodb
nosql injection analysis and detection,” in Cyber Security and Cloud
Computing (CSCloud), 2016 IEEE 3rd International Conference on.
IEEE, 2016, pp. 75–78.

[24] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, and J. Abramov, “Security
issues in nosql databases,” in Trust, Security and Privacy in Computing
and Communications (TrustCom), 2011 IEEE 10th International Con-
ference on. IEEE, 2011, pp. 541–547.

[25] D. A. L. C. B. Mariano Ceccato, Cu D. Nguyen, “Sofia: an automated
security oracle for black-box testing of sql-injection vulnerabilities,” in
ASE 2016 Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering. ACM New York, NY, USA, 2016,
pp. 167–177.

[26] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: automatic adaptive
detection and prevention of buffer-overflow attacks.” in USENIX Security
Symposium, vol. 98. San Antonio, TX, 1998, pp. 63–78.

[27] J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software,” 2005.

[28] C. M. R. Haider, A. Iqbal, A. H. Rahman, and M. S. Rahman, “An
ensemble learning based approach for impression fraud detection in
mobile advertising,” Journal of Network and Computer Applications,
2018.

[29] B. Amos, H. Turner, and J. White, “Applying machine learning classi-
fiers to dynamic android malware detection at scale,” in 2013 9th Inter-
national Wireless Communications and Mobile Computing Conference
(IWCMC), 2013, pp. 1666–1671.

[30] J. Wang, Y. Xue, Y. Liu, and T. H. Tan, “Jsdc: A hybrid approach for
javascript malware detection and classification,” in Proceedings of the
10th ACM Symposium on Information, Computer and Communications
Security. ACM, 2015, pp. 109–120.

[31] Y.-T. Hou, Y. Chang, T. Chen, C.-S. Laih, and C.-M. Chen, “Malicious
web content detection by machine learning,” Expert Systems with
Applications, vol. 37, no. 1, pp. 55 – 60, 2010.

[32] L. K. Shar, L. C. Briand, and H. B. K. Tan, “Web application vulnera-
bility prediction using hybrid program analysis and machine learning,”
IEEE Transactions on Dependable and Secure Computing, vol. 12, no. 6,
pp. 688–707, Nov 2015.

[33] M. K. Gupta, M. C. Govil, and G. Singh, “Predicting cross-site scripting
(xss) security vulnerabilities in web applications,” in 2015 12th Interna-
tional Joint Conference on Computer Science and Software Engineering
(JCSSE), July 2015, pp. 162–167.

[34] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
vulnerable software components via text mining,” IEEE Transactions on
Software Engineering, vol. 40, no. 10, pp. 993–1006, Oct 2014.

[35] N. Leavitt, “Will nosql databases live up to their promise?” Computer,
vol. 43, no. 2, 2010.

[36] H. Ma, T.-Y. Wu, M. Chen, R. Yang, and J.-S. Pan, “A parse tree-based
nosql injection attacks detection mechanism,” 2017.

[37] A. W. Moore and M. S. Lee, “Efficient algorithms for minimizing
cross validation error,” in Eleventh International Conference on Machine
Learning. Morgan Kaufmann, 1994, pp. 190–198.

[38] J. Quinlan, C4.5: Programs for Machine Learning. Elsevier Science,
2014.

[39] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[40] E. B. Wilson, “Probable inference, the law of succession, and statistical
inference,” Journal of the American Statistical Association, vol. 22, no.
158, pp. 209–212, 1927.

769

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 14,2025 at 20:04:15 UTC from IEEE Xplore. Restrictions apply.

