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Abstract: Robot manipulation research still suffers from significant data scarcity:
even the largest robot datasets are orders of magnitude smaller and less diverse
than those that fueled recent breakthroughs in language and vision. We intro-
duce Masquerade, a method that edits in-the-wild egocentric human videos to
bridge the visual embodiment gap between humans and robots and then learns a
robot policy with these edited videos. Our pipeline turns each human video into
“robotized” demonstrations by (i) estimating 3-D hand poses, (ii) inpainting the
human arms, and (iii) overlaying a rendered bimanual robot that tracks the recov-
ered end-effector trajectories. We pre-train a visual encoder to predict future 2-D
robot keypoints on 675K frames of these edited clips. We continue that auxiliary
loss while fine-tuning a diffusion-policy head on only 50 robot demonstrations per
task. This yields policies that generalize significantly better than prior work. On
three long-horizon, bimanual kitchen tasks evaluated in three unseen scenes each,
Masquerade outperforms baselines by 5-6x. Ablations show that both the robot
overlay and co-training are indispensable, and performance scales logarithmically
with the amount of edited human video. These results demonstrate that explicitly
closing the visual embodiment gap unlocks a vast, readily available source of data
from human videos that can be used to improve robot policies.
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Figure 1: Overview of Masquerade. Left: Large-scale in-the-wild egocentric human videos are
edited to obtain “robotized” demonstrations that bridge the visual embodiment gap. A vision rep-
resentation is pre-trained to predict future 2D robot poses on 675K frames of these edited clips.
Center: the vision representation is co-trained with a diffusion policy head on 50 real robot demon-
strations collected in a single scene. Right: The resulting policy is deployed zero-shot in previously
unseen environments, achieving significantly more robust manipulation performance than baselines
despite domain shifts.
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1 Introduction

Recent successes in natural language processing (NLP) and computer vision (CV) stem from train-
ing on massive, diverse datasets. In robotics, however, data scarcity remains a major bottleneck:
collecting real-world robot data is slow and expensive, so even the largest robotics datasets are or-
ders of magnitude smaller than those in NLP/CV. As a result, generalist robot policies still lag far
behind their language and vision model counterparts.

Human videos provide a rich supplement to limited robot datasets, spanning countless real-world
manipulation scenarios at massive scale. However, leveraging human videos for robot policy learn-
ing is challenging because human videos lack precise action labels and feature an inherent em-
bodiment gap: humans look and move differently from robots. Prior works have addressed these
problems by training on human videos using proxy tasks, such as pre-training vision encoders
[1, 2, 3, 4, 5], inferring reward functions [6, 7, 8], or learning world models [9, 10, 11, 12]. These
works typically do not explicitly address the visual embodiment gap between humans and robots,
and instead assume that the model will implicitly learn correspondences between the human and
robot embodiments by training on both types of data.

In this work, we ask whether explicitly closing that gap—even imperfectly—can unlock more signal
from human videos. We extend Phantom’s [13] data-editing pipeline—which was demonstrated only
on carefully collected single-hand human video demonstrations with a fixed camera—to in-the-wild
videos. Specifically, we estimate hand poses, inpaint away the human body, render a simulated robot
in the same pose, and overlay it back into each frame. This yields a large, “robotized” video dataset.

We then follow the now-standard recipe of broad pretraining followed by focused finetuning: we pre-
train our vision encoder to predict future 2D robot poses on the edited videos, and subsequently co-
train this vision encoder with a policy head on a small set of real robot demos in a single scene. We
find that retaining the pretraining objective is crucial during finetuning to obtain out-of-distribution
robustness in novel scenes.

Across three challenging bimanual tasks and three novel environments each, our method produces
policies that generalize far beyond baselines. Our key contribution is showing that explicitly
addressing the visual embodiment gap between humans and robots—even via simple 2D over-
lays— substantially enhances what robot policies can learn from in-the-wild human videos.

2 Related Works

Robotics research has increasingly turned to human video data as a way to overcome the scarcity of
robot demonstrations. Such videos come in two broad forms:

In-the-wild human videos — uncurated internet videos of people performing everyday, unscripted
activities in diverse environments, often with occlusions, and camera motion. These videos offer
massive scale and diversity but lack robot-friendly data quality or precise action labels.

Curated human video demonstrations — videos intentionally recorded for robot learning, with
task-focused motions, minimal occlusions, and often captured with specialty hardware such as depth
cameras or AR/VR devices to provide accurate hand pose annotations.

2.1 Learning from In-the-wild Human Videos

A growing body of work seeks to leverage in-the-wild human videos to bootstrap robotic learning.
One line of work pretrains visual encoders on human videos for downstream tasks. R3M [1] uses
time-contrastive and video—language objectives on Ego4D [14], while Voltron [2] aligns video with
captions via reconstruction and generation losses. Masked auto-encoding approaches like MVP
[3] and VC-1 [4] adapt MAE transformers [15] to human clips. HRP [5] extracts affordance sig-
nals—future contact points, hand poses, and objects—and pretrains a vision backbone on these
self-supervised tasks.



Beyond representation learning, a second line of work has leveraged in-the-wild human videos to
provide rich auxiliary supervision for downstream robotic tasks. For example, several methods
infer reward functions directly from video demonstrations [16, 6, 7, 8], while others learn predictive
world models by training dynamics encoders on raw video data [9, 10, 11, 12]. Another group
of approaches extracts hand-pose trajectories from human clips to derive motion priors for robot
policies [17, 18, 19, 20, 21, 22], and yet another direction focuses on discovering object-centric
affordances—mapping how objects should move from human videos [23, 24, 25]. LAPA [26] learns
discrete latent actions from human videos via a VQ-VAE [27] objective and uses these latents to
fine-tune a VLA on small-scale robot data.

Despite these advances, none of these works explicitly address the large visual embodiment gap be-
tween human hands and robot grippers, making it challenging for vision-based policies—often brit-
tle to out-of-distribution appearance shifts—to transfer learned representations from human videos
to robots. Our method directly closes this gap through simple 2D inpainting of human hands into
robot grippers, and we find that even this imperfect visual alignment yields surprisingly large gains
in cross-embodiment transfer. Concurrent, unpublished work H2R [28] also uses a Phantom-like
pipeline [13] but relies solely on finetuning—a strategy we show to be markedly less effective—and
reports only minor gains on simple tasks. In contrast, we pair closing the embodiment gap with
a co-training pipeline that effectively leverages edited in-the-wild human videos, enabling robust
performance on challenging, long-horizon bimanual tasks.

2.2 Learning from Curated Human Video Demonstrations

To overcome the lack of ground-truth actions in raw in-the-wild human videos, many methods focus
instead on learning from curated human video demonstrations. These videos contain clean, task-
related human motions with minimal occlusions or camera motion. Some works leverage these
more accurate action labels and propose treating humans as another robot embodiment and co-
training policies on human and robot data [29, 30, 31]. EgoMimic [29] and PH?D [30] jointly
train on egocentric human demonstrations (captured with a wearable camera) and teleoperated robot
trajectories via a shared vision—policy backbone and cross-domain alignment losses. EgoVLA [31]
trains a pretrained vision-language model on both human and robot data.

Other approaches learn implicit motion priors from curated human video demonstrations [32, 33,
34, 35]. Several works leverage object-centric trajectories or point flows [36, 37, 38, 39, 40, 41]
to bridge the visual embodiment gap between humans and robots. Other methods [42, 43, 13]
use inpainting. Whirl [42] collects human demonstrations on multiple tasks, and then inpaints out
human hands in human demonstrations and robot arms in robot demonstrations to bridge the visual
gap. Phantom [13] learns policies zero-shot from human videos by inpainting out human hands and
overlaying simulated robot arms on observation images.

While minimizing the visual embodiment gap and co-training on human and robot data have proven
effective on hand collected datasets, their application to large-scale, in-the-wild internet videos,
which offer far greater scale and diversity, remains unexplored. In this work, we show that the
combination of both techniques can be successfully extended to in-the-wild human videos to obtain
more robust policies. Compared with only using curated human video demonstrations, this enables
using significantly larger human video datasets for robot learning.

3 Method

3.1 Problem Setup

We assume access to a large-scale in-the-wild human video dataset Dyyman = {Ti(h) f\il where

each Ti(h) is a human video clip. We use the Epic Kitchens dataset [44], which contains a wide range

of naturally occurring bimanual kitchen tasks recorded in diverse real-world scenes with egocentric
cameras. These videos capture people performing their normal, unscripted everyday activities, with
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Figure 2: Overview of Masquerade. (1) In-the-wild egocentric human videos are converted into
“robotized” clips by extracting 2D hand poses, inpainting out the human arms, and overlaying a
rendered bimanual robot in the same pose. (2) A ViT-Base vision encoder is pretrained on these
edited videos using a 2D keypoint regression loss. (3) During cotraining, the encoder and a diffusion-
based policy head are jointly optimized on a mix of edited human videos (auxiliary 2D loss) and real
robot demonstrations (imitation loss).

no effort to make the content more suitable for robot learning. For each clip, we also have an
associated natural language annotation describing the activity depicted.

We additionally have a small set of bimanual robot demonstrations of a given task Diohot =
{TJ(T) } ;=1 captured from the robot’s egocentric camera, with known intrinsics and extrinsics.

Our method proceeds in three stages: first, we edit the human video dataset to reduce the human-to-
robot embodiment gap; next, we pretrain a vision encoder on the edited human videos to learn rich,
in-the-wild features; and finally, we co-train an imitation learning policy on robot data alongside the
edited human data to transfer these learned priors.

3.2 Data processing of in-the-wild egocentric videos

Human videos pose two main challenges for robot policy learning: a large visual embodiment gap
and missing action labels. We address these by using a modified version of the Phantom [13] pipeline
to convert each human clip into a synthetic robot demonstration and then extracting 2D hand key-
points in each frame to use as action labels.

3.2.1 Visual editing of in-the-wild videos

Let each human demonstration Ti(h) be a sequence of egocentric frames {It(h) . We localize the
left and right hands in each frame using the Epic Kitchens annotations and estimate 21 anatomical
keypoints per hand with HaMeR [45]. These keypoints X, € R21%3 are mapped to a 3D robot end-
effector pose P; = (p¢, R¢, g¢) following [13], where p; € R3 is the Cartesian position, R, is the
orientation, and g; € [0, 1] is the normalized gripper opening width. The poses P; are temporally

smoothed to reduce noise.

Next, we segment out human arms using Detectron2 [46] and SAM2 [47] and remove them via
E2FGVI inpainting [48]. Using the known camera intrinsics and extrinsics, we render a virtual
bimanual robot model whose end effectors follow P, and composite this render into the original
view. The result is a video that appears to show the robot performing the task (see Fig. 2). All edited
clips form our modified dataset D;

human*

3.2.2 Extracting training labels from in-the-wild videos

Although HaMeR reliably recovers hand shape and 2D keypoint locations, its monocular input pre-
cludes accurate absolute 3D pose estimation. Unlike [13], which refines HaMeR with depth, our
large-scale human videos lack depth data. Therefore, we use the 2D keypoint locations as supervi-
sory labels for an auxiliary loss in our vision model, without incorporating them directly into policy
learning. To obtain the labels, we project the temporally smoothed 3D end-effector positions p; onto



the image plane—using known intrinsics and extrinsics—to obtain 2D action waypoints p; ap € R.
Rather than supervising on only the next waypoint, we provide the encoder with a sequence of the
next [{ waypoints as the prediction target:

Pt:t+H,2D = (Pt,2Ds Pt+41,2D5 -, Pt+H,2D) (D

To correct for egocentric camera motion, we compute a homography from frame ¢ to each future
frame and warp all subsequent keypoints back into frame ¢’s view before forming this sequence.

3.2.3 Data Filtering

Even after compensating for camera motion via homographies, excessive camera movement remains
undesirable for our fixed-base robot with a statically mounted camera. We therefore filter out frames
where the estimated camera motion exceeds a threshold, as well as frames where the extracted
actions are invalid due to keypoint errors or kinematic limits. This ensures that only stable, reliably
labeled clips are used for policy learning.

While this filtering removes the most problematic cases, many overlays remain imperfect. Our re-
targeting pipeline cannot handle all dexterous grasps seen in in-the-wild videos, and the absence of
depth data prevents correct handling of occlusions, sometimes causing robot pixels to erroneously
appear over scene objects. Nevertheless, we show that these imperfect overlays dramatically im-
prove performance compared to using no overlays at all —highlighting how even rough visual
alignment can strongly benefit cross-embodiment transfer.

3.3 Policy learning

Our architecture consists of a language-conditioned vision encoder f(x,z) and a diffusion-based
action head g(-).

3.3.1 Vision encoder pretraining

We first pretrain f on our processed human dataset Dy, . using 2D action supervision, condition-

ing the encoder on the per-clip language annotations via FILM [49]. Each language embedding is
applied to all frames within its corresponding clip, allowing the encoder to modulate visual features
based on the high-level semantic description of the activity. Concretely, we minimize

EQD = ||h(f($, ZJ:)) - pt:H‘H»QDHQ’ €T~ Diluman

where h is a small MLP that maps encoder features to 2D keypoint targets ps.;+m,2p and 2z, € R¢
is a fixed per clip language embedding associated with frame x.

3.3.2 Policy learning using cotraining

Next, we train an imitation learning policy using a small set of task-specific robot demonstrations
Drobot- We continue to optimize the pre-training loss with respect to the edited human videos during
this training. To minimize the visual gap between Dj . and Dyopot, We inpaint a rendered robot
over the robot so that the model is always seeing an inpainted robot.

During co-training, we introduce a second loss:

ACpolicy = Hg(f(y)) - P(T) HZ, Yy~ Drobot

where P(") is the robot Cartesian end-effector action from the real robot data. We train both losses
simultaneously £ = Lop + ALpolicy Where A is a hyperparameter chosen empirically.
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Figure 3: Scenes used for each task in in-distribution (center) versus out-of-distribution (right) set-
tings; the first row represents the Stack Pots scenes, the middle the Scrape Potato scenes, and the
bottom row the Sweep Chilis scenes.

4 Results

We evaluate our method on three challenging bimanual tasks using a dual-Kinova-arm setup (see
Fig. 7). Our policy is trained on 10K clips (675K frames) from Epic Kitchens [44] and 50 task-
specific robot demonstrations collected in a single scene. For each clip in Dj .., we generate
a fixed embedding of the natural language video description using DistilBERT [50]. The vision
encoder f(x) is a ViT-Base network initialized with ImageNet weights [51, 52, 15], and the action
head follows the Diffusion Policy architecture [53].

4.1 Task descriptions

We evaluate on three long-horizon bimanual tasks in out-of-distribution scenes shown in Fig. 3 (see
Fig.8 for additional details). Because our tasks are long horizon, we capture partial progress in each
rollout, by assigning each subtask one third of the total score:

Stack Pots: (i) Lift the small pot out of the large pot (ii) Insert the medium pot into the large pot
(iii) Place the small pot inside the medium pot

Scrape Potato: (i) Lift the plate carrying the potato (ii) Lift the spatula (iii) Scrape the potato into
the pot using the spatula

Sweep Chilis: (i) Grab the bowl and move it to the edge of the table (ii) Pick up the sponge (iii)
Sweep the chilis into the bowl

4.2 Baselines

Our experiments are designed to answer the following question: does editing in-the-wild human
videos before using them for policy learning improve robot performance? We compare against
several baselines to directly probe this question. Because Masquerade leverages human videos to
improve the policy’s vision representation, we focus our comparisons on (i) a state-of-the-art vision
representation learned from human videos, and (ii) the most widely used general-purpose vision
representations in robotics.

HRP [5]: Finetunes a vision encoder on 150K egocentric human video clips (number of frames
not reported) by regressing three affordance labels—future hand pose, active-object bounding box,
and contact-point locations—automatically mined from raw videos. The resulting encoder is then
used to train an imitation-learning policy. Notably, this work uses raw human videos and does
not continue to co-train the vision encoder on human videos during policy learning. We use open
sourced model weights.

ImageNet: A ViT initialized on ImageNet-1K [52] remains one of the most reliable backbones for
robot control. In an unbiased, rigorous study done by [54], ImageNet pretraining outperformed
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Figure 4: Left: Average success rate (%) on three bimanual tasks—Stack Pots, Scrape Potato,
Sweep Chilis. Each task is evaluated over three out-of-distribution scenes (10 rollouts per scene, 30
per task). Our method, Masquerade, substantially outperforms all baselines; error bars show + SEM.
Right: Ablation study on the the Stack pots, Scrape Potato and Sweep Chilis tasks demonstrating
that both robot overlays and co-training are essential for achieving robust success rates in out-of-
distribution settings. Results are evaluated in OOD scene 1. 25 rollouts per bar.

robotics-specific human-video pretrained representations, including R3M [1], VC-1 [4], and MVP
[3].

DINOV2 [55]: DINOV2 is a high-capacity, self-supervised ViT trained on 142M curated images that
yields strong general-purpose features and is also widely adopted in robotics [56, 57, 30, 31, 58, 59,
60, 61, 62, 63, 64]. We include DINOV2 as a competitive, modern baseline.

All models, including ours, use the ViT-base architecture [51].

4.3 Performance in OOD scenes

We evaluate our model on three tasks. We collect 50 robot demos in a single scene for each task, and
evaluate each task in three OOD scenes. As shown in Fig. 4 (left), our model strongly outperforms
all baselines in every OOD scene we test by an average of 62 percentage points (12% — 74%).

4.4 Do robot overlays improve performance?

Next, we evaluate how important editing human videos with robot overlays is to policy performance.
We train a variant of our model that is pre-trained and co-trained on the same dataset our model was
trained on but using raw human videos (no overlays). We evaluate our policy on all three tasks
in OOD Scene 1 (Fig. 4 right), and find that this “no-overlay” model suffers a steep performance
drop—showing that closing the embodiment gap with robot overlays unlocks far more learning from
human videos.

4.5 Does cotraining improve performance?

We also ablate the use of co-training during policy training. We test a version of our method that
first pretrains a vision encoder on edited human videos Dj,.. = and finetunes it purely on the pol-
icy loss £ = Lypoiicy. Fig. 4 (right) shows that removing co-training leads to a dramatic perfor-
mance drop—demonstrating that without co-training, the encoder forgets the valuable representa-
tions learned from human videos. Co-training is therefore critical for preserving that knowledge and
maintaining high task performance.

4.6 Does increasing the amount of in-the-wild data improve performance?

To confirm the contribution of edited human videos to policy learning, we measured performance
as a function of the amount of co-training data. We subsampled our edited video dataset at 0% (no
co-training), 10%, 50%, and 100% of its full size and retrained the Stack Pots policy under identical



100 100

80 80 l

60 60

40 40
20 20

o | I I
0% 10% 50% 100% 0 ImageNet DINOv2 HRP Ours
Data Scale

ZZ1 In Distribution
[ Out of Distribution

% Success
% Success

Figure 5: Left: Data scaling experiment: Average success rate (%) as a function of the fraction of
edited human videos used during co-training (0%, 10%, 50%, 100%). Results are for the Stack Pots
task in OOD scene 1. Error bars show = SEM over 25 rollouts. Success rises monotonically with
more videos—confirming that edited human-video data directly drives policy performance. Right:
In-distribution vs. out-of-distribution performance: average success rate (%) for each model in the
original training scene (In Distribution) and a novel scene (Out of Distribution scene 1) over 25
rollouts. Our method has the smallest drop in performance when moving to an OOD scene. Error
bars show + SEM.

settings, with the same number of training epochs in each case. As Fig. 5 (left) shows, success rates
rise steadily with more human-video data: 0% — 2%, 10% — 26%, 50% — 47%, and 100% —
68% (25 rollouts each). This clear upward trend demonstrates that increasing the amount of in-the-
wild human videos directly boosts robot performance and suggests further gains could be realized
by scaling beyond the current dataset size.

4.7 In-distribution vs Out-of-distribution performance

We compare the performance of our method on the original in-distribution training scene and OOD
Scene 1 for the Sweep Chilis task. Unlike all baselines, which suffer large drops, Masquerade
maintains similar in-distribution and out-of-distribution performance—demonstrating its robustness
to scene shifts (see Fig. 5 right).

5 Limitations and Future Work

Our approach has several limitations. First, our method relies on hand-pose estimators to align
robot overlays from monocular images. These models perform poorly on frames with fast motions
or heavy occlusions, and such frames must be discarded from our training dataset. However, this
also means that as hand-pose estimators improve, our overlays will too. Second, the lack of depth
data means that we cannot easily reason about which pixels of the robot should be overlaid on
the image and which ones are actually behind objects in the scene and should therefore not be
overlaid on the image. Improving this would significantly increase the realism of the grasps of our
rendered robot. Third, egocentric camera motion in in-the-wild videos forces us to filter out many
frames, as our method is implemented on a stationary robot without a movable camera. Improving
camera pose estimation and using a mobile robot, ideally with a movable camera, could help mitigate
this. Finally, because we retarget dexterous human grasps to a parallel-jaw robot, the mapping is
imperfect; incorporating dexterous end-effectors and a more sophisticated retargeting pipeline would
further narrow the embodiment gap.

While our work focuses on using edited human videos to improve vision representations for policy
learning, the same data-editing pipeline could benefit other uses of human video in robotics, such as
reward learning, motion prior extraction, or video generation. Exploring these combinations—and



integrating advances in pose estimation, depth reasoning, and retargeting—offers a promising path
toward scalable, web-scale robot learning from diverse, in-the-wild human videos.

6 Conclusion

Masquerade demonstrates that explicitly closing the visual embodiment gap between humans and
robots—even via simple 2D inpainting and overlays—unlocks vast, in-the-wild human video data
for policy learning. By pretraining a ViT-Base encoder on 675K robotized frames and co-training
with only 50 real demos per task, our method achieves zero-shot transfer to unseen scenes, outper-
forming baselines by over 5x on three long-horizon bimanual tasks (Fig. 4) and exhibiting minimal
drop from in-distribution to out-of-distribution settings (Fig. 5).

Ablations confirm that both the robot overlay and co-training objectives are indispensable (Fig. 4),
and scaling the human video corpus yields steadily improving success rates (Fig. 5), suggesting
further gains with larger datasets. Future work in improving overlays, handling egocentric camera
motion, and more expressive retargeting to dexterous grippers could further pave the way toward
truly scalable, web-scale robot learning from human video.
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Figure 6: Average success rate (%) on three bimanual tasks—Stack Pots, Scrape Potato, Sweep
Chilis. Each task is evaluated over three out-of-distribution scenes (10 rollouts per scene, 30 per
task). Our method, Masquerade, substantially outperforms all baselines; error bars show + SEM.

6.1 Policy Training Details

Table 1: Training configurations

Vision Encoder Policy
Architecture  ViT-Base (86 M)  Diffusion Policy [53]
Input Size 224x224 224x224
Batch size 160 64
LR 1x107* 1x107*
Optimizer AdamW AdamW
Scheduler - Cosine (500 warmup)
Steps 150 000 40 000

The diffusion policy used the DDPM noise scheduler with 100 train and inference steps. Models
were trained on NVIDIA RTX 4090 and NVIDIA A5000 GPUs.

Table 2: Vision encoder variants

Patch Pretrain Weights
ImageNet 16 MAE Public
DINOv2 14 Feature Distillation ~ Public
HRP 16 Aux losses Public
Masquerade 16 Aux 2D loss Ours

For co-training, we empirically tested different \ values (A = 0.5, A = 1, A = 2, A = 10, A = 40)
and found A = 10 to work the best.

6.2 Dataset description

Human Videos: We use edited videos from the Epic Kitchens [44] dataset to train our vision en-
coder. In total, we use 675,713 frames for training.
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Robot demos: For each task, we collect 50 bimanual robot demos using an Oculus headset.

6.3 Additional data-editing details

From the Epic Kitchens dataset [44], we remove all frames where the estimated camera motion
exceeds 5 cm in translation or 0.5 rad in rotation per timestep. To preserve all possible actions and
maintain temporal consistency, if a single hand becomes occluded or leaves the frame, its action
from the last visible frame in the episode is reused for all subsequent frames. If a hand is invisible
for the entire episode, it is assigned a fixed “out-of-frame” action label. Frames in which both hands
are missing are discarded.

6.4 Hardware and controller details

Our bimanual setup (shown in Fig. 7) consists of two Kinova Gen3 7-dof robot arms. We control
them in Cartesian space using an Inverse-Kinematics controller and a low-level joint position con-
troller running at 1000 Hz. Each arm uses a Robotiq 2F-85 gripper (a parallel-jaw gripper) as its
end-effector. A ZED mini camera with an egocentric viewpoint is rigidly mounted to our setup,
providing RGB observations at each timestep.

Figure 7: Our bimanual setup.

6.5 Detailed scene results

Detailed evaluation results for each task in each OOD scene are shown in Fig. 6.
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6.6 Task variation description

Sweep
Chilis

Figure 8: Variation in object placement during evaluations of each task.

Fig. 8 illustrates the randomized object initialization regions (colored boxes) for each task. In Stack
Pots, the left pot is placed within the yellow region, and the two right pots within the blue region.
In Scrape Potato, the plate is initialized in yellow, while the pot and spatula are placed in blue. In
Sweep Chilis, the red bowl starts in yellow, the sponge in blue, and the chilis in red.
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