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ABSTRACT

There has been a booming demand for integrating Convolutional Neural Networks
(CNNs) powered functionalities into Internet-of-Thing (IoT) devices to enable
ubiquitous intelligent “IoT cameras”. However, more extensive applications of
such IoT systems are still limited by two challenges. First, some applications,
especially medicine- and wearable-related ones, impose stringent requirements
on the camera form factor. Second, powerful CNNs often require considerable
storage and energy cost, whereas IoT devices often suffer from limited resources.
PhlatCam, with its form factor potentially reduced by orders of magnitude, has
emerged as a promising solution to the first aforementioned challenge, while the
second one remains a bottleneck. Existing compression techniques, which can
potentially tackle the second challenge, are far from realizing the full potential in
storage and energy reduction, because they mostly focus on the CNN algorithm
itself. To this end, this work proposes SACoD, a Sensor Algorithm Co-Design
framework to develop more efficient CNN-powered PhlatCam. In particular, the
mask coded in the PhlatCam sensor and the backend CNN model are jointly opti-
mized in terms of both model parameters and architectures via differential neural
architecture search. Extensive experiments including both simulation and physical
measurement on manufactured masks show that the proposed SACoD framework
achieves aggressive model compression and energy savings while maintaining or
even boosting the task accuracy, when benchmarking over two state-of-the-art
(SOTA) designs with six datasets on four different tasks. We also evaluate the per-
formance of SACoD on the actual PhlatCam imaging system with visualizations
and experiment results. All the codes will be released publicly upon acceptance.

1 INTRODUCTION

Recent CNN breakthroughs trigger a growing demand for intelligent IoT devices, such as wearables
and biology devices (e.g., swallowed endoscopes). However, two major challenges are hamper-
ing more extensive applications of CNN-powered IoT devices. First, some applications, especially
medicine- and biology-related ones, impose strict requirements on the form factor, especially the
thickness, which are often too stringent for existing lens-based imaging systems. Second, powerful
CNNs require considerable hardware costs, whereas IoT devices only have limited resources.

For the first challenge, lensless imaging systems (Asif et al., 2015; Shimano et al., 2018; Adams
et al., 2017; Antipa et al., 2018; Boominathan et al., 2020) have emerged as a promising rescue. For
example, PhlatCam (Boominathan et al., 2020) replaces the focal lenses with a set of phase masks,
which encodes the incoming light instead of directly focusing it. The encoded information can
be either computationally decoded to reconstruct the images or processed specifically for different
applications. Such lensless imaging systems can be made much smaller and thinner, because the
phase masks are smaller than the focal lens, and they can be placed much closer to the sensors and
fabricated with much lower costs. For the second challenge, many recent works focus on designing
CNNs with improved hardware efficiency, i.e., by applying generic neural architecture search (NAS)
to find efficient CNNs.

As such, a naive way to address the two aforementioned challenges simultaneously is to introduce
lensless cameras as the signal acquisition frontend and then apply NAS to optimize the backend
CNN. However, such approaches would result in disjoint optimization that can be far from optimal.
A generic NAS would treat the camera as given, and only optimize the CNN. Likewise, existing
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Figure 1: An overview of the proposed SACoD framework.

phase mask designs for lensless cameras treat the CNNs as given, and only optimize the masks. Such
disjoint optimization fails to (1) take advantage of the masks’ potential computational capacity, with
which the NAS optimization can be fundamentally improved, and (2) perform end2end optimization.

It is shown in (Boominathan et al., 2020) that, under some assumptions, the phase masks in Phlat-
Cam essentially perform 2D convolutions on the incoming lights, and the convolution kernel is
encoded in the masks. Moreover, unlike other convolutional layers, the phase masks’ convolutions
are almost free – they do not consume additional energy, computation power, or storage, regardless
of what value each mask takes. Therefore, we aim to incorporate the phase mask design into NAS
to enable an end2end optimization of the sensing-processing pipeline, while exempting a portion of
the pipeline from the efficiency penalties. Such co-designs are expected to achieve better tradeoffs
between accuracy and efficiency.

To this end, we propose a Sensor Algorithm Co-Design (SACoD) framework to enable more energy-
efficient CNN-powered IoT devices. While SACoD is general and can be applied to different sensing
and intelligent processing systems, it is developed and evaluated in the context of PhlatCam (Boom-
inathan et al., 2020) based imaging systems. Our main contributions are:

• We propose SACoD, a novel co-design framework that jointly optimizes the sensor and
neural networks to enable more energy-efficient CNN-powered IoT devices. To our best
knowledge, SACoD is the first to propose sensor algorithm co-design for CNN inferences.

• We develop an effective design of the optical layer to (1) exploit its potential computation
capability and (2) enable co-search of the optical layer and backend algorithm. We then
characterize the trade-off between accuracy and the required area of the corresponding
imaging systems to demonstrate its effectiveness under practical size constraints.

• Extensive experiments and ablation studies validate that the proposed SACoD consistently
achieves reduced hardware costs/area while offering a comparable or even better task ac-
curacy, when evaluated over two SOTA lensless imaging systems on four tasks and six
datasets. And part of the experiments are further evaluated with fabricated masks to vali-
date SACoD’s effectiveness in the physical measurement besides simulation.

2 RELATED WORKS

Neural architecture search. Recently NAS has attracted increasing attention. It eliminates the
handcrafting process and automatically designs neural architectures. Existing NAS techniques can
be divided into three categories, evolution-based, reinforcement-learning (RL)-based, and one-shot
NAS. As the computational overheads of evolution- or RL-based approaches can be unacceptably
high, many techniques (Brock et al., 2017; Cai et al., 2018a; Liu et al., 2017; 2018; Pham et al., 2018;
Xie et al., 2018) have been proposed to reduce the searching cost, among which differentiable archi-
tecture search (DARTS) has gained intensive interests. While being conceptually general, SACoD
in this paper adopts the DARTS method, where a super-network is optimized during search and the
strongest sub-network is preserved and then retrained.

Lensless imaging systems. To eliminate the size or thickness burden caused by the lens, various
lensless imaging systems have been developed. While lensless imaging systems have been widely
used for capturing X-ray and gamma-ray (Dicke, 1968; Caroli et al., 1987), it is still in an exploring
stage for visible spectrum uses (Asif et al., 2015; Shimano et al., 2018; Antipa et al., 2018; Boom-
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inathan et al., 2020). In general, lensless imaging systems capture the scene either directly on the
sensor or after being modulated by a mask element.

Figure 2: A fabricated phase mask used in the
PhlatCam lensless imaging system (Boominathan
et al., 2020).

In this paper, we focus on a specific lensless
imaging system based on phase masks called
PhlatCam (Boominathan et al., 2020), which is
a general-purpose framework to create phase
masks that can achieve desired sharp point-
spread-functions (PSFs). A phase mask mod-
ulates the phase of incident lights, and allows
most of the light to pass through, providing
a high signal-to-noise ratio. Hence, they are
desirable for low light scenarios and photon-
limited imaging. Fig. 2 shows a fabricated phase mask, which is essentially a transparent material
with different thicknesses at different locations. Based on this lensless imaging system, we develop
our SACoD framework, aiming to enable more energy-efficient CNN-powered IoT devices.

Sensor-algorithm co-training. There have recently been some attempts that try to jointly optimize
the sensor parameters and the neural network backend. For lens-based image systems, novel lens
designs are introduced and trained concurrently with the neural network backend to jointly optimize
for image reconstruction (Sitzmann et al., 2018), depth estimation (Chang & Wetzstein, 2019), and
high-dynamic-range imaging (Metzler et al., 2019). Similar approaches have been applied to other
imaging systems as well, including cameras with color multiplexing (Chakrabarti, 2016), Phase-
Cam3D (Wu et al., 2019b), and Single Photon Avalanche Photodiodes cameras (Sun et al., 2020).
Yet these methods still consider the neural network architecture as fixed, and do not explore the
potential of applying the co-design principle to the neural architecture design.

3 THE PROPOSED SACOD FRAMEWORK

This section presents the SACoD framework. We will first outline the framework and explain why
the optical layer can be considered as a convolutional layer, and then introduce how we implement
SACoD’s optimization algorithm. Finally, we describe our developed optical layer design.

Framework setup. The SACoD framework shown in Fig. 1 consists of two modules, an optical
sensing frontend and a neural network backend. The coded mask of PhlatCam in the sensor and the
backend are jointly optimized using a SOTA differential NAS algorithm (Liu et al., 2018), where the
coded masks, together with the neural network weights, are regarded as network parameters.

Specifically, the first module, i.e. the optical sensing frontend, is denoted as O(⋅;m), where
m = m(x, y) denotes the phase mask values. The optical layer is based on the PhlatCam sys-
tem (Boominathan et al., 2020). It receives the light signal from the object in front of the camera,
processes the signal using the phase masks, and generates the sensor output. The second module,
i.e. the neural network backend, is denoted as F (⋅;w,α), where w represents weights of the neu-
ral network, and α parameterizes the architecture. The neural network backend receives the sensor
signal and produces an output for the intended applications.

Formally, denote the light signal as I(x, y) ∈ RH×W×3, where x and y are coordinate indices and H
and W represent the height and width of the range of light the camera can receive. The light signal
contains RGB channel, and hence the last dimension is 3. Denote the signal received at sensor as
Z(x, y) ∈ RH

′×W ′×N , where H ′ and W ′ represent the height and width, and N represent the number
of channels. Denote Y as the final output of the neural network backend. Then we have

Z = O(I;m), Y = F (Z;w,α). (1)

The following subsections will introduce the form of O(⋅;m) and how to determine m, w, and α.

The optical sensing frontend. Assuming that the light signal I(x, y) comes from an object whose
distance to the camera is d, and that the depth of the object is relatively small, it can be shown
(Boominathan et al., 2020) that O(⋅;m) takes the following convolutional form:

Z(x, y) = O(I;m) = p(x, y;m, d) ∗ I(x, y), (2)

where ∗ denotes 2D convolution, p(x, y;m, z) is called the point spread function of the phase mask,
which is determined by the phase mask m(x, y) and the distance d. Once we optimize the PSF, the
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phase masks are designed for the PSF and a chosen d. The fabricated mask then produces the PSF
at the given d. For the fabricated system shown in 4.5, d is set to be 2 mm for making our system
much thinner than conventional cameras (thickness ranges between 7-20 mm). The mask is fixed at
distance d to the sensor during operation, and thus the convolution property will continue to hold.
According to Eq. equation 2, the optical layer can be regarded as a special convolutional layer. Note
that one phase mask can only perform a single-channel convolution with a positive kernel. It takes
two phase masks to implement a single-channel convolution with a real-valued kernel, where one
implements the positive part of the kernel and the other implements the negative part. Therefore,
in order to construct a convolutional layer with three channels and real-valued kernels, we need six
masks in the imaging system. Also, the input light has three color channels (R, G, and B), and each
phase mask operates on all the color channels. Therefore, a three-channel convolution will produce
a total of nine feature maps (FMs).

We propose three different designs for using the rendered FMs, as shown in Fig. 3. Specifically, the
design in Fig. 3 (a) accumulates the FMs across the same color and outputs a 3-channel FM, which
is still in an RGB shape; the design in Fig. 3 (b) accumulates the FMs from one mask across three
colors and outputs a 2-channel FM; and the design in Fig. 3 (c) simply concatenates all the FMs
from different colors. These three different designs extract different amounts or types of information
from the scene which are then passed to the following neural network.

Experiments under various settings show that SACoD based on Fig. 3 (a) achieves higher accura-
cies than those based on Fig. 3 (b), and similar accuracies as the designs based on Fig. 3 (c). We
conjecture the reason is that design (a) applies independent transformations on the RGB channels to
maintain the original channel-wise discriminative information; and maintaining all the information
as design (c) does not contribute to higher accuracy than design (a), since the accumulated infor-
mation across the same color has provided sufficient information for the following processing under
the constrained number of masks. So in our experiments, we adopt the optical layer design (a).

The SACoD formulation and algorithm. This subsection introduces the formulation and optimiza-
tion of SACoD which aims to simultaneously optimize the phase mask m, and the neural network’s
architecture α, and the neural network’s weights w. Formally, SACoD aims to solve:

min
α

Lval (m∗(α),w∗(α),α) + λLe(α), (3)

m
∗(α),w∗(α) = argmin

{m,w}
Ltr(m,w,α). (4)

Ltr and Lval are task-specific performance losses evaluated on the training and validation set, respec-
tively, Le is the efficiency loss, e.g. model size, computational cost, or energy consumption, and λ is
the tuning parameter trading-off the accuracy and efficiency. Following the same parameterization
scheme in DARTS (Liu et al., 2018), α denotes the weights of different candidate operations.

There are two major modifications compared to the original DARTS framework. The first difference
is that the efficiency loss Le, measured by the sum of each layer’s FLOPs weighted by the network
parameter α, is introduced. More importantly, the second and major difference is that the phase
maskm is optimized jointly in the framework. It is worth pointing out that although mathematically
similar, m∗ and w∗ have different degrees of dependencies on α. w∗ is directly impacted by α
because α governs which subset of the w is ultimately used. m∗ is only indirectly influenced by
α. Therefore, incorporating m will significantly improve the tradeoff between performance and
model complexity. Besides, SACoD is naturally compatible with other NAS methods. We adopt
differential NAS for the fast generation of the optical mask and network. When using other NAS
methods, e.g., reinforcement learning-based NAS (Zoph & Le, 2017), we still observe similar system
performance (within 0.3% accuracy on CIFAR-100), but the search time increases to 8 GPU-days
from 0.5 GPU-days.

The whole co-design process can be divided into two stages, a searching stage and a training stage.
In the searching stage, we apply the alternate gradient descent of Eqs. equation 3 and equation 4 to
search for the optimal network architecture α∗. In the training stage, the optimal mask and weights
are determined by optimizing Eq. equation 4 conditioning on the optimal network architecture α∗.

4 EXPERIMENTS

This section presents evaluation results of SACoD applied to PhlatCam lensless imaging sys-
tems. We first describe the experiment settings, and then benchmark SACoD over SOTA lensless
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(a) (b) (c)

Figure 3: An illustration of the proposed three different optical layer designs.

imaging systems on standard classification tasks, IoT applications, and other vision tasks in Sec-
tions 4.2, 4.3, 4.4, respectively. Finally, we provide ablation studies of SACoD in Section 4.6.

4.1 EXPERIMENT SETUP

Optical layer constraints. As mentioned, the optical layer first performs convolutional operations
on the input scene optically, the outputs of which are then processed by the following neural network.
The physical device construction imposes design constraints on the optical layer design. Specifically,
since the phase mask is placed closer to the sensor, the optically achievable kernel size cannot be
arbitrarily small. Here, we adopt kernel sizes that are not smaller than 7x7. Additionally, since all
the designed masks are sharing the same sensor area, the number of designed masks cannot be large
due to the limited sensor area. Here, we constrain the number of masks to be no more than 6.

Algorithm setting. Datasets: we evaluate SACoD on a total of four vision tasks with six
datasets: two classification datasets CIFAR-10/100, two IoT datasets including FlatCam Face (Tan
et al., 2019) and Head Pose Detection (Gourier & Crowley, 2004), one segmentation dataset
Cityscapes (Cordts et al., 2016), and one unsupervised image translation dataset horse2zebra (Zhu
et al., 2017). The same and standard data augmentation methods (e.g., random crop and normaliza-
tion) are adopted for both SACoD and the baselines.

Baselines: we benchmark SACoD over two SOTA lensless imaging systems:

• Gabor-mask System: we fix the optical layer to be the Gabor-mask (Chen et al., 2016) and
search for networks using the same NAS method as SACoD.

• Co-train System: we fix the network to be a SOTA IoT CNN MobileNetV2 (Sandler et al.,
2018) and jointly train the optical layer and the backend network.

Efficiency metrics: we consider both FLOPs (Floating Point Operations) and energy cost based on
real-device measurements as the efficiency metrics. Specifically, we adopt an NVIDIA JETSON
TX2 (NVIDIA Inc.), a popular IoT GPU, as the target platform, which is connected to a laptop with
the real-time energy cost being obtained via the sysfs (Patrick Mochel and Mike Murphy.) of the
embedded INA3221 (Texas Instruments Inc.) power rails monitor.

Figure 4: Accuracy vs. FLOPs/energy trade-offs of SACoD and the baselines on CIFAR-10/100.

4.2 SACOD OVER SOTA IMAGING SYSTEMS ON CLASSIFICATION TASKS

Search and training setting. To search neural networks on CIFAR-10/100 for both the SACoD
and Gabor-mask systems, we quantize all the operations to 8-bit using a SOTA quantization training
method (Banner et al., 2018), which is a common practice considering the constrained sources on
IoT devices. We adopt the search settings in (Wu et al., 2019a) with minor changes discussed in
appendix. Specifically, we search for 50 epochs with 64 batch size, and update the supernet weights
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on half of the training dataset using an SGD optimizer with a 0.9 momentum, and an initial learning
rate of 0.025 with the cosine decay, and update network architecture parameters on the other half of
the training dataset using an Adam optimizer with 0.9 momentum, and a fixed learning rate of 3e-4.
For training the derived network architectures from scratch, we adopt an SGD optimizer with 0.9
momentum, and an initial learning rate of 0.01 with cosine decay for 600 epochs with 96 batch size.

To benchmark SACoD over SOTA imaging systems, we fix the number of masks to be six among
all the settings, and then study their accuracy under different FLOPs and energy costs. We control
the FLOPs of the SACoD and Gabor-mask systems by controlling λ in Eq. equation 3 and that of
the Co-train system by changing the width multiplier (Howard et al., 2017).

Results analysis. Fig. 4 shows the trade-off between the accuracy and required hardware costs
in terms of both FLOPs and energy cost for the SACoD and the two baseline lensless imaging
systems on CIFAR-10/100. We can observe that SACoD consistently requires reduced FLOPs or
energy cost while achieving a comparable or higher accuracy over the baselines. On CIFAR-10,
SACoD achieves 44.1% and 70.9% reduction in FLOPs, and 27.6% and 48.4% reduction in energy,
while offering a +0.01% and +1.58% higher accuracy, compared with the Co-train and Gabor-mask
baselines, respectively; On CIFAR-100, SACoD reduces the FLOPs by 62.9% and 64.1%, and en-
ergy cost by 49.7% and 50.9%, while achieving a +0.71% and +7.92% higher accuracy, compared
to the Co-train and Gabor-mask baselines, respectively. This set of experiments validate that the
end-to-end optimization engine in SACoD indeed can lead to superior performance in both task
performance and hardware efficiency.

- 60.0%

- 80.0%+ 1.05%

Impractical 
sensor area

Figure 5: No. of masks vs. accuracy and sen-
sor/mask area on CIFAR-10.

Considering that the form factor or area is an-
other influential design factor in lensless IoT
imaging systems, we evaluate SACoD over the
baselines in terms of the trade-off between ac-
curacy and area by controlling the number of
masks in the optical layer, and summarize the
results in Fig. 5. We can see that the pro-
posed SACoD achieves the best accuracy-area
tradeoffs among all the designs under the same
number of masks (and thus area) and the same
model size. In particular, SACoD achieves
60.0% and 80.0% reduction in area while offer-
ing a 0.01% and 1.05% higher accuracy, com-
pared with the Co-train and Gabor-mask base-
lines, respectively.

4.3 SACOD OVER SOTA IMAGING SYSTEMS ON IOT APPLICATIONS

Here we benchmark SACoD over the SOTA baselines on two IoT applications (including FlatCam
Face recognition (Tan et al., 2019) and Head-pose task (Gourier & Crowley, 2004)) to evaluate its
effectiveness on real-world IoT tasks. In this set of experiments, we further constrain FLOPs of the
derived neural networks to see if SACoD is still applicable to extremely energy-constrained sce-
narios. As shown in Fig. 6, we can see that again SACoD consistently outperforms the baselines
under all settings in terms of accuracy-cost tradeoffs. Specifically, compared with the Co-train base-
line, SACoD achieves 59.5% and 57.1% reduction in FLOPs, 32.9% and 30.1% reduction in energy
cost with a +0.11% and +0.07% higher accuracy, on the Flatcam Face and Head-pose tasks, re-
spectively. Meanwhile, compared with the Gabor-mask baseline, SACoD shows better scalability to
more energy-constrained scenarios. In particular, when the FLOPs or energy constraint is extremely
low, SACoD achieves an 8.75% and 5.85% higher accuracy, under the same FLOPs/energy cost on
the Flatcam Face and Head-pose tasks. These results show the effectiveness of SACoD extends to
read-world IoT applications and the superior scalability of SACoD over SOTA IoT imaging systems.

4.4 SACOD OVER SOTA IMAGING SYSTEMS ON OTHER VISION TASKS

Considering the diverse applications of IoT devices, we also evaluate SACoD on other vision tasks
including one segmentation task and two unpaired image-to-image translation tasks, which require
a more challenging tradeoff on CNN-powered intelligent IoT devices. We show the quantitative
comparison, visualization, and detailed experiment settings in the appendix. Note that segmentation
tasks are commonly evaluated in terms of both FID (Heusel et al., 2017) and image visualization as
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Figure 6: Accuracy vs. FLOPs/energy of SACoD over the baselines on two IoT tasks.

Figure 7: Physical Masks
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Figure 8: PSF comparison between optimized and experimental ones

Table 1: Performance of SACoD on the actual PhlatCam imaging system.

Datasets Setting Accuracy (%) Gap (%)

CIFAR10
Optimized 94.43

4.41Experimental 90.02

the former cannot always capture the image quality. From the results, SACoD requires the smallest
FLOPs under all the six cases, and it shows that SACoD provides notably the best visualization
effect among all the methods. In particular, compared to the Gabor-mask baseline, SACoD achieves
12.0% ∼ 50.1% reduction in FLOPs and +1.26 ∼ +20.27 improvement in FID, while providing
notably better visualization effect; compared to the Co-train baseline, SACoD reduces the FLOPs
by 92.56% ∼ 93.4% and offers notably better visualization effect, while achieving better FID on the
zebra2horse dataset. Note that although the Co-train baseline achieves better FID than SACoD on
the horse2zebra dataset, its visualization images (see Fig. 12 the appendix) suffer greatly from color
shifts, distortion and chase-board effect, similar to those of the Gabor-mask baseline.

4.5 EVALUATION ON PHYSICAL FABRICATED MASKS

To evaluate the performance of SACoD on the actual PhlatCam imaging system besides simulation,
we fabricate the actual masks with the PSF from the optimized optical layer. We first visualize
the fabricated masks and compare them with the optimized PSF. Fig. 7 shows 6 fabricated masks
setting on CIFAR-100 with a microscope image, in which the top row is positive masks and bottom
ones are negative, and columns from left to right represent RGB-channels respectively. Then we
compare the experimental PSF generated by the fabricated masks with the optimized PSF in Fig. 8.
From the comparison, we find the experimental PSF basically keeps the original shape, although
the brightness of some pixels is changed. We further compare the achieved accuracy based one
simulated and fabricated masks on CIFAR-10. As shown in Table 1, the accuracy gap is 4.41%
which is resulting from possible alignment issues and other experimental error sources in the mask
fabrication process and has been shown by other optical computing systems, i.e., (Lin et al., 2018).

4.6 ABLATION STUDIES ON SACOD

Influence of mask flexibility. To better understand SACoD’s superior performance, we perform ab-
lation experiments where the optical mask is fixed at either or both of the search and training stages.
The experiment setting is the same as described in Section 4.2, in which the models are all under
comparable model sizes (1.0 M), and the pre-trained optical mask is obtained by co-training with
MobileNetV2 (Sandler et al., 2018). We explore four cases: (mask) fixed during both the search and
training stages, fixed only during the training stage, fixed only during the search stage, and unfixed

7



Under review as a conference paper at ICLR 2021

Table 2: Ablation: whether to fix the optical mask during search and training using small models.

CIFAR-100 CIFAR-10

Search fixed unfixed fixed unfixed Improv. fixed unfixed fixed unfixed Improv.
Training fixed fixed unfixed unfixed fixed fixed unfixed unfixed

Acc (%) 67.45 67.69 68.03 69.64 +2.19 92.02 92.37 92.84 92.95 +0.93

during both (i.e., SACoD). From the results in Table 2 we can see that (1) fixing the mask during
both the search and training stages causes the biggest accuracy drop (more than 0.93% on CIFAR-10
and CIFAR-100 datasets); and (2) fixing the mask at only one of the stages would also significantly
impact the performance. This study verifies that the success of the co-design principle can be as-
cribed to two causes. First, with the mask included as hyperparameters, the optimization (during
fine-tuning) can reach a better minimum. Second and more importantly, the trainable mask can as-
sist finding a better architecture because the neural network backend can entrust more computation
responsibilities to the ‘costless’ optical layer and thus can be made more efficient.

Figure 9: KL divergence of the output distri-
bution between different classes captured by the
searched optical layer of SACoD and Gabor-mask
on CIFAR-10, where the x-axis and y-axis are the
class id, and the heatmap value denotes the mag-
nitude of KL divergence.

Effectiveness of the optical layer. To fur-
ther explore the reason behind the success of
SACoD, we compare the discriminative power
of the features captured by the optical layers of
SACoD and the Gabor-mask baseline. Specifi-
cally, following (Suau et al., 2020), we average
the optical layer’s activations over the output
channels to obtain a vector and use the corre-
sponding softmax value as the feature distribu-
tion for each input image. We then calculate the
KL divergence between the feature distribution
from different classes to see how discriminative
the features are. Fig. 9 visualizes the average
KL divergence (over 100 random selected im-
ages) between every two classes on the test dataset of CIFAR-10. We can see that the feature dis-
tribution difference of SACoD between different classes is notably and consistently larger than that
of the Gabor-mask baseline, which further verifies that the optical layer of SACoD undertakes more
computations to extract the discriminative information from the input, so as to save the computations
for the neural network backend.

Considering the potential defection when fabricating the PhlatCam sensors, we study the robustness
of the SACoD, Co-train, and Gabor-mask systems when injecting noises into the masks. To simulate
the noise effect, we sample noises from a standard normal distribution and add it to the masks; after
that, we finetune the backend network for restoring the accuracy until convergence. By controlling
the standard deviation (σ) of the standard normal distribution, i.e., the noises’ dynamic range, we
evaluate the robustness of the three lensless systems under different noise intensity and summarize
the results. We can observe that (1) as the σ increases (i.e., noises’ intensity increases), the restored
accuracy of all the three lensless systems decreases while the accuracy of SACoD is consistently
higher than that of both the Co-train and Gabor-mask baselines; and (2) the Co-train baseline is
the most sensitive to the noises injected to the masks, and suffers from up to 2.71% accuracy loss,
the Gabor-mask baseline shows the least accuracy degradation (1.19%) under noises yet offering the
lowest overall accuracy, and our proposed SACoD achieves a favorable tradeoff with the highest task
accuracy and a medium level accuracy drops under noises. More details are provided in appendix.

5 CONCLUSION

We propose SACoD, a sensor algorithm co-design framework, to enable more energy-efficient CNN-
powered IoT devices based on PhlatCam. A novel end-to-end co-search algorithm is presented
to jointly optimize the coded mask of PhlatCam in the sensor and the neural network backend.
Extensive experiments and ablation studies validate the superiority of the proposed SACoD in terms
of both task performance and hardware efficiency as well as the optical layer effectiveness, when
evaluated over SOTA lensless imaging systems on various tasks and datasets.
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A EXPERIMENT DETAILS FOR SEARCHING ON CIFAR-10/100

For the experiments on CIFAR-10/10, we adopt the same search space as FBNet (Wu et al., 2019a)
except each group’s stride settings, i.e., a set of blocks with the same number pf output channels, for
adapting to the resolution of images on CIFAR-10/100. In particular, we follow the strides settings
for MobileNetV2 on CIFAR-10/100 as described in (Wang et al., 2019), which is [1, 1, 2, 2, 1, 2, 1]
for all the seven groups. In addition, following (Wu et al., 2019a), we apply a gumbel softmax on
each architecture parameter option’s contribution weights to the supernet, where the initial temper-
ature is 3 and decays by 0.92 at the end of each epoch.

B MORE ABLATION STUDIES FOR SACOD: ROBUSTNESS AGAINST NOISE

Figure 10: The recovered accuracy after finetun-
ing the SACoD, Co-train, and Gabor-mask sys-
tems subject to different noise levels in the masks.

Considering the potential defection when fabri-
cating the PhlatCam sensors, we study the ro-
bustness of the SACoD, Co-train, and Gabor-
mask systems when injecting noises into the
masks. To simulate the noise effect, we sample
noises from a standard normal distribution and
add it to the masks; after that, we finetune the
backend network for restoring the accuracy un-
til convergence. By controlling the standard de-
viation (σ) of the standard normal distribution,
i.e., the noises’ dynamic range, we evaluate the
robustness of the three lensless systems under
different noise intensity and summarize the re-
sults in Fig. 10. We can observe that (1) as the σ
increases (i.e., noises’ intensity increases), the
restored accuracy of all the three lensless sys-
tems decreases while the accuracy of SACoD
is consistently higher than that of both the Co-
train and Gabor-mask baselines; and (2) the Co-
train baseline is the most sensitive to the noises injected to the masks, and suffers from up to 2.71%
accuracy loss, the Gabor-mask baseline shows the least accuracy degradation (1.19%) under noises
yet offering the lowest overall accuracy, and our proposed SACoD achieves a favorable tradeoff with
the highest task accuracy and a medium level accuracy drops under noises.

C EXPERIMENT RESULTS WHEN USING DIFFERENT MASK DESIGNS

As illustrated in Fig. 3 of the main content, three different mask designs can be adopted. We
here provide more experiment results when using the three mask designs for SACoD. Specifically,
we co-train MobileNetV2 with the three different mask designs on CIFAR-10/100 and find that
the design with the masks in Fig. 3 (a) (in the main content) achieves a 0.86% and 1.78% higher
accuracy compared with that based on the masks in Fig. 3 (b), while offering a comparable accuracy
(0.01% and -0.02%) with a 66.67% reduced rendered feature maps, on CIFAR-10 and CIFAR-100,
respectively. This set of experiments motivates us to adopt the masks’ design based on the one in
Fig. 3(a) for experiments shown in the main content.

D SACOD VS. LENS-BASED SYSTEMS

Here we provide experiments for benchmarking SACoD over lens-based systems under the same
search space (Wu et al., 2019a) and datasets (CIFAR-10/CIFAR-100). For designing the lens-based
systems, we release the FLOPs constraints for the first layer of the network, i.e., removing the optical
layer and its associated constraints, and search for the optimal network given the search space and
datasets. We find that under a slightly reduced FLOPs (154M FLOPs vs. 158M FLOPs), SACoD
achieves a 0.39% and 0.62% lower accuracy on CIFAR-10 and CIFAR-100, respectively, while
reducing the thickness of the imaging systems by 10× which makes it possible to be integrated into
more IoT applications. This set of experiments show that our proposed SACoD can offer similar
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task performance and hardware efficiency as compared to lens-based systems, while being able to
shrink the thickness of the system by one order.

E MORE DETAILS AND RESULTS ON THE UNPAIRED IMAGE-TO-IMAGE
TRANSLATION TASKS

In this subsection, we provide more details for the experiments on the unpaired image-to-image
translation tasks, results of which are summarized in Table 2 and Fig. 7 of the main content.

E.1 THE SEARCH SPACE AND METHOD

For the search space, we drew inspiration from existing works and build a sequential supernet with
hardware-friendly regular connection patterns where each candidate operators are sequentially con-
nected. For the search method, we adopt a SOTA differential neural architecture search (NAS)
method (Liu et al., 2018) to search for both the operators and their widths to maximize efficiency
improvements.

Search for the operators. The supernet consists of a total of nine operators from the following
options:

• The Conv layer: Conv 1×1, Conv 3×3;
• The residual block (i.e., 2 Conv 3×3 layers with a skip connection);
• The depthwise (DW) block (Conv 1 ×1 + DW Conv 3×3 + Conv 1×1 with a skip connec-

tion).
The above options cover popular and efficient building blocks in SOTA GAN generators (Zhu et al.,
2017; Shu et al., 2019; Gong et al., 2019). In particular, following SOTA differential NAS search
method, we use the architecture parameter αij to control the probability of choosing the j-th operator
in the i-th layer, and treat its softmax values as its contributing weight to the supernet.

Search for the widths. Considering our target IoT applications, we also search for the widths (i.e.,
the number of output channels) of each operator for more efficient GAN models. Naively building a
set of independent convolutional kernels with different widths for each operator is not practical due
to the required large memory consumption. We thus build a superkernel with a maximal width, and
then search for the expansion ratio φ to make use of only a subset of the superkernel’s input/output
dimensions. In particular, we set φ ∈ [ 1

3
, 1
2
, 3
4
, 5
6
, 1] and use the architecture parameter γi to control

the probability of choosing each expansion ratio for the i-th layer; Meanwhile, we apply gumbel
softmax to approximate differentiable sampling for φ based on γ as (Cai et al., 2018b). Therefore,
during the searching process only one expansion ratio will be activated in one iteration, saving both
the required memory and computational costs.

E.2 PROXY TASK

We search for an efficient generator via distillation as formulated below:

min
G,α,γ

1

N

N

∑
i=1

d(G(xi, α, γ), G0(xi)) + λF (α, γ). (5)

Where d(⋅, ⋅) is a distance metric for the knowledge distillation (Hinton et al., 2015) betweenG (the
searched generator) and G0 (the original generator in CycleGAN (Zhu et al., 2017)), which is the
perceptual loss (Johnson et al., 2016) in our case, F is the computational budget determined by the
network architecture (FLOPs in our case), and α and γ are the architecture parameters controlling
the operator and width of each layer, respectively. Note that, the objective function in Eq. 5 is
independent of any trained discriminators since in practice the discriminator is often discarded after
the generator is trained and thus not necessarily available when compressing the generator.

E.3 MORE VISUALIZATION RESULTS

Here we show more visualization results of SACoD as compared with the two lensless baselines
on the unpaired image-to-image translation tasks (horse2zebra and zebra2horse) in Fig. 12. We can
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Source image Co-train Gabor-mask SACoD
54.17 GFLOPs 7.15 GFLOPs 3.57 GFLOPs

Source image Co-train Gabor-mask SACoD
54.17 GFLOPs 4.72 GFLOPs 4.03 GFLOPs

Figure 11: More visualization examples on the zebra2horse (row 1) and horse2zebra (row 2∼3)
tasks when using six masks. Columns from left to right: source images, and translation results of
the Co-train, Gabor-mask, and SACoD methods, respectively, where the required FLOPs of each
method on each task are annotated above the images.

Table 3: SACoD over SOTA baselines on a segmentation task with the Cityscapes dataset.

Setting Methods
2 masks 4 masks 6 masks

mIOU (%) GFLOPs mIOU (%) GFLOPs mIOU (%) GFLOPs

Segmentation
-Cityscapes

Co-train 69.0 435.0 69.6 435.0 68.8 435.0
Gabor-mask 65.8 45.64 66.1 38.32 67.3 36.34
SACoD 69.8 36.17 70.4 33.56 71.6 29.51

SACoD Improv. +0.80∼+4.0 20.7%∼91.7% +0.80∼+4.3 12.4%∼92.3% +2.8∼+4.3 18.8%∼93.2%

see that again the Gabor-mask baseline suffers greatly from color shift and distortion especially on
the horse2zebra task, and the proposed SACoD provides better or competitive visualization effects
with high-contrast textures compared with the Co-train baseline while achieving a 92.6% reduction
in FLOPs.

E.4 SACOD OVER SOTA IMAGING SYSTEMS ON OTHER VISION TASKS

Segmentation tasks. Real-time segmentation on resource-constrained platforms have growing de-
mands in many applications such as medical image segmentation, so we explore its combination with
PhlatCam lensless imaging systems for scenarios with constrained imaging environments. To search
for efficient segmentation networks, we adopt the search space and search method of a SOTA NAS
method (Chen et al., 2019). For a fair comparison, all the searching and training settings follow the
original ones in (Chen et al., 2019). Specifically, the co-train baseline adopts the DeepLabV3 (Chen
et al., 2017) model with a ResNet50 (He et al., 2016) backbone. Table 3 with 2048x1024 images
show that under all the mask constraints SACoD achieves the highest mean Intersection Over Union
(mIOU) while requiring the smallest FLOPs. Specifically, SACoD achieves a 0.8%∼4.3% higher
mIOU and 12.4%∼93.2% reduction in FLOPs over the Co-train and Gabor-mask baselines, respec-
tively, under all the mask settings.
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Source image Co-train Gabor-mask SACoD
54.17 GFLOPs 7.15 GFLOPs 3.57 GFLOPs

Source image Co-train Gabor-mask SACoD
54.17 GFLOPs 4.72 GFLOPs 4.03 GFLOPs

Figure 12: Visualizations on the zebra2horse (rows 1) and horse2zebra (row 2) tasks with six masks.
Columns from left to right: source image, translation results for the Co-train, Gabor-mask and
SACoD methods, respectively. FLOPs of each method on each task are annotated above the images.

Table 4: SACoD over SOTA baselines on unpaired image-to-image translation tasks.

Setting Methods
2 masks 4 masks 6 masks

FID GFLOPs FID GFLOPs FID GFLOPs

zebra2horse
Co-train 147.03 54.17 140.70 54.17 139.83 54.17
Gabor-mask 137.79 6.89 141.11 5.04 145.87 7.15
SACoD 136.35 5.93 136.41 3.89 138.23 3.57

horse2zebra
Co-train 66.82 54.17 61.21 54.17 68.26 54.17
Gabor-mask 91.87 5.87 106.27 4.34 88.36 4.72
SACoD 89.80 3.70 86.00 3.82 87.10 4.03

Unpaired image-to-image translation tasks. To apply GAN (Goodfellow et al., 2014) to lensless
imaging systems under constrained imaging environments, we evaluate SACoD on unpaired image-
to-image translation tasks (Zhu et al., 2017), one of the most popular applications of GAN.

Experiment settings: since no prior NAS works search for image-to-image GANs, we design a new
search space (see details in the supplement) targeting extremely efficient GAN architectures. Fol-
lowing the settings of CycleGAN (Zhu et al., 2017), we keep the stem and header structures in the
generator and search for both the operator type and channel width within the supernet which in-
clude nine sequential operators. In addition, we use the knowledge distillation (Hinton et al., 2015)
between the searched architecture and the pre-trained CycleGAN generator as the loss function.
More search settings are in the supplement. The Co-train baseline system consists of an original
CycleGAN following the optical layer.
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