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Abstract: Robot manipulation research still suffers from significant data scarcity:1

even the largest robot datasets are orders of magnitude smaller and less diverse2

than those that fueled recent breakthroughs in language and vision. We intro-3

duce Masquerade, a method that edits in-the-wild egocentric human videos to4

bridge the visual embodiment gap between humans and robots and then learns a5

robot policy with these edited videos. Our pipeline turns each human video into6

“robotized” demonstrations by (i) estimating 3-D hand poses, (ii) inpainting the7

human arms, and (iii) overlaying a rendered bimanual robot that tracks the recov-8

ered end-effector trajectories. Pre-training a visual encoder to predict future 2-D9

robot keypoints on 675K frames of these edited clips, and continuing that auxiliary10

loss while fine-tuning a diffusion-policy head on only 50 robot demonstrations11

per task, yields policies that generalize significantly better than prior work. On12

three long-horizon, bimanual kitchen tasks evaluated in three unseen scenes each,13

Masquerade outperforms baselines by 5-6×. Ablations show that both the robot14

overlay and co-training are indispensable, and performance scales logarithmically15

with the amount of edited human video. These results demonstrate that explic-16

itly closing the visual embodiment gap unlocks a vast, readily available source of17

data from human videos that can be used to improve robot policies. Videos at18

https://masquerade-anonymous.github.io19
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Figure 1: Overview of Masquerade. Left: Large-scale in-the-wild egocentric human videos are
edited to obtain “robotized” demonstrations that bridge the visual embodiment gap. A vision rep-
resentation is pre-trained to predict future 2D robot poses on 675K frames of these edited clips.
Center: the vision representation is co-trained with a diffusion policy head on 50 real robot demon-
strations collected in a single scene. Right: The resulting policy is deployed zero-shot in previously
unseen environments, achieving significantly more robust manipulation performance than baselines
despite domain shifts.

1 Introduction21

Recent successes in natural language processing (NLP) and computer vision (CV) stem from train-22

ing on massive, diverse datasets. In robotics, however, data scarcity remains a major bottleneck:23
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collecting real-world robot data is slow and expensive, so even the largest robotics datasets are or-24

ders of magnitude smaller than those in NLP/CV. As a result, generalist robot policies still lag far25

behind their language and vision model counterparts.26

Human videos provide a rich supplement to limited robot datasets, spanning countless real-world27

manipulation scenarios at massive scale. However, leveraging human videos for robot policy learn-28

ing is challenging because human videos lack precise action labels and feature an inherent em-29

bodiment gap: humans look and move differently from robots. Prior works have addressed these30

problems by training on human videos using proxy tasks, such as pre-training vision encoders31

[1, 2, 3, 4, 5], inferring reward functions [6, 7, 8], or learning world models [9, 10, 11, 12]. These32

works typically do not explicitly address the visual embodiment gap between humans and robots,33

and instead assume that the model will implicitly learn correspondences between the human and34

robot embodiments by training on both types of data.35

In this work, we ask whether explicitly closing that gap—even imperfectly—can unlock more signal36

from human videos. We extend Phantom’s [13] data-editing pipeline—which was demonstrated only37

on carefully collected single-hand human video demonstrations with a fixed camera—to in-the-wild38

videos. Specifically, we estimate hand poses, inpaint away the human body, render a simulated robot39

in the same pose, and overlay it back into each frame. This yields a large, “robotized” video dataset.40

We then follow the now-standard recipe of broad pretraining followed by focused finetuning: we pre-41

train our vision encoder to predict future 2D robot poses on the edited videos, and subsequently co-42

train this vision encoder with a policy head on a small set of real robot demos in a single scene. We43

find that retaining the pretraining objective is crucial during finetuning to obtain out-of-distribution44

robustness in novel scenes.45

Across three challenging bimanual tasks and three novel environments each, our method produces46

policies that generalize far beyond baselines. Our key contribution is showing that explicitly47

addressing the visual embodiment gap between humans and robots—even via simple 2D over-48

lays— substantially enhances what robot policies can learn from in-the-wild human videos.49

2 Related Works50

Robotics research has increasingly turned to human video data as a way to overcome the scarcity of51

robot demonstrations. Such videos come in two broad forms:52

In-the-wild human videos — uncurated internet videos of people performing everyday, unscripted53

activities in diverse environments, often with occlusions, and camera motion. These videos offer54

massive scale and diversity but lack robot-friendly data quality or precise action labels.55

Curated human video demonstrations — videos intentionally recorded for robot learning, with56

task-focused motions, minimal occlusions, and often captured with specialty hardware such as depth57

cameras or AR/VR devices to provide accurate hand pose annotations.58

2.1 Learning from In-the-wild Human Videos59

A growing body of work seeks to leverage in-the-wild human videos to bootstrap robotic learning.60

One line of work pretrains visual encoders on human videos for downstream tasks. R3M [1] uses61

time-contrastive and video–language objectives on Ego4D [14], while Voltron [2] aligns video with62

captions via reconstruction and generation losses. Masked auto-encoding approaches like MVP63

[3] and VC-1 [4] adapt MAE transformers [15] to human clips. HRP [5] extracts affordance sig-64

nals—future contact points, hand poses, and objects—and pretrains a vision backbone on these65

self-supervised tasks.66

Beyond representation learning, a second line of work has leveraged in-the-wild human videos to67

provide rich auxiliary supervision for downstream robotic tasks. For example, several methods68

infer reward functions directly from video demonstrations [16, 6, 7, 8], while others learn predictive69

world models by training dynamics encoders on raw video data [9, 10, 11, 12]. Another group70
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of approaches extracts hand-pose trajectories from human clips to derive motion priors for robot71

policies [17, 18, 19, 20, 21, 22], and yet another direction focuses on discovering object-centric72

affordances—mapping how objects should move from human videos [23, 24, 25]. LAPA [26] learns73

discrete latent actions from human videos via a VQ-VAE [27] objective and uses these latents to74

fine-tune a VLA on small-scale robot data.75

Despite these advances, none of these works explicitly address the large visual embodiment gap be-76

tween human hands and robot grippers, making it challenging for vision-based policies—often brit-77

tle to out-of-distribution appearance shifts—to transfer learned representations from human videos78

to robots. Our method directly closes this gap through simple 2D inpainting of human hands into79

robot grippers, and we find that even this imperfect visual alignment yields surprisingly large gains80

in cross-embodiment transfer. Concurrent, unpublished work H2R [28] also uses a Phantom-like81

pipeline [13] but relies solely on finetuning—a strategy we show to be markedly less effective—and82

reports only minor gains on simple tasks. In contrast, we pair closing the embodiment gap with83

a co-training pipeline that effectively leverages edited in-the-wild human videos, enabling robust84

performance on challenging, long-horizon bimanual tasks.85

2.2 Learning from Curated Human Video Demonstrations86

To overcome the lack of ground-truth actions in raw in-the-wild human videos, many methods focus87

instead on learning from curated human video demonstrations. These videos contain clean, task-88

related human motions with minimal occlusions or camera motion. Some works leverage these89

more accurate action labels and propose treating humans as another robot embodiment and co-90

training policies on human and robot data [29, 30, 31]. EgoMimic [29] and PH2D [30] jointly91

train on egocentric human demonstrations (captured with a wearable camera) and teleoperated robot92

trajectories via a shared vision–policy backbone and cross-domain alignment losses. EgoVLA [31]93

trains a pretrained vision-language model on both human and robot data.94

Other approaches learn implicit motion priors from curated human video demonstrations [32, 33,95

34, 35]. Several works leverage object-centric trajectories or point flows [36, 37, 38, 39, 40, 41]96

to bridge the visual embodiment gap between humans and robots. Other methods [42, 43, 13]97

use inpainting. Whirl [42] collects human demonstrations on multiple tasks, and then inpaints out98

human hands in human demonstrations and robot arms in robot demonstrations to bridge the visual99

gap. Phantom [13] learns policies zero-shot from human videos by inpainting out human hands and100

overlaying simulated robot arms on observation images.101

While minimizing the visual embodiment gap and co-training on human and robot data have proven102

effective on hand collected datasets, their application to large-scale, in-the-wild internet videos,103

which offer far greater scale and diversity, remains unexplored. In this work, we show that the104

combination of both techniques can be successfully extended to in-the-wild human videos to obtain105

more robust policies. Compared with only using curated human video demonstrations, this enables106

using significantly larger human video datasets for robot learning.107

3 Method108

3.1 Problem Setup109

We assume access to a large-scale in-the-wild human video dataset Dhuman = {τ (h)i }Ni=1 where110

each τ
(h)
i is a human video clip. We use the Epic Kitchens dataset [44], which contains a wide range111

of naturally occurring bimanual kitchen tasks recorded in diverse real-world scenes with egocentric112

cameras. These videos capture people performing their normal, unscripted everyday activities, with113

no effort to make the content more suitable for robot learning. For each clip, we also have an114

associated natural language annotation describing the activity depicted.115

We additionally have a small set of bimanual robot demonstrations of a given task Drobot =116

{τ (r)j }Mj=1 captured from the robot’s egocentric camera, with known intrinsics and extrinsics.117
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Figure 2: Overview of Masquerade. (1) In-the-wild egocentric human videos are converted into
“robotized” clips by extracting 2D hand poses, inpainting out the human arms, and overlaying a
rendered bimanual robot in the same pose. (2) A ViT-Base vision encoder is pretrained on these
edited videos using a 2D keypoint regression loss. (3) During cotraining, the encoder and a diffusion-
based policy head are jointly optimized on a mix of edited human videos (auxiliary 2D loss) and real
robot demonstrations (imitation loss).

Our method proceeds in three stages: first, we edit the human video dataset to reduce the human-to-118

robot embodiment gap; next, we pretrain a vision encoder on the edited human videos to learn rich,119

in-the-wild features; and finally, we co-train an imitation learning policy on robot data alongside the120

edited human data to transfer these learned priors.121

3.2 Data processing of in-the-wild egocentric videos122

Human videos pose two main challenges for robot policy learning: a large visual embodiment gap123

and missing action labels. We address these by using a modified version of the Phantom [13] pipeline124

to convert each human clip into a synthetic robot demonstration and then extracting 2D hand key-125

points in each frame to use as action labels.126

3.2.1 Visual editing of in-the-wild videos127

Let each human demonstration τ
(h)
i be a sequence of egocentric frames {I(h)t }Tt=1. We localize the128

left and right hands in each frame using the Epic Kitchens annotations and estimate 21 anatomical129

keypoints per hand with HaMeR [45]. These keypoints X̂t ∈ R21×3 are mapped to a 3D robot end-130

effector pose Pt = (pt,Rt, gt) following [13], where pt ∈ R3 is the Cartesian position, Rt is the131

orientation, and gt ∈ [0, 1] is the normalized gripper opening width. The poses Pt are temporally132

smoothed to reduce noise.133

Next, we segment out human arms using Detectron2 [46] and SAM2 [47] and remove them via134

E2FGVI inpainting [48]. Using the known camera intrinsics and extrinsics, we render a virtual135

bimanual robot model whose end effectors follow Pt, and composite this render into the original136

view. The result is a video that appears to show the robot performing the task (see Fig. 2). All edited137

clips form our modified dataset D′
human.138

3.2.2 Extracting training labels from in-the-wild videos139

Although HaMeR reliably recovers hand shape and 2D keypoint locations, its monocular input pre-140

cludes accurate absolute 3D pose estimation. Unlike [13], which refines HaMeR with depth, our141

large-scale human videos lack depth data. Therefore, we use the 2D keypoint locations as supervi-142

sory labels for an auxiliary loss in our vision model, without incorporating them directly into policy143

learning. To obtain the labels, we project the temporally smoothed 3D end-effector positions pt onto144

the image plane—using known intrinsics and extrinsics—to obtain 2D action waypoints pt,2D ∈ R2.145

Rather than supervising on only the next waypoint, we provide the encoder with a sequence of the146

next H waypoints as the prediction target:147

pt:t+H,2D = (pt,2D,pt+1,2D, ...,pt+H,2D) (1)
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To correct for egocentric camera motion, we compute a homography from frame t to each future148

frame and warp all subsequent keypoints back into frame t’s view before forming this sequence.149

3.2.3 Data Filtering150

Even after compensating for camera motion via homographies, excessive camera movement remains151

undesirable for our fixed-base robot with a statically mounted camera. We therefore filter out frames152

where the estimated camera motion exceeds a threshold, as well as frames where the extracted153

actions are invalid due to keypoint errors or kinematic limits. This ensures that only stable, reliably154

labeled clips are used for policy learning.155

While this filtering removes the most problematic cases, many overlays remain imperfect. Our re-156

targeting pipeline cannot handle all dexterous grasps seen in in-the-wild videos, and the absence of157

depth data prevents correct handling of occlusions, sometimes causing robot pixels to erroneously158

appear over scene objects. Nevertheless, we show that these imperfect overlays dramatically im-159

prove performance compared to using no overlays at all —highlighting how even rough visual160

alignment can strongly benefit cross-embodiment transfer.161

3.3 Policy learning162

Our architecture consists of a language-conditioned vision encoder f(x, z) and a diffusion-based163

action head g(·).164

3.3.1 Vision encoder pretraining165

We first pretrain f on our processed human dataset D′
human using 2D action supervision, condition-166

ing the encoder on the per-clip language annotations via FiLM [49]. Each language embedding is167

applied to all frames within its corresponding clip, allowing the encoder to modulate visual features168

based on the high-level semantic description of the activity. Concretely, we minimize169

L2D =
∥∥h(f(x, zx))− pt:t+H,2D

∥∥2, x ∼ D′
human

where h is a small MLP that maps encoder features to 2D keypoint targets pt:t+H,2D and zx ∈ Rd170

is a fixed per clip language embedding associated with frame x.171

3.3.2 Policy learning using cotraining172

Next, we train an imitation learning policy using a small set of task-specific robot demonstrations173

Drobot. We continue to optimize the pre-training loss with respect to the edited human videos during174

this training. To minimize the visual gap between D′
human and Drobot, we inpaint a rendered robot175

over the robot so that the model is always seeing an inpainted robot.176

During co-training, we introduce a second loss:177

Lpolicy =
∥∥g(f(y))−P(r)

∥∥2, y ∼ Drobot

where P(r) is the robot Cartesian end-effector action from the real robot data. We train both losses178

simultaneously L = L2D + λLpolicy where λ is a hyperparameter chosen empirically.179

4 Results180

We evaluate our method on three challenging bimanual tasks using a dual-Kinova-arm setup (see181

Fig. 7). Our policy is trained on 10K clips (675K frames) from Epic Kitchens [44] and 50 task-182

specific robot demonstrations collected in a single scene. For each clip in D′
human, we generate183

a fixed embedding of the natural language video description using DistilBERT [50]. The vision184

encoder f(x) is a ViT-Base network initialized with ImageNet weights [51, 52, 15], and the action185

head follows the Diffusion Policy architecture [53].186
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Figure 3: Scenes used for each task in in-distribution (center) versus out-of-distribution (right) set-
tings; the first row represents the Stack Pots scenes, the middle the Scrape Potato scenes, and the
bottom row the Sweep Chilis scenes.

4.1 Task descriptions187

We evaluate on three long-horizon bimanual tasks in out-of-distribution scenes shown in Fig. 3 (see188

Fig.8 for additional details). Because our tasks are long horizon, we capture partial progress in each189

rollout, by assigning each subtask one third of the total score:190

Stack Pots: (i) Lift the small pot out of the large pot (ii) Insert the medium pot into the large pot191

(iii) Place the small pot inside the medium pot192

Scrape Potato: (i) Lift the plate carrying the potato (ii) Lift the spatula (iii) Scrape the potato into193

the pot using the spatula194

Sweep Chilis: (i) Grab the bowl and move it to the edge of the table (ii) Pick up the sponge (iii)195

Sweep the chilis into the bowl196

4.2 Baselines197

Our experiments are designed to answer the following question: does editing in-the-wild human198

videos before using them for policy learning improve robot performance? We compare against199

several baselines to directly probe this question. Because Masquerade leverages human videos to200

improve the policy’s vision representation, we focus our comparisons on (i) a state-of-the-art vision201

representation learned from human videos, and (ii) the most widely used general-purpose vision202

representations in robotics.203

HRP [5]: Finetunes a vision encoder on 150K egocentric human video clips (number of frames204

not reported) by regressing three affordance labels—future hand pose, active-object bounding box,205

and contact-point locations—automatically mined from raw videos. The resulting encoder is then206

used to train an imitation-learning policy. Notably, this work uses raw human videos and does207

not continue to co-train the vision encoder on human videos during policy learning. We use open208

sourced model weights.209

ImageNet: A ViT initialized on ImageNet-1K [52] remains one of the most reliable backbones for210

robot control. In an unbiased, rigorous study done by [54], ImageNet pretraining outperformed211

robotics-specific human-video pretrained representations, including R3M [1], VC-1 [4], and MVP212

[3].213

DINOv2 [55]: DINOv2 is a high-capacity, self-supervised ViT trained on 142M curated images that214

yields strong general-purpose features and is also widely adopted in robotics [56, 57, 30, 31, 58, 59,215

60, 61, 62, 63, 64]. We include DINOv2 as a competitive, modern baseline.216

All models, including ours, use the ViT-base architecture [51].217
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Figure 4: Left: Average success rate (%) on three bimanual tasks—Stack Pots, Scrape Potato,
Sweep Chilis. Each task is evaluated over three out-of-distribution scenes (10 rollouts per scene, 30
per task). Our method, Masquerade, substantially outperforms all baselines; error bars show ± SEM.
Right: Ablation study on the the Stack pots, Scrape Potato and Sweep Chilis tasks demonstrating
that both robot overlays and co-training are essential for achieving robust success rates in out-of-
distribution settings. Results are evaluated in OOD scene 1. 25 rollouts per bar.

Figure 5: Left: Data scaling experiment: Average success rate (%) as a function of the fraction of
edited human videos used during co-training (0%, 10%, 50%, 100%). Results are for the Stack Pots
task in OOD scene 1. Error bars show ± SEM over 25 rollouts. Success rises monotonically with
more videos—confirming that edited human-video data directly drives policy performance. Right:
In-distribution vs. out-of-distribution performance: average success rate (%) for each model in the
original training scene (In Distribution) and a novel scene (Out of Distribution scene 1) over 25
rollouts. Our method has the smallest drop in performance when moving to an OOD scene. Error
bars show ± SEM.

4.3 Performance in OOD scenes218

We evaluate our model on three tasks. We collect 50 robot demos in a single scene for each task, and219

evaluate each task in three OOD scenes. As shown in Fig. 4 (left), our model strongly outperforms220

all baselines in every OOD scene we test by an average of 62 percentage points (12% → 74%).221

4.4 Do robot overlays improve performance?222

Next, we evaluate how important editing human videos with robot overlays is to policy performance.223

We train a variant of our model that is pre-trained and co-trained on the same dataset our model was224

trained on but using raw human videos (no overlays). We evaluate our policy on all three tasks225

in OOD Scene 1 (Fig. 4 right), and find that this “no-overlay” model suffers a steep performance226

drop—showing that closing the embodiment gap with robot overlays unlocks far more learning from227

human videos.228
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4.5 Does cotraining improve performance?229

We also ablate the use of co-training during policy training. We test a version of our method that230

first pretrains a vision encoder on edited human videos D′
human and finetunes it purely on the pol-231

icy loss L = Lpolicy. Fig. 4 (right) shows that removing co-training leads to a dramatic perfor-232

mance drop—demonstrating that without co-training, the encoder forgets the valuable representa-233

tions learned from human videos. Co-training is therefore critical for preserving that knowledge and234

maintaining high task performance.235

4.6 Does increasing the amount of in-the-wild data improve performance?236

To confirm the contribution of edited human videos to policy learning, we measured performance237

as a function of the amount of co-training data. We subsampled our edited video dataset at 0% (no238

co-training), 10%, 50%, and 100% of its full size and retrained the Stack Pots policy under identical239

settings, with the same number of training epochs in each case. As Fig. 5 (left) shows, success rates240

rise steadily with more human-video data: 0% → 2%, 10% → 26%, 50% → 47%, and 100% →241

68% (25 rollouts each). This clear upward trend demonstrates that increasing the amount of in-the-242

wild human videos directly boosts robot performance and suggests further gains could be realized243

by scaling beyond the current dataset size.244

4.7 In-distribution vs Out-of-distribution performance245

We compare the performance of our method on the original in-distribution training scene and OOD246

Scene 1 for the Sweep Chilis task. Unlike all baselines, which suffer large drops, Masquerade247

maintains similar in-distribution and out-of-distribution performance—demonstrating its robustness248

to scene shifts (see Fig. 5 right).249

5 Limitations and Future Work250

Our approach has several limitations. First, our method relies on hand-pose estimators to align251

robot overlays from monocular images. These models perform poorly on frames with fast motions252

or heavy occlusions, and such frames must be discarded from our training dataset. However, this253

also means that as hand-pose estimators improve, our overlays will too. Second, the lack of depth254

data means that we cannot easily reason about which pixels of the robot should be overlaid on255

the image and which ones are actually behind objects in the scene and should therefore not be256

overlaid on the image. Improving this would significantly increase the realism of the grasps of our257

rendered robot. Third, egocentric camera motion in in-the-wild videos forces us to filter out many258

frames, as our method is implemented on a stationary robot without a movable camera. Improving259

camera pose estimation and using a mobile robot, ideally with a movable camera, could help mitigate260

this. Finally, because we retarget dexterous human grasps to a parallel-jaw robot, the mapping is261

imperfect; incorporating dexterous end-effectors and a more sophisticated retargeting pipeline would262

further narrow the embodiment gap.263

While our work focuses on using edited human videos to improve vision representations for policy264

learning, the same data-editing pipeline could benefit other uses of human video in robotics, such as265

reward learning, motion prior extraction, or video generation. Exploring these combinations—and266

integrating advances in pose estimation, depth reasoning, and retargeting—offers a promising path267

toward scalable, web-scale robot learning from diverse, in-the-wild human videos.268

6 Conclusion269

Masquerade demonstrates that explicitly closing the visual embodiment gap between humans and270

robots—even via simple 2D inpainting and overlays—unlocks vast, in-the-wild human video data271

for policy learning. By pretraining a ViT-Base encoder on 675K robotized frames and co-training272
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with only 50 real demos per task, our method achieves zero-shot transfer to unseen scenes, outper-273

forming baselines by over 5× on three long-horizon bimanual tasks (Fig. 4) and exhibiting minimal274

drop from in-distribution to out-of-distribution settings (Fig. 5).275

Ablations confirm that both the robot overlay and co-training objectives are indispensable (Fig. 4),276

and scaling the human video corpus yields steadily improving success rates (Fig. 5), suggesting277

further gains with larger datasets. Future work in improving overlays, handling egocentric camera278

motion, and more expressive retargeting to dexterous grippers could further pave the way toward279

truly scalable, web-scale robot learning from human video.280
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Figure 6: Average success rate (%) on three bimanual tasks—Stack Pots, Scrape Potato, Sweep
Chilis. Each task is evaluated over three out-of-distribution scenes (10 rollouts per scene, 30 per
task). Our method, Masquerade, substantially outperforms all baselines; error bars show ± SEM.

6.1 Policy Training Details520

Table 1: Training configurations
Vision Encoder Policy

Architecture ViT-Base (86 M) Diffusion Policy [53]
Input Size 224×224 224×224
Batch size 160 64
LR 1× 10−4 1× 10−4

Optimizer AdamW AdamW
Scheduler – Cosine (500 warmup)
Steps 150 000 40 000

The diffusion policy used the DDPM noise scheduler with 100 train and inference steps. Models521

were trained on NVIDIA RTX 4090 and NVIDIA A5000 GPUs.522

Table 2: Vision encoder variants
Patch Pretrain Weights

ImageNet 16 MAE Public
DINOv2 14 Feature Distillation Public
HRP 16 Aux losses Public
Masquerade 16 Aux 2D loss Ours

For co-training, we empirically tested different λ values (λ = 0.5, λ = 1, λ = 2, λ = 10, λ = 40)523

and found λ = 10 to work the best.524

6.2 Dataset description525

Human Videos: We use edited videos from the Epic Kitchens [44] dataset to train our vision en-526

coder. In total, we use 675,713 frames for training.527
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Robot demos: For each task, we collect 50 bimanual robot demos using an Oculus headset.528

6.3 Additional data-editing details529

From the Epic Kitchens dataset [44], we remove all frames where the estimated camera motion530

exceeds 5 cm in translation or 0.5 rad in rotation per timestep. To preserve all possible actions and531

maintain temporal consistency, if a single hand becomes occluded or leaves the frame, its action532

from the last visible frame in the episode is reused for all subsequent frames. If a hand is invisible533

for the entire episode, it is assigned a fixed “out-of-frame” action label. Frames in which both hands534

are missing are discarded.535

6.4 Hardware and controller details536

Our bimanual setup (shown in Fig. 7) consists of two Kinova Gen3 7-dof robot arms. We control537

them in Cartesian space using an Inverse-Kinematics controller and a low-level joint position con-538

troller running at 1000 Hz. Each arm uses a Robotiq 2F-85 gripper (a parallel-jaw gripper) as its539

end-effector. A ZED mini camera with an egocentric viewpoint is rigidly mounted to our setup,540

providing RGB observations at each timestep.541

Figure 7: Our bimanual setup.

6.5 Detailed scene results542

Detailed evaluation results for each task in each OOD scene are shown in Fig. 6.543
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6.6 Task variation description544
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Figure 8: Variation in object placement during evaluations of each task.

Fig. 8 illustrates the randomized object initialization regions (colored boxes) for each task. In Stack545

Pots, the left pot is placed within the yellow region, and the two right pots within the blue region.546

In Scrape Potato, the plate is initialized in yellow, while the pot and spatula are placed in blue. In547

Sweep Chilis, the red bowl starts in yellow, the sponge in blue, and the chilis in red.548
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