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Figure 1: Samples from our Fluid 10.5B autoregressive model with continuous tokens. Please see
the appendix for the text prompts to generate these images.

ABSTRACT

Scaling up autoregressive models in vision has not proven as beneficial as in large
language models. In this work, we investigate this scaling problem in the context
of text-to-image generation, focusing on two critical factors: whether models use
discrete or continuous tokens, and whether tokens are generated in a random or
fixed raster order using BERT- or GPT-like transformer architectures. Our em-
pirical results show that, while all models scale effectively in terms of validation
loss, their evaluation performance—measured by FID, GenEval score, and visual
quality—follows different trends. Models based on continuous tokens achieves
significantly better visual quality than those using discrete tokens. Furthermore,
the generation order and attention mechanisms significantly affect the GenEval
score: random-order models achieve notably better GenEval scores compared to
raster-order models. Inspired by these findings, we train Fluid, a random-order
autoregressive model on continuous tokens. Fluid 10.5B model achieves a new
state-of-the-art zero-shot FID of 6.16 on MS-COCO 30K, and 0.69 overall score
on the GenEval benchmark. We hope our findings and results will encourage fu-
ture efforts to further bridge the scaling gap between vision and language models.
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1 INTRODUCTION

Scaling laws underpin the unprecedented success of large language models (LLMs). Empirically, in-
creasing the number of parameters in autoregressive models consistently leads to significant perfor-
mance improvements and the emergence of new capabilities in natural language processing (NLP)
tasks (Devlin et al., 2018; Radford et al., 2018; Brown et al., 2020; Kaplan et al., 2020; Wei et al.,
2022). This empirical relationship has inspired numerous efforts to scale up language models, re-
sulting in the development of many highly capable models (Bubeck et al., 2023; Team et al., 2023;
Achiam et al., 2023).

Encouraged by this success, many attempts have been made to adopt and scale up autoregressive
models in computer vision, particularly for generative tasks like text-to-image generation (Yu et al.,
2021; 2023; Bai et al., 2024; El-Nouby et al., 2024). However, the performance and visual quality
of content generated by these models often fall short compared to other generative models, such as
diffusion models (Ho et al., 2020; Saharia et al., 2022; Rombach et al., 2022a; Esser et al., 2024),
leaving it unclear whether similar scaling laws apply to the vision domain.

We propose several hypotheses for the performance gap. First, the vector quantization (VQ) (van den
Oord et al., 2017) step, which is required for most visual autoregressive models, may introduce sig-
nificant information loss, ultimately limiting model performance. Second, unlike the inherently
sequential nature of language, generating visual content might benefit more from a different autore-
gressive prediction order. Third, there is often a confusion between two levels of generalizability
when evaluating scaling laws in vision models: (a) generalization to new data using the same metric
as the training loss (commonly referred to as validation loss), and (b) generalization to a new metric
or problem different from the training objective, such as FID (Heusel et al., 2017), the GenEval
benchmark (Ghosh et al., 2024), or visual quality. We hypothesize that power-law scaling (Kaplan
et al., 2020) applies to (a) for autoregressive models on vision data, but not necessarily to (b).

To investigate these hypotheses, we conduct a comprehensive empirical study on the scaling behav-
ior of autoregressive models in the context of text-to-image generation. Specifically, we explore two
key factors: whether the model operates on continuous or discrete tokens, and whether tokens are
generated in a random or fixed raster order. To this end, we utilize the Diffusion Loss (Li et al.,
2024) to make autoregressive models compatible with continuous tokens. We generalize BERT-like
vision model MaskGIT (Chang et al., 2022) as random-order autoregression, as it conceptually pre-
dicts output tokens in a randomized order while retaining the autoregressive nature of “predicting
next tokens based on known ones”. We analyze the behavior of four autoregressive variants, each
employing different combinations of these two factors. We scale their parameters from 150M to 3B
and evaluate their performance using three metrics: validation loss, FID (Heusel et al., 2017), and
GenEval score (Ghosh et al., 2024). We also inspect the visual quality of the generated images.

Our experiments indicate that VQ-based models, regardless of whether they use a random or fixed
raster order, exhibit a slower improvement in FID scores when scaling model size compared to
models operating on continuous tokens. VQ models also produce images of lower visual quality,
likely due to information loss introduced by vector quantization.

Furthermore, the token generation order and the associated attention mechanism primarily influence
the global structure of the generated image. In the GenEval benchmark, random-order models with
bidirectional attention significantly outperform raster-order models with causal attention, particu-
larly when generating multiple objects. Random-order models can readjust the global structure at
every prediction step, whereas raster-order models cannot. This suggests that the token generation
order plays a crucial role in achieving better text-to-image alignment.

Our experiments also demonstrate that validation loss scales as a power-law with model size, no
matter whether the model operates with continuous or discrete tokens. This implies scalable behav-
ior at the level of (a) generalization—generalizing to new data using the same metric as the training
loss—which aligns with observations in language models (Kaplan et al., 2020). However, as for
generalizing to a different metric, such as FID or GenEval score, although performance consistently
improves with better validation loss, the trend may not follow a strict power-law.

Building on these findings, we scale the Fluid model, i.e., random-order model with continuous
tokens, up to 10.5B parameters and train it using the WebLI dataset (Chen et al., 2022). The resulting
Fluid 10.5B model achieves a zero-shot FID of 6.16 on MS-COCO and a GenEval overall score of
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0.69, comparing favorably with leading text-to-image generative models such as DALL-E 3 (Betker
et al., 2023) and Stable Diffusion 3 (Esser et al., 2024). We hope that our empirical findings and
positive results could shed light on the scaling behavior for text-to-image generation models and
further innovation in this frontier.

2 RELATED WORK

Text-to-image diffusion models. The dominant approaches are based on diffusion models. Dall-E
2 (OpenAI, 2023), Imagen (Ho et al., 2022), and Stable Diffusion (Rombach et al., 2022a) revolu-
tionized text-to-image generation. Most recently, MidJourney (Midjourney, 2023), SD v3 (Esser
et al., 2024), and Imagen3 (Baldridge et al., 2024) can generate realistic images that are hard to
tell from real images. However, generating samples is usually computationally expensive due to the
multiple forward passes.

Autoregressive (AR) models. While being the defacto model for language modeling, AR models
are lagging behind diffusion models for text-to-image generation. AR models (Yu et al., 2022;
Chang et al., 2023; Yu et al., 2023) are often used together with discrete tokenizers (van den Oord
et al., 2017; Esser et al., 2021), which often limit the modeling capability. For example, Parti (Yu
et al., 2022) scales up the model to 20B, which obtains a slightly lower/better FID score of 7.23
on MS-COCO than 7.27 by the 3.4B diffusion-based Imagen. Here we find that, with a continuous
tokenizer, our small 369M model can already achieve the same FID score as Parti.

Recently Li et al. (2024) challenges the conventional wisdom and replaces the discrete tokenizer
with a continuous tokenizer via a diffusion loss. They introduced masked autoregressive (MAR)
model obtains strong results for class-conditioning generation on ImageNet. However, scaling MAR
models for text-to-image generation is unexplored. Here we empirically study the scaling behavior
for MAR and report several findings important for the research community.

Scaling language models. Kaplan et al. (2020) empirically observed that, for language model, the
validation loss scales as a power-law with model size, dataset size, and the amount of compute used
for training. Hoffmann et al. (2022) discovered that contemporary LLMs are under-trained, and that
for compute-optimal training, the model size and the number of training tokens should be scaled
equally. Under the same compute budget while using 4x more more data, their 70B Chinchilla
outperforms much larger models, such as the 530B Megatron-Turing NLG (Smith et al., 2022).
Wei et al. (2022) found that larger models have emergent abilities that are not present in smaller
models. These observations have inspired significant efforts to scale up language models to trillions
of parameters (Achiam et al., 2023; Team et al., 2023; Dubey et al., 2024).

Scaling vision models. Similar scaling law has been obscure for computer vision. For recognition
models (Tan, 2019; Zhai et al., 2022; He et al., 2022; Dehghani et al., 2023), scaling often comes
with diminishing returns. For example, Dehghani et al. (2023) scale ViT up from 3B to 22B but only
observed 0.25% accuracy increase in ImageNet linear probing. The scaling of generative models is
more promising - DiT (Peebles & Xie, 2023) shows consistent improvement in generation quality
when scaling up compute and model size (despite only up to 600M). The follow-up Sora (OpenAI,
2024) further shows the potential to scale up for video generation. In this paper, we perform a
comprehensive empirical study of AR models for text-to-image generation and our findings shed
light on closing the gap in scaling behavior between vision and language generative models.

3 PRELIMINARY: AUTOREGRESSIVE IMAGE GENERATION

Given a sequence of tokens {x1, x2, ..., xn} where the superscript 1 ≤ i ≤ n specifies an order,
autoregressive models (Gregor et al., 2014; van den Oord et al., 2016b;a; Parmar et al., 2018; Chen
et al., 2018; 2020) formulate the generation problem as “next token prediction”:

p(x1, ..., xn) =

n∏
i=1

p(xi | x1, ..., xi−1). (1)

Following the chain rule, the network is trained to model p(xi | x1, ..., xi−1) and generate tokens
iteratively. While all autoregressive models share this fundamental approach, differences in their
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to predict at this step unknownknown/predicted

loss loss loss loss loss loss

[s] 1 2 3 4 5 1 4 6

61 2 3 4 5 1 4

[m][m] [m]

loss loss loss

(a) Raster Order, Causal Attention (b) Random Order, Bidirectional Attention

Figure 2: Autoregressive models with different orders. (a) A raster-order autoregressive model
predicts one next token based on the known ones, implemented using a GPT-like transformer with
causal attention. (b) A random-order autoregressive model predicts one or multiple tokens simul-
taneously given a random order, implemented using a BERT-like transformer with bidirectional
attention.

design can affect the performance. Two key design choices are the representation of x, i.e., discrete
or continuous, and the generation order, which we elaborate below.

Discrete vs. continuous tokens. The goal of an autoregressive model is to estimate
p(xi | x1, ..., xi−1). Traditionally, this is done by transforming the image into a set of discrete
tokens with a finite vocabulary and then estimating a categorical distribution over the vocabulary.
The training objective is to minimize the cross-entropy loss, and sampling can be efficiently per-
formed using categorical sampling. Most autoregressive image generation models rely on this form
of token discretization (Esser et al., 2021; Chang et al., 2022; Tian et al., 2024; Yu et al., 2022).

However, such discretization often leads to a significant loss of information from the image (Fig-
ure 3). Recent work (Li et al., 2024) has shown the possibility of applying a small diffusion model to
approximate the distribution of each image token in a continuous fashion. This approach eliminates
the need for vector quantization, and allows modeling images with continuous tokenizers with much
better visual reconstruction quality. In this paper, we explore the scaling behavior of autoregressive
image models on both discrete and continuous tokens.

Raster Order + GPT vs. Random Order + BERT. In autoregressive image generation, there are
two primary generation orders: raster and random. As illustrated in Figure 2, raster order generates
tokens sequentially from left to right, top to bottom. This fixed-order generation is well-suited for
a GPT-like transformer architecture, which predicts the next token in a causal manner. In contrast,
random order allows multiple tokens to be generated in each step. The selection of these tokens can
either be completely random or based on a sampling mechanism that prioritizes tokens with higher
predicted confidence scores (Chang et al. (2023); Li et al. (2024)).

Each generation order has its pros and cons. Raster order models with GPT-like transformer sup-
port fast inference via key-value (kv) caching. However, this causal structure can also introduce
performance degradation. On the other hand, random order generation is usually achieved with a
BERT-like bidirectional attention mechanism. While this approach prevents the usage of kv-caching,
it enables the model to decode multiple tokens at each autoregressive step, allowing global editing.
Despite their individual strengths, it remains unclear in the literature which generation order scales
better for text-to-image generation tasks. In this work, we compare the performance and scaling
behaviors of raster-order and random-order autoregressive models.

4 IMPLEMENTATION

The overall framework of our text-to-image model training is straightforward. An image tokenizer
first converts the original image into tokens. These tokens are then partially masked, and a trans-
former is trained to reconstruct the masked tokens conditioned on the text. Below, we provide a
detailed description of each component of our framework.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Original Discrete Continuous

PSNR: 26.6 PSNR: 31.5

Figure 3: Reconstruction quality of the tokenizers
we used. The discrete tokenizer is significantly worse
than the continuous tokenizer.

Image Tokenizer. We use a pre-trained
image tokenizer to encode 256×256 im-
ages into a token space. Such a tok-
enizer can be either discrete or continu-
ous, facilitating different training objec-
tives of the autoregressive model. In our
experiments, the discrete tokenizer is an
VQ-based model pre-trained on the We-
bLI dataset (Chen et al., 2022). We fol-
low Muse (Chang et al., 2023) to encode
each image into 16×16 discrete tokens
with a vocabulary size of 8192. For the
continuous tokenizer, we adopt a widely-
used one from Stable Diffusion (Rombach
et al., 2022b), which encodes the image
into 32×32 continuous tokens, each containing 4 channels. To be consistent in sequence length
with the discrete tokenizer, we further group each 2×2 patch of continuous tokens into a single to-
ken, resulting in a final sequence length of 256, with each token containing 16 channels. As shown in
Figure 3, the continuous tokenizer can achieve notably better reconstruction quality than the discrete
one.

Text Encoder. The raw text (maximum length of 128) is tokenized by SentencePiece tokeniza-
tion (SentencePiece, 2023), and embedded with a pre-trained T5-XXL encoder (Raffel et al., 2020),
which has 4.7B parameters and is frozen during training. To further align the text embeddings for
image generation, we add a small bidirectional text aligner consisting of six trainable transformer
blocks on top of the T5 embeddings to extract the final text representation.

Image
Tokenizer

Transformer

Mona Lisa

T5 Text
Encoder

Text Aligner
Cross

Attention

Frozen

Trainable

Figure 4: Our text-to-image generation frame-
work. We use a pre-trained image tokenizer to
convert the image into either discrete or contin-
uous tokens. The corresponding text is embed-
ded using a pre-trained T5 encoder, followed by a
trainable text aligner. The transformer then takes
cross-attention from the text embeddings to pre-
dict the missing tokens.

Transformer. After encoding the original im-
age into a token sequence using an image tok-
enizer, we use a standard decoder-only trans-
former model (Vaswani et al., 2017) for au-
toregressive generation. Each block consists of
three consecutive layers – self-attention, cross-
attention, and MLP. The self-attention and MLP
layers are only applied to visual tokens, while
the cross attention layer takes visual and tex-
tual tokens as queries and keys, respectively.
As shown in Figure 2, for raster-order models,
the transformer predicts the next token based on
previous tokens using causal attention for the
self-attention block, similar to GPT. In random-
order models, unknown tokens are masked by
a learnable token, and the transformer predicts
these masked tokens using bidirectional atten-
tion, similar to BERT.

Output head. For discrete tokens, we follow
the common practice with autoregressive mod-
els. The outputs are transformed into categori-
cal distributions by softmax following a linear
layer, whose weights are reused from the input
embedding layer. For continuous tokens, we
apply a six layer light-weight MLP as the dif-
fusion head (Li et al., 2024) to model the per-
token distribution. The embedding dimension
of this head is the same as the backbone trans-
former. The per-token diffusion process follows (Nichol & Dhariwal, 2021; Li et al., 2024). The
noise schedule has a cosine shape, with 1000 steps at training time; at inference time, it is resampled
to 100 steps.
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5 EXPERIMENTS

Dataset. We use a subset of the WebLI (Web Language Image) dataset (Chen et al., 2022) as our
training set, which consists of image-text pairs from the web with high scores for both image quality
and alt-text relevance. By default, the images are center-cropped and resized to 256×256, and the
text is the corresponding alt-text of each image.

Training. Unless otherwise specified, we use the AdamW optimizer (β1 = 0.9, β2 = 0.95)
(Loshchilov & Hutter, 2019) with a weight decay of 0.02 to train each model for 1M steps with
a batch size of 2048. This is equivalent to approximately 3 epochs on our dataset. We employ
a constant learning rate schedule with a 65K-step linear warmup and a maximum learning rate of
1× 10−4. For training the random-order models, we randomly sample the masking ratio from [0, 1]
following a cosine schedule, similar to MaskGIT (Chang et al., 2022), to mask each image. For all
models, exponential moving average of the weights are gathered by a decay rate of 0.9999 and then
used for evaluation.

Inference. We follow the practices established by VQGAN (Esser et al., 2021), Muse (Chang
et al., 2023), and MAR (Li et al., 2024) to generate images from text prompts. For random-order
models, we use 64 steps for image generation with a cosine schedule (Chang et al., 2022). To further
enhance generation performance, we apply temperature and classifier-free guidance, as is commonly
practiced.

Evaluation. We evaluate the scaling behavior of different autoregressive model variants both
quantitatively and qualitatively. Quantitatively, we evaluate the validation loss on 30K images
from the MS-COCO 2014 training set, as well as two widely-adopted metrics: zero-shot Frechet
Inception Distance (FID) on MS-COCO, and the GenEval score (Ghosh et al., 2024). Inference
hyper-parameters, such as temperature and classifier-free guidance, are optimized for each evalu-
ation metric. FID is computed over 30K randomly selected image-text pairs from the MS-COCO
2014 training set, providing a metric that evaluates both the fidelity and diversity of generated im-
ages. The GenEval benchmark, on the other hand, measures the model’s ability to generate images
that accurately reflect the given prompt. For qualitative evaluation, we generate images from several
prompts using each model and compare the visual quality of the generated images.

5.1 SCALING BEHAVIORS

In this section, we explore how two key design choices in autoregressive image generative models—
token representation and generation order—affect performance and scaling behavior. We construct
models with different combinations of these two design choices, resulting in four distinct variants
of autoregressive image generation models. We also explore the generalizability of these models
across different data and evaluation metrics. Our experiments reveal several intriguing properties.

Validation losses consistently scale with model size. In Figure 5, we examine the scaling behav-
ior of the four autoregressive variants in terms of validation loss. We observe consistent reductions
in validation loss as model size increases from 150 million to 3 billion parameters, which aligns
with the findings in Henighan et al. (2020). This demonstrates that the improvements in training
loss resulting from increased model size generalize well to validation loss on data different from the
training data.

Continuous tokens and large models are crucial for visual quality. In Figure 7, we compare the
visual quality of images generated by the four autoregressive variants. The visual quality of models
using discrete tokens is significantly worse than that of models using continuous tokens, e.g., the
eyes of the corgi is asymmetric for discrete token based models and scaling up can not solve this
problem. This limitation is largely because of the discrete tokenizer, which introduces substantial
information loss. For instance, even with 3B parameters, the discrete token models cannot generate
an accurate Mona Lisa due to poor reconstruction quality of the tokenizer (Figure 3). In contrast,
models with continuous tokens produce much higher-quality images.

Additionally, larger models show consistent improvements in both visual quality and image-text
alignment. For example, a random-order model with 0.2B parameters struggles to generate “an
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Figure 5: Validation loss scales as a power-law with model size. The validation loss is evaluated
on 30K images randomly sampled from the MS-COCO 2014 training set. The x and y axes are in
log-scale. The change in y is relatively small for each plot, making the log-scale alike linear-scale.
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Figure 6: Random-order models using continuous tokens (orange) achieve the best perfor-
mance on evaluation metrics. FID (lower is better) is evaluated on 30K images randomly sampled
from the MS-COCO 2014 training set, while the GenEval overall score (higher is better) is as-
sessed using the 553 prompts provided by the official benchmark, with four images generated for
each prompt. Among all models, random-order models on continuous tokens consistently show an
improvement in evaluation metrics as model size increases and achieve the best FID and GenEval
scores.

angry duck doing heavy weightlifting at the gym”, while the same model with 3B parameters can
generate the corresponding images successfully. This demonstrates that modeling continuous to-
kens and increasing model size are crucial for achieving high visual quality in autoregressive image
generation models.

Random-order models with continuous tokens scale best in evaluation scores. In Figure 6, we
analyze the scaling behavior of the four autoregressive variants in terms of FID and GenEval overall
scores. We find that the improvements observed in validation loss do not always translate to better
evaluation metrics. For example, raster-order models with discrete tokens (blue line) reach a plateau
in both FID and GenEval scores around 1B parameters. Among the four variants, random-order
models with continuous tokens (i.e., Fluid) show consistent improvements in evaluation metrics up
to 3B parameters, achieving the best overall performance. Therefore, we focus on further investi-
gating the scaling behavior of this model in the remaining section.

Random-order models with continuous tokens scale with training computes. In Figure 8, we
plot validation loss, FID, and GenEval scores as functions of total training steps and compute for
different model sizes of Fluid. We observe consistent improvements in both validation loss and
evaluation performance with increased training steps and compute. However, the benefits from
additional training steps saturate around 1M steps, indicating that training smaller models for more
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An angry duck doing heavy weightlifting at the gym. Mona Lisa in winter

A group of three teddy bears in suit in an office celebrating the 
birthday of their friend. There is a pizza cake on the desk.

A corgi.

A photo of a smiling person with snow goggles on 
holding a snowboard

graffiti of a panda with snow goggles snowboarding on a street wall.
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Increasing Model Size
0.2B    0.4B        0.7B       1.1B       3.1B 0.2B     0.4B          0.7B       1.1B       3.1B

Figure 7: Visual quality and image-text alignment improves with increasing model size.
Random-order (Rand.) models with continuous tokens (Cont.) achieve the highest visual quality
and best image-text alignment (top row). Best viewed with zoom-in for details.

steps is less compute-efficient compared to training larger models for fewer steps. This behavior
aligns with observations in language models, highlighting the potential for scaling up model sizes
with sufficient training.

Strong correlation between validation loss and evaluation metrics. In Figure 9, we plot FID
and GenEval scores against validation loss for different model sizes of Fluid and observe a strong
correlation. To quantify this, we fit the data points using linear regression. The Pearson correlation
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Figure 8: Validation losses and evaluation performance scale with increasing training steps and
computes. We use random-order models with continuous tokens. Results for other autoregressive
variants are included in the appendix. The training compute is computed as model GFLOPs×batch
size×training steps×3, where the factor of 3 accounts for the backward pass being approximately
twice as compute-intensive as the forward pass.
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Figure 9: Validation loss and evaluation metrics are highly correlated. We use random-order
models with continuous tokens. The Pearson correlation coefficients for FID and GenEval scores
are 0.917 and -0.931, respectively. We also observe that the linear correlation slightly weakens and
becomes less pronounced for the 3.1B model.

coefficients for FID and GenEval scores are 0.917 and -0.931, respectively, indicating a nearly linear
relationship between validation loss and these evaluation metrics across model sizes ranging from
150M to 3B1. Encouraged by this positive trend, we trained a model with 10.5B parameters and a
batch size of 4096 for 1M steps, achieving state-of-the-art text-to-image generation performance, as
discussed in the next section.

1Since both FID and GenEval scores have lower/upper bounds, this linear relationship cannot hold indefi-
nitely. Future work should explore the limits of this correlation.
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Table 1: System-level comparison. Fluid achieves leading results on both MS-COCO zero-shot
FID-30K and GenEval benchmark (Ghosh et al., 2024). †: CM3Leon result is reported without retrieval.

MS-COCO GenEval
#params FID-30K↓ Single Obj. Two Obj. Counting Colors Position Color Attri. Overall

diffusion model
LDM 1.4B 12.64 0.92 0.29 0.23 0.70 0.02 0.05 0.37
DALL-E 2 4.2B 10.39 0.94 0.66 0.49 0.77 0.10 0.19 0.52
DALL-E 3 - - 0.96 0.87 0.47 0.83 0.43 0.45 0.67
Imagen 3B 7.27 - - - - - - -
SD3 8B - 0.98 0.84 0.66 0.74 0.40 0.43 0.68
Transfusion 7.3B 6.78 - - - - - - 0.63
RAPHAEL 3B 6.61 - - - - - - -

autoregressive model
CM3Leon† 7B 10.82 - - - - - - -
Show-o 1.3B 9.24 0.95 0.52 0.49 0.82 0.11 0.28 0.53
Muse 3B 7.88 - - - - - - -
Parti 20B 7.23 - - - - - - -
Fluid (our work) 369M 7.23 0.96 0.64 0.53 0.78 0.33 0.46 0.62

665M 6.84 0.96 0.73 0.51 0.77 0.42 0.51 0.65
1.1B 6.59 0.96 0.77 0.61 0.78 0.34 0.53 0.67
3.1B 6.41 0.98 0.83 0.60 0.82 0.41 0.53 0.70

10.5B 6.16 0.96 0.83 0.63 0.80 0.39 0.51 0.69

5.2 BENCHMARKING WITH PREVIOUS SYSTEMS

In this section, we compare our Fluid, i.e., continuous random-order autoregressive model, with
leading text-to-image generation systems in Table 1 (Rombach et al., 2022b; Ramesh et al., 2022;
Betker et al., 2023; Saharia et al., 2022; Esser et al., 2024; Zhou et al., 2024; Xue et al., 2024; Yu
et al., 2023; Xie et al., 2024; Chang et al., 2023; Yu et al., 2022). The Fluid smallest model, with
369M parameters, achieves a zero-shot FID of 7.27 on MS-COCO and a GenEval overall score of
0.62, matching the performance of many state-of-the-art models with several billion parameters. The
Fluid largest model, with 10.5B parameters, further improves the zero-shot FID on MS-COCO to
6.16 and increases the GenEval overall score to 0.692, with a speed of 1.571 seconds per image per
TPU (evaluated on 32 TPU v5 with batch size 2048). Detailed model configurations and generation
speed results are included in the appendix. We hope these strong results and promising scaling
behavior provide valuable insights and support for the scalability of autoregressive models in visual
generative modeling.

6 DISCUSSION

In this paper, we present an empirical study on the scaling behavior of autoregressive models for
text-to-image generation. We investigate two critical design factors: random order versus raster
order, and discrete tokens versus continuous tokens. Our results show that random-order models
with continuous tokens achieve the best performance and scaling behavior across various evaluation
metrics and in terms of visual quality. Building on these findings, we scale up the random-order
model with continuous tokens, namely Fluid, to 10.5B parameters, and achieves state-of-the-art text-
to-image generation performance. We hope that our findings and promising results could provide
valuable insights into the scaling behavior of autoregressive models for image generation and help
bridge the gap between the scaling performance of vision models and language models.

Reproducibility Statement. To aid reproducibility, we have provided the implementation details
of our framework in Section 4, training hyper-parameters in Section 5, and model configurations
in the Appendix. For the diffusion loss used for continuous tokens, we have strictly followed the
open-sourced code of Li et al. (2024).

2We observe that the GenEval scores plateau for the 10.5B Fluid compared to the 3.1B Fluid; however, it
continues to show consistent improvements in visual quality and FID.
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Figure 10: Validation loss and FID w.r.t. training FLOPs for raster-order models with discrete
tokens.
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Figure 11: Validation loss and FID w.r.t. training FLOPs for random-order models with discrete
tokens.
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Figure 12: Validation loss and FID w.r.t. training FLOPs for raster-order models with continuous
tokens.

Scaling behavior w.r.t training FLOPs. In Figure 10, Figure 11 and Figure 12, we present the
relationship between validation loss and FID with respect to training FLOPs for the other three
autoregressive variants. As shown, all three variants demonstrate consistent scaling behavior in
validation loss, while improvements in FID begin to plateau for the 3B raster-order model using
discrete tokens. This suggests that directly applying a GPT-like language model to images in a
brute-force manner may not scale effectively. Further adaptations, such as the use of continuous
tokens and random-order generation, are necessary to enhance the scaling performance of language
models on visual data.

Fine-grained GenEval scores. In Figure 13, we present the performance of the four autoregres-
sive variants across all metrics in the GenEval benchmark. As shown, all models perform well in
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Figure 13: Validation loss and FID w.r.t. training FLOPs for raster-order models with discrete
tokens.

single-object scenarios. The performance on other metrics also consistently improves as model size
increases. Additionally, we observe that random-order models significantly outperform raster-order
models in metrics related to counting and position, both of which require a better global generation
structure—an area where random-order models have an advantage.

Table 2: Model configurations of our random-order
models on continuous tokens.
#Params #Blocks #Channels #Heads Speed (sec/img)
166M 12 768 12 0.047
369M 16 1024 16 0.078
665M 20 1280 16 0.110
1.1B 24 1536 16 0.180
3.1B 32 2304 24 0.483
10.5B 34 4096 64 1.571

Model Configurations. In Table 2, we
provide the detailed configurations of our
models across different sizes. The MLP
ratio is fixed at 4 for all models. The text
aligner consistently consists of 6 trans-
former blocks, with the same channel
size as the image transformer. The Dif-
fLoss MLP also contains 6 MLP layers,
with channels matching those of the im-
age transformer. The generation speed is
evaluated on 32 TPU v5 with a batch size of 2048, and we report the time needed to generate one
image per TPU.
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A photo of a cat playing 
chess.

A bird made of crystal A pair of old boots 
covered in mud.

Photo of a bear 
catching salmon.

High quality, a close up 
photo of a human hand

A photo of a robot 
holding a paintbrush 
and drawing on a 
canvas.

A white horse reading a 
book, fairytale.

An angry duck doing 
heavy weightlifting at 
the gym.

An image of a chrome 
sphere reflecting a 
vibrant city skyline at 
sunset.

A close-up photo of a 
bright red rose, petals 
scattered with some 
water droplets, crystal 
clear.

A vintage typewriter 
with paper spewing out 
like a waterfall.

A window with 
raindrops trickling 
down, overlooking a 
blurry city.

A photo of a Shiba Inu 
dog with a backpack 
riding a bike. It is 
wearing sunglasses and 
a beach hat.

A close-up photo of a 
baby sloth holding a 
treasure chest. A warm, 
golden light emanates 
from within the chest, 
casting a soft glow on the 
sloth's fur and the 
surrounding rainforest 
foliage.

A still life of a vase 
overflowing with vibrant 
flowers, painted in bold 
colors and textured 
brushstrokes, 
reminiscent of van 
Gogh's iconic style.

A tranquil scene of a 
Japanese garden with a 
koi pond, painted in 
delicate brushstrokes 
and a harmonious blend 
of warm and cool 
colors.

Figure 14: Additional images generated from our 10.5B autoregressive model with continuous to-
kens.

Visualization Details of Figure 1. To generate Figure 1, we first used our 10.5B random-order
model with continuous tokens to generate 256×256 images conditioned on the text prompts. We
then applied an in-house super-resolution model to upscale the images to 1024×1024 for improved
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visual quality (only for Figure 1). The prompts used, from left to right and top to bottom, are:
“Close up photo of a knight”, “A baseball bat”, “An origami bird made of paper is perched on a
branch of an evergreen tree”, “A wise old mushroom wearing spectacles and reading a book under
a tree”, “photo of an eagle with a golden crown resting upon its head”, “A beautiful castle beside a
waterfall in the woods by Josef Thoma, matte painting, trending on artstation HQ”, “A photorealistic
image of a beautiful mountain range reflected perfectly on the still surface of a crystal-clear lake,
surrounded by lush green meadows and vibrant wildflowers”, “Oil painting of a vibrant landscape of
rolling hills covered in wildflowers, with a quaint farmhouse nestled in the distance under a bright
blue sky”, “Mona Lisa on a cake”, “A grumpy-looking lemon wearing a raincoat and holding an
umbrella, standing in the rain”, “A hyperrealistic close-up of an eye, with the iris reflecting a vast
and detailed landscape, complete with mountains, rivers, and forests”, “A section of the Great Wall
in the mountains, detailed charcoal sketch”, “A present with a blue ribbon under a Christmas tree”.

Additional Qualitative Results. In Figure 14 we show additional images generated from our
10.5B model.
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