Published as a conference paper at ICLR 2025

FLUID: SCALING AUTOREGRESSIVE TEXT-TO-IMAGE
GENERATIVE MODELS WITH CONTINUOUS TOKENS

Lijie Fan™ Tianhong Li%' Siyang Qinl’T Yuanzhen Li' Chen Sun’
Michael Rubinstein! Deqing Sun' Kaiming He?> Yonglong Tian!"
'Google DeepMind  *MIT  * equal contribution, project lead ! equal contribution

Figure 1: Samples from our Fluid 10.5B autoregressive model with continuous tokens.

ABSTRACT

Scaling up autoregressive models in vision has not proven as beneficial as in large
language models. In this work, we investigate this scaling problem in the context
of text-to-image generation, focusing on two critical factors: whether models use
discrete or continuous tokens, and whether tokens are generated in a random or
fixed raster order using BERT- or GPT-like transformer architectures. Our em-
pirical results show that, while all models scale effectively in terms of validation
loss, their evaluation performance—measured by FID, GenEval score, and visual
quality—follows different trends. Models based on continuous tokens achieve
significantly better visual quality than those using discrete tokens. Furthermore,
the generation order and attention mechanisms significantly affect the GenEval
score: random-order models achieve notably better GenEval scores compared to
raster-order models. Inspired by these findings, we train Fluid, a random-order
autoregressive model on continuous tokens. Fluid 10.5B model achieves a new
state-of-the-art zero-shot FID of 6.16 on MS-COCO 30K, and 0.69 overall score
on the GenEval benchmark. We hope our findings and results will encourage fu-
ture efforts to further bridge the scaling gap between vision and language models.



Published as a conference paper at ICLR 2025

1 INTRODUCTION

Scaling laws underpin the unprecedented success of large language models (LLMs). Empirically, in-
creasing the number of parameters in autoregressive models consistently leads to significant perfor-
mance improvements and the emergence of new capabilities in natural language processing (NLP)
tasks (Devlin et al., 2018; Radford et al., 2018; Brown et al., 2020; Kaplan et al., 2020; Wei et al.,
2022). This empirical relationship has inspired numerous efforts to scale up language models, re-
sulting in the development of many highly capable models (Bubeck et al., 2023; Team et al., 2023;
Achiam et al., 2023).

Encouraged by this success, many attempts have been made to adopt and scale up autoregressive
models in computer vision, particularly for generative tasks like text-to-image generation (Yu et al.,
2021; 2023; Bai et al., 2024; El-Nouby et al., 2024). However, the performance and visual quality
of content generated by these models often fall short compared to other generative models, such as
diffusion models (Ho et al., 2020; Saharia et al., 2022; Rombach et al., 2022a; Esser et al., 2024),
leaving it unclear whether similar scaling laws apply to the vision domain.

We propose several hypotheses for the performance gap. First, the vector quantization (VQ) (van den
Oord et al., 2017) step, which is required for most visual autoregressive models, may introduce sig-
nificant information loss, ultimately limiting model performance. Second, unlike the inherently
sequential nature of language, generating visual content might benefit more from a different autore-
gressive prediction order. Third, there is often a confusion between two levels of generalizability
when evaluating scaling laws in vision models: (a) generalization to new data using the same metric
as the training loss (commonly referred to as validation loss), and (b) generalization to a new metric
or problem different from the training objective, such as FID (Heusel et al., 2017), the GenEval
benchmark (Ghosh et al., 2024), or visual quality. We hypothesize that power-law scaling (Kaplan
et al., 2020) applies to (a) for autoregressive models on vision data, but not necessarily to (b).

To investigate these hypotheses, we conduct a comprehensive empirical study on the scaling behav-
ior of autoregressive models in the context of text-to-image generation. Specifically, we explore two
key factors: whether the model operates on continuous or discrete tokens, and whether tokens are
generated in a random or fixed raster order. To this end, we utilize the Diffusion Loss (Li et al.,
2024) to make autoregressive models compatible with continuous tokens. We generalize BERT-like
vision model MaskGIT (Chang et al., 2022) as random-order autoregression, as it conceptually pre-
dicts output tokens in a randomized order while retaining the autoregressive nature of “predicting
next tokens based on known ones”. We analyze the behavior of four autoregressive variants, each
employing different combinations of these two factors. We scale their parameters from 150M to 3B
and evaluate their performance using three metrics: validation loss, FID (Heusel et al., 2017), and
GenEval score (Ghosh et al., 2024). We also inspect the visual quality of the generated images.

Our experiments indicate that VQ-based models, regardless of whether they use a random or fixed
raster order, exhibit a slower improvement in FID scores when scaling up model size compared to
models operating on continuous tokens. VQ models also produce images of lower visual quality,
likely due to information loss introduced by vector quantization.

Furthermore, the token generation order and the associated attention mechanism primarily influence
the global structure of the generated image. In the GenEval benchmark, random-order models with
bidirectional attention significantly outperform raster-order models with causal attention, particu-
larly when generating multiple objects. Random-order models can readjust the global structure at
every prediction step, whereas raster-order models cannot. This suggests that the token generation
order plays a crucial role in achieving better text-to-image alignment.

Our experiments also demonstrate that validation loss scales as a power-law with model size, no
matter whether the model operates with continuous or discrete tokens. This implies scalable behav-
ior at the level of (a) generalization—generalizing to new data using the same metric as the training
loss—which aligns with observations in language models (Kaplan et al., 2020). However, as for
generalizing to a different metric, such as FID or GenEval score, although performance consistently
improves with better validation loss, the trend may not follow a strict power-law.

Building on these findings, we scale the Fluid model, i.e., random-order model with continuous
tokens, up to 10.5B parameters and train it using the WebLlI dataset (Chen et al., 2022). The resulting
Fluid 10.5B model achieves a zero-shot FID of 6.16 on MS-COCO and a GenEval overall score of
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0.69, comparing favorably with leading text-to-image generative models such as DALL-E 3 (Betker
et al., 2023) and Stable Diffusion 3 (Esser et al., 2024). We hope that our empirical findings and
positive results could shed light on the scaling behavior for text-to-image generation models and
further innovation in this frontier.

2 RELATED WORK

Text-to-image diffusion models. The dominant approaches are based on diffusion models. Dall-
E 2 (Ramesh et al., 2022), Imagen (Ho et al., 2022), and Stable Diffusion (Rombach et al.,
2022a) revolutionized text-to-image generation. Most recently, SD v3 (Esser et al., 2024) and
Imagen3 (Baldridge et al., 2024) can generate realistic images that are hard to tell from real im-
ages. However, generating samples is usually computationally expensive due to the multiple forward
passes.

Autoregressive (AR) models. While being the defacto model for language modeling, AR models
are lagging behind diffusion models for text-to-image generation. AR models (Yu et al., 2022; Chang
etal., 2023; Li et al., 2023; Yu et al., 2023) are often used together with discrete tokenizers (van den
Oord et al., 2017; Esser et al., 2021), which often limit the modeling capability. For example,
Parti (Yu et al., 2022) scales up the model to 20B, which obtains a slightly lower/better FID score
of 7.23 on MS-COCO than 7.27 by the 3.4B diffusion-based Imagen. Here we find that, with a
continuous tokenizer, our small 369M model can already achieve the same FID score as Parti with
20B model.

Recently Li et al. (2024) challenges the conventional wisdom and replaces the discrete tokenizer
with a continuous tokenizer via a diffusion loss. They introduced masked autoregressive (MAR)
model obtains strong results for class-conditioning generation on ImageNet. However, scaling MAR
models for text-to-image generation is unexplored. Here we empirically study the scaling behavior
for MAR and report several findings important for the research community.

Scaling language models. Kaplan et al. (2020) empirically observed that, for language model, the
validation loss scales as a power-law with model size, dataset size, and the amount of compute used
for training. Hoffmann et al. (2022) discovered that contemporary LLMs are under-trained, and that
for compute-optimal training, the model size and the number of training tokens should be scaled
equally. Under the same compute budget while using 4x more more data, their 70B Chinchilla
outperforms much larger models, such as the 530B Megatron-Turing NLG (Smith et al., 2022).
Wei et al. (2022) found that larger models have emergent abilities that are not present in smaller
models. These observations have inspired significant efforts to scale up language models to trillions
of parameters (Achiam et al., 2023; Team et al., 2023; Dubey et al., 2024).

Scaling vision models. Similar scaling law has been obscure for computer vision. For recognition
models (Tan, 2019; Zhai et al., 2022; He et al., 2022; Dehghani et al., 2023), scaling often comes
with diminishing returns. For example, Dehghani et al. (2023) scale ViT up from 3B to 22B but only
observed 0.25% accuracy increase in ImageNet linear probing. The scaling of generative models is
more promising - DiT (Peebles & Xie, 2023) shows consistent improvement in generation quality
when scaling up compute and model size (despite only up to 600M). The follow-up Sora (OpenAl,
2024) further shows the potential to scale up for video generation. In this paper, we perform a
comprehensive empirical study of AR models for text-to-image generation.

3 PRELIMINARY: AUTOREGRESSIVE IMAGE GENERATION

Given a sequence of tokens {x', 2?2, ..., 2"} where the superscript 1 < i < n specifies an order,
autoregressive models (Gregor et al., 2014; van den Oord et al., 2016b;a; Parmar et al., 2018; Chen
et al., 2018; 2020) formulate the generation problem as “next token prediction”:

p(zt, ..., z™) :Hp(mi |2t . 2. (1)
i=1

Following the chain rule, the network is trained to model p(z? | 2%, ...,2*~1) and generate tokens
iteratively. While all autoregressive models share this fundamental approach, differences in their
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Figure 2: Autoregressive models with different orders. (a) A raster-order autoregressive model
predicts one next token based on the known ones, implemented using a GPT-like transformer with
causal attention. (b) A random-order autoregressive model predicts one or multiple tokens simul-
taneously given a random order, implemented using a BERT-like transformer with bidirectional
attention.

design can affect the performance. Two key design choices are the representation of x, i.e., discrete
or continuous, and the generation order, which we elaborate below.

Discrete vs. continuous tokens. The goal of an autoregressive model is to estimate
p(x® | o', ..., 2'"1). Traditionally, this is done by transforming the image into a set of discrete
tokens with a finite vocabulary and then estimating a categorical distribution over the vocabulary.
The training objective is to minimize the cross-entropy loss, and sampling can be efficiently per-
formed using categorical sampling. Most autoregressive image generation models rely on this form
of token discretization (Esser et al., 2021; Chang et al., 2022; Tian et al., 2024; Yu et al., 2022).

However, such discretization often leads to a significant loss of information from the image (Figure
4). Recent work (Li et al., 2024) has shown the possibility of applying a small diffusion model to
approximate the distribution of each image token in a continuous fashion. This approach eliminates
the need for vector quantization, and allows modeling images with continuous tokenizers which
yield much better reconstruction visual quality. In this paper, we explore the scaling behavior of
autoregressive image models on both discrete and continuous tokens.

Raster Order + GPT vs. Random Order + BERT. In autoregressive image generation, there are
two primary generation orders: raster and random. As illustrated in Figure 2, raster order generates
tokens sequentially from left to right, top to bottom. This fixed-order generation is well-suited for
a GPT-like transformer architecture, which predicts the next token in a causal manner. In contrast,
random order allows multiple tokens to be generated in each step. The selection of these tokens can
either be completely random or based on a sampling mechanism that prioritizes tokens with higher
predicted confidence scores (Chang et al. (2023); Li et al. (2024)).

Each generation order has its pros and cons. Raster order models with GPT-like transformer sup-
port fast inference via key-value (kv) caching. However, this causal structure can also introduce
performance degradation. On the other hand, random order generation is usually achieved with a
BERT-like bidirectional attention mechanism. While this approach prevents the usage of kv-caching,
it enables the model to decode multiple tokens at each autoregressive step, allowing global editing.
Despite their individual strengths, it remains unclear in the literature which generation order scales
better for text-to-image generation tasks. In this work, we compare the performance and scaling
behaviors of raster-order and random-order autoregressive models.

4 IMPLEMENTATION

The overall framework of our text-to-image model training is straightforward. An image tokenizer
first converts the original image into tokens. These tokens are then partially masked, and a trans-
former is trained to reconstruct the masked tokens conditioned on the text. Below, we provide a
detailed description of each component of our framework (shown in Figure 3).
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Figure 3: Our text-to-image generation framework. A pre-trained image tokenizer converts the
image into either discrete or continuous tokens. The text is embedded using a pre-trained TS en-
coder, followed by a trainable text aligner. The transformer then takes cross-attention from the text
embeddings to predict the missing tokens (only random order model is shown here).

Image Tokenizer. We use a pre-trained
image tokenizer to encode 256x256 im-
ages into a token space. Such a tok-
enizer can be either discrete or continu-
ous, facilitating different training objec-
tives of the autoregressive model. In our
experiments, the discrete tokenizer is an
VQGAN model (Esser et al., 2021) pre-
trained on the WebLlI dataset (Chen et al., PSNR: 26.6 PSNR: 31.5
2022).  We follow Muse (Chang et al., Figure 4: Reconstruction quality of the tokenizers.
2023) to encode each image into 16X16 Image resolution is 256x256. The discrete tokenizer is
discrete tokens with a vocabulary size of significantly worse than the continuous tokenizer.
8192. For the continuous tokenizer, we

adopt a widely-used one from Stable Diffusion (Rombach et al., 2022b), which encodes the im-
age into 32x 32 continuous tokens, each containing 4 channels. To be consistent in sequence length
with the discrete tokenizer, we further group each 2x2 patch of continuous tokens into a single to-
ken, resulting in a final sequence length of 256, with each token containing 16 channels. As shown
in Figure 4, the continuous tokenizer can achieve notably higher reconstruction quality than the
discrete one.

Original Discrete Continuous

Text Encoder. The raw text (maximum length of 128) is tokenized by SentencePiece (Kudo, 2018),
and embedded through a pre-trained T5-XXL encoder (Raffel et al., 2020), which has 4.7B param-
eters and is frozen during training. To further align the text embeddings for image generation, we
add a small text aligner consisting of six trainable transformer blocks on top of the TS5 embeddings,
to extract the final text representation.

Transformer. After encoding the original image into a sequence of tokens, we use a standard
decoder-only transformer model (Vaswani et al., 2017) for autoregressive generation. Each block
consists of three consecutive layers — self-attention, cross-attention, and MLP. The self-attention
and MLP layers are only applied to visual tokens, while the cross attention layer takes visual and
textual tokens as queries and keys, respectively. As shown in Figure 2, for raster-order models,
the transformer predicts the next token based on previous tokens using causal attention for the self-
attention block, similar to GPT. In random-order models, unknown tokens are masked by a learnable
token, and the transformer predicts these masked tokens using bidirectional attention, similar to
BERT.

Output head. For discrete tokens, we follow the common practice with autoregressive models. The
outputs are transformed into categorical distributions by softmax following a linear layer, whose
weights are reused from the input embedding layer. For continuous tokens, we apply a six layer
light-weight MLP as the diffusion head (Li et al., 2024) to model the per-token distribution. The
embedding dimension of this head is the same as the backbone transformer. The per-token diffusion
process follows (Nichol & Dhariwal, 2021; Li et al., 2024). The noise schedule has a cosine shape,
with 1000 steps at training time; at inference time, it is resampled to 100 steps.
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5 EXPERIMENTS

Dataset. We use a subset of the WebLI (Web Language Image) dataset (Chen et al., 2022) as our
training set, which consists of image-text pairs from the web with high scores for both image quality
and alt-text relevance. By default, the images are center-cropped and resized to 256 x256.

Training. Unless otherwise specified, we use the AdamW optimizer (5, = 0.9,82 = 0.95)
(Loshchilov & Hutter, 2019) with a weight decay of 0.02 to train each model for 1M steps with
a batch size of 2048. This is equivalent to approximately 3 epochs on our dataset. For continuous
tokens, we employ a constant learning rate schedule with a 65K-step linear warmup and a maximum
learning rate of 1 X 10~*; for discrete tokens, we use a cosine learning rate schedule as we find it to
be better. For training the random-order models, we randomly sample the masking ratio from [0, 1]
following a cosine schedule, similar to MaskGIT (Chang et al., 2022), to mask each image. For all
models, exponential moving average of the weights are gathered by a decay rate of 0.9999 and then
used for evaluation.

Inference. We follow the practices established by Imagen (Saharia et al., 2022), Muse (Chang
et al., 2023), and Parti (Yu et al., 2022) to generate images from text prompts without rejection
sampling. For random-order models, we use 64 steps for generation with a cosine schedule (Chang
et al., 2022). To further enhance generation performance, we apply temperature and classifier-free
guidance, as is commonly practiced.

Evaluation. We evaluate the scaling behavior of different autoregressive model variants both
quantitatively and qualitatively. Quantitatively, we evaluate the validation loss on 30K images
from the MS-COCO 2014 training set, as well as two widely-adopted metrics: zero-shot Frechet
Inception Distance (FID) on MS-COCO, and the GenEval score (Ghosh et al., 2024). Inference
hyper-parameters, such as temperature and classifier-free guidance, are optimized for each evalu-
ation metric. FID is computed over 30K randomly selected image-text pairs from the MS-COCO
2014 training set, providing a metric that evaluates both the fidelity and diversity of generated im-
ages. The GenEval benchmark, on the other hand, measures the model’s ability to generate images
that accurately reflect the given prompt. For qualitative evaluation, we generate images from several
prompts using each model and compare the visual quality of the generated images.

5.1 SCALING BEHAVIORS

In this section, we explore how two key design choices in autoregressive image generative models—
token representation and generation order—affect performance and scaling behavior. We construct
models with different combinations of these two design choices, resulting in four distinct variants
of autoregressive image generation models. We also explore the generalizability of these models
across different data and evaluation metrics. Our experiments reveal several intriguing properties.

Validation losses consistently scale with model size. In Figure 5, we examine the scaling behav-
ior of the four autoregressive variants in terms of validation loss. We observe a linear relationship
between validation loss and model size in the log space, as we increases model size from 150 mil-
lion to 3 billion parameters. This aligns with the power-law finding in Henighan et al. (2020). This
demonstrates that the improvements in training loss resulting from increased model size generalize
well to validation loss on data different from the training data.

Random-order models with continuous tokens scale the best in evaluation scores. In Figure
6, we analyze the scaling behavior of the four autoregressive variants in terms of FID and GenEval
overall scores. We find that the improvements observed in validation loss do not always translate
linearly to better evaluation metrics, implying that there is no strict power-law relationship between
these metrics and model size. For example, raster-order models with discrete tokens (blue line)
reach a plateau in both FID and GenEval scores around 1B parameters. Among the four variants,
random-order models with continuous tokens (i.e., Fluid) show consistent improvements in evalua-
tion metrics up to 3B parameters, achieving the best overall performance. Therefore, we focus on
further investigating the scaling behavior of this model.
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Figure 5: Validation loss scales as a power-law with model size. The validation loss is evaluated
on 30K images randomly sampled from the MS-COCO 2014 training set. The x and y axes are in
log-scale. The change in y is relatively small for each plot, making the log-scale alike linear-scale.
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Figure 6: Random-order models using continuous tokens (orange) achieve the best perfor-
mance on evaluation metrics. FID (lower is better) is evaluated on 30K images randomly sampled
from the MS-COCO 2014 training set, while the GenEval overall score (higher is better) is as-
sessed using the 553 prompts provided by the official benchmark, with four images generated for
each prompt. Among all models, random-order models on continuous tokens consistently show an
improvement in evaluation metrics as model size increases and achieve the best FID and GenEval

SCOres.

Random-order models with continuous tokens scale with training computes. In Figure 7, we
plot validation loss, FID, and GenEval scores as functions of total training steps and compute for
different model sizes of Fluid. We observe consistent improvements in both validation loss and
evaluation performance with increased training steps and compute. However, the benefits from
additional training steps saturate around 1M steps, indicating that training smaller models for more
steps is less compute-efficient compared to training larger models for fewer steps. This behavior
aligns with observations in language models, highlighting the potential for scaling up model sizes
with sufficient training.

Strong correlation between validation loss and evaluation metrics. In Figure 8, we plot FID
and GenEval scores against validation loss for different model sizes of Fluid and observe a strong
correlation. To quantify this, we fit the data points using linear regression. The Pearson correlation
coefficients for FID and GenEval scores are 0.917 and -0.931, respectively, indicating a nearly linear
relationship between validation loss and these evaluation metrics across model sizes ranging from
150M to 3B'. Encouraged by this positive trend, we trained a model with 10.5B parameters and a
batch size of 4096 for 1M steps, achieving state-of-the-art text-to-image generation performance, as
discussed in the next section.

!Since both FID and GenEval scores have lower/upper bounds, this linear relationship cannot hold indefi-
nitely. Future work should explore the limits of this correlation.
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Figure 7: Validation losses and evaluation performance scale with increasing training steps and
computes. We use random-order models with continuous tokens. Results for other autoregressive
variants are included in the appendix. The training compute is computed as model GFLOPs xbatch
size x training steps x 3, where the factor of 3 accounts for the backward pass being approximately
twice as compute-intensive as the forward pass.
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Figure 8: Validation loss and evaluation metrics are highly correlated. We use random-order
models with continuous tokens. The Pearson correlation coefficients for FID and GenEval scores
are 0.917 and -0.931, respectively. We also observe that the linear correlation slightly weakens and
becomes less pronounced for the 3.1B model.

Continuous tokens and large models are crucial for visual quality. In Figure 9, we compare the
visual quality of images generated by the four autoregressive variants. The visual quality of models
using discrete tokens is significantly worse than that of models using continuous tokens, e.g., the
eyes of the corgi is asymmetric for discrete token based models and scaling up can not solve this
problem. This limitation is largely because of the discrete tokenizer, which introduces substantial
information loss. For instance, even with 3B parameters, the discrete token models cannot generate
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Figure 9: Visual quality and image-text alignment improves with increasing model size. Best
viewed zoomed-in. Fluid @ achieves the highest visual quality and best image-text alignment.

an accurate Mona Lisa due to poor reconstruction quality of the tokenizer (Figure 4). In contrast,
models with continuous tokens produce much higher-quality images.

Additionally, larger models show consistent improvements in both visual quality and image-text
alignment. For example, a random-order model with 0.2B parameters struggles to generate “a
angry duck doing heavy Welghthftlng at the gym”, while the same model with 3B parameters can
generate the correspondlng images successfully. This demonstrates that modeling continuous to-
kens and increasing model size are crucial for achieving high visual quality in autoregressive image
generation models.
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Table 1: System-level comparison. Fluid achieves leading results on both MS-COCO zero-shot
FID-30K and GenEval benchmark (Gh()Sh et al., 2024). t: CM3Leon result is reported without retrieval.

MS-COCO GenEval
#params | FID-30K| | Single Obj. Two Obj. Counting Colors Position Color Attri. ‘ Overall
diffusion model
LDM 1.4B 12.64 0.92 0.29 0.23 0.70 0.02 0.05 0.37
DALL-E 2 4.2B 10.39 0.94 0.66 0.49 0.77 0.10 0.19 0.52
DALL-E 3 - - 0.96 0.87 0.47 0.83 0.43 0.45 0.67
Imagen 3B 7.27 - - - - - - -
SD3 8B - 0.98 0.84 0.66 0.74 0.40 0.43 0.68
Transfusion 7.3B 6.78 - - - - - - 0.63
RAPHAEL 3B 6.61 - - - - - - -
autoregressive model
CM3Leon' 7B 10.82 - - - - - - -
Show-o 1.3B 9.24 0.95 0.52 0.49 0.82 0.11 0.28 0.53
Muse 3B 7.88 - - - - - - -
Parti 20B 7.23 - - - - - - -
Fluid (our work) | 369M 7.23 0.96 0.64 0.53 0.78 0.33 0.46 0.62
665M 6.84 0.96 0.73 0.51 0.77 0.42 0.51 0.65
1.1B 6.59 0.96 0.77 0.61 0.78 0.34 0.53 0.67
3.1B 6.41 0.98 0.83 0.60 0.82 0.41 0.53 0.70
10.5B 6.16 0.96 0.83 0.63 0.80 0.39 0.51 0.69

5.2 BENCHMARKING WITH PREVIOUS SYSTEMS

In this section, we compare our Fluid, i.e., continuous random-order autoregressive model, with
leading text-to-image generation systems in Table 1 (Rombach et al., 2022b; Ramesh et al., 2022;
Betker et al., 2023; Saharia et al., 2022; Esser et al., 2024; Zhou et al., 2024; Xue et al., 2024; Yu
et al., 2023; Xie et al., 2024; Chang et al., 2023; Yu et al., 2022). The Fluid smallest model, with
369M parameters, achieves a zero-shot FID of 7.23 on MS-COCO and a GenEval overall score of
0.62, matching the performance of many state-of-the-art models with several billion parameters (e.g.,
Parti with 20B parameters only achieves 7.23). The Fluid largest model, with 10.5B parameters,
further improves the zero-shot FID on MS-COCO to 6.16 and increases the GenEval overall score
t0 0.69°, with a speed of 1.571 seconds per image per TPU (evaluated on 32 TPU v5 with a batch size
of 2048). Detailed model configurations and generation speed results are included in the appendix.
We hope these strong results and promising scaling behavior provide valuable insights and support
for the scalability of autoregressive models in visual generative modeling.

6 DISCUSSION

In this paper, we present an empirical study on the scaling behavior of autoregressive models for
text-to-image generation. We investigate two critical design factors: random order versus raster
order, and discrete tokens versus continuous tokens. Our results show that random-order models
with continuous tokens achieve the best performance and scaling behavior across various evaluation
metrics and in terms of visual quality. Building on these findings, we scale up the random-order
model with continuous tokens, namely Fluid, to 10.5B parameters, and achieves state-of-the-art text-
to-image generation performance. We hope that our findings and promising results could provide
valuable insights into the scaling behavior of autoregressive models for image generation and help
bridge the gap between the scaling performance of vision models and language models.

Reproducibility Statement. To aid reproducibility, we have provided the implementation details
of our framework in Section 4, training hyper-parameters in Section 5, and model configurations
in the appendix. For the diffusion loss used for continuous tokens, we have strictly followed the
open-sourced code of Li et al. (2024).
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2We observe that the GenEval scores plateau for the 10.5B Fluid compared to the 3.1B Fluid; however, it
continues to show consistent improvements in visual quality and FID.
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