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ABSTRACT

Standard electrocardiography (ECG) allows to record the electrical activity of the
heart from different angles called leads. The QT interval, which corresponds
to the time elapsed between the onset of ventricular contraction and the end of
ventricular relaxation, is an ECG biomarker of drug cardiotoxicity. Deep neu-
ral networks (DNNs) have achieved state-of-the-art performance in QT interval
measurement but are missing uncertainty quantification, which is necessary for
safer decision making. Uncertainty is usually encoded in DNNs through proba-
bility distributions over model weights. In this paper, we combine this approach
with notions of multisensory integration whereby neural systems account for un-
certainty by optimally integrating all available sensory inputs. We thus approx-
imate the posterior predictive distribution of the QT interval given a multi-lead
ECG as a weighted average across leads (lead integration) and models (deep en-
sembling) and derive 100(1 − α)% Bayesian prediction intervals (PIs). We ap-
ply this method to QT-based cardiac drug safety monitoring and compare it to
an adapted version of conformal prediction. The Bayesian and conformal ap-
proaches yield comparable empirical coverage (77%-82% for mean PI widths
of ∼28 milliseconds, α = 0.1). The former is more straightforward and shows
better error-based calibration. Data and code implementation are available at
https://github.com/mouslyddiaw/qt-uncertainty.

1 INTRODUCTION

Electrocardiography (ECG) typically requires 10 on-skin electrodes to record the cardiac electrical
activity from 12 different angles or leads: I, II, III, aVR, aVL, aVF (limb leads) and V1-V6 (chest
leads). The QT interval, measured from the start of the QRS complex to the end of the T wave
(cf. ECG annotations on Lead I, Figure 1), represents the duration of ventricular contraction and
relaxation. Its prolongation is a surrogate biomarker for the risk of torsades de pointes (TdP), a
life-threatening arrhythmia. ECG monitoring is therefore essential to the prevention of TdP induced
by otherwise useful medications.
The American Heart Association provided guidelines for such ECG monitoring (Drew et al., 2004;
2010; Tisdale et al., 2020) but their use is yet to be widespread (Putnikovic et al., 2022). Given the
difficulty and unreliability of manual QT measurements (Malik, 2004; Lester et al., 2019), robust
algorithms could allow accurate and real-time monitoring, specially amongst non-cardiologists—for
instance, drug-induced QT prolongation is prevalent in psychiatry (Ali et al., 2020). Deep Learning
(DL) has achieved state-of-the-art ECG interval measurement performance (Giudicessi et al., 2021;
Hicks et al., 2021; Diaw et al., 2022). However, uncertainty quantification (UQ) of DL-based ECG
interval measurements, important for safe decision making, remains under-explored.
In DL, predictive uncertainty has mostly been quantified through the posterior over model weights
using Bayesian neural networks (BNNs) or approximates (Gal & Ghahramani, 2016). Deep ensem-
bling (Lakshminarayanan et al., 2017), which also fits within approximate Bayesian inference (Wil-
son & Izmailov, 2020), is fast becoming the gold standard for UQ in DNNs as it has outperformed
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Figure 1: Construction of QT prediction intervals for a standard 12-lead ECG using a deep ensemble

approximate BNNs (Ovadia et al., 2019; Ashukha et al., 2020). Less common UQ approaches in
DL include test-time data augmentation, mostly used in medical image processing (Ayhan & Berens,
2018; Wang et al., 2019). Conformal prediction (Vovk et al., 2005) has been of great interest for
the machine learning (ML) community at large (Angelopoulos et al., 2020; Ndiaye, 2022) as it is
distribution-free and model-agnostic.
In cognitive science (e.g. study of perception), uncertainty is usually encoded at input level of neural
systems rather than in synaptic weights (equivalent of DNN weights). Pearce (2020) suggests that
incorporating this paradigm in current UQ methods for DL could push the field forward. This is
relevant to QT interval measurement that starts, in common practice, with an efficient visualization
of all leads of a given ECG recording, similar to how the visual system optimally perceives an object
by combining all available sensory signals (Jacobs, 1999). Here, uncertainty depends more on the
object being observed (external or aleatoric uncertainty) than on the observer (internal or epistemic).
In this paper, we consider approximate Bayesian and conformal approaches to generate QT predic-
tion intervals (PIs). Our contributions are: (i) We draw insights from how the visual system accounts
for uncertainty to propose a probabilistic model of QT measurement on multi-lead ECG recordings
(lead integration). We combine lead integration with deep ensembling to approximate the posterior
predictive distribution from which a PI is derived (cf. Figure 1). (ii) We build adaptative conformal
PIs by leveraging the ECG features learned by a deep ensemble (iii) We demonstrate the Bayesian
and conformal approaches on real-world clinical data. The Bayesian method presents interesting
features for clinical decision support as it yields high-quality PIs, like the conformal predictor, and
is easier to implement.

2 UNCERTAINTY QUANTIFICATION

2.1 APPROXIMATE BAYESIAN INFERENCE

Standard ECG recordings have multiple leads, each sensing the cardiac electrical activity from a
different spatial viewpoint. Denote D = {(Xi

t , yi)}i={1,...,n} a dataset of n ECG samples where
Xt = {xl

t}l={1,...,L} represents a L-lead ensemble of ECG beats (typically, L = 12) and y the
corresponding QT interval. Denote fθ : xt → y a QT estimator parameterized by θ, optimized on
D and capable of analyzing all L types of lead. We propose to approximate the posterior predictive
distribution Y = pθ(y|Xt, D) by generating multiple QT estimates fθ(xl

t). We subsequently derive
a PI of level 1 − α, α ∈ [0, 1], following the equal-tailed method, PI = [y(α/2), y(1−α/2)] where
y(α/2) and y(1−α/2) are the α/2 and 1-α/2 quantiles of the predictive distribution Y .
Lead integration. In its simplistic Bayesian model, the human visual system encodes uncertainty
by linearly combining all available cues or sensory signals, each weighed in proportion to their reli-
ability (cf. Appendix A.1). Human ECG annotators usually solve the task of finding the QT interval
y by superimposing all lead components of Xt to better define the beginning of the QRS complex
and end of the T wave. This resembles an optimal cue integration system as the annotator aggregates
all information provided by the different leads, which can have various degrees of reliability. For
instance, some leads might have lower amplitude T waves or be noisier. We propose to encode this
notion of lead reliability in automated measurement using a linear pooling model (Stone, 1961),

Y = pθ(y|Xt, D) = pθ(y|x1
t , . . . , x

L
t , D) =

L∑
l=1

wlpθ(y|xl
t, D) (1)
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where the weight wl denotes the reliability of lead xl
t relative to the other leads, all weights summing

to 1. This formulation requires prior knowledge on lead reliability.
Implicit combination with deep ensembling (UQ-EL). Denote {fθ1 , . . . , fθk} an ensemble of
k single-lead DL models parameterized by θ1, . . . , θk respectively. We can define the mean QT

estimator fθ =
1

k

k∑
j=1

fθj . Assuming that, a priori, all leads have fairly equal reliability (wl ≈ 1/L),

we then approximate Y (Equation 1) with the L estimates fθ(xl
t).

Explicit combination with deep ensembling (UQ-ELM1). The posterior distribution of the deep
ensemble is approximatively a uniformly weighted mixture model (Lakshminarayanan et al., 2017),

pθ(y|xt, D) ≈ 1

k

k∑
j=1

p(y|xt, θj) (2)

With wl ≈ 1/L, we can rewrite the predictive distribution pθ(y|Xt, D) using Equations 1 and 2 as

Y = pθ(y|Xt, D) ≈ 1

L

L∑
l=1

pθ(y|xl
t, D) ≈ 1

k × L

L∑
l=1

k∑
j=1

p(y|xl
t, θj) (3)

Here, we approximate Y using all the k×L estimates ŷl,j = fθj (x
l
t) instead of the L model averages

used in UQ-EL.

2.2 LOCALLY ADAPTATIVE SPLIT CONFORMAL PREDICTION (LASCP)

Given n past observations and a prespecified miscoverage rate α, CP consists in fitting a model
fθ on the n samples and building for a new observation Yn+1 a predictive interval PIα such that
P (Yn+1 ∈ PIα) ≥ 1 − α. In split CP (SCP) (Papadopoulos et al., 2002), the n samples are split
in 2 sets for model fitting (performed on, say, Dtrain) and nonconformity calibration (performed
on I2 of size n2). Nonconformity scores are computed as absolute residuals ϵ = |y − ŷ| and the
⌈(n2 + 1)(1− α)⌉/n2 quantile of the scores (q̂n2

) calibrated on I2 is used to define constant-length
PIs [ŷ− q̂n2

, ŷ+ q̂n2
]. LASCP (Papadopoulos et al., 2008; 2011; Lei et al., 2018) creates adaptative

intervals by first fitting a model r : x → ϵ (residual fitting) on another calibration dataset I1. In the
traditional LASCP algorithm, f and r have the same explicit input features. In this paper, we use
the ECG features learned by a deep ensemble to train a shallow ML model for residual fitting. The
proposed framework for LASCP calibration on L-lead ECG data using a deep ensemble is detailed
in Appendix A.2.

3 EXPERIMENTS AND RESULTS

Clinical data2. Study 1 (S1) stems from a prospective randomized placebo-controlled clinical trial
including 22 healthy subjects (Johannesen et al., 2014). Each subject was followed during 5 periods
during which they received a placebo (P) or one of the following drugs: Dofetilide (D), Quinidine
(Q), Ranolazine (R), and Verapamil (V). For each period, 12-lead ECGs were recorded for 24 hours
and 3 10-second ECGs were extracted at 16 timepoints (1 point pre-dose and 15 points post-dose)
leading to a total of 5219 10s ECG recordings. Similarly, Study 2 (S2) aimed at analyzing the
ECG effects of D, Lidocaine + D, Mexiletine + D and Moxifloxacin + Diltiazem (Johannesen et al.,
2016). ECGs were extracted at 14 timepoints, leading to a total of 4211 10s ECG recordings. Semi-
automated QT annotations made on representative median beats are available for each 12-lead ECG
in S1 and S2.
Deep ensembling with 5-fold cross-validation. Resampling techniques can be used to generate
multiple distinct models from a single training set. We constitute a training set using ECGs recorded
before/after administration of V (non QT-prolonging drug) and Q (QT-prolonging) so as to learn a
wide range of ECG morphologies. We refer to this set as S1a and the remaining data in S1 as S1b.
We split in 5 groups the 22 subjects in S1a for patient-stratified cross-validation. We generate 5
versions of the single-lead residual neural network (ResNet) proposed by Diaw et al. (2022). Data

1Stands for UQ with an Ensemble of Leads and Models
2Available at https://physionet.org/content/ecgrdvq/1.0.0/ and https://physionet.org/content/ecgdmmld/1.0.0/
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preparation and DNN optimization are conducted as in the original paper (Diaw et al., 2022). For a
single-lead ECG input (1.2 second average beat sampled at 500 Hz), the ResNet yields d = 32 global
features by average pooling the last feature maps before the regression head.
LASCP calibration. We split S1b in two distinct sets, S1b = I1 ∪ I2 (cf. Appendix A.3 for a
summary of the subsets). We train a gradient boosting regressor on I1 for residual fitting. Model
parameters and residual RMSE scores are detailed in Appendix A.4.
Evaluation metrics. We compute the prediction interval coverage probability (CP), defined as the
proportion of target QT intervals that fall within the PI, the mean prediction interval width (MW),
and the mean absolute deviation (MAD), which measures how far the target QT intervals not covered
by the PIs are from the closest PI bounds (lower or upper).

Figure 2: CP versus α

Data Method CP MW (ms) MAD (ms)

S1b (N = 3163) UQ-EL 82% 29.49 7.20
UQ-ELM 95% 43.91 9.81

S2 (N = 4211) UQ-EL 77% 28.27 3.95
UQ-ELM 90% 40.47 3.26
LASCP 82% 28.67 3.50

Table 1: Evaluation of the 90% PIs (α = 0.1) on N
12-lead ECG ensembles

Figure 3: Error-based calibration
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Figure 4: 24-hour QT monitoring following drug intake (90% PIs)
Results. We evaluated the Bayesian methods (UQ-EL and UQ-ELM) on S1b and S2 and the LASCP
method on S2. As shown in Figure 2 where coverage is plotted as a function of α for each study
and method, the 3 methods are overall well-calibrated, specially UQ-ELM, which always achieves
above nominal coverage, i.e. ≥ 100(1 − α)%. Table 1 details the performance of the 3 methods
for α = 0.1 based on the aforementioned evaluation metrics. The results suggest that UQ-EL and
LASCP yield PIs of comparable quality and though their coverage is lower than that of UQ-ELM,
the out-of-bound target QT intervals do not fall far from the PIs as reflected by the low MADs.
Figure 3 shows the error-based calibration plots of the 3 methods obtained by first dividing the set
of absolute differences between ground-truth and mean prediction (errors) in S2 into bins of 100
samples and then computing the MW and mean absolute error (MAE) within each bin. PI width
seems to increase more consistently with model error with the Bayesian methods than with LASCP,
which makes them useful for human review of less accurate DL-based QT measurements flagged
based on PI width. Figure 4 illustrates patient-specific QT-based drug safety monitoring based on
PIs generated with UQ-EL and LASCP. Both methods yield 90% PIs that contain, most of the time,
the actual QT interval and provide reliable information on drug-induced QT prolongation (or lack
thereof). We refer to Appendix A.5 for illustrations of the effects on the ECG of Dofetilide, known
to significantly prolong the QT interval, and the impact on model performance.

4 CONCLUSION

TdP risk could be better managed with individualized, frequent and automated QT monitoring. In
this paper, we improve the trustworthiness of DL-based QT estimators with Bayesian and conformal
approaches to UQ. While we focus in providing high-quality PIs for our application, we could
additionally leverage uncertainty to improve predictive performance, which is one of the main goals
of UQ in DL, as done in Lakshminarayanan et al. (2017). We could also study the impact of other
ensembling techniques on UQ-E(L)M and investigate methods for weighing lead reliability and
model confidence so as to provide, when necessary, point estimates more accurate than averages.
Zhu et al. (2014) conducted a similar study to better aggregate crowd-sourced ECG annotations.
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A APPENDIX

A.1 PROBABILISTIC INFERENCE FOR MULTISENSORY INTEGRATION

The brain must reason probabilistically for optimal performance as uncertainty is intrinsic to most
tasks. To this aim, the human visual system performs sensory cue (or multisensory) integration
over space and time by first making estimates based on each available cue or sensory signal alone
before linearly combining all estimates, weighing each cue in proportion to their reliability. This
phenomenon, termed weak fusion (Clark & Yuille, 1990), has been modelled using Bayesian prob-
ability but the notion of cue reliability is fairly intuitive. Take the experiment conducted by Ernst
& Banks (2002) on height estimation based on visual and tactile cues. We understand that these
two input signals are not equally reliable. For instance, in complete darkness, any estimate based on
vision is nothing but noise. Similar ideas are expressed in the field of probabilistic opinion pooling
when individual opinions are aggregated to form a consensus (Stone, 1961).
One of the main results of perception modelling is that when the uncertainty associated with each
cue available to the visual system is approximated by a Gaussian likelihood function, the average
estimate made by the ideal observer is a weighted average of the average estimates that would be de-
rived from each cue alone. More formally, denote s the parameter being estimated and {s1, . . . , sn}
a set of n cues. Assuming that the cues are conditionally independent, we can write from Bayes’
rule that

p(s|s1, . . . , sn) ∝

(
n∏

i=1

p(si|s)

)
p(s) (4)

Then assuming that the prior p(s) is uniform, i.e. all values of s are equally probable before obser-
vation, we write

p(s|s1, . . . , sn) ∝
n∏

i=1

p(si|s) (5)

Under Gaussian assumption, reasonable in light of the central limit theorem, we can define the
average (or maximum likelihood) estimate ŝ, often referred to as optimal cue integration,

ŝ =

n∑
i=1

wiŝi (6)

where wi = ri/

n∑
i=1

ri denotes the weight of cue si, ri = 1/σ2
i its reliability and σ2

i its variance.

Equation 6 is at the basis of the experiments conducted in vision research to understand how the
human visual system integrates multisensory information (Jacobs, 1999; Ernst & Banks, 2002; Knill
& Saunders, 2003; Fetsch et al., 2012).
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A.2 LASCP ALGORITHM

We keep the same notations as in Section 2. The proposed algorithm for LASCP calibration on
L-lead ECG data using a deep ensemble is as follows:

1. For each L-lead ensemble in the first calibration set I1 = {(Xi
t , yi)}i={1,...,n1} of size n1,

compute the absolute residuals ϵi = |yi − ¯̂yi| with ¯̂yi =
1

k × L

L∑
l=1

k∑
j=1

ŷl,j

2. Train a model r : (Rd)k×L → R on {(Gi, ϵi)}i={1,...,n1} with Gi the set of d-dimensional
single-lead ECG features extracted by the ensemble of k models.

3. For every sample in the second calibration set I2 = {(Xi
t , yi)}i={1,...,n2}, compute the

nonconformity score si =
|yi − ¯̂yi|
r(Gi)

. Then, compute the aforementioned quantile q̂n2
of

S = {si}i={1,...,n2}. For each new ECG sample, derive PI = [¯̂y− q̂n2r(G), ¯̂y+ q̂n2r(G)].

A.3 DATA SPLITTING

Table 2 details the number of subjects and 12-lead ECG recordings in the subsets sampled from S1
and S2.

Table 2: Number of subjects and 12-lead ECG recordings in the datasets

Dataset Split Subjects 12-lead ECGs

S1a Dtrain 22 2056
S1b I1 14 2014
S1b I2 8 1149
S2 Dval 22 4211

A.4 CONFORMAL RESIDUAL FITTING

We trained a gradient boosting regressor using Python’s Scikit-learn library (v1.1.2). The hyperpa-
rameters were optimized by cross-validated grid-search, resulting in 500 boosting stages to perform
(n estimators = 500) and a learning rate of 0.01. Table 3 details the resulting RMSE scores.

Table 3: Residual fitting evaluation

Split RMSE (ms)

I2 6.366
Dval 6.008

A.5 ECG ILLUSTRATIONS

Figure 5 illustrates prediction intervals on 2 ECGs from the same subject before the administration
of the QT-prolonging Dofetilide, i.e. at baseline, and 12 hours afterwards. The PI is tighter at
baseline where the T wave on all ECG beats are more or less prominent and end around the same
time. 12 hours later, the drug affects the ECG by lengthening the T wave and lowering its amplitude,
each lead in its own way, which increases uncertainty.

8
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Figure 5: Examples of PIs on ECGs recorded before and 12 hours after administration of Dofetilide (drug
known to prolong the QT interval) by a subject whose QT profile is illustrated in Figure 4 (id:2012). For
illustration purposes, we assume that the uncertainty in the estimation of the end of the T wave is dominant
compared to that of the QRS onset.
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