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ABSTRACT

Is intelligence realized by connectionist or classicist? While connectionist ap-
proaches have achieved superhuman performance, there has been growing evi-
dence that such task-specific superiority is particularly fragile in systematic gen-
eralization. This observation lies in the central debate (Fodor et al., 1988; Fodor &
McLaughlin, 1990) between connectionist and classicist, wherein the latter contin-
ually advocates an algebraic treatment in cognitive architectures. In this work, we
follow the classicist’s call and propose a hybrid approach to improve systematic
generalization in reasoning. Specifically, we showcase a prototype with algebraic
representations for the abstract spatial-temporal reasoning task of Raven’s Pro-
gressive Matrices (RPM) and present the ALgebra-Aware Neuro-Semi-Symbolic
(ALANS2) learner. The ALANS2 learner is motivated by abstract algebra and the
representation theory. It consists of a neural visual perception frontend and an
algebraic abstract reasoning backend: the frontend summarizes the visual infor-
mation from object-based representations, while the backend transforms it into an
algebraic structure and induces the hidden operator on-the-fly. The induced oper-
ator is later executed to predict the answer’s representation, and the choice most
similar to the prediction is selected as the solution. Extensive experiments show
that by incorporating an algebraic treatment, the ALANS2 learner outperforms
various pure connectionist models in domains requiring systematic generaliza-
tion. We further show that the algebraic representation learned can be decoded by
isomorphism and used to generate an answer.

1 INTRODUCTION

“Thought is in fact a kind of Algebra.” —William James (James, 1891)

Imagine you are given two alphabetical sequences of “c, b, a” and “d, c, b”, and asked to fill in
the missing element in “e, d, ?”. In nearly no time will one realize the answer to be c. However,
more surprising for human learning is that, effortlessly and instantaneously, we can “freely general-
ize” (Marcus, 2001) the solution to any partial consecutive ordered sequences. While believed to be
innate in early development for human infants (Marcus et al., 1999), such systematic generalizability
has constantly been missing and proven to be particularly challenging in existing connectionist mod-
els (Lake & Baroni, 2018; Bahdanau et al., 2019). In fact, such an ability to entertain a given thought
and semantically related contents strongly implies an abstract algebra-like treatment (Fodor et al.,
1988); in literature, it is referred to as the “language of thought” (Fodor, 1975), “physical symbol
system” (Newell, 1980), and “algebraic mind” (Marcus, 2001). However, in stark contrast, exist-
ing connectionist models tend only to capture statistical correlation (Lake & Baroni, 2018; Kansky
et al., 2017; Chollet, 2019), rather than providing any account for a structural inductive bias where
systematic algebra can be carried out to facilitate generalization.

This contrast instinctively raises a question—what constitutes such an algebraic inductive bias? We
argue that the foundation of the modeling counterpart to the algebraic treatment in early human
development (Marcus, 2001; Marcus et al., 1999) lies in algebraic computations set up on mathe-
matical axioms, a form of formalized human intuition and the starting point of modern mathematical
reasoning (Heath et al., 1956; Maddy, 1988). Of particular importance to the basic building blocks
of algebra is the Peano Axiom (Peano, 1889). In the Peano Axiom, the essential components of alge-
bra, the algebraic set and corresponding operators over it, are governed by three statements: (1) the
existence of at least one element in the field to study (“zero” element), (2) a successor function that
is recursively applied to all elements and can, therefore, span the entire field, and (3) the principle of
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mathematical induction. Building on such a fundamental axiom, we begin to form the notion of an
algebraic set and induce the operator along with it to construct an algebraic structure. We hypothe-
size that such a treatment of algebraic computations set up on fundamental axioms is essential for a
model’s systematic generalizability, the lack of which will only make it sub-optimal.

To demonstrate the benefits of such an algebraic treatment in systematic generalization, we show-
case a prototype for Raven’s Progressive Matrices (RPM) (Raven, 1936; Raven & Court, 1998), an
exemplar task for abstract spatial-temporal reasoning (Santoro et al., 2018; Zhang et al., 2019a). In
this task, an agent is given an incomplete 3ˆ3 matrix consisting of eight context panels with the last
one missing, and asked to pick one answer from a set of eight choices that best completes the matrix.
Human’s reasoning capability of solving this abstract reasoning task has been commonly regarded
as an indicator of “general intelligence” (Carpenter et al., 1990) and “fluid intelligence” (Spearman,
1923; 1927; Hofstadter, 1995; Jaeggi et al., 2008). In spite of the task being one that ideally requires
abstraction, algebraization, induction, and generalization (Raven, 1936; Raven & Court, 1998; Car-
penter et al., 1990), recent endeavors unanimously propose pure connectionist models that attempt to
circumvent such intrinsic cognitive requirements (Santoro et al., 2018; Zhang et al., 2019a;b; Wang
et al., 2020; Zheng et al., 2019; Hu et al., 2020; Wu et al., 2020). However, these methods’ ineffi-
ciency is also evident in systematic generalization; they struggle to extrapolate to domains beyond
training, as pointed out in (Santoro et al., 2018; Zhang et al., 2019b) and shown later in this paper.

To address the issue, we introduce the ALgebra-Aware Neuro-Semi-Symbolic (ALANS2) learner.
At a high-level, the ALANS2 learner is embedded in a general neuro-symbolic architecture (Yi et al.,
2018; Mao et al., 2019; Han et al., 2019; Yi et al., 2020) but has on-the-fly operator learnability and
hence semi-symbolic. Specifically, it consists of a neural visual perception frontend and an algebraic
abstract reasoning backend. For each RPM instance, the neural visual perception frontend first slides
a window over each panel to obtain the object-based representations (Kansky et al., 2017; Wu et al.,
2017) for every object. A belief inference engine latter aggregates all object-based representations
in each panel to produce the probabilistic belief state. The algebraic abstract reasoning backend
then takes the belief states of the eight context panels, treats them as snapshots on an algebraic
structure, lifts them into a matrix-based algebraic representation built on the Peano Axiom and the
representation theory (Humphreys, 2012), and induces the hidden operator in the algebraic structure
by solving an inner optimization (Colson et al., 2007; Bard, 2013). The algebraic representation for
the answer is predicted by executing the induced operator: its corresponding set element is decoded
by isomorphism established in the representation theory, and the final answer is selected as the one
most similar to the prediction.

The ALANS2 learner enjoys several benefits in abstract reasoning with an algebraic treatment:

1. Unlike previous monolithic models, the ALANS2 learner offers a more interpretable account of
the entire abstract reasoning process: the neural visual perception frontend extracts object-based
representations and produces belief states of panels by explicit probability inference, whereas the
algebraic abstract reasoning backend induces the hidden operator in the algebraic structure. The
corresponding representation for the final answer is obtained by executing the induced operator,
and the choice panel with minimum distance is selected. This process much resembles the top-
down bottom-up strategy in human reasoning: humans reason by inducing the hidden relation,
executing it to generate a feasible solution in mind, and choosing the most similar answer avail-
able (Carpenter et al., 1990). Such a strategy is missing in recent literature (Santoro et al., 2018;
Zhang et al., 2019a;b; Wang et al., 2020; Zheng et al., 2019; Hu et al., 2020; Wu et al., 2020).

2. While keeping the semantic interpretability and end-to-end trainability in existing neuro-
symbolic frameworks (Yi et al., 2018; Mao et al., 2019; Han et al., 2019; Yi et al., 2020),
ALANS2 is what we call semi-symbolic in the sense that the symbolic operator can be learned
and concluded on-the-fly without manual definition for every one of them. Such an inductive
ability also enables a greater extent of the desired generalizability.

3. By decoding the predicted representation in the algebraic structure, we can also generate an
answer that satisfies the hidden relation in the context.

This work makes three major contributions: (1) We propose the ALANS2 learner. Compared to
existing monolithic models, the ALANS2 learner adopts a neuro-semi-symbolic design, where the
problem-solving process is decomposed into neural visual perception and algebraic abstract rea-
soning. (2) To demonstrate the efficacy of incorporating an algebraic treatment in abstract spatial-
temporal reasoning, we show the superior systematic generalization ability of the proposed ALANS2

learner in various extrapolatory RPM domains. (3) We present analyses into both neural visual per-
ception and algebraic abstract reasoning. We also show the generative potential of ALANS2.
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2 RELATED WORK

Quest for Symbolized Manipulation The idea to treat thinking as a mental language can be dated
back to Augustine (Augustine, 1876; Wittgenstein, 1953). Since the 1970s, this school of thought has
undergone a dramatic revival as the quest for a symbolized manipulation in cognitive modeling, such
as “language of thought” (Fodor, 1975), “physical symbol system” (Newell, 1980), and “algebraic
mind” (Marcus, 2001). In their study, connectionist’s task-specific superiority and inability to gener-
alize beyond training (Kansky et al., 2017; Chollet, 2019; Santoro et al., 2018; Zhang et al., 2019a)
have been hypothetically linked to a lack of such symbolized algebraic manipulation (Lake & Ba-
roni, 2018; Chollet, 2019; Marcus, 2020). With evidence that an algebraic treatment adopted in early
human development (Marcus et al., 1999) can potentially address the issue (Bahdanau et al., 2019;
Mao et al., 2019; Marcus, 2020), classicist (Fodor et al., 1988) approaches for generalizable reason-
ing used in programs (McCarthy, 1960) and blocks world (Winograd, 1971) have resurrected. As a
hybrid approach to bridge connectionist and classicist, recent developments lead to neuro-symbolic
architectures. In particular, Yi et al. (2018) demonstrate a neuro-symbolic prototype for visual ques-
tion answering, where a perception module and a language parsing module are separately trained,
and the predefined logic operators associated with language tokens are chained to process the visual
information. Mao et al. (2019) soften the predefined operators to afford end-to-end training with only
question answers. Han et al. (2019) and Yi et al. (2020) use the hybrid architecture for metaconcept
learning and temporal causal learning, respectively. ALANS2 follows the classicist’s call but adopts
a neuro-semi-symbolic architecture: it is end-to-end trainable as opposed to Yi et al. (2018; 2020)
and the operator can be learned and concluded on-the-fly without manual specification (Yi et al.,
2018; Mao et al., 2019; Han et al., 2019; Yi et al., 2020).

Abstract Visual Reasoning Recent works by Santoro et al. (2018) and Zhang et al. (2019a) arouse
the community’s interest in abstract visual reasoning, where the task of Raven’s Progressive Matri-
ces (RPM) is introduced as such a measure for intelligent agents. Initially proposed as an intelligence
quotient test for humans (Raven, 1936; Raven & Court, 1998), RPM is believed to be strongly cor-
related with human’s general intelligence (Carpenter et al., 1990) and fluid intelligence (Spearman,
1923; 1927; Hofstadter, 1995; Jaeggi et al., 2008). Early RPM-solving systems employ symbolic
representations based on hand-designed features and assume access to the underlying logics (Car-
penter et al., 1990; Lovett et al., 2009; 2010; Lovett & Forbus, 2017). Another stream of research
on RPM recruits similarity-based metrics to select the most similar answer from the choices (Lit-
tle et al., 2012; McGreggor & Goel, 2014; McGreggor et al., 2014; Mekik et al., 2018; Shegheva
& Goel, 2018). However, their hand-defined visual features are unable to handle uncertainty from
imperfect perception, and directly assuming access to the logic operations simplifies the problem.
Recently proposed data-driven approaches arise from the availability of large datasets: Santoro et al.
(2018) extend a pedagogical RPM generation method (Wang & Su, 2015), whereas Zhang et al.
(2019a) use a stochastic image grammar (Zhu et al., 2007) and introduce structural annotations in it,
which Hu et al. (2020) further refine to avoid shortcut solutions by statistics in candidate panels. De-
spite the fact that RPM intrinsically requires one to perform abstraction, algebraization, induction,
and generalization, existing methods bypass such cognitive requirements using a single feedforward
pass in connectionist models: Santoro et al. (2018) use a relational module (Santoro et al., 2017),
Steenbrugge et al. (2018) augment it with a VAE (Kingma & Welling, 2013), Zhang et al. (2019a)
assemble a dynamic tree, Hill et al. (2019) arrange the data in a contrasting manner, Zhang et al.
(2019b) propose a contrast module, Zheng et al. (2019) formulate it in a student-teacher setting,
Wang et al. (2020) build a multiplex graph network, Hu et al. (2020) aggregate features from a hi-
erarchical decomposition, and Wu et al. (2020) apply a scattering transformation to learn objects,
attributes, and relations. In contrast, ALANS2 attempts to fulfill the cognitive requirements in a
neuro-semi-symbolic framework: the perception frontend abstracts out visual information, and the
reasoning backend induces the hidden operator in an algebraic structure.

3 THE ALANS2 LEARNER

In this section, we introduce the ALANS2 learner for the RPM problem. In each RPM instance, an
agent is given an incomplete 3ˆ 3 panel matrix with the last entry missing and asked to induce the
operator hidden in the matrix and choose from eight choice panels one that follows it. Formally, let
the answer variable be denoted as y, the context panels as tIo,iu8i“1, and choice panels as tIc,iu8i“1.
Then the problem can be formulated as estimating P py | tIo,iu8i“1, tIc,iu

8
i“1q. According to the

common design (Santoro et al., 2018; Zhang et al., 2019a; Carpenter et al., 1990), there is one
operator that governs each panel attribute. Hence, by assuming independence among attributes, we
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B
elief Inference

Figure 1: An overview of the ALANS2 learner. For an RPM instance, the neural visual perception module
produces the belief states for all panels: an object CNN extracts object attribute distributions for each image
region, and a belief inference engine marginalizes them out to obtain panel attribute distributions. For each
panel attribute, the algebraic abstract reasoning module transforms the belief states into matrix-based algebraic
representations and induces hidden operators by solving inner optimizations. The answer representations are
obtained by executing the induced operators, and the choice most similar to the prediction is selected as the
solution. An example of the underlying discrete algebra and its correspondence is also shown on the right.

propose to factorize the probability as
P py “ n | tIo,iu

8
i“1, tIc,iu

8
i“1q9

ź

a

ÿ

T a

P pya
“ n | T a, tIo,iu

8
i“1, tIc,iu

8
i“1qP pT a

| tIo,iu
8
i“1q, (1)

where ya denotes the answer selection based only on attribute a and T a the operator on a.

Overview As shown in Fig. 1, the ALANS2 learner decomposes the process into perception and
reasoning: the neural visual perception frontend extracts the belief states from each of the sixteen
panels, whereas the algebraic abstract reasoning backend views an instance as an example in an
abstract algebra structure, transforms belief states into algebraic representations by representation
theory, induces the hidden operators, and executes the operators to predict the representation of the
answer. Therefore, in Eq. (1), the operator distribution is modeled by the fitness of an operator and
the answer distribution by the distance between the predicted representation and that of a candidate.

3.1 NEURAL VISUAL PERCEPTION

The neural visual perception frontend consists of an object CNN and a belief inference engine. It is
responsible for extracting the belief states for each of the sixteen (context and choice) panels.

Object CNN For each panel, we use a sliding window to traverse the spatial domain of the image
and feed each image region into an object CNN. The CNN has four branches, producing for each
region its object attribute distributions, including objectiveness (if the region contains an object),
type, size, and color. Distributions of type, size, and color are conditioned on an object’s existence.

Belief Inference Engine The belief inference engine summarizes the panel attribute distributions
(over position, number, type, size, and color) by marginalizing out all object attribute distributions
(over objectiveness, type, size, and color). As an example, the distribution of the panel attribute of
Number can be computed as such: for N image regions and their predicted objectiveness

P pNumber “ kq “
ÿ

Ro

N
ź

j“1

P proj “ Roj q, (2)

where P proj q denotes the jth region’s estimated objectiveness distribution, and Ro is a binary se-
quence of length N that sums to k. All panel attribute distributions compose the belief state of a
panel. In the following, we denote the belief state as b and the distribution of an attribute a as P pbaq.

3.2 ALGEBRAIC ABSTRACT REASONING

Given the belief states of both context and choice panels, the algebraic abstract reasoning backend
concerns the induction of hidden operators and the prediction of answer representations for each
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attribute. The fitness of induced operators is used for estimating the operator distribution and the
difference between the prediction and the choice panel for estimating the answer distribution.

Algebraic Underpinning Without loss of generality, here we assume row-wise operators. For
each attribute, under perfect perception, the first two rows in an RPM instance provide snapshots
into an example of magma (Hausmann & Ore, 1937) constrained to an integer-indexed set, the sim-
plest group-like algebra structure that is closed under a binary operator. To see this, note that an
accurate perception module would see each panel attribute as a deterministic set element. Therefore,
RPM instances with unary operators, such as progression, are magma examples with special binary
operators where one operand is constant. Instances with binary operators, such as arithmetics, di-
rectly follow the magma properties. Those with ternary operators are ones with unary operators on
a three-tuple set defined on rows.
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Figure 2: Isomorphism between the
abstract algebra and the matrix-based
representation. Operator induction re-
duced to matrices.

Algebraic Representation A systematic algebraic view al-
lows us to felicitously recruit ideas in representation the-
ory (Humphreys, 2012) to glean the hidden properties in the
abstract structures: it makes abstract algebra amenable by re-
ducing it onto linear algebra. Following the same spirit, we pro-
pose to lift both the set elements and the hidden operators to
a learnable matrix space. To encode the set element, we em-
ploy the Peano Axiom (Peano, 1889). According to the Peano
Axiom, an integer-indexed set can be constructed by (1) a zero
element (0), (2) a successor function (Sp¨q), and (3) the prin-
ciple of mathematical induction, such that the kth element is
encoded as Skp0q. Specifically, we instantiate the zero element as a learnable matrix M0 and the
successor function as the matrix-matrix product parameterized by M . In an attribute-specific man-
ner, the representation of an attribute taking the kth value is pMaqkMa

0 . For operators, we consider
them to live in a learnable matrix group of a corresponding dimension, such that the action of an op-
erator on a set can be represented as matrix multiplication. Such algebraic representations establish
an isomorphism between the matrix space and the abstract algebraic structure: abstract elements on
the algebraic structure have a bijective mapping to/from the matrix space, and inducing the abstract
relation can be reduced to solving for a matrix operator. See Fig. 2 for a graphical illustration of the
isomorphism.

Operator Induction Operator induction concerns about finding a concrete operator in the abstract
algebraic structure. By the property of closure, we formulate it as an inner-level regularized linear
regression problem: a binary operator T a

b in a magma example for attribute a minimizes
argmin

T
`ab pT q “

ÿ

i

E
“

}Mpbao,iqTMpbao,i`1q ´Mpb
a
o,i`2q}

2
F

‰

` λab }T }2F , (3)

where under visual uncertainty, we take the expectation with respect to the distributions in the belief
states of context panels P pbao,iq in the first two rows, and denote its algebraic representation as
Mpbao,iq. For unary operators, one operand can be treated as constant and absorbed into T . Note
that Eq. (3) admits a closed-form solution (see Appendix for details). Therefore, the operator can
be learned and adapted for different instances of binary relations and concluded on-the-fly. Such a
design also simplifies the recent neuro-symbolic approaches, where every single symbol operator
needs to be hand-defined (Yi et al., 2018; Mao et al., 2019; Han et al., 2019; Yi et al., 2020). Instead,
we only specify an inner-level optimization framework and allow symbolic operators to be quickly
induced based on the neural observations, while keeping the semantic interpretability in the neuro-
symbolic methods. Therefore, we term such a design semi-symbolic.

The operator probability in Eq. (1) is then modeled by each operator type’s fitness, e.g., for binary,
P pT a “ T a

b | tIo,iu
8
i“1q9 expp´`ab pT a

b qq. (4)

Operator Execution To predict the algebraic representation of the answer, we solve another inner-
level optimization similar to Eq. (3), but now treating the representation of the answer as a variable:

yMa
b “ argmin

M
`ab pMq “ Er}Mpbao,7qT a

b Mpb
a
o,8q ´M}

2
F s, (5)

where the expectation is taken with respect to context panels in the last row. The optimization also
admits a closed-form solution (see Appendix for details), which corresponds to the execution of the
induced operator in Eq. (3).
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The predicted representation is decoded probabilistically as the predicted belief state of the solution,
P p pba “ k | T aq9 expp´}yMa ´ pMaqkMa

0 }
2
F q. (6)

Answer Selection Based on Eqs. (1) and (4), estimating the answer distribution is now boiled
down to estimating the conditional answer distributions for each attribute. Here, we propose to model
it based on the Jensen–Shannon Divergence (JSD) of the predicted belief state and that of a choice,

P pya “ n | T a, tIo,iu
8
i“1, tIc,iu

8
i“1q9 expp´DJSDpP p pba | T aq}P pbac,nqqq. (7)

Discussion The algebraic abstract reasoning module offers a computational and interpretable
counterpart to human-like reasoning in RPM (Carpenter et al., 1990). Specifically, the induction
component resembles the fluid intelligence, where one quickly induces the hidden operator by ob-
serving the context panels. The execution component synthesizes an image by executing the induced
operator, and the choice most similar to the image is selected as the answer. We also note that by
decoding the predicted representation in Eq. (6), a solution can be generated: by sequentially se-
lecting the most probable operator and the most probable attribute value, a rendering engine can
directly render the solution. The reasoning backend also enables end-to-end training: by integrating
the belief states from neural perception, the module conducts both induction and execution in a soft
manner, such that the gradients can be back-propagated and the learner jointly trained.

3.3 LEARNING OBJECTIVE

We train the entire ALANS2 learner by minimizing the cross-entropy loss between the estimated
answer distribution and the ground-truth selection, i.e.,

min
θ,tMa

0 u,tM
au
`pP py | tIo,iu

8
i“1, tIc,iu

8
i“1q, y‹q, (8)

where `p¨q denotes the cross-entropy loss, y‹ the ground-truth selection, θ the parameters in the
object CNN, and tMa

0 u and tMau the zero elements and the successor functions for element encod-
ings, respectively. Note notations are simplified by making the dependency on parameters implicit.

However, we notice in practice that with only the cross-entropy loss on the ground-truth selection,
the ALANS2 learner experiences difficulty in convergence. Without a proper guidance, the object
CNN does not produce meaningful object-based representations. Therefore, following the discussion
in (Santoro et al., 2018; Zhang et al., 2019a; Wang et al., 2020), we augment training with an
auxiliary loss on the distribution of the operator, i.e.,

min
θ,tMa

0 u,tM
au
`pP py | tIo,iu

8
i“1, tIc,iu

8
i“1q, y‹q `

ÿ

a

λa`pP pT a | tIo,iu
8
i“1q, y

a
‹ q, (9)

where ya‹ denotes the ground-truth operator selection for attribute a, and λa balances the trade-off.

4 EXPERIMENTS

A cognitive architecture with systematic generalization is believed to demonstrate the following
three principles (Fodor et al., 1988; Marcus, 2001; 2020): (1) systematicity, (2) productivity, and
(3) localism. Systematicity requires an architecture to be able to entertain “semantically related”
contents after understanding a given thought. Productivity states that the awareness of a constituent
implies that of a recursive application of the constituent, and vice versa for localism.

To verify the effectiveness of an algebraic treatment in systematic generalization, we showcase the
superiority of the proposed ALANS2 learner on the three principles in the abstract spatial-temporal
reasoning task of RPM. Specifically, we use the generation methods proposed in Zhang et al. (2019a)
and Hu et al. (2020) to generate RPM problems and carefully split training and testing to construct
the three regimes. The former generates candidates by perturbing only one attribute of the correct
answer while the later modifies attribute values in a hierarchical manner to avoid shortcut solutions
by pure statistics. Both methods categorize relations in RPM into three types, according to Carpenter
et al. (1990): unary (Constant and Progression), binary (Arithmetic), and ternary (Distribution of
Three), each of which comes with several instances. Grounding the principles into learning abstract
relations in RPM, we fix the configuration to be 3ˆ 3Grid and generate the following data splits for
evaluation (see Appendix for details):

• Systematicity: the training set contains only a subset of instances for each type of relation, while
the test set all other relation instances.
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• Productivity: as the binary relation results from a recursive application of the unary relation, the
training set contains only unary relations, whereas the test set only binary relations.

• Localism: the training and testing sets in the productivity split are swapped to study localism.

We follow Zhang et al. (2019a) to generate 10, 000 instances for each split and assign 6 folds for
training, 2 folds for validation, and 2 folds for testing.

Experimental Setup We evaluate the systematic generalizability of the proposed ALANS2 learner
on the above three splits, and compare the ALANS2 learner with other baselines, including ResNet,
ResNet+DRT (Zhang et al., 2019a), WReN (Santoro et al., 2018), CoPINet (Zhang et al., 2019b),
MXGNet (Wang et al., 2020), LEN (Zheng et al., 2019), HriNet (Hu et al., 2020), and SCL (Wu
et al., 2020). We use either official or public implementations that reproduce the original results.

Table 1: Model performance on different aspects of systematic generalization. The performance is measured
by accuracy and reported on the test sets. Upper: results on datasets generated by Zhang et al. (2019a). Lower:
results on datasets generated by Hu et al. (2020).

Method MXGNet ResNet+DRT ResNet HriNet LEN WReN SCL CoPINet ALANS2 ALANS2-Ind

Systematicity 20.95% 33.00% 27.35% 28.05% 40.15% 35.20% 37.35% 59.30% 78.45% 52.70%
Productivity 30.40% 27.95% 27.05% 31.45% 42.30% 56.95% 51.10% 60.00% 79.95% 36.45%
Localism 28.80% 24.90% 23.05% 29.70% 39.65% 38.70% 47.75% 60.10% 80.50% 59.80%
Average 26.72% 28.62% 25.82% 29.73% 40.70% 43.62% 45.40% 59.80% 79.63% 48.65%

Systematicity 13.35% 13.50% 14.20% 21.00% 17.40% 15.00% 24.90% 18.35% 64.80% 52.80%
Productivity 14.10% 16.10% 20.70% 20.35% 19.70% 17.95% 22.20% 29.10% 65.55% 32.10%
Localism 15.80% 13.85% 17.45% 24.60% 20.15% 19.70% 29.95% 31.85% 65.90% 50.70%
Average 14.42% 14.48% 17.45% 21.98% 19.08% 17.55% 25.68% 26.43% 65.42% 45.20%

Systematic Generalization Table 1 shows the performance of various models on systematic gen-
eralization, i.e., systematicity, productivity, and localism. Compared to results reported in Santoro
et al. (2018); Zhang et al. (2019a;b); Wang et al. (2020); Zheng et al. (2019); Hu et al. (2020); Wu
et al. (2020), all pure connectionist models experience a devastating performance drop when it comes
to the critical cognitive requirements on systematic generalization, indicating that pure connection-
ist models fail to perform abstraction, algebraization, induction, or generalization needed in solving
the abstract reasoning task; instead, they seem to only take a shortcut to bypass them. In particular,
MXGNet (Wang et al., 2020)’s superiority is diminishing in systematic generalization. Despite of
learning with structural annotations, ResNet+DRT (Zhang et al., 2019a) does not fare better than
its base model. The recently proposed HriNet (Hu et al., 2020) slightly improves on ResNet in this
aspect, with LEN (Zheng et al., 2019) being only marginally better. WReN (Santoro et al., 2018), on
the other hand, shows oscillating performance across the three regimes. Evaluated under systematic
generation, SCL (Wu et al., 2020) and CoPINet (Zhang et al., 2019b) also far deviate from their “su-
perior performance”. These observations suggest that pure connectionist models highly likely learn
from variation in visual appearance rather than the algebra underlying the problem.

Embedded in a neural-semi-symbolic framework, the proposed ALANS2 learner improves on sys-
tematic generalization by a large margin. With an algebra-aware design, the model is considerably
stable across different principles of systematic generalization. The algebraic representations learned
in relations of either a constituent or a recursive composition naturally support productivity and lo-
calism, while semi-symbolic inner optimization further allows various instances of an operator type
to be induced from the algebraic representations and boosts systematicity. The importance of the al-
gebraic representations is made more significant in the ablation study: ALANS2-Ind, with algebraic
representation replaced by independent encodings and the algebraic isomorphism broken, shows
inferior performance. The ALANS2 learner also enables diagnostic tests into its jointly learned per-
ception module and reasoning module, in contrast to the black-box-like connectionist counterparts.

Analysis into Perception and Reasoning The neural-semi-symbolic design allows analyses into
both perception and reasoning. To evaluate the neural perception module and the algebraic reason-
ing module, we extract region-based object attribute annotations from the dataset generation meth-
ods (Zhang et al., 2019a; Hu et al., 2020) and categorize all relations into three types, i.e., unary,
binary, and ternary, respectively.

Table 2 shows the perception module’s performance on the test sets in the three regimes of systematic
generalization. We note that in order for the ALANS2 learner to achieve the desired results shown in
Table 1, ALANS2 learns to construct the concept of objectiveness perfectly. The model also shows a
fairly accurate prediction accuracy on the attributes of type and size. However, on the texture-related
concept of color, ALANS2 fails to develop a reliable notion on it. Despite that, the general prediction
accuracy of the perception module is still surprising, considering that the perception module is only
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jointly learned with ground-truth annotations on answer selections. The relatively lower accuracy on
color could be attributed to its larger space compared to other attributes.

Table 2: Perception accuracy of the proposed ALANS2 learner, measured by whether the module can correctly
predict an attribute’s value. Left: results on datasets genereted by Zhang et al. (2019a). Right: results on datasets
genereted by Hu et al. (2020).

Object Attribute Objectiveness Type Size Color

Systematicity 100.00% 99.95% 94.65% 71.35%
Productivity 100.00% 99.97% 98.04% 77.61%
Localism 100.00% 95.65% 98.56% 80.05%
Average 100.00% 98.52% 97.08% 76.34%

Object Attribute Objectiveness Type Size Color

Systematicity 100.00% 96.34% 92.36% 63.98%
Productivity 100.00% 94.28% 97.00% 69.89%
Localism 100.00% 95.80% 98.36% 60.35%
Average 100.00% 95.47% 95.91% 64.74%

Table 3: Reasoning accuracy of the proposed ALANS2 learner, measured by whether the module can correctly
predict the type of a relation on an attribute. Left: results on datasets genereted by Zhang et al. (2019a). Right:
results on datasets generated by Hu et al. (2020).

Relation on Position Number Type Size Color

Systematicity 72.04% 82.14% 81.50% 80.80% 40.40%
Productivity - 98.75% 89.50% 72.10% 33.95%
Localism - 74.70% 44.25% 56.40% 54.20%
Average 72.04% 85.20% 71.75% 69.77% 42.85%

Relation on Position Number Type Size Color

Systematicity 69.96% 80.34% 83.50% 80.85% 28.85%
Productivity - 99.10% 87.95% 68.50% 23.10%
Localism - 70.55% 36.65% 42.30% 33.20%
Average 69.96% 83.33% 69.37% 63.88% 28.38%

Table 3 lists the reasoning module’s performance during testing for the three aspects. Note that on
position, the unary operator (shifting) and binary operator (set arithemtics) do not systematically im-
ply each other. Hence, we do not count them as probes into productivity and localism. In general, we
notice that the better the perception accuracy on one attribute, the better the performance on reason-
ing. However, we also note that despite the relatively accurate perception of objectiveness, type, and
size, near perfect reasoning is never guaranteed. This deficiency is due to the perception uncertainty
handled by expectation in Eq. (3): in spite of correctness when we take argmax, marginalizing by
expectation will unavoidably introduce noise into the reasoning process. Therefore, an ideal reason-
ing module requires the perception frontend to be not only correct but also certain. Computationally,
one can sample from the perception module and optimize Eq. (9) using REINFORCE (Williams,
1992). However, the credit assignment problem and variance in gradient estimation will further
complicate training.

Generative Potential Compared to existing discriminative-only RPM-solving methods, the pro-
posed ALANS2 learner is unique in its generative potential. As mentioned above, the final panel
attribute can be decoded by sequentially selecting the most probable hidden operator and the at-
tribute value. When equipped with a rendering engine, a solution can be generated. Here, we use the
rendering program released by Zhang et al. (2019a) to demonstrate such a generative potential in the
proposed ALANS2 learner. Fig. 3 shows examples where the solutions are generated by ALANS2.
Such a generative ability is a computational counterpart to human reasoning: ALANS2 selects the
one most similar to a synthesized image from the pool of candidates, which resembles human’s
top-down bottom-up reasoning.
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Figure 3: Examples of RPM instances with the missing entries filled by solutions generated by the ALANS2

learner. Ground-truth relations are also listed. Note the generated results do not look exactly like the correct
choices due to random rotations during rendering, but they are semantically correct.

5 CONCLUSION

In this work, we propose the ALgebra-Aware Neuro-Semi-Symbolic (ALANS2) learner, echoing a
normative theory in the connectionist-classicist debate that an algebraic treatment in a cognitive ar-
chitecture should improve a model’s systematic generalization ability. In experiments, we show that
with such an algebraic treatment, the neuro-semi-symbolic learner achieves superior performance in
three RPM domains reflective of systematic generalization.
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A INDUCING AND EXECUTING OPERATORS

In the main text, we examplify the induction and the execution process using a binary operator. Here,
we discuss other details regarding the formulation for all three types of operators, i.e., unary, binary,
and ternary.

Unary Operator To induce the unary operator T a
u for an attribute a, we solve the following opti-

mization problem

T a
u “ argmin

T
`aupT q “ 1{5ˆ
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›
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` λau }T }2F ,
(S1)

where the indexing follows the row / column major. By taking the derivative with respect to T and
setting it to be 0, we have the following solution,

T a
u “ A´1B (S2)

where, assuming independence,
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Note that as long as λau ą 0, A is a symmetric positive definite matrix and hence is invertible.
Compared to the binary case, the unary operator can be regarded as a special binary operator where
one of the operand is a constant, absorbed into operator learning, and jointly solved.

To predict the answer representation, we solve another optimization problem, i.e.,
yMa
u “ argmin
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Taking its derivative and setting it to 0, we have
yMa
u “ E

“

Mpbao,8q
‰

T a
u . (S6)

Note that this is exactly the execution of the learned operator.

Binary Operator The optimization problem for the binary case can be expanded as

T a
b “ argmin
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We note that, assuming independence, the solution satisfies
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This is a linear matrix equation and can be turned into a linear equation by vectorization. Using
vecpAT Bq “ AbB vecpT q (Lancaster, 1970), where b denotes the Kronecker product, we have

vecpT a
b q “ A´1B, (S9)
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Note that A is also symmetric positive definite given positive λab and hence invertible.
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The predicted answer representation is given by
yMa
b “ argmin
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which can be solved by executing the induced binary operator yMa
b “ E

“

Mpbao,7q
‰

T a
b E

“

Mpbao,8q
‰

.

Ternary Operator A ternary operation can be regarded as an unary operation on elements defined
on rows / columns. Specifically, we propose to construct the algebraic representation of a row /
column by concatenating the algebraic representation of each panel in it, i.e.,
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a
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a
o,i`2q “ rMpb

a
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a
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Then the ternary operator can be solved by
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Similar to the unary case discussed above,
T a
t “ A´1B (S15)
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Correspondingly, the answer representation can be obtained by first executing the ternary operator
E
“

Mpbao,4, b
a
o,5, b

a
o,6q

‰

T a
t and slicing it from the result.

To compute the operator distribution, we model it based on the fitness of each operator type,
P pT a “ T a

u | tIo,iu
8
i“1q9 expp´`aupT a

u qq (S18)

P pT a “ T a
b | tIo,iu

8
i“1q9 expp´`ab pT a

b qq (S19)

P pT a “ T a
t | tIo,iu

8
i“1q9 expp´`at pT a

t qq. (S20)

B INSTANCES OF OPERATORS

In the original work of Zhang et al. (2019a) and Hu et al. (2020), there are four operators: Con-
stant, Progression, Arithmetic, and Distribute of Three. Progression is parameterized by its step size
(˘1{2). Arithmetic includes addition and subtraction. And Distribute of Three is implemented as
shifting and can be either a left shift or a right one. Note that Constant can be regarded as special
Progression with a step size of 0. In this work, we group all four operators into three types: unary
(Constant and Progression), binary (Arithmetic), and ternary (Distribute of Three).

To study systematic generalization in abstract relation learning, we use the RPM generation method
proposed in (Zhang et al., 2019a; Hu et al., 2020) and carefully split data into three regimes:

• Systematicity: The training set and the test set contain all three types of operators but disjoint
instances. Specifically, the training set has Constant, Progression of ˘1, addition in Arithmetic,
and left shift in Distribute of Three, while in the test set there are Progression of ˘2, subtraction
in Arithmetic, and right shift in Distribute of Three.

• Productivity: The training set contains only unary operators and the test set only binary operators.
Specifically, the training set has Constant and all instances of Progression, while the test set all
instances of Arithmetic.

• Localism: The training set contains only binary operators and the test set only unary operators.
Specifically, the training set has all instances of Arithmetic and the test set Constant and all in-
stances of Progression.

Please see Figs. S1 to S3 for examples in the three splits.

C IMPLEMENTATION DETAILS

C.1 NETWORK ARCHITECTURE

We use a LeNet-like architecture (LeCun et al., 1998) for each branch of the object CNN. See
Table S1 for the design. Note that the object CNN consists of four branches, including objectiveness,
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Figure S1: A training example (left) and a test example (right) in the systematicity split. Note that in the training
example, the arithmetic relation (in number) is addition and the shifting is always a left shift (in type, size, and
color). In the test example, the shifting becomes a right shift (in type), the size progression has a step of 2, and
color arithmetic becomes subtraction.

Figure S2: A training example (left) and a test example (right) in the productivity split. Note that in the training
example, the constant rule is applied to the number, type, and size, while the progression rule is applied on
color. In the testing example, the arithmetic rule is applied on all attributes.
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Figure S3: A training example (left) and a test example (right) in the localism split. Note that in the training
example, the arithmetic rule is on all attributes. In the test example, the progression rule is applied on number
and the constant rule on all other attributes.

Table S1: The network architecture used for each branch of the object CNN.

Operator Parameters

Convolution r6, 5, 1s
BatchNorm 6
SoftPlus
MaxPool 2
Convolution r16, 5, 1s
BatchNorm 16
SoftPlus
MaxPool 2
Linear 120
SoftPlus
Linear 84
SoftPlus
Linear m
LogSoftMax

type, size, and color. The parameters for Convolution denote the output channel size, kernel size,
and stride, respectively. A BatchNorm layer is parameterized by the number of channels, whereas a
MaxPool layer by its stride. An output size is used to specify a Linear layer’s parameter. m equals
2, 5, 6, 10 for objectiveness, type, size, and color, respectively. For numerical stability, we use
LogSoftMax to turn a probability simplex into its log space.

C.2 OTHER HYPERPARAMETERS

For the inner regularized linear regression, we set different regularization coefficients for different
attributes but, for the same attribute, we keep them the same across all three types of operators. For
position, λ “ 10´4. For number, λ “ 10´6. For type, λ “ 10´6. For size, λ “ 10´6. For color,
λ “ 5 ˆ 10´7. All of the regularization terms in Eq. (9) in the main text are set to be 1 and tMa

0 u

and tMau are initialized as 2ˆ 2 square matrices.

For training, we first train for 10 epochs parameters regarding objectiveness, including the objective-
ness branch, and the representation matrices on position and number. We then perform 2 rounds of
cyclic training on parameters regarding type, size, and color, each of which experiences 10 epochs
of updates in a round. Finally, we fine-tune all parameters for another 10 epochs, totaling up to 80
training epochs. The entire system is optimized using ADAM (Kingma & Ba, 2014) with a learning
rate of 9.5ˆ 10´5.
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D MARGINALIZATION FOR OTHER ATTRIBUTES

For the attribute of position, we denote its value as Ro, a binary vector of length N , with each entry
corresponding to one of the N windows. Then

P pPosition “ Roq “
N
ź

j“1

P proj “ Roj q, (S21)

where P proj q denotes the jth region’s estimated objectiveness distribution returned by a CNN as in
the main text.

For the attribute of type, the panel attribute of type being k is evaluated as

P pType “ kq “
ÿ

Ro

¨

˝

ź

j,Ro
j“1

P prtj “ kq

˛

‚P pPosition “ Roq, (S22)

where P prtjq denotes the jth region’s estimated type distribution returned by a CNN.

The computation for size and color is exactly the same as type, except that we use the region’s
estimated size and color distribution returned by a CNN.

E RELATED WORK ON NEURAL THEOREM PROVING

Combining neural architectures with symbolic reasoning has a long history in the field of theorem
proving (Garcez et al., 2012), with early works dated back to propositional rules (Shavlik & Towell,
1991; Towell & Shavlik, 1994; Garcez & Zaverucha, 1999). Later works extend the propositional
rules to first-order inference (Shastri, 1992; Ding, 1995; França et al., 2014; Sourek et al., 2015; Co-
hen, 2016). More recent works include the Logic Tensor Networks (Serafini & Garcez, 2016) and the
NTP model (Rocktäschel & Riedel, 2017). The former grounds first-order logics and supports func-
tion terms, while the latter is constructed from Prolog’s backward chaining and is related to Komen-
dantskaya (2011); Hiolldobler (1990) but supports function-free terms. DeepProbLog (Manhaeve
et al., 2018) further improves on NTP by focusing on tight interactions between a neural component
and subsymbolic representation and parameter learning for both the neural and the logic compo-
nents. Evans & Grefenstette (2018) introduces a differentiable rule induction process, though not
integrating the neural and symbolic components. Our work is related to the stream of work on neural
theorem proving. However, we formulate the relation induction process as continuous optimization
rather than logical induction.

F MORE ON NEURAL VISUAL PERCEPTION

• Why not train a CNN to predict the position and number of objects? The CNN is
trained to predict the type, size, color, and object existence in a window. The object ex-
istence in windows is marginalized to be a Number distribution and Position distribution.
This is a light-weight method for object detection. Nevertheless, it is also possible to use
a Fast-RCNN like method to predict object positions (this implies number) directly. How-
ever, in this way, the framework loses the probabilistic interpretation (the object proposal
branch is currently still deterministic), and we cannot perform end-to-end learning.

• How does the CNN predict the presence of an object, its type, size, and color given
that it is not trained to do that? For each window, the CNN outputs 4 softmaxed vec-
tors, corresponding to the probability distributions of object existence, object type, object
size, and object color. The spaces for these attributes are pre-defined. CNN’s weights are
then jointly trained in the framework. Such a design follows recent neuro-symbolic meth-
ods (Mao et al., 2019; Han et al., 2019) that also rely on the implicitly trained represen-
tation. In short, we assign semantics to the implicitly trained representation (probability
distributions for attributes), performs marginalization and reasoning as if they are ground-
truth attribute distributions, and jointly train using only the problem’s target label.
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