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ABSTRACT

Tabular average reward Temporal Difference (TD) learning is perhaps the sim-
plest and the most fundamental policy evaluation algorithm in average reward
reinforcement learning. After at least 25 years since its discovery, we are finally
able to provide a long-awaited almost sure convergence analysis. Namely, we
are the first to prove that, under very mild conditions, tabular average reward
TD converges almost surely to a sample-path dependent fixed point. Key to this
success is a new general stochastic approximation result concerning nonexpansive
mappings with Markovian and additive noise, built on recent advances in stochastic
Krasnoselskii-Mann iterations.

1 INTRODUCTION

Temporal Difference learning (TD, Sutton (1988)) is the most fundamental algorithm in Reinforce-
ment Learning (RL, Sutton & Barto (2018)). In this paper, we investigate the almost sure convergence
of TD in its simplest form with a tabular representation, in average reward Markov Decision Processes
(MDPs, Bellman (1957); Puterman (2014)). Namely, we investigate the following iterative updates

Jt+1 = Jt + βt+1(Rt+1 − Jt), (Average Reward TD)
vt+1(St) = vt(St) + αt+1(Rt+1 − Jt + vt(St+1)− vt(St)),

where {S0, R1, S1, . . . } is a sequence of states and rewards from an MDP with a fixed policy and
a finite state space S, Jt ∈ R is the scalar estimate of the average reward, vt ∈ R|S| is the tabular
value estimate, and {αt, βt} are learning rates. This iterative update algorithm, known as average
reward TD, dates back to at least Tsitsiklis & Roy (1999). Surprisingly, despite its simplicity and
fundamental importance, its almost sure convergence had not been established in the 25 years since its
inception until this work. Even more surprisingly, the theoretical analysis of average reward TD with
linear function approximation has seen more progress than that of the tabular version we consider
here. In this paper, after presenting the necessary background in Section 2, we will elaborate on the
difficulty in analyzing tabular average reward TD with existing techniques in Section 3, offering
insight into why progress on this topic has been unexpectedly slow. Then we proceed to our central
contribution, where we prove that under mild conditions, the iterates {vt} in (Average Reward TD)
converge almost surely to a sample-path-dependent fixed point.

This almost sure convergence is achieved by extending recent advances in the convergence analysis
of Stochastic Krasnoselskii-Mann (SKM) iterations (Bravo et al., 2019; Bravo & Cominetti, 2024) to
settings with Markovian and additive noise. This line of research originates from the seminal work
Cominetti et al. (2014), which introduces a novel fox-and-hare race model to analyze Krasnoselskii-
Mann (KM) iterations (Krasnosel’skii, 1955). By extending this line of work to Markovian settings,
we not only establish the almost sure convergence of average reward TD, but also pave the way for
further analysis of other RL algorithms through the lens of SKM iterations.

2 BACKGROUND

In this paper, all vectors are column. We use ‖·‖ to denote a generic operator norm and use e to
denote an all-one vector. We use ‖·‖2 and ‖·‖∞ to denote `2 norm and infinity norm respectively. We
use O(·) to hide deterministic constants for simplifying presentation, while the letter ζ is reserved for
sample-path dependent constants.
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In reinforcement learning, we consider an MDP with a finite state space S , a finite action space A, a
reward function r : S ×A → R, a transition function p : S × S ×A → [0, 1], an initial distribution
p0 : S → [0, 1]. At time step 0, an initial state S0 is sampled from p0. At time t, given the state St,
the agent samples an action At ∼ π(·|St), where π : A× S → [0, 1] is the policy being followed by
the agent. A reward Rt+1

.
= r(St, At) is then emitted and the agent proceeds to a successor state

St+1 ∼ p(·|St, At). In the rest of the paper, we will assume the Markov chain {St} induced by the
policy π is irreducible and thus adopts a unique stationary distribution dµ. The average reward (a.k.a.
gain, Puterman (2014)) is defined as

J̄π
.
= limT→∞

1
T

∑T
t=1 E [Rt] .

Correspondingly, the differential value function (a.k.a. bias, Puterman (2014)) is defined as

vπ(s)
.
= limT→∞

1
T

∑T
τ=1 E

[∑τ
i=1(Rt+i − J̄π) | St = s

]
.

The corresponding Bellman equation (a.k.a. Poisson’s equation) is then

v = rπ − J̄πe+ Pπv, (1)

where v ∈ R|S| is the free variable, rπ ∈ R|S| is the reward vector induced by the policy π, i.e.,
rπ(s)

.
=
∑
a π(a|s)r(s, a), and Pπ ∈ R|S|×|S| is the transition matrix induced by the policy π, i.e.,

Pπ(s, s′)
.
= π(a|s)p(s′|s, a). It is known (Puterman, 2014) that all solutions to (1) form a set

V∗
.
= {vπ + ce | c ∈ R}. (2)

The policy evaluation problem in average reward MDPs is to estimate vπ, perhaps up to a constant
offset ce. In view of (1) and inspired by the success of TD in the discounted setting (Sutton,
1988), Tsitsiklis & Roy (1999) use (Average Reward TD) to estimate vπ (up to a constant offset).
In (Average Reward TD), Jt estimates the average reward J̄π . Its learning rate, βt, does not need to
be the same as αt, the learning rate for updating the differential value function estimation.

3 HARDNESS OF AVERAGE REWARD TD

To elaborate on the hardness in analyzing (Average Reward TD), we first rewrite it in a compact
form. Define the augmented Markov chain Yt+1

.
= (St, At, St+1). It is easy to see that {Yt}

evolves in the finite space Y .
= {(s, a, s′) | π(a|s) > 0, p(s′|s, a) > 0}. We then define a function

H : R|S| × Y → R|S| by defining the s-th element of H(v, (s0, a0, s1)) as

H(v, (s0, a0, s1))[s]
.
= I{s = s0}

(
r(s0, a0)− J̄π + v(s1)− v(s0)

)
+ v(s).

Then, the update to {vt} in (Average Reward TD) can then be expressed as

vt+1 = vt + αt+1 (H(vt, Yt+1)− vt + εt+1) . (3)

Here, εt+1 ∈ R|S| is the random noise vector defined as εt+1(s)
.
= I{s = St}(Jt − J̄π). This εt+1

is the current estimate error of the average reward estimator Jt. Intuitively, the indicator I{s = St}
reflects the asynchronous nature of (Average Reward TD). For each t, only the St-indexed element
in vt is updated. To better analyze (3), we investigate the expectation of H . We define

h(v)
.
=Es0∼dµ,a0∼π(·|s0),s1∼p(·|s0,s1) [H(v, (s0, a0, s1))] (4)

=D(rπ − J̄πe+ Pπv − v) + v,

where D ∈ R|S|×|S| is a diagonal matrix with the diagonal being the stationary distribution dµ. Then
we can write the limiting ODE of (3) as

dv(t)

dt
= h(v(t))− v(t). (5)

Hardness in Stability. Stability (i.e., supt ‖vt‖ <∞ almost surely) is a necessary condition for
almost sure convergence. In ODE based stochastic approximation methods to establish almost sure
convergence, the first step is usually to establish the stability (Benveniste et al., 1990; Kushner & Yin,
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2003; Borkar, 2009). The ODE@∞ technique (Borkar & Meyn, 2000; Borkar et al., 2021; Liu et al.,
2024) is perhaps one of the most powerful stability techniques in RL, which considers the function

h∞(v)
.
= lim
c→∞

h(cv)

c
= D(Pπ − I)v + v.

Correspondingly, the ODE@∞ is defined as

dv(t)

dt
= h∞(v(t))− v(t) = D(Pπ − I)v(t). (6)

If the ODE (6) is globally asymptotically stable, existing results such as Borkar et al. (2021); Liu
et al. (2024) can be used to establish the desired stability of {vt}. Unfortunately, the vector ce with
any c ∈ R is an equilibrium of (6), so it cannot be globally asymptotically stable. This problem
comes from the lack of a discounting factor in average reward MDPs. In the discounted setting, with
a discount factor γ ∈ [0, 1), the corresponding ODE@∞ is dv(t)

dt = D(γPπ − I)v(t). It is well
known that D(γPπ − I) is negative definite (Tsitsiklis & Roy, 1996) and therefore Hurwitz. As a
result, it is globally asymptotically stable. Alternatively, if a discount factor is present, an inductive
argument can also be used to establish stability following the method in Gosavi (2006). However, in
the average reward setting, there is no discounting, so neither the Hurwitz argument nor the inductive
argument applies.

Hardness in Convergence. Suppose we were somehow able to establish the desired stability, then
standard stochastic approximation results can be used to show that {vt} converge almost surely to a
bounded invariant set of the ODE (5), or more precisely speaking, a possibly sample-path dependent
compact connected internally chain transitive invariant set1 (Kushner & Yin, 2003; Borkar, 2009).
Unfortunately, we are not aware of any finer characterization of this set. Even if it was proved that
this set must be a subset of V∗ in (2) (we are not aware of any such proof yet), the best we could say
is still that {vt} converges to this set. It is still possible that {vt} oscillates within this set or around
the neighborhood of this set and never settles down on any particular fixed point. This gives rise to
the central open question that this paper aims to answer:

can we prove that {vt} converge almost surely to a single fixed point in V∗?

We shall give an affirmative answer shortly. We note that this affirmative answer is quite intuitive.
Notice that

h(v) = (I +D(Pπ − I))v +D(rπ − J̄πe). (7)

It is easy to verify that I+D(Pπ−I) is a stochastic matrix. It then follows that ‖I +D(Pπ − I)‖∞ =
1. As a result, the operator h is a nonexpansive mapping w.r.t. ‖·‖∞ (Lemma 3). Since the ODE (5)
can be expressed as

dv(t)

dt
= h(v(t))− v(t),

the nonexpansivity of h confirms that any solution v(t) to the ODE (5) will converge to an initial
value dependent fixed point in V∗ (Theorem 3.1 of Borkar & Soumyanatha (1997)). So intuitively,
if {vt} approximates a solution v(t) well, it should also converge to a single fixed point. However,
existing ODE-based convergence analysis is limited, as it can only establish convergence to a bounded
invariant set. This difficulty stems from two sources. The first is still the lack of the discount factor γ
in average reward MDPs. Otherwise, h can easily be a contraction, and the ODE (5) would then be
globally asymptotically stable. As a result, the invariant set would be a singleton. The second is the
lack of a reference value (Abounadi et al., 2001). In a recent differential TD algorithm (Wan et al.,
2021b), the corresponding ODE is

dv(t)

dt
= rπ − ee>v(t) + Pπv(t)− v(t), (8)

where ee>v(t) serves as a reference value to stabilize the trajectories. Wan et al. (2021b) prove that
the ODE (8) is globally asymptotically stable. As a result, its invariant set is a singleton. We note

1We refer the reader to Chapter 2 of Borkar (2009) for the definition of a connected internally chain transitive
invariant set.
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that to use this reference value technique in learning algorithms such as Abounadi et al. (2001); Wan
et al. (2021b), we have to replace the learning rate αt with a count-based learning rate αn(Yt,t). Here
n(y, t)

.
=
∑t
τ=0 I{Yτ = y} counts the number of visits to the a state y until time t. The detailed

benefits (in terms of convergence) of this count-based learning rate are beyond the scope of this work,
and we refer the reader to Chapter 7 of Borkar (2009) for more discussion. Here, we only argue that
this count based learning rate is unnatural compared with the straightforward αt, and it cannot be
used once function approximation is introduced. Alternatively, to make use of this reference value
technique without a count-based learning rate, one has to resort to synchronous updates, where at each
time step t, all elements of vt, not just v(St), are updated (Zhang et al., 2021; Bravo & Cominetti,
2024). Such synchronous updates are impossible when we have access to only one Markovian data
stream {S0, A0, R0, S1, . . . }.

Hardness with Linear Function Approximation. The (Average Reward TD) has also been ex-
tended to linear function approximation (Tsitsiklis & Roy, 1999; Konda & Tsitsiklis, 1999; Wu
et al., 2020; Zhang et al., 2021). Unfortunately, the results in linear function approximation do not
contribute much to the understanding of the tabular version. In the following paragraphs, we elaborate
on this surprising fact.

Instead of using a look-up table v ∈ R|S| to store the value estimate, the idea of linear function
approximation is to approximate v(s) with φ(s)>w, where φ : S → RK is the feature function
mapping a state s to a K-dimensional feature φ(s) ∈ RK and w is the learnable weights. Let
Φ ∈ R|S|×K be the feature matrix, whose s-th row is the φ(s)>. Then, linear function approximation
essentially uses Φw to approximate v. It is obvious that if Φ = I (i.e., a one-hot feature encoding is
used), linear function approximation degenerates to the tabular method. Thus, one would expect the
results in linear function approximation to subsume tabular results. This is true in most settings, but
for (Average Reward TD) there is some subtlety. The linear average reward TD (Tsitsiklis & Roy,
1999) updates {wt} iteratively as

wt+1 = wt + αt+1

(
Rt+1 − Jt + φ(St+1)>wt − φ(St)

>wt
)
φ(St),

where the update of {Jt} is identical to (Average Reward TD). The limiting ODE of this update is,

dw(t)

dt
= Φ>D(Pπ − I)Φv(t) + Φ>D(rπ − J̄πe). (9)

Unfortunately, the matrix Φ>D(Pπ − I)Φ is not necessarily Hurwitz. Consequently, the ODE (9) is
not necessarily globally asymptotically stable. The problem still arises from the lack of a discount
factor – it is well known that Φ>D(γPπ − I)Φ is negative definite and thus Hurwitz.

Nevertheless, to proceed with the theoretical analysis, besides the standard assumption that Φ has
linearly independent columns, Tsitsiklis & Roy (1999); Konda & Tsitsiklis (1999) further assume
that for any c ∈ R, w ∈ Rd, it holds that Φw 6= ce. Under this assumption, Tsitsiklis & Roy (1999)
prove that Φ>D(Pπ − I)Φ is negative definite (Wu et al. (2020) assume this negative definiteness
directly) and the iterates {wt} converges almost surely. Unfortunately, this additional assumption
does not hold in the tabular setting where Φ = I (apparently, Ie = e). As a result, the almost sure
convergence in Tsitsiklis & Roy (1999) does not shed light on the behavior of tabular average reward
TD. A more recent work Zhang et al. (2021) proves that

min
‖w‖2=1,w∈E

w>Φ>D(Pπ − I)Φw > 0 (10)

without requiring Φw 6= ce, where E is a subspace of RK . Based on this, Zhang et al. (2021) prove
that

E
[∣∣Jt − J̄π∣∣2 + ‖ΠE(wt − w∗)‖22

]
converges to 0, where w∗ is one desired fixed point and ΠE denotes the orthogonal projection
onto the subspace E. Zhang et al. (2021) further provide a convergence rate. This is a significant
improvement over Tsitsiklis & Roy (1999), but still not satisfactory in two aspects. First, this result
is convergence in L2, not almost sure convergence. It is well known that almost sure convergence
and L2 convergence usually do not imply each other. It is also not clear whether (10) can be used to
establish an almost sure convergence under the presence of the projection. Second, if we consider the
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tabular case where Φ = I , then according to the Appendix A.1 of Zhang et al. (2021), E becomes the
orthogonal complement of {ce | c ∈ R}. Even if we were able to similarly prove that almost surely
limt→∞ ‖ΠE(vt − v∗)‖2 = 0 for some v∗ (again, it is not clear how this can be done), we could still
only conclude that {vt} converges to a set, not a point.

To summarize, recent advances with linear average reward TD present insightful results, but those
results do not say much (if anything) about the almost sure convergence of tabular average reward
TD.

Hardness in Stochastic Krasnoselskii-Mann Iterations. Having elaborated on the hardness in
analyzing (Average Reward TD) with ODE-based approaches, we now resort to an alternative ap-
proach, the Stochastic Krasnoselskii-Mann (SKM) iterations. In its simplest and deterministic form,
Krasnoselskii-Mann (KM) iterations study the convergence of iterates

xt+1 = xt + αt+1(Txt − xt), (KM)

where T is some nonexpansive mapping. Since we have already demonstrated that h is nonexpansive
in ‖·‖∞, SKM appears promising in analyzing (Average Reward TD). It, however, turns out that the
current state of results for SKM iterations is insufficient for proving the almost sure convergence of
(Average Reward TD). We elaborate on this fact here.

Earlier works on the convergence of (KM) typically require that the operator T : C → C has
a compact image, i.e., T (C) is a compact subset of C. Under some other restrictive conditions,
Krasnosel’skii (1955) first proves the convergence of (KM) to a fixed point of T . This result is further
generalized by Edelstein (1966); Schaefer (1957); Ishikawa (1976); Reich (1979). More recently,
Cominetti et al. (2014) use a novel fox-and-hare model to connect KM iterations with Bernoulli
random variables, providing a sharper convergence rate for ‖xk − Txk‖ → 0.

However, in many scenarios such as RL, requiring an algorithm to satisfy the exact form of (KM) is
usually not plausible. Instead, some noise may appear. This gives rise to the study of the inexact KM
iterations (IKM).

xt+1 = xt + αt+1(Txt − xt + et+1), (IKM)

where {et} is a sequence of deterministic noise. Bravo et al. (2019) extend Cominetti et al. (2014)
and establish the convergence of (IKM), under some mild conditions on {et}.
However, a deterministic noise is still not desirable in many problems. To this end, a stochastic
version of (IKM) is studied, which considers the iterates

xt+1 = xt + αt+1(Txt − xt +Mt+1), (SKM)

where {Mt} is a Martingale difference sequence. Under mild conditions, Bravo & Cominetti (2024)
prove the almost sure convergence of (SKM) to a fixed point of T .

Using (3) and (4), we can write (Average Reward TD) as,

vt+1 = vt + αt+1(h(vt)− vt +H(vt, Yt+1)− h(vt) + εt+1), (11)

where we recall that h is nonexpansive in ‖·‖∞. This, however, does not fit into (SKM). First,
there is an additive stochastic noise {εt}. Second, the sequence {H(vt, Yt+1)− h(vt)} is not a
Martingale difference sequence. If the sequence of noise {Yt} was i.i.d., then {H(vt, Yt+1)− h(vt)}
would have been a Martingale difference sequence. But unfortunately, in (Average Reward TD), the
sequence {Yt} is a Markov chain, far from being i.i.d. Moreover, the noise {εt} is now stochastic.
So (IKM) concerning a deterministic noise would not apply either. These demonstrate the hardness
in analyzing (Average Reward TD) with existing (SKM) results.

Nevertheless, this motivates us to extend the results from Bravo & Cominetti (2024) to study (SKM)
with Markovian and additive noise, in the form of (11).

4 STOCHASTIC KRASNOSELSKII-MANN ITERATIONS WITH MARKOVIAN AND
ADDITIVE NOISE

As promised, we are now ready to extend the analysis of (SKM) in Bravo et al. (2019); Bravo &
Cominetti (2024) to SKM with Markovian and additive noise. Namely, we consider the following
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iterates

xn+1 = xn + αn+1

(
H(xn, Yn+1)− xn + ε

(1)
n+1

)
. (SKM with Markovian and Additive Noise)

Here {xn} are stochastic vectors evolving in Rd, {Yn} is a Markov chain evolving in a finite state
space Y , H : Rd × Y → Rd defines the update,

{
ε
(1)
n+1

}
is a sequence of stochastic noise evolving

in Rd, and {αn} is a sequence of deterministic learning rates. We make the following assumptions.
Assumption 4.1 (Ergodicity). The Markov chain {Yn} is irreducible and aperiodic.

The Markov chain {Yn} thus adopts a unique invariant distribution, denoted as dµ. We use P to
denote the transition matrix of {Yn}.
Assumption 4.2 (1-Lipschitz). The function H is 1-Lipschitz continuous in its first argument w.r.t.
some operator norm ‖·‖ and uniformly in its second argument, i.e., for any x, x′, y, it holds that

‖H(x, y)−H(x′, y)‖ ≤ ‖x− x′‖.

This assumption has two important implication. First, it implies that H(x, y) can grow at most
linearly. Indeed, let x′ = 0, we get ‖H(x, y)‖ ≤ ‖H(0, y)‖+ ‖x‖. Define CH

.
= maxy ‖H(0, y)‖,

we get

‖H(x, y)‖ ≤ CH + ‖x‖. (12)

Second, define the function h : Rd → Rd as the expectation of H over the stationary distribution dµ:

h(x)
.
= Ey∼dµ [H(x, y)].

We then have that h is nonexpansive. Namely,

‖h(x)− h(x′)‖ ≤
∑
y dµ(y)‖H(x, y)−H(x′, y)‖ ≤ ‖x− x′‖. (13)

This h is exactly the nonexpansive operator in the SKM literature. We of course need to assume that
the problem is solvable.
Assumption 4.3 (Fixed Points). The nonexpansive operator h adopts at least one fixed point.

We use X∗ 6= ∅ to denote the set of the fixed points of h.
Assumption 4.4 (Learning Rate). The learning rate {αn} has the form

αn = 1
(n+1)b

, α0 = 0,

where b ∈ ( 4
5 , 1].

The primary motivation for requiring b ∈ ( 4
5 , 1] is that our learning rates αn need to decrease quickly

enough for certain key terms in the proof to be finite. The specific need for b > 4
5 can be seen in the

proof of (35) in Lemma 8. We now impose assumptions on the additive noise.
Assumption 4.5 (Additive Noise).∑∞

k=1 αk

∥∥∥ε(1)k ∥∥∥ <∞ a.s., (14)

E
[∥∥∥ε(1)n ∥∥∥2] =O

(
1
n

)
. (15)

The first part of Assumption 4.5 can be interpreted as a requirement that the total amount of additive
noise remains finite, akin to the assumption on et in (IKM) in Bravo et al. (2019). Additionally, we
impose a condition on the second moment of this noise, requiring it to converge at the rate O

(
1
n

)
.

While these assumptions on ε(1)n may seem restrictive, we introduce ε(1)n because it is essential for
proving the convergence of (Average Reward TD). It is worth noting that even if ε(1)n were absent,
our work would still extend the results of (Bravo & Cominetti, 2024) to cases involving Markovian
noise, as the Markovian noise component is already incorporated within Yn, which represents a
significant result. We are now ready to present the main result.
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Theorem 1. Let Assumptions 4.1 - 4.5 hold. Then the iterates {xn} generated by
(SKM with Markovian and Additive Noise) satisfy

lim
n→∞

xn = x∗ a.s.,

where x∗ ∈ X∗ is a possibly sample-path dependent fixed point.

Proof We start with a decomposition of the error H(x, Yn+1)− h(x) using Poisson’s equation akin
to Métivier & Priouret (1987); Benveniste et al. (1990). Namely, thanks to the finiteness of Y , it is
well known (see, e.g., Theorem 17.4.2 of Meyn & Tweedie (2012) or Theorem 8.2.6 of Puterman
(2014)) that there exists a function ν(x, y) : Rd × Y → Rd such that

H(x, y)− h(x) = ν(x, y)− (Pν)(x, y). (16)

Here, we use Pν to denote the function (x, y) 7→
∑
y′ P (y, y′)ν(x, y′). The error can then be

decomposed as

H(x, Yn+1)− h(x) = Mn+1 + ε
(2)
n+1 + ε

(3)
n+1, (17)

where

Mn+1
.
= ν(xn, Yn+2)− (Pν)(xn, Yn+1), (18)

ε
(2)
n+1

.
= ν(xn, Yn+1)− ν(xn+1, Yn+2), (19)

ε
(3)
n+1

.
= ν(xn+1, Yn+2)− ν(xn, Yn+2). (20)

Here {Mn+1} is a Martingale difference sequence. We then use

ξn+1
.
= ε

(1)
n+1 + ε

(2)
n+1 + ε

(3)
n+1, (21)

to denote all the non-Martingale noise, yielding

xn+1 = (1− αn+1)xn + αn+1(h(xn) +Mn+1 + ξn+1).

We now define an auxiliary sequence {Un} to capture how the noise evolves

U0
.
= 0,

Un+1
.
= (1− αn+1)Un + αn+1(Mn+1 + ξn+1). (22)

If we are able to prove that the total noise is well controlled in the following sense
∞∑
k=1

αk‖Uk−1‖ <∞ a.s., (23)

lim
n→∞

‖Un‖ = 0 a.s., (24)

then a result from Bravo & Cominetti (2024) concerning the convergence of (IKM) can be applied on
each sample path to complete the almost sure convergence proof. The rest of the proof is dedicated to
the verification of those two conditions. To this end, we first define shorthand

αk,n
.
= αk

n∏
j=k+1

(1− αj), αn,n
.
= αn. (25)

Telescoping (22) then yields

Un =

n∑
k=1

αk,nMk︸ ︷︷ ︸
Mn

+

n∑
k=1

αk,nε
(1)
k︸ ︷︷ ︸

ε
(1)
n

+

n∑
k=1

αk,nε
(2)
k︸ ︷︷ ︸

ε
(2)
n

+

n∑
k=1

αk,nε
(3)
k︸ ︷︷ ︸

ε
(3)
n

. (26)

Then, we can upper-bound (23) as
n∑
k=1

αk‖Uk−1‖ ≤
n∑
k=1

αk
∥∥Mk−1

∥∥
︸ ︷︷ ︸

Mn

+

n∑
k=1

αi

∥∥∥ε(1)k−1∥∥∥︸ ︷︷ ︸
ε
(1)
n

+

n∑
k=1

αi

∥∥∥ε(2)k−1∥∥∥︸ ︷︷ ︸
ε
(2)
n

+

n∑
k=1

αk

∥∥∥ε(3)k−1∥∥∥︸ ︷︷ ︸
ε
(3)
n

. (27)
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Lemmas 15, 16, 17, and 18 respectively prove that all terms in (27) are bounded almost surely, which
verifies (23).

We now verify (24). This time, rewrite Un as

Un = −
n∑
k=1

αkUk−1 + αk

(
Mk + ε

(1)
k + ε

(2)
k + ε

(3)
k

)
.

Lemma 19, Assumption 4.5, and Lemmas 20, 21 prove that supn ‖
∑n
k=1 αkMk‖ < ∞ and

supn

∥∥∥∑n
k=1 αkε

(j)
k

∥∥∥ < ∞ for j ∈ {1, 2, 3} respectively. Together with (26), this means that
supn ‖Un‖ < ∞. In other words, we have established the stability of (22). Then, it can be shown
(Lemma 22), using an extension of Theorem 2.1 of Borkar (2009) (Lemma 25), that {Un} converges
to the globally asymptotically stable equilibrium of the ODE dU(t)

dt = −U(t), which is 0. This ver-
ifies (24). Lemma 23 then invokes a result from Bravo & Cominetti (2024) and completes the proof.

5 AVERAGE REWARD TEMPORAL DIFFERENCE LEARNING

We are now ready to prove the convergence of (Average Reward TD). Throughout the rest of the
section, we utilize the following assumption.
Assumption 5.1 (Ergodicity). Both S andA are finite. The Markov chain {St} induced by the policy
π is aperiodic and irreducible.

Theorem 2. Let Assumption 5.1 hold. Consider the learning rates in the form of αt = 1
(t+1)b

, βt = 1
t

with b ∈ ( 4
5 , 1]. Then the iterates {vt} generated by (Average Reward TD) satisfy

lim
t→∞

vt = v∗ a.s.,

where v∗ ∈ V∗ is a possibly sample-path dependent fixed point.

Proof We proceed via verifying assumptions of Theorem 1. In particular, we consider the compact
form (3). Under Assumption 5.1, it is obvious that {Yt} is irreducible and aperiodic and adopts a
unique stationary distribution.

To verify Assumption 4.2, we demonstrate that H is 1−Lipschitz in v w.r.t ‖·‖∞. For notation
simplicity, let y = (s0, a0, s1). We have,

H(v, y)[s]−H(v′, y)[s] = I{s = s0}(v(s1)− v′(s1)− v(s0) + v′(s0)) + v(s)− v′(s).

Separating cases based on s, if s 6= s0, we have

|H(v, y)[s]−H(v′, y)[s]| = |v(s)− v′(s)| ≤ ‖v − v′‖∞.

For the case when s = s0, we have

|H(v, y)[s]−H(v′, y)[s]| = |v(s1)− v′(s1)| ≤ ‖v − v′‖∞.

Therefore

‖H(v, y)−H(v, y)‖∞ = max
s∈S
|H(v, y)[s]−H(v′, y)[s]| ≤ ‖v − v′‖∞.

It is well known that the set of solutions to Poisson’s equation V∗ defined in (2) is non-empty
(Puterman, 2014), verifying Assumption 4.3. Assumption 4.4 is directly met by the definition of αt.

To verify Assumption 4.5, we first notice that for (Average Reward TD), we have
∥∥∥ε(1)t ∥∥∥∞ =∣∣J̄π − Jt∣∣. It is well-known from the ergodic theorem that Jt converges to J̄π almost surely. To verify

Assumption 4.5, however, requires both an almost sure convergence rate and an L2 convergence rate.
To this end, we rewrite the update of {Jt} as

Jt+1 = Jt + βt+1 (Rt+1 + γJtφ(St+1)− Jtφ(St))φ(St),

8
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where we define γ .
= 0 and φ(s)

.
= 1 ∀s. It is now clear that the update of {Jt} is a special case of

linear TD in the discounted setting (Sutton, 1988). Given our choice of βt = 1
t , the general result

about the almost sure convergence rate of linear TD (Theorem 1 of Tadić (2002)) ensures that∣∣Jt − J̄π∣∣ ≤ ζ2
√

ln ln t√
t

a.s.,

where ζ2 is a sample-path dependent constant. This immediately verifies (14). We do note that this
almost sure convergence rate can also be obtained via a law of the iterated logarithm for Markov
chains (Theorem 17.0.1 of Meyn & Tweedie (2012)). The general result about the L2 convergence
rate of linear TD (Theorem 11 of Srikant & Ying (2019)) ensures that

E
[∣∣Jt − J̄π∣∣2] = O

(
1

t

)
.

This immediately verifies (15) and completes the proof.

6 RELATED WORK

It is now clear that our success fundamentally originates from the novel fox-and-hare racing model
introduced by Cominetti et al. (2014). This fox-and-hare model is too complicated to be detailed
here, but it is for sure an entirely different paradigm from the ODE and Lyapunov based methods in
RL (Bertsekas & Tsitsiklis, 1996; Konda & Tsitsiklis, 1999; Borkar & Meyn, 2000; Srikant & Ying,
2019; Borkar et al., 2021; Chen et al., 2021; Zhang et al., 2022; Meyn, 2022; Zhang et al., 2023; Liu
et al., 2024; Meyn, 2024). Bravo & Cominetti (2024) is the first to introduce this SKM based method
in RL, which analyzes a synchronous version of RVI Q-learning (Abounadi et al., 2001). The method
in Bravo & Cominetti (2024) is only applicable to synchronous RL algorithms because it requires
Martingale difference noise. By extending Bravo & Cominetti (2024) to Markovian noise, we are the
first to use the SKM method to analyze asynchronous RL algorithms.

Poisson’s equation has been very powerful in dealing with Markovian noise. In particular, the noise
representation (17) is not new. However, our work bounds the error terms in (17) differently from
previous works concerning the almost sure convergence. Namely, Benveniste et al. (1990); Konda &
Tsitsiklis (1999) use stopping times to bound the error terms while Borkar et al. (2021) use scaled
iterates. Instead, we rely on the 1-Lipschitz continuity (Assumption 4.2) to bound the growth of
the error terms directly. Moreover, previous works with such error decomposition (e.g., Benveniste
et al. (1990); Konda & Tsitsiklis (1999); Borkar et al. (2021)) usually only need to bound terms like∑
k αkε

(1)
k . For our setup, besides

∑
k αkε

(1)
k , we also need to bound terms like ε(1)n =

∑
k αk,nε

(1)
k

and ε(1)n =
∑
i αi

∥∥∥ε(1)k−1∥∥∥, which appear novel and more challenging.

The (Average Reward TD) algorithm has inspired the design of many other temporal difference
algorithms for average reward MDPs, for both policy evaluation and control, including Konda &
Tsitsiklis (1999); Yang et al. (2016); Wan et al. (2021a); Zhang & Ross (2021); Wan et al. (2021b);
He et al. (2022); Saxena et al. (2023). We envision that our work will shed light on the almost sure
convergence of those follow-up algorithms.

7 CONCLUSION

After more than 25 years since the discovery of (Average Reward TD), we have finally established
its almost sure convergence to a potentially sample-path dependent fixed point. This result highlights
the underappreciated strength of SKM iterations, a tool whose potential is often overlooked in
the RL community. Addressing several follow-up questions could open the door to proving the
convergence of many other RL algorithms. Do SKM iterations converge in Lp? Do they follow
a central limit theorem or a law of the iterated logarithm? Can they be extended to two-timescale
settings? And can we develop a finite sample analysis for them? Resolving these questions could
pave the way for significant advancements across reinforcement learning theory. We leave them for
future investigation.
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A MATHEMATICAL BACKGROUND

Lemma 3 (Non-expansivity of h). With h defined in (7), we have

‖h(v)− h(v′)‖∞ ≤ ‖v − v
′‖∞.

Proof Let
Aπ

.
= (I +D(Pπ − I)).

From (7), we have
h(v)− h(v′) = Aπ(v − v′).

The matrix Aπ is a row-stochastic matrix. To see that the entries of Aπ are non-negative, for any
diagonal entry, we have

Aπ(i, i) = 1− dµ(i) + dµ(i)Pπ(i, i) ≥ 0,

and for any off-diagonal entry, we have

Aπ(i, j) = (DPπ)(i, j) ≥ 0.

To see that the row sum of Aπ is always one, we have

Aπe = (I −D(I − Pπ))e,

= Ie−DIe+DPπe,

= e.

Since we have proven Aπ is a stochastic matrix, we know that ‖Aπ‖∞ ≤ 1. Therefore,

‖h(v)− h(v′)‖∞ = ‖Aπ(v − v′)‖∞,
≤ ‖v − v′‖∞.

Lemma 4 (Theorem 2.1 from Bravo & Cominetti (2024)). Let {zn} be a sequence generated
by (IKM). Let Fix(T ) denote the set of fixed points of T (assumed to be nonempty). Additionally, let
τn be defined according to (29) and the real function σ : (0,∞)→ (0,∞) as

σ(y) = min {1, 1/√πy}.

If κ ≥ 0 is such that ‖Tzn − x0‖ ≤ κ for all n ≥ 1, then

‖zn − Tzn‖ ≤ κσ(τn) +

n∑
k=1

2αk‖ek‖σ(τn − τk) + 2‖en+1‖. (28)

Moreover, if τn → ∞ and ‖en‖ → 0 with S
.
=
∑∞
n=1 αn‖en‖ < ∞, then (28) holds with

κ = 2 infx∈Fix(T ) ‖x0 − x‖+ S, and we have ‖zn − Tzn‖ → 0 as well as zn → x∗ for some fixed
point x∗ ∈ Fix(T )

Lemma 5 (Monotonicity of αk,n from Lemma B.1 in Bravo & Cominetti (2024)). For αn = 1
(n+1)b

with 0 < b ≤ 1 and αi,n in (25), we have αk,n ≤ αk+1,n for k ≥ 1 so that αk+1,n ≤ αn,n = αn.

Lemma 6 (Lemma B.2 from Bravo & Cominetti (2024)). For αn = 1
(n+1)b

with 0 < b ≤ 1 and αi,n
in (25), we have

∑n
k=1 α

2
k,n ≤ αn+1 for all n ≥ 1.

Lemma 7 (Monotone Convergence Theorem from Folland (1999)). Given a measure space
(X,M,µ), define L+ as the space of all measurable functions from X to [0,∞]. Then, if {fn} is a
sequence in L+ such that fj ≤ fj+1 for all j, and f = limn→∞ fn, then

∫
fdµ = limn→∞

∫
fndµ.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B ADDITIONAL LEMMAS FROM SECTION 4

In this section, we present and prove the lemmas referenced in Section 4 as part of the proof of
Theorem 1. Additionally, we establish several auxiliary lemmas necessary for these proofs.

Additionally, using the learning rates defined in 4.4, we define

τn
.
=

n∑
k=1

αk(1− αk). (29)

We begin by proving several convergence results related to the learning rates.
Lemma 8 (Learning Rates). With τn defined in (29) we have,

τn =

{
O
(
n1−b

)
if 4

5 < b < 1,

O(log n) if b = 1.
(30)

This further implies,

sup
n

n∑
k=1

α2
kτk <∞, (31)

sup
n

n∑
k=1

α2
kτ

2
k <∞, (32)

sup
n

n−1∑
k=0

|αk − αk+1|τk <∞, (33)

sup
n

n∑
k=1

α2
k

i−1∑
j=1

αjτj <∞, (34)

sup
n

n∑
k=1

αk

√√√√k−1∑
j=1

α2
j,k−1τ

2
j−1 <∞, (35)

Since this Lemma is comprised of several short proofs regarding the deterministic learning rates
defined in Assumption 4.4, we will decompose each result into subsections. Recall that αn

.
= 1

(n+1)b

where 4
5 < b ≤ 1.

(30):

Proof From the definition of τn in (29), we have

τn
.
=

n∑
k=1

αk(1− αk) ≤
n∑
k=1

αk =

n∑
k=1

1

(k + 1)b
.

Case 1: b = 1. It is easy to see τn = O(log n).

Case 2: When b < 1, we can approximate the sum with an integral, with
n∑
k=1

1

(k + 1)
b
≤
∫ n

1

1

kb
dk =

n1−b − 1

1− b

Therefore we have τn = O
(
n1−b

)
when b < 1.

In analyzing the subsequent equations, we will use the fact that τn = O(log n) when b = 1 and
τn = O

(
n1−b

)
when 4

5 < b < 1. Additionally, we have αn =
(

1
nb

)
.
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(31):

Proof We have an order-wise approximation of the sum

n∑
k=1

α2
kτk =


O

(
n∑
k=1

1

k3b−1

)
if

4

5
< b < 1,

O

(
n∑
k=1

log(k)

k2

)
if b = 1.

.

In both cases of b = 1 and 4
5 < b < 1, the series clearly converge as n→∞.

(32):

Proof This proof closely resembles that of (31). We can give an order-wise approximation of the
sum

n∑
k=1

α2
kτ

2
k =


O

(
n∑
k=1

1

k4b−2

)
if

4

5
< b < 1,

O

(
n∑
k=1

log2(k)

k2

)
if b = 1.

.

In both cases of b = 1 and 4
5 < b < 1, the series clearly converge as n→∞.

(33):

Proof Since αn is strictly decreasing, we have |αk − αk+1| = αk − αk+1.

Case 1: For the case where b = 1, it is trivial to see that,
n∑
k=1

|αk − αk+1|τk = O

(
n∑
k=1

log(k)

k2 + k

)
.

This series clearly converges.

Case 2: For the case where 4
5 < b < 1, we have

αn − αn+1 = O
(

1

nb
− 1

(n+ 1)b

)
,

= O
(

(n+ 1)b − nb

nb(n+ 1)b

)
. (36)

To analyze the behavior of this term for large n we first consider the binomial expansion of (n+ 1)b,

(n+ 1)b = nb
(

1 +
1

n

)b
= nb(1 + b

1

n
+
b(b− 1)

2

1

n2
+ . . . )

Subtracting nb from (n+ 1)b:

(n+ 1)b − nb = nb(1 + b
1

n
+
b(b− 1)

2

1

n2
+ . . . )− nb = O

(
bnb−1

)
.

The leading order of the denominator of (36) is clearly n2b, which gives

αn − αn+1 = O
(
bnb−1

n2b

)
= O

(
b

nb+1

)
.
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Therefore with τn = O
(
n1−b

)
,

n∑
k=1

|αk − αk+1|τk = O

(
b

n∑
k=1

1

k2b

)
which clearly converges as n→∞ for 4

5 < b < 1.

(34):

Proof

Case 1: In the proof for (30) we prove that
∑n
k=1 αk = O(log n) when b = 1. Then since τk is

increasing, we have

n∑
k=1

α2
k

k−1∑
j=1

αjτj ≤
n∑
k=1

α2
kτk

k−1∑
j=1

αj = O

(
n∑
k=1

log2 k

k2

)
,

which clearly converges as n→∞.

Case 2: For the case when b ∈ ( 4
5 , 1], we first consider the inner sum of (34),

k−1∑
j=1

αjτj = O

k−1∑
j=1

1

j2b−1

,
which we can approximate by an integral,∫ k

1

1

x2b−1
dx = O

(
k2−2b

)
.

Therefore,

n∑
k=1

α2
k

k−1∑
j=1

αjτj = O

(
n∑
k=1

k2−2b

k2b

)
= O

(
n∑
k=1

1

k4b−2

)
,

which converges for 4
5 < b ≤ 1 as n→∞.

(35): Proof

Case 1: For b = 1, because we have αj,i < αj+1,i and αi,i = αi from Lemma 5, we have the
order-wise approximation,

n∑
i=1

αi

√√√√i−1∑
j=1

α2
j,i−1τ

2
j−1 ≤

n∑
i=1

αi

√√√√α2
i−1τ

2
i−1

i−1∑
j=1

1, (τi is increasing)

=

n∑
i=1

αiαi−1τi−1
√
i− 1.

= O

(
n∑
i=1

log(i− 1)

i
√

(i− 1)

)

= O

(
n∑
i=1

log(i− 1)

i3/2

)
,

which clearly converges.
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Case 2: We have,

n∑
i=1

αi

√√√√i−1∑
j=1

α2
j,i−1τ

2
j−1 ≤

n∑
i=1

αiτi−1

√√√√i−1∑
j=1

α2
j,i−1, (τi is increasing)

=

n∑
i=1

αiτi−1
√
αi. (Lemma 6)

= O

(
n∑
i=1

i1−b

ib
√
ib

)

= O

(
n∑
i=1

1

i5b/2−1

)
,

which converges for 4
5 < b < 1.

Then, under Assumption 4.5, we prove additional results about the convergence of the first and second
moments of the additive noise

{
ε
(1)
n

}
.

Lemma 9. Let Assumptions 4.4 and 4.5 hold. Then, we have

E
[∥∥∥ε(1)n ∥∥∥

2

]
= O

(
1√
n

)
, (37)

sup
n

n∑
k=1

αkE
[∥∥∥ε(1)k ∥∥∥] <∞, (38)

sup
n

n∑
k=1

αkE
[∥∥∥ε(1)k ∥∥∥2] <∞, (39)

sup
n

n∑
k=1

α2
kE
[∥∥∥ε(1)k ∥∥∥2] <∞, (40)

sup
n

n∑
k=1

αk

k−1∑
j=1

αj,k−1E
[∥∥∥ε(1)j ∥∥∥] <∞. (41)

Proof Recall that by Assumption 4.5 we have E
[∥∥∥ε(1)n ∥∥∥2] = O

(
1
n

)
. Also recall that αk = O

(
1
nb

)
with 4

5 < b ≤ 1. Then, we can prove the following equations:

(37): By Jensen’s inequality, we have

E
[∥∥∥ε(1)n ∥∥∥] ≤

√
E
[∥∥∥ε(1)n ∥∥∥2] = O

(
1√
n

)
.

(38):
n∑
k=1

αkE
[∥∥∥ε(1)k ∥∥∥] = O

(
n∑
k=1

1

kb+
1
2

)
which clearly converges as n→∞ for 4

5 < b ≤ 1.

(39):
n∑
k=1

αkE
[∥∥∥ε(1)k ∥∥∥2] = O

(
n∑
k=1

1

kb+1

)
which clearly converges as n→∞ for 4

5 < b ≤ 1.
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(40):
n∑
k=1

α2
kE
[∥∥∥ε(1)k ∥∥∥2] = O

(
n∑
k=1

1

k2b+1

)
which clearly converges as n→∞ for 4

5 < b ≤ 1.

(41):

n∑
k=1

αk

k−1∑
j=1

αj,k−1E
[∥∥∥ε(1)j ∥∥∥] ≤ n∑

k=1

α2
k

k−1∑
j=1

E
[∥∥∥ε(1)j ∥∥∥], (Lemma 5)

= O

 n∑
k=1

1

k2b

k−1∑
j=1

1√
j

. (Lemma 9)

It can be easily verified with an integral approximation that
∑k−1
j=1

1√
j

= O(
√
k). This further implies

n∑
k=1

αk

k−1∑
j=1

αj,k−1E
[∥∥∥ε(1)j ∥∥∥] = O

(
n∑
k=1

1

k2b−
1
2

)
,

which converges as n→∞ for 4
5 < b ≤ 1.

Next, in Lemma 10, we upper-bound the iterates {xn}.
Lemma 10. For each {xn}, we have

‖xn‖ ≤ ‖x0‖+ CH

n∑
k=1

αk +

n∑
k=1

αk

∥∥∥ε(1)k ∥∥∥ ≤ C10τn +

n∑
k=1

αk

∥∥∥ε(1)k ∥∥∥,
where C10 is a deterministic constant.

Proof Applying ‖ · ‖ to both sides of (SKM with Markovian and Additive Noise) gives,

‖xn+1‖ =
∥∥∥(1− αn+1)xn + αn+1

(
H(xn, Yn+1) + ε

(1)
n+1

)∥∥∥,
≤ (1− αn+1)‖xn‖+ αn+1‖H(xn, Yn+1)‖+ αn+1

∥∥∥ε(1)n+1

∥∥∥,
≤ (1− αn+1)‖xn‖+ αn+1(CH + ‖xn‖) + αn+1

∥∥∥ε(1)n+1

∥∥∥, (By (12))

= ‖xn‖+ αn+1CH + αn+1

∥∥∥ε(1)n+1

∥∥∥.
A simple induction shows that almost surely,

‖xn‖ ≤ ‖x0‖+ CH

n∑
k=1

αk +

n∑
k=1

αk

∥∥∥ε(1)k ∥∥∥.
Since {αn} is monotonically decreasing, we have

‖xn‖ ≤ ‖x0‖+
CH

(1− α1)

n∑
k=1

αk(1− αk) +

n∑
k=1

αk

∥∥∥ε(1)k ∥∥∥,
= ‖x0‖+

CH
(1− α1)

τn +

n∑
k=1

αk

∥∥∥ε(1)k ∥∥∥,
≤ max

{
‖x0‖,

CH
(1− α1)

}
(1 + τn) +

n∑
k=1

αk

∥∥∥ε(1)k ∥∥∥.
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Therefore, since τn is monotonically increasing, there exists some constant we denote as C10 such
that

‖xn‖ ≤ C10τn +

n∑
k=1

αk

∥∥∥ε(1)k ∥∥∥.

Lemma 11. With ν(x, y) as defined in (16), we have

‖ν(x, y)− ν(x′, y)‖ ≤ C11‖x− x′‖, (42)

which further implies
‖ν(x, y)‖ ≤ C11(C ′11 + ‖x‖),

where C11, C
′
11 are deterministic constants.

Proof Since we work with a finite Y , we will use functions and matrices interchangeably. For
example, given a function f : Y → Rd, we also use f to denote a matrix in R(|Y|×d) whose y-th row
is f(y)>. Similarly, a matrix in R(|Y|×d) also corresponds to a function Y → Rd.

Let νx ∈ R|Y|×d denote the function y 7→ ν(x, y) and let Hx ∈ R|Y|×d denote the function
y 7→ H(x, y). Theorem 8.2.6 of Puterman (2014) then ensures that

νx = HYHx,

where HY ∈ R|Y|×|Y| is the fundamental matrix of the Markov chain depending only on the chain’s
transition matrix P . The exact expression of HY is inconsequential and we refer the reader to
Puterman (2014) for details. Then we have for any i = 1, . . . , d,

νx[y, i] =
∑
y′

HY [y, y′]Hx[y′, i].

This implies that

|νx[y, i]− νx′ [y, i]| ≤
∑
y′

HY [y, y′]|Hx[y′, i]−Hx′ [y′, i]|

≤
∑
y′

HY [y, y′]‖H(x, y)−H(x′, y′)‖∞

≤
∑
y′

HY [y, y′]‖x− x′‖∞ (Assumption 4.2)

≤‖HY‖∞‖x− x
′‖∞,

yielding

‖ν(x, y)− ν(x′, y)‖∞ ≤ ‖HY‖∞‖x− x
′‖∞.

The equivalence between norms in finite dimensional space ensures that there exists some C11 such
that (42) holds. Letting x′ = 0 then yields

‖ν(x, y)‖ ≤ C11(‖ν(0, y)‖+ ‖x‖).
Define C ′11

.
= maxy ‖ν(0, y)‖, we get

‖ν(x, y)‖ ≤ C11(C ′11 + ‖x‖).

Lemma 12. We have for any y ∈ Y ,

‖ν(xn, y)‖ ≤ ζ12τn,
where ζ is a possibly sample-path dependent constant. Additionally, we have

E[‖ν(xn, y)‖] ≤ C12τn,

where C12 is a deterministic constant.
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Proof Having proven that ν(x, y) is Lipschitz continuous in x in Lemma 11, we have

‖ν(xn, y)‖ ≤ C11(C ′11 + ‖xn‖), (Lemma 11)

≤ C11

(
C ′11 + C10τn +

n∑
k=1

αk

∥∥∥ε(1)k ∥∥∥
)
. (Lemma 10)

= O

(
τn +

n∑
k=1

αk

∥∥∥ε(1)k ∥∥∥
)
.

Since (14) in Assumption 4.5 assures us that
∑∞
k=1 αk

∥∥∥ε(1)k ∥∥∥ is finite almost surely while τn is
monotonically increasing, then there exists some possibly sample-path dependent constant ζ12 such
that

‖ν(xn, y)‖ ≤ ζ12τn.

We can also prove a deterministic bound on the expectation of ‖ν(xn, Yn+1)‖,

E[‖ν(xn, y)‖] = O

(
E

[
τn +

n∑
k=1

αk

∥∥∥ε(1)k ∥∥∥
])

,

= O

(
τn +

n∑
k=1

αkE
[∥∥∥ε(1)k ∥∥∥]

)
.

By Lemma 9, its easy to see that
∑n
k=1 αkE

[∥∥∥ε(1)k ∥∥∥] <∞. Therefore, there exists some deterministic
constant C12 such that

E[‖ν(xn, y)‖] ≤ C12τn.

Although the two statements in Lemma 12 appear similar, their difference is crucial. Assumption 4.5
and (14) only ensure the existence of a sample-path dependent constant ζ12 but its form is unknown,
preventing its use for expectations or explicit bounds. In contrast, using (15) from Assumption 4.5,
we derive a universal constant C12.
Lemma 13. For each {Mn}, defined in (18), we have

‖Mn+1‖ ≤ ζ13τn,
where ζ13 is a the sample-path dependent constant.

Proof Applying ‖·‖ to (18) gives

‖Mn+1‖ = ‖ν(xn, Yn+2)− Pν(xn, Yn+1)‖,
≤ ‖Pν(xn, Yn+1)‖+ ‖ν(xn, Yn+2)‖,

=

∥∥∥∥∥∥
∑
y′∈Y

P (Yn+1, y
′)ν(xn, y

′)

∥∥∥∥∥∥+ ‖ν(xn, Yn+2)‖,

≤
∑
y′∈Y

‖P (Yn+1, y
′)ν(xn, y

′)‖+ ‖ν(xn, Yn+2)‖,

=

(
max
y∈Y
‖ν(xn, y)‖

) ∑
y′∈Y

|P (Yn+1, y
′)|+ ‖ν(xn, Yn+2)‖,

≤ 2 max
y∈Y
‖ν(xn, y)‖ (43)

Under Assumption 4.5, we can apply the sample-path dependent bound from Lemma 12,

‖Mn+1‖ ≤ 2ζ12τn, (Lemma 12)
= ζ13τn,

with ζ13
.
= 2ζ12.
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Lemma 14. For each {Mn}, defined in (18), we have

E
[
‖Mn+1‖2 | Fn+1

]
≤ C ′14(1 + ‖xn‖2), (44)

and
E
[
‖Mn+1‖22

]
≤ C2

14τ
2
n, (45)

where C ′14 and C14 are deterministic constants and

Fn+1
.
= σ(x0, Y1, . . . , Yn+1)

is the σ-algebra until time n+ 1.

Proof First, to prove (44), we have

E
[
‖Mn+1‖2 | Fn+1

]
≤ 4 max

y∈Y
‖ν(xn, y)‖2 = O

(
1 + ‖xn‖2

)
,

where the first inequality results form (43) in Lemma 13 and the second inequality results from
Lemma 11.

Then, to prove (45), from Lemma 10 we then have,

E
[
‖ν(xn, y)‖2

]
≤ E

1 +

(
C10τn +

n∑
k=1

αk

∥∥∥ε(1)k ∥∥∥
)2
 = O

τ2n + E

( n∑
k=1

αk

∥∥∥ε(1)k ∥∥∥
)2
.

Recall that by Assumption 4.5, E
[∥∥∥ε(1)k ∥∥∥2] = O

(
1
k

)
. Examining the right-most term we then have,

E

( n∑
k=1

αk

∥∥∥ε(1)k ∥∥∥
)2
 ≤ E

[(
n∑
k=1

αk

)(
n∑
k=1

αk

∥∥∥ε(1)k ∥∥∥2
)]

(Cauchy-Schwarz)

= O

(
n∑
k=1

αk

)
(By (39) in Lemma 9)

= O

(
1

1− α1

n∑
k=1

αk(1− α1)

)
= O

(
n∑
k=1

αk(1− αk)

)
= O(τn).

We then have

E
[
‖ν(xn, y)‖2

]
= O(τ2n). (46)

Because our bound on E
[
‖ν(xn, y)‖2

]
is independent of y, we have

E
[
‖Mn+1‖2

]
= O

(
E
[
‖ν(xn, y)‖2

])
= O(τ2n). (By (46))

Due to the equivalence of norms in finite-dimensional spaces, there exists a deterministic constant
C14 such that (45) holds.

Now, we are ready to present four additional lemmas which we will use to bound the four noise terms
in (27).

Lemma 15. With
{
Mn

}
defined in (27),

lim
n→∞

Mn <∞, a.s.
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Proof We first observe that the sequence
{
Mn

}
defined in (27) is positive and monotonically

increasing. Therefore by the monotone convergence theorem, it converges almost surely to a (possibly
infinite) limit which we denote as,

M∞
.
= lim
n→∞

Mn a.s.

Then, we will utilize a generalization of Lebesgue’s monotone convergence theorem (Lemma 7) to
prove that the limit M∞ is finite almost surely. From Lemma 7, we see that

E
[
M∞

]
= lim
n→∞

E
[
Mn

]
.

Therefore, to prove that M∞ is almost surely finite, it is sufficient to prove that limn→∞ E
[
Mn

]
<

∞. To this end, we proceed by bounding the expectation of
{
Mn

}
, by first starting with

{
Mn

}
from (26). We have,

E
[∥∥Mn

∥∥] = E

[∥∥∥∥∥
n∑
i=1

αi,nMi

∥∥∥∥∥
]
,

= O


√√√√√E

∥∥∥∥∥
n∑
i=1

αi,nMi

∥∥∥∥∥
2

2


, (Jensen’s Ineq.)

= O

√√√√ n∑
i=1

α2
i,nE

[
‖Mi‖22

], (Mi is a Martingale Difference Series)

= O

√√√√ n∑
i=1

α2
i,nτ

2
i

, (Lemma 14)

Then using the definition of
{
Mn

}
from (27), we have

E
[
Mn

]
=

n∑
i=1

αiE
[∥∥M i−1

∥∥] = O

 n∑
i=1

αi

√√√√i−1∑
j=1

α2
j,i−1τ

2
j−1

.
Then, by (35) in Lemma 8, we have

sup
n

E
[
Mn

]
<∞,

and since
{
E
[
Mn

]}
is also monotonically increasing, we have

lim
n→∞

E
[
Mn

]
<∞,

which implies that M∞ <∞ almost surely.

Lemma 16. With
{
ε
(1)
n

}
defined in (27),

lim
n→∞

ε
(1)
n <∞, a.s.

Proof We first observe that the sequence
{
ε
(1)
n

}
defined in (27) is positive and monotonically

increasing. Therefore by the monotone convergence theorem, it converges almost surely to a (possibly
infinite) limit which we denote as,

ε
(1)
∞

.
= lim
n→∞

ε
(1)
n a.s.
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Then, we utilize a generalization of Lebesgue’s monotone convergence theorem (Lemma 7) to prove
that the limit ε(1)∞ is finite almost surely. By Lemma 7, we have

E
[
ε
(1)
∞

]
= lim
n→∞

E
[
ε
(1)
n

]
.

Therefore, to prove that ε(1)∞ is almost surely finite, it is sufficient to prove that limn→∞ E
[
ε
(1)
n

]
<∞.

To this end, we proceed by bounding the expectation of
{
ε
(1)
n

}
,

E
[
ε
(1)
n

]
=

n∑
i=1

αiE
[∥∥∥ε(1)i−1∥∥∥] ≤ n∑

i=1

αi

i−1∑
j=1

αj,i−1E
[∥∥∥ε(1)j ∥∥∥].

Then, by (41) in Lemma 9, we have,

sup
n

E
[
ε
(1)
n

]
<∞,

and since
{
E
[
ε
(1)
n

]}
is also monotonically increasing, we have

lim
n→∞

E
[
ε
(1)
n

]
<∞.

which implies that ε(1)∞ <∞ almost surely.

Lemma 17. With
{
ε
(2)
n

}
defined in (27), we have

lim
n→∞

ε
(2)
n <∞ a.s.

Proof Starting with the definition of ε(2)n from (26), we have,

ε(2)n =

n∑
i=1

αi,nε
(2)
i

= −
n∑
i=1

αi,n(ν(xi, Yi+1)− ν(xi−1, Yi)),

= −
n∑
i=1

αi,nν(xi, Yi+1)− αi−1,nν(xi−1, Yi) + αi−1,nν(xi−1, Yi)− αi,nν(xi−1, Yi),

= −αn,nν(xn, Yn+1)−
n∑
i=1

(αi−1,n − αi,n)ν(xi−1, Yi). (α0
.
= 0)

Since we have αn,n = αn by definition, the triangle inequality gives∥∥∥ε(2)n ∥∥∥ ≤ αn‖ν(xn, Yn+1)‖+

n∑
i=1

|αi−1,n − αi,n| ‖ν(xi−1, Yi)‖,

≤ ζ12

(
αnτn +

n∑
i=1

|αi−1,n − αi,n| τi−1

)
, (Lemma 12)

≤ ζ12

(
αnτn + τn

n∑
i=1

(αi,n − αi−1,n)

)
, (Lemma 5)

≤ 2ζ12αnτn. (α0
.
= 0)
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Therefore, there exists a sample-path dependent constant we denote as ζ17 such that∥∥∥ε(2)n ∥∥∥ ≤ ζ17αnτn.
Therefore, from the definition of ε(2)n in (23), we have

ε
(2)
n =

n∑
i=1

αi

∥∥∥ε(2)i−1∥∥∥,
≤ ζ17

n∑
i=1

αiαi−1τi−1,

= ζ17

n−1∑
k=1

αk+1αkτk, (α0
.
= 0)

≤ ζ17
n∑
k=1

α2
kτk, (αk is decreasing for k ≥ 1)

which is almost surely finite by Lemma 8.

Lemma 18. With
{
ε
(3)
n

}
defined in (27), we have

lim
n→∞

ε
(3)
n <∞, a.s.

Proof Beginning with the definition of ε(3)n in (26), we have∥∥∥ε(3)n ∥∥∥ =

∥∥∥∥∥
n∑
i=1

αi,n(ν(xi, Yi+1)− ν(xi−1, Yi+1))

∥∥∥∥∥,
≤

n∑
i=1

αi,n‖ν(xi, Yi+1)− ν(xi−1, Yi+1)‖,

≤ C11

n∑
i=1

αi,n‖xi − xi−1‖, (Lemma 11)

≤ C11

n∑
i=1

αi,nαi

(
‖H(xi−1, Yi)‖+ ‖xi−1‖+

∥∥∥ε(1)i ∥∥∥), (By (SKM with Markovian and Additive Noise))

≤ C11

n∑
i=1

αi,nαi

(
2‖xi−1‖+ CH +

∥∥∥ε(1)i ∥∥∥), (By (12))

≤ C11

n∑
i=1

αi,nαi

(
2C10τi−1 + 2

i−1∑
k=1

αk

∥∥∥ε(1)k ∥∥∥+ CH +
∥∥∥ε(1)i ∥∥∥

)
, (Lemma 10)

Because Assumption 4.5 assures us that
∑∞
k=1 αk

∥∥∥ε(1)k ∥∥∥ is almost surely finite, then there exists
some sample-path dependent constant we denote as ζ18 where,∥∥∥ε(3)n ∥∥∥ ≤ ζ18 n∑

i=1

αi,nαi

(
τi−1 +

∥∥∥ε(1)i ∥∥∥), (Assumption 4.5)

≤ ζ18

(
n∑
i=1

αi,nαiτi +

n∑
i=1

αi,nαi

∥∥∥ε(1)i ∥∥∥
)
, (τi is increasing)

≤ ζ18αn

(
n∑
i=1

αiτi +

n∑
i=1

αi

∥∥∥ε(1)i ∥∥∥
)
. (Lemma 5).
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Again, from Assumption 4.5 we can conclude that there exists some other sample-path dependent
constant we denote as ζ ′18 where ∥∥∥ε(3)n ∥∥∥ ≤ ζ ′18αn n∑

i=1

αiτi.

Therefore, from the definition of ε(3)n in (23)

ε
(3)
n ≤ ζ ′18

n∑
i=1

α2
i

i−1∑
j=1

αjτj .

So, by (34) in Lemma 8

sup
n

ε
(3)
n ≤ sup

n
ζ ′18

n∑
i=1

α2
i

i−1∑
j=1

αjτj <∞ a.s.

Then, the monotone convergence theorem proves the lemma.

To prove (24) holds almost surely, we introduce four lemmas which we will subsequently use to
prove an extension of Theorem 2 from (Borkar, 2009) in Section C.
Lemma 19. We have

sup
n

∥∥∥∥∥
n∑
k=1

αkMk

∥∥∥∥∥ <∞ a.s.

Proof Recall that Mk is a Martingale difference series. Then, the Martingale sequence{
n∑
k=1

αkMk

}
is bounded in L2 with,

E

[∥∥∥∥∥
n∑
k=1

αkMk

∥∥∥∥∥
2

]
≤

√√√√√E

∥∥∥∥∥
n∑
k=1

αkMk

∥∥∥∥∥
2

2

, (Jensen’s Ineq.)

=

√√√√ n∑
k=1

α2
kE
[
‖Mk‖22

]
, (Mi is a Martingale Difference Series)

≤ C14

√√√√ n∑
k=1

α2
kτ

2
k . (Lemma 14)

Lemma 8 then gives

sup
n

C14

√√√√ n∑
k=1

α2
kτ

2
k <∞

Doob’s martingale convergence theorem implies that {
∑n
k=1 αkMk} converges to an almost surely

finite random variable, which proves the lemma.

Lemma 20. We have,

sup
n

∥∥∥∥∥
n∑
k=1

αkε
(2)
k

∥∥∥∥∥ <∞ a.s.
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Proof Utilizing the definition of ε(2)k in (19), we have
n∑
k=1

αkε
(2)
k = −

n∑
k=1

αk(ν(xk, Yk+1)− ν(xk−1, Yk)),

= −
n∑
k=1

αkν(xk, Yk+1)− αk−1ν(xk−1, Yk) + αk−1ν(xk−1, Yk)− αkν(xk−1, Yk),

= −αnν(xn, Yn+1)−
n∑
k=1

(αk−1 − αk)ν(xk−1, Yk). (α0 = 0)

(47)

The triangle inequality gives∥∥∥∥∥
n∑
k=1

αkε
(2)
k

∥∥∥∥∥ ≤ αn‖ν(xn, Yn+1)‖+

n∑
k=1

|αk−1 − αk| ‖ν(xk−1, Yk)‖,

≤ ζ12

(
αnτn +

n∑
k=1

|αk−1 − αk| τk−1

)
, (Lemma 12)

= ζ12

(
αnτn + α1τ1 +

n−1∑
k=1

|αk − αk+1|τk

)
(α0

.
= 0).

Its easy to see that limn→∞ αnτn = 0, and α1τ1 is simply a deterministic and finite constant.
Therefore, by Lemma 8 we have

sup
n

n∑
k=1

|αk − αk+1|τk <∞ a.s.

which proves the lemma.

Lemma 21. We have,

sup
n

∥∥∥∥∥
n∑
k=1

αkε
(3)
k

∥∥∥∥∥ <∞ a.s.

Proof Utilizing the definition of ε(3)k in (20), we have∥∥∥∥∥
n∑
k=1

αkε
(3)
k

∥∥∥∥∥ =

∥∥∥∥∥
n∑
k=1

αk(ν(xk, Yi+1)− ν(xk−1, Yi+1))

∥∥∥∥∥,
≤

n∑
k=1

αk‖ν(xk, Yi+1)− ν(xk−1, Yi+1)‖,

≤ C11

n∑
k=1

αk‖xk − xk−1‖, (Lemma 11)

≤ C11

n∑
k=1

α2
k

(
‖H(xk−1, Yk)‖+ ‖xk−1‖+

∥∥∥ε(1)k ∥∥∥),
(By (SKM with Markovian and Additive Noise))

≤ C11

n∑
k=1

α2
k

(
2‖xk−1‖+ CH +

∥∥∥ε(1)k ∥∥∥), (By (12))

≤ C11

n∑
k=1

α2
k

(
2C10τk−1 + 2

k−1∑
i=1

αi

∥∥∥ε(1)i ∥∥∥+ CH +
∥∥∥ε(1)k ∥∥∥

)
. (Lemma 10)
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Because Assumption 4.5 assures us that
∑∞
k=1 αk

∥∥∥ε(1)k ∥∥∥ is finite, then there exists some sample-path
dependent constant we denote as ζ21 where,∥∥∥∥∥

n∑
k=1

αkε
(3)
k

∥∥∥∥∥ ≤ ζ21
n∑
k=1

α2
k

(
τk−1 +

∥∥∥ε(1)k ∥∥∥), (Assumption 4.5)

≤ ζ21

(
n∑
k=1

α2
kτk +

n∑
k=1

α2
k

∥∥∥ε(1)k ∥∥∥
)
, (τk is increasing)

Lemma 8 and Assumption 4.5 then prove the lemma.

Lemma 22. Let Un be the iterates defined in (22). Then if supn ‖Un‖ <∞, then we have Un → 0
almost surely.

Proof We use a stochastic approximation argument to show that Un → 0. The almost sure
convergence of Un → 0 is given by a generalization of Theorem 2.1 of Borkar (2009), which we
present as Theorem 24 in Appendix C for completeness.

We now verify the assumptions of Theorem 24. Beginning with the definition of ξk in (21), we have

lim
n→∞

sup
j≥n

∥∥∥∥∥
j∑

k=n

αkξk

∥∥∥∥∥ = lim
n→∞

sup
j≥n

∥∥∥∥∥
j∑

k=n

αk

(
ε
(1)
k + ε

(2)
k + ε

(3)
k

)∥∥∥∥∥,
≤ lim
n→∞

sup
j≥n

∥∥∥∥∥
j∑

k=n

αkε
(1)
k

∥∥∥∥∥︸ ︷︷ ︸
S1

+ lim
n→∞

sup
j≥n

∥∥∥∥∥
j∑

k=n

αkε
(2)
k

∥∥∥∥∥︸ ︷︷ ︸
S2

+ lim
n→∞

sup
j≥n

∥∥∥∥∥
j∑

k=n

αkε
(3)
k

∥∥∥∥∥︸ ︷︷ ︸
S3

.

We now bound the three terms in the RHS.

For S1, we have

lim
n→∞

sup
j≥n

∥∥∥∥∥
j∑

k=n

αkε
(1)
k

∥∥∥∥∥ ≤ lim
n→∞

sup
j≥n

j∑
k=n

αk

∥∥∥ε(1)k ∥∥∥ ≤ lim
n→∞

∞∑
k=n

αk

∥∥∥ε(1)k ∥∥∥ = 0,

where we have used the fact that the series
∑n
k=1 αk

∥∥∥ε(1)k ∥∥∥ converges by Assumption 4.5 almost
surely.

For S2, from (47) in Lemma 20, we have
j∑

k=n

αkε
(2)
k =

j∑
k=1

αkε
(2)
k −

n−1∑
k=1

αkε
(2)
k ,

= αn−1ν(xn, Yn)− αjν(xj , Yj+1)−
j∑

k=n

(αk−1 − αk)ν(xk−1, Yk).

Taking the norm and applying the triangle inequality, we have

lim
n→∞

sup
j≥n

∥∥∥∥∥
j∑

k=n

αkε
(2)
k

∥∥∥∥∥ ≤ lim
n→∞

sup
j≥n

(
αn−1‖ν(xn, Yn)‖+ αj‖ν(xj , Yj+1)‖

+

j∑
k=n

‖(αk−1 − αk)ν(xk−1, Yk)‖
)
,

≤ lim
n→∞

sup
j≥n

ζ12

(
αn−1τn−1 + αjτj +

∞∑
k=n

|αk−1 − αk|τk−1

)
, (Lemma 12)
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where the last inequality holds because
∑j
k=n |αk−1 − αk|τk−1 is monotonically increasing. Note

that

αnτn =

{
O
(
n1−2b

)
if 4

5 < b < 1,

O
(

logn
n

)
if b = 1.

Since we have j ≥ n, then

lim
n→∞

sup
j≥n

∥∥∥∥∥
j∑

k=n

αkε
(2)
k

∥∥∥∥∥ ≤ lim
n→∞

ζ12

(
2αn−1τn−1 +

∞∑
k=n

|αk−1 − αk|τk−1

)
= 0

where we used the fact that (33) in Lemma 8 and the monotone convergence theorem prove that the
series

∑n
k=1 |αk − αk+1|τk converges almost surely.

For S3, following the steps in Lemma 21 (which we omit to avoid repetition), we have,

lim
n→∞

sup
j≥n

∥∥∥∥∥
j∑

k=n

αkε
(3)
k

∥∥∥∥∥ ≤ lim
n→∞

sup
j≥n

ζ21

(
j∑

k=n

α2
kτk +

j∑
k=n

α2
k

∥∥∥ε(1)k ∥∥∥
)
.

which further implies that

lim
n→∞

sup
j≥n

∥∥∥∥∥
j∑

k=n

αkε
(3)
k

∥∥∥∥∥ ≤ lim
n→∞

ζ21

( ∞∑
k=n

α2
kτk +

∞∑
k=n

α2
k

∥∥∥ε(1)k ∥∥∥
)

= 0,

where we use the fact that, by (31) in Lemma 8, Assumption 4.5, and the monotone convergence
theorem, both series on the RHS series converge almost surely. Therefore we have proven that,

lim
n→∞

sup
j≥n

∥∥∥∥∥
j∑

k=n

αkξk

∥∥∥∥∥ = 0 a.s.

thereby verifying Assumption C.1.

Assumption C.2 is satisfied by (13) which is the result of Assumption 4.2. Assumption C.3 is
clearly met by the definition of the deterministic learning rates in Assumption 4.4. Demonstrating
Assumption C.4 holds, Lemma 14 demonstrates {Mn} is square-integrable martingale difference
series.

Therefore, by Theorem 24, the iterates {Un} converge almost surely to a possibly sample-path
dependent compact connected internally chain transitive set of the following ODE:

dU(t)

dt
= −U(t). (48)

Since the origin is the unique globally asymptotically stable equilibrium point of (48), we have that
Un → 0 almost surely.

Lemma 23. With {xn} defined in (21) and {Un} defined in (22), if
∑∞
k=1 αk‖Uk−1‖ and

limn→∞ Un = 0, then limn→∞ xn = x∗ where x∗ ∈ X∗ is a possibly sample-path dependent
fixed point.

Proof Following the approach of Bravo & Cominetti (2024), we utilize the estimate for inexact
Krasnoselskii-Mann iterations of the form (IKM) presented in Lemma 4 to prove the convergence
of (SKM with Markovian and Additive Noise). Using the definition of {Un} in (22), we then let
z0 = x0 and define zn

.
= xn − Un, which gives

zn+1 = (1− αn+1)xn + αn+1(h(xn) +Mn+1 + ξn+1)

− ((1− αn+1)Un + αn+1(Mn+1 + ξn+1))

= (1− αn+1)zn + αn+1h(xn)

= zn + αn+1(h(zn)− zn + en+1)
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which matches the form of (IKM) with en = h(xn−1)− h(zn−1). Due to the non-expansivity of h
from (13), we have

‖en+1‖ = ‖h(xn)− h(zn)‖ ≤ ‖xn − zn‖ = ‖Un+1‖

The convergence of xn then follows directly from Lemma 4 which gives limn→∞ zn = x∗ for some
x∗ ∈ X∗, and therefore limn→∞ xn = limn→∞ zn + Un = x∗. We note that here en is stochastic
while the (IKM) result in Lemma 4 considers a deterministic noise. This means here we apply
Lemma 4 for each sample path.

C EXTENSION OF THEOREM 2.1 OF BORKAR (2009)

In this section, we present a simple extension of Theorem 2 from (Borkar, 2009) for completeness.
Readers familiar with stochastic approximation theory should find this extension fairly straightforward.
Originally, Chapter 2 of (Borkar, 2009) considers stochastic approximations of the form,

yn+1 = yn + αn(h(yn) +Mn+1 + ξn+1) (49)

where it is assumed that ξn → 0 almost surely. However, our work requires that we remove the
assumption that ξn → 0, and replace it with a more mild condition on the asymptotic rate of change
of ξn, akin to Kushner & Yin (2003).

Assumption C.1. For any T > 0,

lim
n→∞

sup
n≤j≤m(n,T )

∥∥∥∥∥
j∑
i=n

αiξi

∥∥∥∥∥ = 0 a.s.

where m(n, T )
.
= min

{
k|
∑k
i=n α(i) ≥ T

}
.

The next four assumptions are the same as the remaining assumptions in Chapter 2 of Borkar (2009).

Assumption C.2. The map h is Lipschitz: ‖h(x)− h(y)‖ ≤ L‖x− y‖ for some 0 < L <∞.

Assumption C.3. The stepsizes {αn} are positive scalars satisfying∑
n

αn =∞,
∑
n

α2
n <∞

Assumption C.4. {Mn} is a martingale difference sequence w.r.t the increasing family of σ-algebras

Fn
.
= σ(ym,Mm,m ≤ n) = σ(y0,M1, . . . ,Mn), n ≥ 0.

That is,

E [Mn+1|Fn] = 0 a.s. , n ≥ 0.

Furthermore, {Mn} are square-integrable with

E
[
‖Mn+1‖2|Fn

]
≤ K

(
1 + ‖xn‖2

)
a.s. , n ≥ 0,

for some constant K > 0

Assumption C.5. The iterates of (49) remain bounded almost surely, i.e.,

sup
n
‖yn‖ <∞

Theorem 24 (Extension of Theorem 2.1 from Borkar (2009)). Let Assumptions C.1, C.2, C.3, C.4,
C.5 hold. Almost surely, the sequence {yn} generated by (49) converges to a (possibly sample-path
dependent) compact connected internally chain transitive set of the ODE

dy(t)

dt
= h(y(t)). (50)
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Proof We now demonstrate that even with the relaxed assumption on ξn, we can still achieve
the same almost sure convergence of the iterates achieved by Borkar (2009). Following Chapter
2 of Borkar (2009), we construct a continuous interpolated trajectory ȳ(t), t ≥ 0, and show that
it asymptotically approaches the solution set of (50) almost surely. Define time instants t(0) =

0, t(n) =
∑n−1
m=0 αm, n ≥ 1. By assumption C.3, t(n) ↑ ∞. Let In

.
= [t(n), t(n+ 1)] , n ≥ 0.

Define a continuous, piece-wise linear ȳ(t), t ≥ 0 by ȳ(t(n)) = yn, n ≥ 0, with linear interpolation
on each interval In:

ȳ(t) = yn + (yn+1 − yn)
t− t(n)

t(n+ 1)− t(n)
, t ∈ In

It is worth noting that supt≥0 ‖ȳ(t)‖ = supn ‖yn‖ < ∞ almost surely by Assumption C.5. Let
ys(t), t ≥ s, denote the unique solution to (50) ‘starting at s’:

dys(t)

dt
= h(ys(t)), t ≥ s,

with ys(s) = ȳ(s), s ∈ R. Similarly, let ys(t), t ≥ s, denote the unique solution to (50) ‘ending at s’:

dys(t)

dt
= h(ys(t)), t ≤ s,

with ys(s) = ȳ(s), s ∈ R. Define also

ζn =

n−1∑
m=0

αm(Mm+1 + ξm+1), n ≥ 1 (51)

Lemma 25 (Extension of Theorem 1 from Borkar (2009)). Let C.1 − C.5 hold. We have for any
T > 0,

lim
s→∞

sup
t∈[s,s+T ]

‖ȳ(t)− ys(t)‖ = 0, a.s.

lim
s→∞

sup
t∈[s,s+T ]

‖ȳ(t)− ys(t)‖ = 0, a.s.

Proof Let t(n+m) be in [t(n), t(n) + T ]. Let [t]
.
= max {t(k) : t(k) ≤ t}. Then,

ȳ(t(n+m)) = ȳ(t(n)) +

m−1∑
k=0

αn+kh(ȳ(t(n+ k))) + δn,n+m (2.1.6 in Borkar (2009)) (52)

where δn,n+m
.
= ζn+m − ζn. Borkar (2009) then compares this with

yt(n)(t(n+m)) = ȳ(t(n)) +

m−1∑
k=0

αn+kh
(
yt(n)(t(n+ k))

)
+

∫ t(n+m)

t(n)

(
h
(
yt(n)(z)

)
− h
(
yt(n)([z])

))
dz. (2.1.7 in Borkar (2009))

Next, Borkar (2009) bounds the integral on the right-hand side by proving∥∥∥∥∥
∫ t(n+m)

t(n)

(
h
(
yt(n)(t)

)
− h
(
yt(n)([t])

))
dt

∥∥∥∥∥ ≤ CTL
∞∑
k=0

α2
n+k

n↑∞−−−→ 0, a.s. (2.1.8 in Borkar (2009))

where CT
.
= ‖h(0)‖ + L(C0 + ‖h(0)‖T )eLT < ∞ almost surely and C0

.
= supn ‖yn‖ < ∞ a.s.

by Assumption C.5.

Then, we can subtract (2.1.7) from (2.1.6) and take norms, yielding∥∥∥ȳ(t(n+m))− yt(n)(t(n+m))
∥∥∥ ≤ Lm−1∑

i=0

αn+i

∥∥∥ȳ(t(n+ i))− yt(n)(t(n+ i))
∥∥∥

+ CTL
∑
k≥0

α2
n+k + sup

0≤k≤m(n,T )

‖δn,n+k‖. (53)
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The key difference between (53) and the analogous equation in Borkar (2009) Chapter 2, is that
we replace the supk≥0 with a sup0≤k≤m(n,T ). The reason we can make this change is that we
defined t(n + m) to be in the range [t(n), t(n) + T ]. Recall that we also defined m(n, T )

.
=

min
{
k|
∑k
i=n α(i) ≥ T

}
in Assumption C.1, so we therefore know that m ≤ m(n, T ) in (52).

Borkar (2009) unnecessarily relaxes this for notation simplicity, but a similar argument can be found
in Kushner & Yin (2003).

Also, we have,

‖δn,n+k‖ = ‖ζn+k − ζn‖,

=

∥∥∥∥∥
k∑
i=n

αi(Mi+1 + ξi+1)

∥∥∥∥∥, (by (51))

≤

∥∥∥∥∥
k∑
i=n

αiMi+1

∥∥∥∥∥+

∥∥∥∥∥
k∑
i=n

αiξi+1

∥∥∥∥∥.
Borkar (2009) proves that

(∑n−1
i=0 αiMi+1,Fn

)
, n ≥ 1 is a zero mean, square-integrable martingale.

By C.3, C.4, C.5,

∑
n≥0

E

[∥∥∥∥∥
n∑
i=0

αiMi+1 −
n−1∑
i=0

αiMi+1

∥∥∥∥∥
∣∣∣∣Fn

]
=
∑
n≥0

E
[
‖Mn+1‖2 | Fn

]
<∞.

Therefore, the martingale convergence theorem gives the almost sure convergence of(∑k
i=n αiMi+1,Fn

)
as n→∞. Combining this with assumption C.1 yields,

lim
n→∞

sup
0≤k≤m(n,T )

‖δn,n+k‖ = 0 a.s.

Using the definition of KT,n
.
= CTL

∑
k≥0 α

2
n+k + sup0≤k≤m(n,T ) ‖δn,n+k‖ given by Borkar

(2009), we have proven that our slightly relaxed assumption still yields KT,n → 0 almost surely as
n→∞. The rest of the argument for the proof of the theorem in Borkar (2009) holds without any
additional modification.

Having proven Lemma 25, the analysis and proof presented for Theorem 2 in Borkar (2009) applies
directly, yielding our desired extended result.

D RESPONSE TO REVIEWER PPQC

In this section, we address the reviewer PPQC’s suggestion that the almost sure convergence of the
average-reward TD update can be directly inferred from existing results. The reviewer posits that
the convergence of linear TD with a special feature matrix implies the convergence of our tabular
TD, potentially rendering our analysis unnecessary. We demonstrate that this argument only holds if
expected updates are considered and the reward is always 0 (i.e., r(s) = 0).

The outline of the argument proposed by the reviewer is as follows. Let N .
= |S|. Consider the

expected updates of (Average Reward TD) which can be expressed as

v̄t+1 = v̄t + αt(D(P − I)v̄t +D(r − JπeN ), (54)

where eN denotes the N dimensional all-one column vector. We can define iterates θt ∈ RN−1 as

θt+1 = θt + αt
(
Φ>D(P − I)Φθt + Φ>D(r − JπeN )

)
, (55)
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where Φ ∈ RN×(N−1) is the feature matrix to be tuned. Let ut = Φθt be the correpsonding value
function, we then have,

ut+1 = ut + αt
(
ΦΦ>D(P − I)ut + ΦΦ>D(r − JπeN )

)
.

The reviewer’s claim is that under some smart construction of Φ, two properties can be achieved.
First, the matrix A .

= Φ>D(P − I)Φ ∈ R(N−1)×(N−1) is negative definite. Second, there exists
some {ct ∈ R} such that ut = v̄t + cteN for all t. If both hold, the convergence of v̄t would be
trivial. We, however, believe that this argument only holds if the reward is always 0 (i.e., r(s) = 0)
and expected updates are considered. For the general stochastic update in (Average Reward TD) with
generic reward, this argument does not hold.

D.1 ANALYSIS OF EXPECTED UPDATES WITH r = 0

First we will demonstrate our understanding of the reviewer’s point by proving that the reviewer
is correct in the case when the reward r is zero, and when we consider the expected updates of
(Average Reward TD) as written in (54). Let k be a constant to be tuned. Recall D ∈ RN×N is a
diagonal matrix with the diagonal being the stationary distribution dπ. Following the reviewer’s
comment, let us define the features Φ ∈ RN×N−1 as

Φ
.
=

[
IN−1
−ke>N−1

]
. (56)

When r = 0, the updates become

θt+1 = θt + αt
(
Φ>D(P − I)Φθt

)
,

ut+1 = ut + αt
(
ΦΦ>D(P − I)ut

)
,

v̄t+1 = v̄t + αt (D(P − I)v̄t) .

Our goal is to show that,

ut = v̄t + cteN , (57)

for some ct ∈ R. To establish this, we define the difference δt = ut − v̄t and analyze its evolution,

δt+1 = ut+1 − v̄t+1

=
(
ut + αtΦΦ>D(P − I)ut

)
− (v̄t + αtD(P − I)v̄t)

= δt + αt
(
ΦΦ>D(P − I)ut −D(P − I)v̄t

)
= δt + αt

(
ΦΦ>D(P − I)(ut − v̄t) +

(
ΦΦ> − I

)
D(P − I)v̄t

)
= δt + αt

(
ΦΦ>D(P − I)δt +

(
ΦΦ> − I

)
D(P − I)v̄t

)
.

We can prove by induction that with a careful choice of k, δt = cte for all t. First, let us define δ0 = 0.
Then, the inductive hypothesis is δt = cteN for some ct. Now we will show that δt+1 = ct+1eN .
It can be shown that ΦΦ>D(P − I)δt = 0 when δt is some scalar multiple of eN . Therefore, the
update can be simplified to

δt+1 = δt + αt
((

ΦΦ> − I
)
D(P − I)v̄t

)
.

Next, we compute
(
ΦΦ> − I

)
D(P − I)v̄t and show that it is proportional to eN . Beginning with

the definition of Φ in (56), we have

ΦΦ> =

[
IN−1
−ke>N−1

]
[IN−1 −keN−1]

=

[
IN−1 −keN−1
−ke>N−1 (N − 1)k2

]
Subtracting the identity matrix gives,

ΦΦ> − I =

[
0(N−1) −keN−1
−ke>N−1 (N − 1)k2 − 1

]
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where 0N−1 refers to the (N − 1)× (N − 1) dimensional all-zero matrix. Then we have

(ΦΦ> − I)D(P − I)v̄t =

[
0(N−1) −keN−1
−ke>N−1 (N − 1)k2 − 1

]
D(P − I)v̄t,

=

[
ateN−1
bt

]
.

where we define at ∈ R as the first N − 1 entries of the resulting vector which all share the same
value. We use bt ∈ R to denote the N -th entry of the resulting column vector. We can see that,

at
.
=
[
01×(N−1) −k

]
D(P − I)v̄t,

and

bt =
[
−ke>N−1 (N − 1)k2 − 1

]
D(P − I)v̄t,

= (
[
−ke>N−1 −k

]
+
[
01×(N−1) (N − 1)k2 − 1 + k

]
)D(P − I)v̄t,

=
[
01×(N−1) (N − 1)k2 − 1 + k

]
)D(P − I)v̄t.

Therefore if we want at = bt we can solve for k,

(N − 1)k2 − 1 + k = −k,
(N − 1)k2 + 2k − 1 = 0,

k =
−2 +

√
4N

2(N − 1)
(58)

which gives at = bt, and δt+1 = δt + αtbte.

However, we do not think the same argument will go through for stochastic updates with a generic
reward.

D.2 ANALYSIS OF EXPECTED UPDATES WITH UNKNOWN Jπ

When we remove the assumption that r is zero and use Jt generated by (Average Reward TD) instead
of Jπ , the equivalence cannot be proven. In this case the updates can be written as

θt+1 = θt + αt
(
Φ>D(P − I)Φθt + Φ>D(r − JteN )

)
,

ut+1 = ut + αt
(
ΦΦ>D(P − I)ut + ΦΦ>D(r − JteN )

)
.

Once again, the goal is to show that if we construct Φ as,

Φ
.
=

[
IN−1
−ke>N−1

]
,

then we can prove that ut = v̄t + cteN . To this end, we once again define the difference δt = ut− v̄t,
with the goal of showing that δt is proportional to e.

δt+1 = ut+1 − v̄t+1

=
(
ut + αtΦΦ>D(P − I)ut + αtΦΦ>D(r − JteN )

)
− (v̄t + αtD(P − I)v̄t + αtD(r − JteN ))

= δt + αt
(
ΦΦ>D(P − I)ut −D(P − I)v̄t

)
+ αt

(
ΦΦ>D(r − JteN )−D(r − JteN )

)
= δt + αt

(
ΦΦ>D(P − I)δt +

(
ΦΦ> − I

)
D(P − I)v̄t

)
+ αt

((
ΦΦ> − I

)
D(r − JteN )

)
.

Once again, we have ΦΦ>D(P − I)δt = 0 when δt is proportional to e, so

δt+1 = δt + αt

(ΦΦ> − I
)
D(P − I)v̄t︸ ︷︷ ︸
S1

+
(
ΦΦ> − I

)
D(r − JteN )︸ ︷︷ ︸
S2

 .
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Previously, we showed that if we choose k = −2+
√
4N

2(N−1) , S1 can be written as bte for some scalar bt.
However, given that r is now non-zero and Jt can literally be any number along the sample path, we
cannot prove that S2 is also proportional to e, which is required to satisfy (57). To see this, we have,

(ΦΦ> − I)D(r − JteN ) =

[
0N−1 −keN−1
−ke>N−1 (N − 1)k2 − 1

]
D(r − JteN ),

=

[
fteN−1
gt

]
.

where we define ft ∈ R as the first N − 1 entries of the resulting vector which all share the same
value. We use gt ∈ R to denote the N -th entry of the resulting column vector. We have,

ft
.
=
[
01×(N−1) −k

]
D(r − JteN ),

and

gt =
[
−ke>N−1 (N − 1)k2 − 1

]
D(r − JteN ),

= (
[
−ke>N−1 −k

]
+
[
01×(N−1) (N − 1)k2 − 1 + k

]
)D(r − JteN ),

= −k(Jπ −NJt) +
[
01×(N−1) (N − 1)k2 − 1 + k

]
D(r − JteN )

= −k(Jπ −NJt) +
[
01×(N−1) −k

]
D(r − JteN )

= −k(Jπ −NJt) + ft,

where we recall k is defined in (58). Since Jt can be an arbitrary number, there is no way that
gt = ft holds for all t. We believe the fundamental cause is that e>ND(P−I) = 0 but e>ND(r−JteN )
is arbitrary. Even if Jt = Jπ, we still have e>ND(r − JπeN ) 6= 0. To make e>ND(r − JπeN ) = 0,
we have to artificially multiply r by N in (Average Reward TD). But even with this, if Jt is used, it
still does not work. This demonstrates the complexity of the problem when stochastic updates are
involved. We recall now only Jt is stochastic. In the next section, we show the problem is harder if
we consider the full stochastic setting.

D.3 ANALYSIS OF STOCHASTIC UPDATES

For simplicity, we will consider the case where Jπ is known and does not need to be estimated. Let
x(s) ∈ RN denote the one-hot vector where only the s-th element is 1. Use shorthand xt

.
= x(St)

and rt
.
= r(St). The (Average Reward TD) is then

vt+1 = vt + αt(xt(x
>
t+1 − x>t )vt + xt(rt − Jπ))

Let φ(s) ∈ RN−1 denote the s-th row of Φ, i.e., φ(s) is the feature of s. We will use φt ∈ RN−1 as
shorthand to denote the feature φ(St) which is the row of Φ corresponding to the state St. Then this
gives the updates

θt+1 = θt + αt
(
φt(φ

>
t+1 − φ>t )θt + φt(rt − Jπ)

)
.

We have ut
.
= Φθt, which gives,

ut+1 = ut + αt
(
Φφt(φ

>
t+1 − φ>t )θt + Φφt(rt − Jπ)

)
,

ut+1 = ut + αt(Φφt(ut(St+1)− ut(St)) + Φφt(rt − Jπ)),

= ut + αt(Φφt(x
>
t+1 − x>t )ut + Φφt(rt − Jπ))

Once again, the goal is to show that if we construct Φ as,

Φ
.
=

[
IN−1
−ke>N−1

]
,
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then we can prove that ut = vt + cteN . To this end, we once again define the difference δt = ut− vt,
with the goal of showing that δt is proportional to e.
δt+1 = ut+1 − vt+1

=
(
ut + αt(Φφt(x

>
t+1 − x>t )ut + Φφt(rt − Jπ))

)
−
(
vt + αt(xt(x

>
t+1 − x>t )vt + xt(rt − Jπ))

)
= δt + αt

(
Φφt(x

>
t+1 − x>t )ut − xt(x>t+1 − x>t )vt

)
+ αt(Φφt(rt − Jπ)− xt(rt − Jπ))

= δt + αt

Φφt(x
>
t+1 − x>t )ut︸ ︷︷ ︸
S1

−xt(x>t+1 − x>t )vt︸ ︷︷ ︸
S2

+ (Φφt − xt)(rt − Jπ)︸ ︷︷ ︸
S3


Let St be one of the first N − 1 states. Without loss of generality, let the features of the current state
St correspond to the first row of Φ. Under this construction of Φ from (56), we have

(Φφt) =

[
1

0(N−2)×1
−k

]
.

Therefore, regardless of the current composition of ut, the term S1 can only take the form of

S1 =

[
at

0(N−2)×1
−kat

]
,

where at
.
= (x>t+1 − x>t )ut ∈ R. Now if we consider S2, it can only take the form of,

S2 =

[
bt

0(N−2)×1
0

]
,

where bt = (x>t+1 − x>t )vt. Finally for the form of S3, we first note that

(Φφt − xt) =

[
0

0((N−2)×1)
−k

]
,

which implies S3 takes the form of

S3 =

[
0

0((N−2)×1)
−kdt

]
,

where dt = (rt − Jπ) ∈ R. Then we have,

δt+1 = δt + αt


[

at
0(N−2)×1
−kat

]
︸ ︷︷ ︸

S1

−

[
bt

0(N−2)×1
0

]
︸ ︷︷ ︸

S2

+

[
0

0((N−2)×1)
−kdt

]
︸ ︷︷ ︸

S3


= δt + αt

([
at − bt

0((N−2)×1)
−k(at + dt)

])

In order for δt+1 to be proportional to e, it is therefore necessary that S1 − S2 + S3 = 0 since we
can see that S1, S2, and S3 all have 0 in the middle N − 2 entries which are completely independent
from any choice of k. Since rt and xt+1 depend on the specific realization of the random trajectory
St, St+1, we cannot say that at = −dt for all t. Here if we replace Jπ with Jt, it becomes even more
problematic. rt is at least somehow related to Jπ but Jt can literally be anything in a sample path.
Therefore, in order for δt = cte for all t, it must be the case that k = 0, which contradicts the
requirement that A be Hurwitz.

In conclusion, although the reviewer is correct that the almost-sure convergence of θt in (55) directly
implies the almost sure convergence of the expected iterates (54) of (Average Reward TD) in the
special case when r = 0, this statement does not hold when we consider non-zero reward, as well as
the actual stochastic update (Average Reward TD).
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