
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CO-EVOLVED SELF-CRITIQUE: ENHANCING LARGE
LANGUAGE MODELS WITH SELF-GENERATED DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have seen staggering progress in recent years.
Contemporary LLMs rely on an immense amount of data for training, however,
as LLMs continue to advance, the availability of high-quality external data is
reaching a bottleneck, highlighting the need for model-generated data for fur-
ther improvement. Although promising, directly utilizing the self-generated data
for model training without scrutinized assessment or filtering can easily lead to
deteriorated performance, or in other words, “garbage in, garbage out”. In this
study, our insight is to carefully craft a self-critique process, by equipping the
LLMs with the ability to be self-aware and discriminative to the quality of its
generated data. We introduce a co-evolved self-critique framework that enables
an LLM to simultaneously enhance both its generative and evaluative capabili-
ties through an iterative training process. This provides a scalable solution to
ensure high-quality self-generated data and facilitate sustained model improve-
ment. Fine-tuning Llama-3 models using this framework results in encouraging
improvements in both instruction-following and discriminative abilities, demon-
strating the effectiveness of our method.

1 INTRODUCTION

To date, the training of large language models (LLMs) has predominantly relied on external super-
vision data, such as human-annotated instructions and preferences, or those generated by advanced
models, to perform Supervised Fine-Tuning (SFT) (Touvron et al., 2023; Dubey et al., 2024) and
Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Schulman et al.,
2017). These approaches have been instrumental in shaping state-of-the-art LLMs, allowing them
to achieve remarkable levels of performance across a wide range of tasks. However, as LLMs con-
tinue to advance, a critical challenge has emerged: the availability of external high-quality training
data is becoming increasingly scarce, posing a bottleneck to the further scaling and improvement of
strong AI models. As a result, there is a growing consensus that model training needs to transition
toward using self-generated or synthetic data for training in order to sustain long-term performance
growth in a bootstrapping manner.(Huang et al., 2022; Wang et al., 2022; Amodei et al., 2016; Burns
et al., 2023; Zheng et al., 2024). As models become advanced and stronger, their self-generated data
are expected to provide a viable source to supplement the limitations of external supervision data.

However, while self-generated data presents a promising path for the continued development of
LLMs, it also poses significant challenges in maintaining the high quality of such data. Low-quality
self-generated data, particularly data that lacks relevance or correctness, can severely degrade the
model’s performance, also known as “garbage in, garbage out” (Shumailov et al., 2024; Li et al.,
2023a; Nakamoto et al., 2023; Valmeekam et al., 2023; Xu et al., 2022). Avoiding this pitfall re-
quires the ability to discern which self-generated data is of high quality and which is not. Relying on
external verifiers, reward models, or human feedback is becoming less effective as models grow to be
more advanced, as these external verifiers often struggle to keep pace with the growing complexity
and nuance of modern LLMs. One potential solution lies in the idea of self-critique, where the LLM
itself plays an active role in evaluating the quality of its own outputs (Xu et al., 2024; Tian et al.,
2024). Ideally, the model would become “self-aware” enough to recognize when its self-generated
data is flawed or inadequate. This self-critique mechanism would allow advanced models to con-
tinually improve by autonomously filtering high-quality self-generated data, potentially overcoming
the limitations of external validators.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Critic
Training

Generator
Training

Same LLM

High-quality
Data

Self-generated
Data

Multiple Iterations

Self-generate

Figure 1: Overview of the co-evolved self-critique framework: both the generator and critic are
iteratively trained using supervision signals within the co-evolvable training scheme.

Despite the conceptual appeal of self-critique, current approaches face several key drawbacks. These
methods either treat the critique process as static (Yuan et al., 2024b; Sun et al., 2024; Li et al.,
2023b; Guo et al., 2024) or overly trust the model’s inherent discriminative capacity without explicit
supervision (Wu et al., 2024). They focus on unilaterally improving LLM as generator (producing
outputs for queries) while neglecting the explicit development of LLM as critic (evaluating the gen-
erator’s outputs) in a reliable manner. Ideally, we want both the generator and the critic to co-evolve,
improving each other through continuous interaction. This concept mirrors the co-evolution seen in
Generative Adversarial Networks (GANs) (Goodfellow et al., 2020), where a stronger discriminator
compels the generator to produce better outputs. In GANs, the feedback loop between the generator
and discriminator is critical to its success, fostering substantial improvements beyond supervised
learning and resulting in high-quality model generations. Applying this co-evolutionary notion to
self-critique on LLMs could potentially allow models to simultaneously improve their generative
and evaluative abilities, thus achieving greater performance gain. However, such a co-evolvable
training scheme has not yet been fully explored in the current literature.

In this paper, we introduce CoEvol, a co-evolved self-critique framework designed to enable the
same LLM to simultaneously serve as the generator and critic, and establish mutually evolvable
improvement between these two sides (illustrated in Figure 1). Specifically, we hide a discriminative
function (judging if a sample data is model generated or not) inside the LLM by reformulating it as
a language task. At each iteration, using a small set of high-quality seed data along with newly self-
generated data, we train the LLM to solve the discriminating task, thereby enhancing the capacity
of the critic. Next, using a large volume of self-generated data, the critic filters data that is likely
of high quality, and we then perform SFT on the same LLM, this time as the generator. Through
this iterative procedure, both the generator and critic are explicitly and continuously trained on
scrutinized supervision signals, enabling the co-evolution of the critic and generator.

In our experiments, we begin with the Llama-3-8B seed model and fine-tune it using the Ultra-
Chat200k dataset (Ding et al., 2023). By applying the proposed co-evolved self-critique frame-
work, the fine-tuned model demonstrates superior improvements over SFT and other related base-
lines in both instruction-following and discriminative abilities. Additionally, we empirically show
the importance of the co-evolved training design and its advantages over prior self-improvement
works (Yuan et al., 2024b), which underscores a promising direction for advancing LLMs with self-
generated data.

2 RELATED WORK

LLM Alignment aims to ensure that increasingly powerful LLMs adhere to human values and
intentions, preventing them from going out of control (Ji et al., 2023; Shen et al., 2023). Most of the
studies focus on leveraging manual annotations or human feedback using techniques such as SFT
or RLHF to achieve this object (Ouyang et al., 2022; Ji et al., 2023; Wang et al., 2024; Rafailov
et al., 2024; Yuan et al., 2024a). As models approach the performance level of top human experts,
obtaining high-quality annotations becomes prohibitively expensive, diminishing the effectiveness

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

of traditional methods. To address the challenge of maintaining effective oversight at such levels,
there is a growing consensus that model training must transition toward using self-generated or
synthetic data for scalable oversight, enabling long-term performance growth in a bootstrapping
manner (Bai et al., 2022; Huang et al., 2022; Wang et al., 2022; Amodei et al., 2016; Burns et al.,
2023; Zheng et al., 2024; Christiano et al., 2018).

Self-generated methods focus on utilizing data synthesized by the LLM itself to further enhance
its performance. However, directly using data generated by the LLM itself may suffer from low
quality, potentially leading to model collapse after training on such self-generated (Gerstgrasser
et al., 2024; Li et al., 2023a; Nakamoto et al., 2023). Thus, Several approaches are raised to filter
out low-quality data and can be mainly summarized into two categories: external filtering and self-
critique. External filtering includes the use of external verifiers, heuristic rules, or external reward
models (Wang et al., 2022; Li et al., 2023a; Valmeekam et al., 2023; Xu et al., 2022). However,
as the generative capabilities of the LLM improve, these methods struggle to effectively assess the
quality of data generated by the LLM itself, leading to potential failures in data filtering, making it
necessary to explore self-critique methods that leverage the LLM itself for data quality evaluation.

Self-critique involves having the LLM evaluate its own output, helping it understand what consti-
tutes a good response, thereby enhancing its own performance (Yuan et al., 2024b). Current self-
critique methods can be categorized into static and dynamic two types: 1) The static self-critique
method focuses on directly using the LLM itself to evaluate its own outputs. Specifically, some
work focuses on directly informing the LLM of the general principles of good responses through
prompts and allowing it to make judgments (Sun et al., 2024; Li et al., 2023b; Guo et al., 2024).
Furthermore, Self-Rewarding utilizes LLM itself to evaluate its own responses, construct rewards,
and then perform preference optimization (Yuan et al., 2024b). However, these efforts do not en-
hance the LLM’s discriminative abilities alongside its generative capabilities, making it difficult
for the LLM’s own critic to assess quality as generative ability advances, thereby hindering further
performance improvement. 2) The dynamic self-critique method aims to simultaneously enhance
a model’s instruction-following and discriminative capabilities. However, this promising approach
has seen limited exploration. Existing works, such as Meta-rewarding (Wu et al., 2024), focus on
using the LLM’s judgment of its own evaluations to further refine its judgment accuracy. Unfor-
tunately, this often leads to unreliable evaluations, as the secondary judgment can also be flawed,
lacking any reliable supervision signal to effectively train the critic.

3 THE CO-EVOLVED SELF-CRITIQUE FRAMEWORK

In this section, we provide a detailed overview of the proposed CoEvol framework for LLMs. Sim-
ilar to many existing approaches (Yuan et al., 2024b), we start with access to a base pretrained
LLM, denoted as M0, and a small set of high-quality seed dataset D = {(xi, yi)}Di=1 (e.g., human
expert-annotated data) for fine-tuning.

Unlike previous approaches (Yuan et al., 2024b; Wu et al., 2024), which only focus on improving
the LLM as a generator (producing outputs for queries) rather than enhancing the LLM as a critic
(evaluating the generator’s outputs) in a reliable manner, our proposed framework aims to make both
the generator and critic co-evolve. We provide explicit supervision signals to enhance the critic’s
discriminative capacity while training the generator and critic iteratively. Ultimately, this process
yields a more powerful generator, trained on high-quality self-generated data. For clarity, starting
with the base pretrained model M0, we refer to the LLM as Mg when it acts as the generator, and as
Mc when it acts as the critic.

3.1 CRITIC TRAINING

Hide the discriminative function into the LLMs. At each iteration, we have access to new self-
generated data {(xi, ŷi)} produced by the current generator Mg , based on prompts (queries) xi

sampled from the seed dataset D. We are supposed to have an explicit discriminative function l̂ that
outputs d ∈ (0, 1), which helps effectively differentiate between high-quality seed data and self-
generated samples. The value of d can be interpreted as a confidence level, indicating how closely
a given sample aligns with high-quality seed data or self-generated content. This discriminative
function is typically optimized using cross-entropy loss to solve the discrimination task:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

L = −
∑
i

[
l(x̃i, ỹi) log(l̂(x̃i, ỹi)) + (1− l(x̃i, ỹi)) log(1− l̂(x̃i, ỹi))

]
(1)

where l(x̃i, ỹi) represents the true label of the sample (x̃i, ỹi), while l̂(x̃i, ỹi) is the predicted la-
bel. Specifically, when (x̃i, ỹi) ∼ {(xi, yi)}Di=1, meaning the sample comes from the seed dataset,
l(x̃i, ỹi) = 1; and when (x̃i, ỹi) ∼ {(xi, ŷi)}, meaning the sample is self-generated, l(x̃i, ỹi) = 0.

We aim for the LLM, acting as the critic Mc, to possess this discriminative capability, meaning
the discriminative function should be hidden into Mc. However, the aforementioned loss cannot
be directly optimized within the LLM framework. To address this, we reformulate the original
discriminative task as a language task, constructing a training dataset designed for Mc to perform
Supervised Fine-Tuning (SFT).

We refer to this dataset for critic training as Dc. For each sample in the sets {(xi, yi)} and {(xi, ŷi)}
at each iteration, we perform the following steps: (i) format the samples into the judge prompt
template (see Figure 2) to create the judge prompt jci ; (ii) assign the identifiers (labels) “M” or “m”
as lci , depending on whether the output (response) of the sample is yi or ŷi, respectively. This process
allows us to construct the training dataset as Dc = {(jci , lci)}.

Judge prompt jci

Review the user’s query and the corresponding response.

User: {prompt}

Response: {response}

After evaluating the quality and relevance of the response, determine whether it was gener-
ated by a human expert (identifier: M) or by yourself (identifier: m). Your output should
consist of only one of these identifiers: M or m.

Response lci

M or m

Figure 2: The template of judge prompt jci and response lci .

After constructing the dataset Dc, we perform SFT on the critic Mc using this dataset, resulting
in an updated version of the LLM in its critic role. After critic training, given a judge prompt jci ,
the trained critic Mc outputs a token, which corresponds to the labels “M” or “m”. The label “M”
indicates that Mc believes the sample is high-quality seed data, likely generated by a human expert,
while “m” suggests the sample was generated by the current generator Mg . By providing real-time
and explicit supervision signals (through seed data and newly self-generated data), the trained critic
offers a more reliable evaluation of the newly self-generated data compared to previous approaches
that treat the process as static or rely solely on the LLM’s inherent capabilities without explicit critic
training.

At this point, we have not yet obtained the confidence level d. We follow these steps to compute d:
for a given judge prompt jci , we send it to the critic and examine its logits output. We then extract
the logits corresponding to the tokens “M” and “m” from the output. Applying the softmax function
to these logits, we interpret the resulting value for “M” as the confidence level d ∈ (0, 1).

3.2 GENERATOR TRAINING

Once the critic has been trained to accurately discriminate the quality of the current self-generated
data, we can leverage this capability to enhance the generator Mg . Within the CoEvol (co-evolved
self-critique) framework, there are several possible methods for achieving this. Here, we propose

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Review the user’s query and the corresponding response.
User: {User Prompt}
Response: {Response}
After evaluating ... M (for seed data) or m (for self-generated data).

Judge Prompt Template

Logits

Q&A
[User Prompt]: In which year was the London Olympics held?
[Response]:The London Olympics were held in 2012.

Response
M

Next token
predict

Supervised
fine-tuning

LLM as
Critic

Get Logits of
‘M’ and ‘m’

Softmax

Confidence
level d

[User Prompt]

[Response]
Once upon a time in the bustling city of Technopolis, there lived a
Technical Writer named John. He was a diligent worker, always
striving to…

Write me a short story about a Technical Writer named John. A
colleague once gifted him the powerful "Velvet Hammer", which he…

Dataset

Prompt
Template

LLM as
Generator

Generator
Training

Seed Data

Self-generated
Data

Prompt

Critic Filtering: Obtain samples where confidence
level d is greater than the threshold ⍺.

Critic
Training

Supervised
fine-tuning

format

New self-generated data

Self-generate

Figure 3: The specific co-evolved self-critique training process: at each iteration, the high-quality
seed data, combined with newly self-generated data, are used to train the LLM as a critic. Then,
in the same iteration, the LLM as a generator is trained using the self-generated data filtered by the
critic.

a simple yet effective approach: using the confidence level d provided by the critic Mc to filter the
self-generated data, and then applying Supervised Fine-Tuning (SFT) on Mg using the filtered data.

Critic Filtering. Specifically, for each new self-generated sample (xi, ŷi) produced by Mg , we
format it into the judge prompt template to create the judge prompt jci . This prompt is then passed to
the critic LLM to produce the confidence level di. If di > α, where α is a hyperparameter controlling
the selection threshold, the self-generated sample (xi, ŷi) is added to the augmented dataset. Finally,
we perform SFT on the current LLM using this augmented dataset, thereby improving the Mg

iteratively based on high-confidence self-generated samples.

Starting from the base pretrained model M0, we iteratively perform both the critic training and
generator training, formulating a co-evolved self-critique training process. The overall training pro-
cedure is summarized in Algorithm 1. The specific training procedure at each iteration is illustrated
in Figure 3.

Algorithm 1 Co-evolved self-critique training
Input: The base pretrained model M0 (act as both generator and critic), the high-quality human-
annotated seed dataset D.
for t = 0, 1, 2, ..., T do

/ / Critic training
Sample {(xi, yi)}B

c

i=1 ∼ D. Generate {(xi, ŷi)}B
c

i=1.
Construct the dataset Dc = {(xc

i , y
c
i)}

2×Bc

i=1 .
Update the LLM by performing supervised fine-tuning using Dc.
/ / Generator training
Sample {(xi, yi)}B

g

i=1 ∼ D. Generate {(xi, ŷij) | i = 1, . . . ,Bc, j = 1, . . . , N}.
Perform critic filtering to construct Dg .
Update the LLM by performing supervised fine-tuning using Dg .

end for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

CoEvol provides both the generator and critic with explicit and continuous supervision signals. We
design experiments to assess the effectiveness of CoEvol in improving both the generator and critic.
For the generator, we evaluate its instruction-following ability, which refers to the LLM’s capacity
to generate high-quality, helpful, harmless, relevant, and clear responses to given prompts. For
the critic, we evaluate its discriminative ability, which refers to the LLM’s capacity to accurately
determine whether a given sample is high-quality (generated by a human expert) or self-generated.
Specifically, our experiments are designed to address the following questions:

• Given a limited amount of high-quality data, can CoEvol improve the instruction-following ability
more effectively than traditional supervised fine-tuning (SFT) methods?

• Beyond instruction-following, can CoEvol progressively enhance discriminative ability compared
to approaches that treat the critic process as static, as seen in other self-critique methods?

4.1 EXPERIMENTAL SETUP

Base model & seed data. In our experiments, we use Llama-3-8B as the base pretrained model M0.
For the high-quality seed dataset D, we select 4,000 samples from the UltraChat200k dataset (Ding
et al., 2023), with each sample containing a prompt-response pair.

Training details. We follow the training procedure outlined in Algorithm 1. In each training itera-
tion, we sample Bc = Bg = 1000 examples from the seed dataset D. During critic training, LLM
generates a response ŷi for each prompt using a temperature of 0.8 and top-p of 0.95. For genera-
tor training, LLM generates N = 3 response variations per prompt with the same temperature and
top-p settings. In critic filtering, we apply a temperature τ = 2.5 in the softmax function and set the
threshold α = 0.55. We begin with the base Llama-3-8B model and iteratively train it as both the
generator and critic over the course of T = 4 iterations.

4.2 EVALUATION METRICS AND BASELINES

Generator’s Instruction Following Ability.

Similar to (Li et al., 2023b), we build a test prompt dataset by sourcing prompts from TruthfulQA
(Lin et al., 2021), ShareGPT (Chiang et al., 2023), Evol-Instruct (Xu et al., 2023), Open Assistant
(Köpf et al., 2024), and additional prompts crowdsourced from the authors. This ensures broad
coverage across diverse task categories, including writing, coding, mathematical reasoning, and
safety.

We randomly select 256 prompts from this dataset to evaluate our proposed method against the
baseline model. For the evaluation, we employ the LLM-as-a-Judge (Dubois et al., 2024; Li et al.,
2023c; Zheng et al., 2023), using GPT-4 as the evaluator with the AlpacaEval evaluation prompt
(Li et al., 2023c). The prompts are presented in both orders for pairwise comparison. If GPT-4’s
judgments conflict, we classify the result as a tie. For more details about the GPT-4 evaluator we
used, please refer to Appendix A.1. Additionally, we conduct a similar assessment with human
evaluators to further validate the results.

Baseline. For instruction following ability, the main baselines we compare to are:

• SFT Baseline: This baseline represents the model fine-tuned from the base pretrained Llama-3-8B
using the seed dataset D via supervised fine-tuning (SFT). To ensure a fair comparison, we use the
same seed data as CoEvol at each iteration for SFT, resulting in the corresponding SFT baseline
model Mt, where t denotes the iteration.

• SFT Baseline ++: This baseline represents the model fine-tuned from the base pretrained Llama-
3-8B using a larger dataset via SFT. In addition to the 4,000 samples from the seed dataset, we
include an additional 6,000 samples from the UltraChat200k dataset, resulting in a total of 10,000
samples. Since the model is fine-tuned on a larger dataset, it is expected to perform better than the
SFT Baseline, hence we label this as SFT Baseline ++.

Critic’s discriminating Ability.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To evaluate whether the critic can accurately determine if a given sample is high-quality (generated
by a human expert) or self-generated, we randomly select 500 samples from the UltraChat200k
dataset as the critic test data. After each iteration of critic training, we generate new responses from
the LLM for the prompts in the critic test data. These data are then formatted into a judge prompt
template and sent to the critic, which provides the predicted label. We measure the classification
accuracy based on these predictions.

Baseline. For discriminating ability, the main baseline we compare to is:

• Self-rewarding: This baseline represents methods such as self-rewarding (Yuan et al., 2024b),
where the LLM is initially trained as a critic, and its discriminative ability is used directly without
further critic training. Subsequent training focuses solely on improving the instruction-following
ability.

4.3 GENERATOR’S INSTRUCTION FOLLOWING EVALUATION

Figure 4: The comparison of instruction following ability between CoEvol model and SFT Baseline,
evaluated via LLM-as-a-Judge. CoEvol outperforms SFT Baseline across iterative model versions,
showing consistently gains. CoEvol Mn

g refers to the generator at the n-th iteration, while SFT
Baseline Mn represents the model trained via SFT using the same seed data at the n-th iteration.

Comparison to SFT Baseline. The comparison results with the SFT baseline, using LLM-as-
a-Judge, are presented in Figure 4. The results demonstrate that the CoEvol model consistently
outperforms the SFT Baseline across all iterations, with the most substantial improvement seen
in the first iteration, where CoEvol wins 61.7% of the comparisons. As the iterations progress,
CoEvol continues to show an advantage. These results indicate that the CoEvol framework maintains
consistent gains over the SFT Baseline across different model versions. We also provide examples
of self-generated sample by the generator over the four iterations in Appendix A.2.

Comparison between CoEvol models from adjacent iterations. The comparison results of
instruction-following ability between successive iterations of the CoEvol model, are presented in
Figure 5. The results show a consistent trend of improvement in newer model versions (Mn+1

g) over
their previous counterparts (Mn

g).

Comparison to SFT Baseline ++. Our CoEvol model can even outperform models fine-tuned on
larger datasets (Figure 6). Despite the data advantage of the SFT Baseline ++, the CoEvol models
demonstrate competitive performance, eventually surpassing the Baseline by the fourth iteration. In
the final comparison (M4

g vs. SFT Baseline ++), CoEvol wins 26.6% of the time compared to 17.6%
for the SFT Baseline++, showing CoEvol’s capacity to achieve superior results with less data.

4.3.1 HUMAN EVALUATION

To further demonstrate the effectiveness of our proposed CoEvol, we conducted a human evaluation
comparing the results generated by CoEvol with those produced by the SFT baseline across all
iterations just as demonstrated in Figure 7. In detail, we randomly sample 20 examples from 256

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: The comparison of instruction-following ability between CoEvol models from adja-
cent iterations, evaluated via LLM-as-a-Judge, demonstrates consistent improvement in instruction-
following ability.

Figure 6: The comparison of instruction-following ability between CoEvol models and the SFT
Baseline ++. The results show that, despite the SFT Baseline ++ being trained with 2.5 times more
data than CoEvol, our CoEvol model outperforms it by the fourth iteration.

test data for human evaluation. The university-educated annotator with a bachelor’s degree is tasked
with labeling the data, determining which model’s output is better or if the two models are tied.

The results in Figure 7 demonstrate that our CoEvol method consistently achieves higher win rates
compared to the SFT baseline in each iteration. This outcome aligns with the results obtained from
evaluations conducted using LLM-as-a-Judge, further proving the effectiveness of our proposed
CoEvol method. We can also observe that the overall trend of human evaluation aligns with the
results from LLM-as-Judge. Although the proportion of ties in human evaluation is slightly higher
than in LLM-as-Judge, this outcome may be attributed to the model’s generation capabilities being
sufficiently advanced. As a result, it becomes challenging for humans to discern which model’s
output is better or worse, making this a reasonable outcome.

4.4 CRITIC’S DISCRIMINATING EVALUATION

We evaluate the critic’s discriminative ability using the critic test data. At each iteration, the LLM
generates new self-produced data, and as the LLM’s instruction-following ability improves, its self-
generated outputs may become more similar to the high-quality seed data. The classification accu-
racy in determining whether a given critic test sample is high-quality (generated by expert human)
or self-generated across four iterations is shown in Figure 8. The CoEvol method maintains consis-
tently high accuracy, starting at 83.3% and stabilizing around 69% in later iterations. In contrast, the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 7: The comparison of instruction-following ability between our proposed CoEvol and SFT
baseline under human evaluation. The experimental results are similar to those of LLM-as-a-Judge,
demonstrating that our CoEvol achieves better performance compared to the SFT baseline.

Figure 8: The comparison of discriminative ability between CoEvol and self-rewarding method
shows that, as iterations increase and the model’s instruction-following ability improves, the classi-
fication accuracy of the self-rewarding method significantly drops. This underscores the importance
of continuous and iterative training of the critic.

self-rewarding method shows a sharp decline, dropping from 54.4% in the first iteration to 49.3%
by the fourth iteration. These results underscore the superior performance of CoEvol and highlight
the importance of continuous, iterative training for improving discriminative ability.

We also observe a decrease in classification accuracy for both methods at the second iteration. This
may be due to the improvement in the model’s instruction-following ability, which makes it more
challenging to distinguish between high-quality seed data and self-generated data. However, CoEvol
shows a significantly smaller drop in accuracy compared to the self-rewarding method, where the
discriminative ability is used directly without further critic training. With CoEvol, we can more
effectively select appropriate self-generated samples for the next generator training, maintaining
better overall performance.

5 CONCLUSION

In this paper, we introduced a novel co-evolved self-critique framework, namely CoEvol, that allows
LLMs to simultaneously enhance their generative and evaluative capacities through multiple itera-
tions. Our results demonstrate that CoEvol consistently outperforms traditional SFT baselines, even
when the baseline is trained with significantly more data. The comparative results between CoEvol

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

models and self-rewarding methods further underscore the importance of continuous critic training,
as self-rewarding models suffer from a notable decline in classification accuracy over time.

There are also some limitations to this approach. One of the primary challenges is the increased
computational cost of training both the generator and critic in each iteration. This dual training pro-
cess requires more resources and time, which may limit its scalability for extremely large models
or datasets. Future work should focus on addressing these limitations by refining the co-evolution
process and exploring ways to reduce computational overhead while maintaining or enhancing per-
formance. Additionally, we plan to apply our method to larger base pretrained models to demonstrate
the potential for scalable oversight and further improve model capabilities.

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbren-
ner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong general-
ization: Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390,
2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Paul Christiano, Buck Shlegeris, and Dario Amodei. Supervising strong learners by amplifying
weak experts. arXiv preprint arXiv:1810.08575, 2018.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems,
36, 2024.

Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Henry Sleight, John Hughes,
Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, Andrey Gromov, et al. Is model collapse in-
evitable? breaking the curse of recursion by accumulating real and synthetic data. arXiv preprint
arXiv:2404.01413, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Hongyi Guo, Yuanshun Yao, Wei Shen, Jiaheng Wei, Xiaoying Zhang, Zhaoran Wang, and
Yang Liu. Human-instruction-free llm self-alignment with limited samples. arXiv preprint
arXiv:2401.06785, 2024.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang, Yawen Duan,
Zhonghao He, Jiayi Zhou, Zhaowei Zhang, et al. Ai alignment: A comprehensive survey. arXiv
preprint arXiv:2310.19852, 2023.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
conversations-democratizing large language model alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
selection for instruction tuning. arXiv preprint arXiv:2308.12032, 2023a.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer Levy, Luke Zettlemoyer, Jason Weston, and
Mike Lewis. Self-alignment with instruction backtranslation. arXiv preprint arXiv:2308.06259,
2023b.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models, 2023c.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Ryosuke Nakamoto, Brendan Flanagan, Taisei Yamauchi, Yiling Dai, Kyosuke Takami, and Hi-
roaki Ogata. Enhancing automated scoring of math self-explanation quality using llm-generated
datasets: A semi-supervised approach. Computers, 12(11):217, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu, Weilong Dong, Zishan Guo, Xinwei Wu,
Yan Liu, and Deyi Xiong. Large language model alignment: A survey. arXiv preprint
arXiv:2309.15025, 2023.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
Ai models collapse when trained on recursively generated data. Nature, 631(8022):755–759,
2024.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Cox, Yiming
Yang, and Chuang Gan. Principle-driven self-alignment of language models from scratch with
minimal human supervision. Advances in Neural Information Processing Systems, 36, 2024.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. To-
ward self-improvement of llms via imagination, searching, and criticizing. arXiv preprint
arXiv:2404.12253, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language models
really improve by self-critiquing their own plans? arXiv preprint arXiv:2310.08118, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. Openchat: Ad-
vancing open-source language models with mixed-quality data. In The Twelfth International
Conference on Learning Representations, 2024.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuandong Tian, Jiantao Jiao, Jason Weston,
and Sainbayar Sukhbaatar. Meta-rewarding language models: Self-improving alignment with
llm-as-a-meta-judge. arXiv preprint arXiv:2407.19594, 2024.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023.

Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. Discriminator-weighted offline imitation
learning from suboptimal demonstrations. In International Conference on Machine Learning, pp.
24725–24742. PMLR, 2022.

Yifan Xu, Xiao Liu, Xinghan Liu, Zhenyu Hou, Yueyan Li, Xiaohan Zhang, Zihan Wang, Aohan
Zeng, Zhengxiao Du, Wenyi Zhao, et al. Chatglm-math: Improving math problem-solving in
large language models with a self-critique pipeline. arXiv preprint arXiv:2404.02893, 2024.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf: Rank
responses to align language models with human feedback. Advances in Neural Information Pro-
cessing Systems, 36, 2024a.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024b.

Junhao Zheng, Shengjie Qiu, Chengming Shi, and Qianli Ma. Towards lifelong learning of large
language models: A survey. arXiv preprint arXiv:2406.06391, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 EVALUATING DETAILS

Specifically, we use the alpaca eval gpt4 turbo fn evaluator from AlpacaEval (Li et al., 2023c) for
LLM-as-Judge. Figure 9 shows the judging prompt. Note that it differs from the judge prompt
designed for our CoEvol framework.

Judging prompt of alpaca eval gpt4 turbo fn

<im start>system
You are a highly efficient assistant, who evaluates and rank large language models (LLMs)
based on the quality of their responses to given prompts. This process will create a
leaderboard reflecting the most accurate and human-preferred answers.
<im end>
<im start>user
I require a leaderboard for various large language models. I’ll provide you with prompts
given to these models and their corresponding responses. Your task is to assess these re-
sponses, ranking the models in order of preference from a human perspective. Once ranked,
please output the results in a structured JSON format for the make partial leaderboard
function.

Prompt

{
"instruction": """{instruction}""",

}

Model Outputs

Here are the unordered outputs from the models. Each output is associated with a specific
model, identified by a unique model identifier.

{
{

"model": "m",
"output": """{output_1}"""

},
{

"model": "M",
"output": """{output_2}"""

}
}

Task

Evaluate and rank the models based on the quality and relevance of their outputs. The ranking
should be such that the model with the highest quality output is ranked first.
<im end>

Figure 9: The Judging prompt of alpaca eval gpt4 turbo fn.

A.2 GENERATION SAMPLES

A.2.1 SELF-GENERATED DATA FROM COEVOL

We provide examples of selected self-generated data from CoEvol at four iterations.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Self-generated data example at iteration 1.

Prompt:

Can you provide a list of the file formats that the program supports for exporting re-
ports?

Generate according to: several file formats. Another command helps you to walk
through the alignment and create an animation.

The program computes volumes of under and over-excavation by comparing project
and measured cross-sections. Reports can be generated and printed or exported to Excel and
other file formats.

Every project is compound of an horizontal and vertical alignment, Super elevation,
templates and point files, supporting different formats.

The Powerful cross-section editor has tools for erasing, adding or moving points be-
fore drawing.

Response:

Hello, <User name>! The following formats are supported for exporting reports: PDF,
Word, Excel, Image, Text, HTML, RTF, and CSV.

The animation tool allows you to view the project animation and walk through the
alignment in order to visualize the changes in the design and measure cross-sections at any
point along the alignment.

The program generates reports that show the volumes of under and over-excavation
by comparing the project and measured cross-sections. You can print the reports or export
them to Excel or other file formats.

Each project consists of a horizontal and vertical alignment, super elevation, tem-
plates, and point files that support different formats.

The cross-section editor has tools for erasing, adding, or moving points before draw-
ing the cross-sections.

If you need any further assistance, please let me know. I’m here to help you.

A.2.2 A MISJUDGED SAMPLE FROM THE SELF-REWARDING METHOD

This is a misjudged sample from the self-rewarding method at the fourth iteration of CoEvol. Al-
though the response is self-generated, the self-rewarding method incorrectly judged it as being pro-
duced by a human.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Self-generated data example at iteration 2.

Prompt:

Explain the traditional use of sunflower seeds in Native American societies, and how
it has impacted modern agriculture.

Response:

Sunflower seeds have played a significant role in Native American societies for cen-
turies. The seeds were traditionally used for a variety of purposes, including food, medicine,
and oil production.

For food, sunflower seeds were often roasted or ground into flour to make bread or
porridge. They were also eaten raw or mixed with other ingredients to make a range of
dishes. In some Native American cultures, sunflower seeds were considered a symbol of
peace and were used as a ceremonial offering.

Sunflower seeds were also used for medicinal purposes. They were believed to have
healing properties, and were used to treat a variety of ailments, including respiratory
problems, skin conditions, and digestive issues. In some cultures, sunflower seeds were also
believed to have aphrodisiac properties.

In addition to their use in food and medicine, sunflower seeds were also used for oil
production. The oil extracted from sunflower seeds was used for cooking, as well as for
lighting and lubrication. The oil was also used to treat leather and make soap.

The traditional use of sunflower seeds in Native American societies has had a signifi-
cant impact on modern agriculture. Today, sunflower seeds are grown commercially for
their oil, which is used in a variety of products, including cooking oil, margarine, and
biodiesel. Sunflower seeds are also used as a source of protein and as a snack food.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Self-generated data example at iteration 3.

Prompt:

Write a book report that summarizes and analyzes the themes and writing style of a
memoir that explores the writer’s experience living with chronic illness. In your report,
consider how the writer’s personal story can shed light on larger issues surrounding chronic
illness, such as access to healthcare, stigma, and disability rights. You may also want to
discuss how the author’s use of language, imagery, and narrative structure contribute to their
overall message about living with a chronic condition. Your report should be well-organized,
persuasive, and demonstrate a strong understanding of the text.

Response:

Title: “Living with Chronic Illness: A Memoir”

Summary: This memoir tells the story of a woman who has lived with a chronic ill-
ness for many years. The author describes the challenges she has faced in her daily life,
from managing her symptoms to navigating the healthcare system. She also discusses the
stigma she has faced from others who don’t understand her condition, and how this has
affected her self-esteem and sense of identity.

Themes: The main theme of this memoir is resilience. The author describes how she
has learned to cope with her illness, despite the many obstacles she has faced. She also
discusses how her illness has made her more aware of the inequalities in our healthcare
system, and how this has motivated her to advocate for better access to care for all people
living with chronic illnesses.

Writing Style: The author’s writing style is engaging and personal. She uses vivid
imagery and metaphor to describe her experiences, making the reader feel as if they are right
there with her. She also uses humor to lighten the mood and make her story more accessible
to readers who may not have personal experience with chronic illness.

Analysis: This memoir is a powerful testament to the challenges and triumphs of liv-
ing with a chronic illness. The author’s honesty and vulnerability make her story relatable
to anyone who has ever faced a difficult challenge. Her message about resilience and
advocacy is inspiring, and her insights into the larger issues surrounding chronic illness
are thought-provoking and important. Overall, this memoir is a must-read for anyone who
wants to understand the experience of living with a chronic condition.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Self-generated data example at iteration 4.

Prompt:

Using Swift, create a language translation app that enables users to type in text in
their chosen language and display the translated text in another language of their choice.
The app must support multiple languages, and the translation should be accurate and
reliable. The interface must be user-friendly with clear instructions, and the app must be
able to save translation history for future reference. Additionally, the app should have an
option for voice input and output for the convenience of the user.

Response:

Here is a possible implementation of a language translation app in Swift:

1. Create a list of supported languages with their corresponding API keys for transla-
tion.

2. Use the ‘TextField‘ to allow users to enter text in their chosen language.

3. Use the ‘Button‘ to start the translation process.

4. When the button is pressed, the app should make a request to the selected lan-
guage’s API to translate the text.

5. The translated text should be displayed in a ‘Label‘ or ‘TextView‘.

6. Add an option to save the translation history, so users can access previous transla-
tions.

7. Include a voice inputoutput option, so users can translate text using their voice in-
stead of typing.

8. Add a settings page where users can choose their preferred language, set up a
translation history, and enabledisable voice inputoutput.

9. Test the app thoroughly to ensure accurate and reliable translations, and a user-
friendly interface.

10. Implement the app using best practices, such as using ‘structs‘ and ‘enums‘ to
store data, and using ‘guard‘ statements to handle errors and edge cases.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A misjudged sample from the self-rewarding method.

Prompt:

Review the user’s query and the corresponding response.
User:
Write a comprehensive and step-by-step guide on becoming a successful virtual bookkeeper,
including details on skills required, software and tools to use, strategies for marketing and
growing your business, tips for managing clients, and examples of successful bookkeeping
businesses in the virtual space. Ensure that the guide is well-structured, easy to follow, and
provides practical advice for anyone looking to start their virtual bookkeeping career.
Response:
Here is a comprehensive guide on becoming a successful virtual bookkeeper:
Skills Required
To become a successful virtual bookkeeper, you will need to have strong mathematical and
accounting skills, as well as excellent communication and organizational abilities. You
should also be proficient in using accounting software and other bookkeeping tools.
Software and Tools to Use
There are several different types of software and tools available for virtual bookkeepers to
use, including accounting software such as QuickBooks, bookkeeping apps like Wave, and
online invoicing systems like Invoice2go. It’s important to choose the right tools for your
business and to ensure that they are compatible with your workflow and needs.
Strategies for Marketing and Growing Your Business
Marketing and growing your virtual bookkeeping business is essential for success. You
can use a variety of strategies, such as building a website, creating social media profiles,
networking with other professionals, and participating in online forums and communities.
Additionally, you can offer discounts and promotions to attract new clients and build your
reputation.
Tips for Managing Clients
Managing clients effectively is key to running a successful virtual bookkeeping business.
Some tips include setting clear expectations, communicating regularly with clients, being
responsive to their needs, and providing high-quality service. It’s also important to maintain
good relationships with your clients by being friendly and helpful, and offering personalized
services whenever possible.
Examples of Successful Bookkeeping Businesses in the Virtual Space
There are many successful virtual bookkeeping businesses out there, including companies
like Bookkeeper360, Invoicely, and Wave Accounting. These businesses offer a range of
services, from basic bookkeeping to more complex financial management and advisory ser-
vices. By studying these businesses and learning from their success, you can develop your
own unique approach to virtual bookkeeping and create a successful business of your own.
I hope this guide has been helpful in providing you with a comprehensive overview of what
it takes to become a successful virtual bookkeeper. Remember, success requires hard work,
dedication, and a commitment to providing high-quality service to your clients. With the
right skills, tools, and strategies, you can build a successful virtual bookkeeping business
and make a positive impact on the lives of your clients and the industry as a whole.
After evaluating the quality and relevance of the response, determine whether it was
generated by a more advanced model (identifier: M) or by yourself (identifier: m).
Your output should consist of only one of these identifiers: M or m.

Response: M.

18

	Introduction
	Related work
	The Co-Evolved Self-Critique Framework
	Critic Training
	Generator training

	Experiments
	EXPERIMENTAL SETUP
	Evaluation Metrics and Baselines
	Generator's Instruction Following Evaluation
	Human evaluation

	Critic's discriminating Evaluation

	Conclusion
	Appendix
	Evaluating details
	Generation samples
	Self-generated data from CoEvol
	A misjudged sample from the self-rewarding method

