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ABSTRACT

We develop a new method HTBB for the multidimensional black-box approxima-
tion and gradient-free optimization, which is based on the low-rank hierarchical
Tucker decomposition with the use of the MaxVol indices selection procedure. Nu-
merical experiments for 14 complex model problems demonstrate the robustness
of the proposed method for dimensions up to 1000, while it shows significantly
more accurate results than classical gradient-free optimization methods, as well
as approximation and optimization methods based on the popular tensor train
decomposition, which represents a simpler case of a tensor network.

1 INTRODUCTION

Many physical and engineering models can be represented as a real function (output), which depends
on a multidimensional argument (input) and looks like

y = f(x) ∈ R, x = [x1, x2, . . . , xd]
T ∈ Ω ⊂ Rd. (1)

Such functions often have the form of a black-box (BB), i. e., the internal structure and smoothness
properties of f remain unknown. Its discretization on some multi-dimensional grid results in a
multidimensional array (tensor1) Y ∈ RN1×N2×...×Nd that collects all possible discrete values of the
function (1) inside the domain Ω, i.e.,

Y[n1, n2, . . . , nd] = f(x(n1)
1 , x

(n2)
2 , . . . , x

(nd)
d ). (2)

Storing such a tensor often requires too much computational effort, and for large values of the dimen-
sion d, this is completely impossible due to the so-called curse of dimensionality (the memory for
storing data and the complexity of working with it grows exponentially in d). To overcome it, various
compression formats for multidimensional tensors are proposed: Canonical Polyadic decomposition
aka CANDECOMP/PARAFAC (CPD) Harshman et al. (1970), Tucker decomposition Tucker (1966),
Tensor Train (TT) decomposition Oseledets (2011), Hierarchical Tucker (HT) decomposition Hack-
busch & Kühn (2009); Ballani et al. (2013), and their various modifications. These approaches make
it possible to approximately represent the tensor in a compact low-rank (i.e., low-parameter) format
and then operate with the compressed tensor.

The TT-decomposition is one of the most common compression formats Cichocki et al. (2016;
2017). There is an algebra for tensors in the TT-format (i.e., TT-tensors): we can directly add
and multiply TT tensors, truncate TT tensors (reduce the so-called TT-rank, i. e, the number of
storage parameters), integrate and contract TT tensors. It is important that effective algorithms
have been developed Kapushev et al. (2020); Ahmadi-Asl et al. (2021); Chertkov et al. (2023b)
for approximating BB like (1) and (2) in the TT-format, that is, for constructing an approximation
(surrogate model) using only a small number of explicitly computed BB values. In recent years, new
efficient algorithms have also been proposed Sozykin et al. (2022); Nikitin et al. (2022); Chertkov
et al. (2023a) for the second important problem associated with gradient-free optimization of such

1By tensors we mean multidimensional arrays with a number of dimensions d (d ≥ 1). A two-way
tensor (d = 2) is a matrix, and when d = 1 it is a vector. For scalars we use normal font, we denote
vectors with bold letters and we use upper case calligraphic letters (A,B, C, . . .) for tensors with d > 2. The
(n1, n2, . . . , nd)th entry of a d-way tensor Y ∈ RN1×N2×...×Nd is denoted by Y[n1, n2, . . . , nd], where
nk = 1, 2, . . . , Nk (k = 1, 2, . . . , d) and Nk is a size of the k-th mode. Mode-k slice of such tensor is denoted
by Y[n1, . . . , nk−1, :, nk+1, . . . , nd] ∈ RNk .
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BB, that is, finding an approximate minimum or maximum value based only on queries to the BB.
Such TT-based methods of surrogate modeling (in particular, the TT-cross algorithm Oseledets &
Tyrtyshnikov (2010)) and gradient-free optimization (in particular, the TTOpt algorithm Sozykin et al.
(2022)) have shown their effectiveness for various multidimensional problems, including compression
and acceleration of neural networks, data processing, modeling of physical systems, etc.

However, the TT-decomposition is one of the simplest special cases of a tensor network: it is a
linear network or a degenerate tree, and it has a number of limitations related to weak expressiveness
and instability for the case of significantly large dimensions. The HT-format is potentially more
expressive and robust Buczyńska et al. (2015); thus, it makes it possible to approximate more complex
functions with fewer parameters. Taking into account TT-Cross and TTOpt algorithms which use the
well-known MaxVol approach Goreinov et al. (2010); Mikhalev & Oseledets (2018), in this work we
develop new methods of surrogate modeling and gradient-free optimization based on the HT-format,
and our main contributions are the following:

• we develop a new black-box approximation method HT-cross based on the HT-
decomposition and the rectangular MaxVol index selection procedure;

• we develop a new gradient-free optimization method HTOpt based on the HT-decomposition
and the rectangular MaxVol index selection procedure;

• we implement the proposed HT-cross and HTOpt algorithm as a unified method HTBB
(Hierarchical Tucker for Black-Box) for surrogate modeling and optimization of multidi-
mensional functions given in the form of a black-box and share it as a publicly available
python package;2

• we apply our approach HTBB to 14 different complex model functions with input dimensions
up to 1000 and demonstrate its significant advantage in the accuracy and robustness for
the same budget in comparison with the TT-cross method for approximation and with the
TTOpt, and classical gradient-free SPSA and PSO methods for optimization problems.

2 MOTIVATION AND OVERALL IDEA

HT-format (see Fig. 3 for a visual example of HT structure) is more expressive and robust Buczyńska
et al. (2015) than simpler forms of tensor networks (for example, the well-known TT-decomposition),
which makes it potentially possible to apply it for complex functions. Thus, it seems important to
develop new approximation and optimization methods based on it. We are inspired by a simpler, but
carefully designed TT-format and implement analogues of the known methods TT-cross and TTOpt
on its basis for the HT-decomposition. The TT-cross algorithm Oseledets & Tyrtyshnikov (2010)
adaptively calls the BB and iteratively builds the TT-surrogate until a given accuracy is reached or the
BB access budget is exhausted. During this construction, the so-called Maximum Volume submatrix
search (MaxVol) procedure Goreinov et al. (2010) is used to find a close to the dominant matrix of the
tensor unfolding. As mentioned in the cited paper, the MaxVol algorithm is closely related to finding
the maximum element in a given matrix — the submatrix, obtained by MaxVol, contains values close
to the maximum modulus values of the tensor. This effect can be used to find the quasi-maximal
element in the tensor, and the corresponding algorithm is called TTOpt Sozykin et al. (2022).

Thus, our goal is to extend the above algorithms to the HT tree structure. To do this, we need to solve
several algorithmic problems related to the fact that the two-dimensional HT structure has ambiguities
that are not present in the one-dimensional TT structure. In particular, it is necessary to determine a)
the sequence to traverse the HT tree (for TT structure the traversal is done sequentially from left to
right and back); and b) how to form a matrix A, which is the input to the MaxVol algorithm (in TT
cores there is a dedicated index, thanks to which it is unfolded, and we know exactly which indices
are row and which are column indices of the matrix A. In HT structure cores are more symmetric
and the choice of indices for rows and columns of the matrix A to which MaxVol is applied is not
obvious).

Mathematically, we solve two problems using slight modifications of the same algorithm. The
first problem is the approximation of a given discrete black box, i. e., a function f(X) ∈ R whose

2The program code with the proposed approach and numerical examples, given in this work, is publicly
available in the repository ANONYMIZED.
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arguments are a set of natural numbers I ∈ {1, . . . , n1}×{1, . . . , n2}×· · ·×{1, . . . , nd}, by means
of a low-parameter HT representation. As a result, we have an HT representation H3 such that by
some norm

∥f −H∥< ϵ

for small ϵ which for the given function f may depend on the HT-ranks and the number of calls N to
the function f . In this setting, we adaptively (at runtime of the algorithm, based on previous values of
the function) access the function f values, thus justifying the name “black box”. The second problem
is to find the extreme (minimum or maximum) value of the discrete black box f described above. In
other words, for no more than a given number of accesses (budget) N we want to obtain such a value
of the argument I0 that

|f(I0)− f(Itrue)|< ϵ,

where Itrue is the exact value of the minimum or maximum (may not be unique). In such a setting, we
also adaptively call the black box f . Note that this formulation does not assume the existence of any
low-parameter representation, but, as in the case of the TTOpt algorithm, we expect that if f is well
approximated by some HT representation with a given accuracy, then the results of our algorithm
will be better.

Both of these problems are solved by iteratively updating the set of arguments. This update takes
into account the hierarchical structure of HT cores and takes place on the basis of the obtained
function values on a special combination of the specified sets of arguments. Further we successively
describe our algorithms for approximation (HT-cross) and optimization (HTOpt) in the HT-format in
details. We combine those two algorithms into HTBB algorithm, with overall structure described in
Algorithm 1.

Algorithm 1 High-level structure of HTBB optimization and approximation algorithm

Require: Black-box function f
Ensure: Extrema argument I0 of f and/or cores of HT-decomposition that approximates f

1: Initialize a tree structure, indices sets, and indices values
2: Start from the root node and set it as current
3: while budget is not exhausted do
4: Choose an edge connected to the current node by the rule from Section 4.3
5: Apply index value update Algorithm 2 to update the indices values associated with the edge and

current direction, as shown in Fig. 2 based on function f values calculated on the corresponding
indices

6: If needed, update the extrema argument I0 if the extrema value was meet on the previous step
7: Go in the direction prescribed by the edge, set the new node as current
8: end while
9: Go to the cores building procedure described in Section 4.4 if needed

3 HIERARCHICAL TUCKER DECOMPOSITION

By Hierarchical Tucker (HT), we mean a tensor tree that is not necessarily balanced Ballani et al.
(2013). Let us describe this concept in detail in the context of our work. HT is such a low-parameter
decomposition of a d-way tensor, which is a hierarchical contraction of 3-way tensors and 2-way
tensors, ordered in the form of a binary tree. Consider a binary tree — a graph without cycles, where
every node (except the root one) has a parent and at most two children. In what follows, we consider
trees where each node has either 2 or 0 children. We call a node without children a leaf. We denote
the depth of the tree by L, and the number of nodes at level l (starting from the root node) by λl; note
that for a balanced tree, λl = 2l−1 is satisfied. With each node, we associate a core tensor, i.e., a
2-way tensor with the leaves, and 3-way tensors with all others (for the root core we add a dummy
dimension of the length 1). The number of leaves d determines the dimensionality of the considered
tensor Y , which is represented in the described tree structure, i.e., Y ∈ RN1×N2×···×Nd , where Nj is
the size of jth mode. The dimensions of the cores are as follows. Leaves dimensions correspond to
the dimensionality of the tensor Y: each core G(L)

j that is associated with a leaf node with number j

3We consider here the tensor H as a function taking a discrete index as input and returning the real value

3
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satisfies G(L)
j ∈ Rr

(L)
j ×Nj . The dimensions of the non-leaves cores match the dimensions of their

children: if core G(l)j ∈ Rr
(l+1)
j1

×r
(l)
j ×r

(l+1)
j2 for 1 ≤ l < L, then its child G(l+1)

j1
and G(l+1)

j2
have such

dimensions that G(l+1)
j1

∈ Rr1×r
(l+1)
j1

×r2 and G(l+1)
j2

∈ Rr3×r
(l+1)
j2

×r4 . The numbers r(i)j are called

ranks of the HT decomposition. The root core G(1)1 has the following dimension: G(1)1 ∈ Rr
(2)
j1

×1×r
(2)
j2 .

In the case of notations related to tree nodes, the index at the top in parentheses denotes the level of
the tree l, it varies from 1 to L (L = ln d for the balanced tree), and with the index at the bottom we
denote the numbering within this level of the tree, this numbering is not fixed and is arbitrary.

To calculate the value of the tensor Y in the HT-format at an index I , we perform the following
iterative procedure. We associate a vector b(l)j with each node, which is recursively defined as

b
(l)
j =

r1∑
i=1

r2∑
k=1

G(l)j [i, :, k] · b(l+1)
j1

[i] · b(l+1)
j2

[k],

where the vectors b(l+1)
j1

and b
(l+1)
j2

are vectors associated with children of the current node; r1 =

r
(l+1)
j1

and r2 = r
(l+1)
j2

are the corresponding ranks. For a leaf node, its corresponding vector b(L)
j

depends on the given index I as b(L)
j = G(L)

j [:, I[j]]. Finally, the resulting tensor value at index I

is equal to the value of the single element of the vector b(1)1 associated with the root node, i.e.,
Y[I] = b

(1)
1 [1]. Note that this procedure is easily parallelized naturally since vectors b of the same

level in different parts of the tree are calculated independently.

4 DETAILS ON PROPOSED APPROACH

4.1 UPPER AND DOWN INDICES

The key concept that is used for both the approximation and optimization algorithm is to associate
index sets with each link between nodes. Each link between node D

(l−1)
m and its child D

(l)
j have

down idownl,j and upper iupl,j indices and corresponding values vdownl,j and vupl,j of this indices. Since each

link is unambiguously defined by the child node D
(l)
j it is part of, the index notations are similar to

this children node notation and sometimes we refer to these indices as being associated with the child
node rather than a relation.

1 8 3 4

Figure 1: Examples of upper and down indices and their values for Y ∈ RN1×N2×...N8 with
N1 = N2 = N5 = N6 = N7 = 2, N3 = N4 = 3, and N8 = 10.

Down idownl,j and upper iupl,j indices depend only on their position and are fixed during initial tree

construction according to the following recursive rule. Each leaf node D
(L)
j has upper index iupL,j =

{j} containing one element equal to the element number of the tensor index element that is associated
with this leaf node. Each non-leaf node D

(l)
j except the root one has an upper index consisting of

the union of the elements of the upper indices of all its children: iupl,j = iupl+1,j1
∪ iupl+1,j2

. For all

4
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(a) Update upper indices values. (b) Update down indices values.

Figure 2: Algorithm 2 inputs for the cases of upper and down indices values update. On the left:
when updating upwards, the indices forming the rows of A are calculated based on the upper indices
on the links below (i1 and i2) and their values, and the indices i (and their values v) forming the row
of the matrix A consists of the down indices of the link above and their values. The values of the
upper indices associated with the link above are updated. On the right: similar updating but with
slight changes occurs when moving downwards.

Figure 3: Examples of a path for the traversal procedure. The task is 5-dimensional, so indices 5,
6, and 7 (green boxes) as well as their parents (purple circles) are never visited. Ranks of all links,
except for those leading to inactive indices, are equal to 3.

the cases, down indices are equal to the set difference between all tensor indices and upper indices:
idownl,j = {1, 2, . . . , d} \ iupl,j . Since the root node is not a child, we do not associate indexes with it.
The down indices of the left child of the root node and their values are equal to the upper indices
of the right child and their values, respectively, and vice versa. Please see Figure 1 for relevant
illustration.

The values of the upper vupl,j and down vdownl,j indices change dynamically and the manner and sequence
of their change is the subject of this study. These values vupl,j and vdownl,j represent sets of size equal

to the rank, associated with the corresponding node:
∣∣∣vupl,j ∣∣∣ = ∣∣∣vdownl,j

∣∣∣ = r
(l)
j . Each element of this

set is a vector with values of indices stored in the corresponding (iupl,j or idownl,j ) index set. The main
goal of the iterative search for index values (the detailed implementation of which will be described
below) is to find the submatrix of maximum volume at the intersection of the given indices. Finding
a submatrix of maximal volume serves two purposes: first, we can more accurately reconstruct the
original matrix using it, and second, we expect that this matrix has elements close to maximal in
modulo. Let us elaborate on the construction of this matrix.

Let YU (I) for the given index be the unfolding matrix of the d-way tensor Y in the given index I =
(k1, k2, . . . , kn), 1 ≤ n ≤ d, if for all its elements holds

YU (I)[ik1
· · · ikn

, ip1
· · · ipd−n

] = Y[i1, i2, . . . , id], {p1, p2, . . . , pd−n} = {1, 2, . . . , d} \ I.
By a line on a group of indices, we mean a multi-index composed of the given indices, i. e. the
position of the corresponding sequence of indices in the list of all possible values. We do not fix a
particular sorting type of this sequence (lexicographic order can be taken) since the rearrangement
does not affect the rank of the matrix or the property of its submatrix of maximal volume.

For a non-leaf node D
(l)
j , the node up indices iupl,j and up and down indices values vupl,j and vdownl,j we

can construct the unfolding YU
l, j as Yl, j = YU (iupl,j). If we consider submatrix Yl, j [v

up
l,j , v

down
l,j ] ∈

5
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Algorithm 2 Indices values update algorithm.

Require: function f for the d-way tensor value calculation; indices i, i1 and i2 such that set(i ∪
i1 ∪ i2) = {1, 2, . . . , d}, and the corresponding indices values v, v1 and v2; maximum possible
rank increment ∆r; threshold for rank reduction ϵ; transformation T .

Ensure: indices values V of the index I = i1 ∪ i2.
1: r, r1, r2 = |v|, |v1|, |v2|
2: // First we build the tall matrix:
3: A← zeros([r1 · r2, r]) // Matrix with tensor values
4: J ← zeros(d) // Integer index vector
5: F ← zeros([r1 · r2, r1 + r2]) // Stores index candidates
6: for (j1, j2) in {1, 2, . . . , r1} × {1, 2, . . . , r2} do
7: J [i1]← v1[j1]
8: J [i2]← v2[j2]
9: F [j1j2, : ]← v1[j1] ∪ v2[j2]

10: for j in {1, 2, . . . , r} do
11: J [i]← v[j]
12: A[j1j2, j]← f(J)
13: end for
14: end for
15: A← T (A) // Apply point-wise transformation
16: {Q, R , P} ← QRP(A) // Now use maxvol to select indices (QRP is QR with permutations)
17: rϵ ← max{n | 1 ≤ n ≤ r, R[n, n]/R[0, 0] ≥ ϵ}
18: if rϵ < r then
19: ∆r ← 0 // Decrease in rank occur, there is no point in raising it back again
20: Q← Q[ : , 1:rϵ]
21: end if
22: N ← MaxVol(Q, ∆r) // N is a vector of integers of length ro, rϵ ≤ ro ≤ rϵ + ∆r return

F [N, : ] // List of ro vectors of length (r1 + r2)

Rr×r of this matrix based on the values vupl,j and vdownl,j , where r = r
(l)
j is the corresponding

rank, when our goal is to make a volume of the matrix Yl, j [v
up
l,j , v

down
l,j ] as large as possible by

choosing indices values vupl,j and vdownl,j . Recall that the volume of any (tall) matrix A is defined as

volA =
√
detATA, A ∈ Rn×m, n ≥ m.

4.2 INDEX VALUES UPDATE ALGORITHM

While our method is running, we update all indices (both up and down), using the same procedure,
as presented in Algorithm 2. Here the function zeros reserves the specified number of elements for
a vector, matrix, etc. The QRP function returns a QR decomposition with permutations (i. e., the
elements on the diagonal of R do not decrease; we use the implementation from the Python package
scipy). The operation of the algorithm can be briefly described as follows. We construct a tall
matrix, whose rows correspond to the tensor product of index values, which are conditionally called
“incoming” and columns to “outgoing” ones. Then, using the MaxVol procedure, we select rows
from this matrix so that the submatrix corresponding to them is of quasi-maximal volume, and the
index values corresponding to these rows are returned.

Algorithm input indices. The “incoming” i1, i2, and “outgoing” i input indices in our algorithm
depend on the indices that are updated at each step (see Figure 2). Namely, if we update the
upper indices values vupl,j for some node D

(l)
j , then “incoming” indices are the upper indices of

children D
(l+1)
j1

and D
(l+1)
j2

of this node: i1 ← iupl+1,j1
, i2 ← iupl+1,j2

. The “output” indices are

down indices of the node D
(l)
j : i← idownl,j (see Figure 2a). If, in turn, we update the values of down

indices for the link that connects parent D(l)
j and child D

(l+1)
j1

, then for “incoming” indices we have:

i1 ← idownl,j , i2 ← iupl+1,j2
, where j2 is the number of another child D

(l+1)
j2

of the node D
(l)
j (which

6
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differs from the original child D
(l+1)
j1

). The upper indices of the given link are the “output” ones:
i← iupl+1,j1

(see Figure 2b).

Transformation of the tensor values. The point-wise transformation is needed when we search for
the minimum. In this case, we can transform tensor values by any monotonic decreasing function T .
In our experiments, we use the following adaptive (i. e. its parameters dependent on the given data
batch) transformation T (x) = exp(−(x−x0)/σ), x0 = mean(x), σ = std(x), where mean(x) and
std(x) are the sample mean and sample variance of the set of numbers respectively. When searching
for the maximum value, we do a similar transformation (note that transformation can be avoided in
this case; however, we apply it for greater stability of the method) T (x) = exp((x− x0)/σ).

MaxVol procedure. The MaxVol procedure in our algorithm is the so-called rectangular maximum
volume search method Mikhalev & Oseledets (2018). Note that it can return not only square matrices
but also rectangular matrices, making a decision on the number of returned rows based on a heuristic
procedure based on the possible increase in volume when adding a candidate row and the given tuning
parameters. In our numerical experiments, we allowed to expand output index set by at most ∆r = 1
element, so the ranks grew by at most 1 per pass.

4.3 TRAVERSAL PROCEDURE

When updating indices, we walk sequentially to the neighboring (linked) node, going back only if
we reach a leaf node. At each visited node, we increment its visit counter by one, whereas at the
beginning all counters were reset to zero. When we pass through an edge, we update only one set of
index values at a time: if we go from parent to child, we update down indices values; if we go from
child to parent, we update upper indices values.

To decide which of the two nodes to take the next step to (in case there are two options), we count
the average number of visits in each part of the tree that separates each of the two paths. Namely,
we cut the edge that was traveled last, and we cut the edges connecting the current node to the two
candidate nodes. Since by definition there are no loops in the tree and each edge is a cut edge, we
get three components of connectedness. Then we calculate the average number of visits (the sum of
the number of visits on all nodes divided by the number of nodes) in each of the two connectivity
components and go where the number is smaller. If the average number of visits is close, namely,
they differ by no more than a given α value, then we randomly choose one side to go to. Please, see
Figure 3 for an example of path, where each number in a list inside a node (blue circle) represents the
number of steps when updates occur in this node.

4.4 CORES BUILDING

After all indices are found by the search procedure described above, we can build all cores based on
these indices. First, consider a leaf node D

(L)
j , and let its down indices are idownL,j and the values of

these indices are vdownL,j (recall, that {j} ∪ idownL,j = {1, 2, . . . , d}). Then the core, associated with
this node is calculated as follows. First, we form a matrix V of values of the BB using these indices

V [i, k] = f(Iik) with Iik[j] = i, Iik[i
down
L,j ] = vdownL,j [k], ∀1 ≤ i ≤ Nj , 1 ≤ k ≤ r

(L)
j ,

and then we let the core G(L)
j be the transposed factor Q of the QR-decomposition of this matrix V

G(L)
j = QT, where {Q, R} = QR(V ).

For the non-leaf and non-root node D
(l)
j we perform a similar procedure. Let idownl,j and vdownl,j be

its down indices and its down indices value, respectively. Let iupl+1,jc
and vupl+1,jc

be upper indices
and upper indices value, respectively, for the cth child of this node, where c = 1, 2 (recall, that
iupl+1,j1

∪ iupl+1,j2
∪ idownl,j = {1, 2, . . . , d}). Then we first build the matrix V

V [in, k] = f(Iink) with Iink[i
up
l+1,j1

] = vupl+1,j1
[i], Iink[i

up
l+1,j2

] = vupl+1,j2
[n],

Iink[i
down
l,j ] = vdownl,j [k], ∀1 ≤ i ≤ r

(l+1)
j1

, 1 ≤ n ≤ r
(l+1)
j2

, 1 ≤ k ≤ r
(l)
j ,
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and then we let the values of the core G(l)j be the “reshaped” values of the factor Q of the QR-
decomposition of V

G(l)j [i, k, n] = Q[in, k], where {Q, R} = QR(V ).

Finally, for the root node D(1)
1 , we let the values of the assigned core be the values of the given BB in

the corresponding points. Namely, let iup2,jc and vup2,jc be upper indices and upper indices value for the

cth child of the root node, c = 1, 2. Then for all 1 ≤ i ≤ r
(2)
j1

, 1 ≤ n ≤ r
(2)
j2

we have

G(1)1 [i, 1, n] = Q[i, n], Q[i, n] = f(Iin) with Iin[i
up
2,j1

] = vup2,j1 [i], Iin[i
up
2,j2

] = vup2,j2 [n].

Note, that due to this procedure, the obtained cores are orthogonalized and, therefore, their maximum
modulus values are moderate.

4.5 COMPLEXITY ESTIMATION

One can see, that Alg. 2 require the total number N1 of function f call equals to N1 = size of(A) =
rr1r2, where size of(A) is the total number of elements in the matrix A (we use the notation from
the Alg). Roughly speaking, for one step we need O(r3m) calls, where rm is the maximum rank. One
complete sweep, where we move from one leaf node and return to the same node, requires at most kd
such updates, where constant k depends only on the chosen traversal algorithm. For example, for
the one we used in the experiments and described in Sec. 4.3, k = 2. Thus, in total, the number of
requests to the black box is O(nr3md), where n is the number of sweeps.

5 RELATED WORK

In many practical situations, the problem-specific target function is not differentiable, too complex,
or its gradients are not helpful due to the non-convex nature of the problem, and it has to be treated as
a black box (BB). In this case, two important problems naturally arise: approximation Bhosekar &
Ierapetritou (2018) and optimization Alarie et al. (2021). The approximation carried out in the offline
phase allows us to build a surrogate (simplified) model of the BB, which can then be used in the
online phase to quickly calculate its values and various characteristics. In the multidimensional case,
it becomes difficult to construct a surrogate model, and low-rank tensor approximations are often
the most effective. Several recent works Kapushev et al. (2020); Ahmadi-Asl et al. (2021); Chertkov
et al. (2023b) proposed various new algorithms based on the TT-decomposition for approximating
high-dimensional functions. If we have access to the BB and can perform dynamic queries, then
the powerful TT-cross method Oseledets & Tyrtyshnikov (2010) is often used, and if only a training
dataset is available, then the TT-ALS method Holtz et al. (2012) is preferred. In this work, we
consider the case of adaptive queries to the BB, so we select the TT-cross method as the main baseline
for the approximation problem.

Gradients are not available for the BB, so only gradient-free methods can be used for the optimiza-
tion problem. Particle Swarm Optimization (PSO) Kennedy & Eberhart (1995) and Simultaneous
Perturbation Stochastic Approximation (SPSA) Maryak & Chin (2001) are rather useful methods in
this case. There is also a large variety of other heuristic methods for finding the global extremum.
Recently, the TT-decomposition has been actively used for black-box optimization, since it turns out
to be more effective than standard approaches in the multidimensional case. An iterative method
TTOpt based on the maximum volume approach is proposed in the work Sozykin et al. (2022). The
authors applied this approach to the problem of optimizing the weights of neural networks in the
framework of reinforcement learning problems in Sozykin et al. (2022) and to the QUBO problem
in Nikitin et al. (2022). A similar optimization approach was also considered in Selvanayagam et al.
(2022) and Shetty et al. (2016). One more promising algorithm, Optima-TT, which is based on the
probabilistic sampling from the TT-tensor, was proposed in recent work Chertkov et al. (2023a).
We also note the work Soley et al. (2021), where an optimization method based on the iterative
power algorithm in terms of the quantized version of the TT-decomposition is proposed. As a result,
we consider classical PSO and SPSA methods as well as the TTOpt method as baselines for the
optimization problem.
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Table 1: Approximation relative error for the
HTBB and TT-cross applied to all considered
d = 256-dimensional benchmarks. The reported
values are averaged over 10 independent runs.

BENCHMARK HTBB TT-CROSS

ALPINE 2.83E-15 1.73E-02
CHUNG 7.87E-03 2.86E-02
DIXON 5.65E-03 1.00E-01
GRIEWANK 2.83E-15 1.43E-02
PATHOLOGICAL 3.92E-02 1.08E-01
PINTER 1.23E-02 1.47E-02
QING 3.67E-02 4.87E-02
RASTRIGIN 1.01E-14 1.47E-02
SCHAFFER 1.87E-02 1.88E-02
SCHWEFEL 3.39E-14 6.31E-01
SPHERE 1.20E-14 1.44E-02
SQUARES 1.07E-14 1.77E-02
TRIGONOMETRIC 2.76E-02 4.82E-02
WAVY 8.56E-05 2.46E-03

Table 2: Approximation relative error for the
HTBB applied to all considered 512 and 1024-
dimensional benchmarks. The reported values
are averaged over 5 independent runs.

BENCHMARK d = 512 d = 1024

ALPINE 4.92E-15 3.81E-04
CHUNG 7.86E-03 7.64E-03
DIXON 3.75E-03 2.83E-03
GRIEWANK 1.37E-14 3.16E-14
PATHOLOGICAL 3.80E-02 3.76E-02
PINTER 8.80E-03 8.38E-03
QING 1.85E-02 1.60E-02
RASTRIGIN 1.63E-14 1.02E-04
SCHAFFER 1.94E-02 1.52E-02
SCHWEFEL 2.59E-13 1.23E-13
SPHERE 1.16E-14 4.58E-14
SQUARES 1.08E-14 2.38E-14
TRIGONOMETRIC 2.74E-02 2.38E-02
WAVY 1.18E-04 3.38E-04

Table 3: Minimization results for the HTBB, TTOpt, One+One, SPSA, and PSO applied to 256-
dimensional benchmarks. The reported values are averaged over 10 independent runs.

BENCHMARK HTBB TTOPT ONE+ONE SPSA PSO

ALPINE 6.75E+01 4.48E+02 3.66E+02 3.99E+02 4.76E+02
CHUNG 1.45E+06 7.74E+07 1.48E+06 1.54E+06 6.98E+07
DIXON 1.89E+06 1.99E+08 2.33E+06 3.20E+06 2.68E+08
GRIEWANK 3.11E+01 2.21E+02 3.19E+01 3.12E+01 2.09E+02
PATHOLOGICAL 6.97E+01 1.02E+02 1.14E+02 9.32E+01 1.06E+02
PINTER 5.17E+05 1.19E+06 5.67E+05 5.94E+05 1.51E+06
QING 4.99E+06 2.98E+12 8.47E+10 1.26E+12 1.76E+12
RASTRIGIN 9.19E+02 3.61E+03 1.09E+03 9.31E+02 3.72E+03
SCHAFFER 9.87E+01 1.15E+02 1.06E+02 1.02E+02 1.20E+02
SCHWEFEL -3.85E+02 -1.77E+02 -1.92E+02 -1.89E+02 -1.38E+02
SPHERE 3.16E+02 2.30E+03 3.24E+02 3.17E+02 2.19E+03
SQUARES 1.55E+05 7.37E+05 1.57E+05 1.55E+05 1.02E+06
TRIGONOMETRIC 8.72E+04 9.30E+06 2.62E+05 1.77E+07 1.01E+07
WAVY 3.19E-01 6.21E-01 3.64E-01 3.22E-01 6.36E-01

(a) Approximation results for Alpine and Dixon func-
tions for cases of dimensions 5, 10, 50, 100, and 200.
For both methods, we plot the relative error of the
solution averaged over 10 runs with a solid line and
fill in the area between the worst and best result with
the same color.

(b) Minimization results for Alpine and Dixon func-
tions. For each of the optimizers, we plot the value of
the solution averaged over 10 runs with a solid line
and fill in the area between the worst and best result
with the same color.

Figure 4: Approximation and optimization results.
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6 NUMERICAL EXPERIMENTS

To demonstrate the effectiveness of the proposed HTBB approach, we select 14 popular 256-
dimensional benchmarks Jamil & Yang (2013); Vanaret et al. (2020); Dieterich & Hartke (2012),
which correspond to analytical functions with complex landscape and are described in detail in
Table 4 from Appendix. For each benchmark, we fix the input dimension at 256 and consider the
approximation and optimization problem in the black-box settings for the tensor that arises when the
corresponding function is discretized on a Chebyshev grid with 8 nodes in each dimension. In all
cases, we limited the budget (the number of requests to the BB) to 104, and the HT-rank was 2.

In Appendix, we also present the results of additional numerical experiments for multidimensional
black-box approximation (we consider various neural network architectures as additional baselines)
and optimization (we consider four challenging problems of maximization of the cumulative reward
for reinforcement learning agents by the proposed method HTBB and various baselines).

6.1 MULTIDIMENSIONAL APPROXIMATION

For each 256-dimensional benchmark we perform the approximation with the proposed HTBB
method and compare it with the TT-cross method,4 constrained by the same budget (104 requests
to BB). The relative L2 errors on test sets of 104 random points which were generated for each
benchmark are reported in Table 1 (the computations were repeated 10 times for both methods and
the averaged results are presented).

Also in Figure 4a we provide a graphical comparison of the results for two benchmarks for the case of
different values of the problem dimension (5, 10, 50, 100, 200). As follows from the presented results,
for all problems our method turns out to be more accurate than the baseline, and in some cases its
accuracy turns out to be many orders of magnitude higher. For the case of higher dimensions for the
considered problem classes, running the TT-cross method leads to failures in software implementation
due to instability, while our approach remains stable and gives high accuracy, as follows from values
reported in Table 2 for dimensions 512 and 1024.

6.2 MULTIDIMENSIONAL OPTIMIZATION

For each 256-dimensional benchmark we perform the optimization (namely the search for a global
minimum) with the proposed HTBB method. We consider as baselines the tensor-based optimization
method TTOpt5 and three popular gradient-free optimization algorithms from the nevergrad frame-
work Bennet et al. (2021):6 One+One, SPSA, and PSO. The limit on the number of requests to the
objective function was fixed at the value 104. The calculations were repeated 10 times for all methods
and the averaged results are presented in Table 3. Also in Figure 4b we show the convergence plots for
two benchmarks. As follows from the reported values, HTBB, in contrast to alternative approaches,
gives a consistently top result for all model problems.

7 CONCLUSIONS

In this work, we presented a new method HTBB for simultaneously solving the problem of multidi-
mensional approximation and gradient-free optimization for functions given in the form of a black
box. Our approach is based on the low-rank hierarchical Tucker decomposition, which makes it
especially effective in the multidimensional case. The key features of the presented work are a) using
the MaxVol algorithm which allows efficiently finding the required indices and b) using the sequential
traversal of cores, allowing to move to one of the neighboring nodes and making it more efficient to
find indexes that need updating.

The HTBB method can be applied to a wide class of practically significant problems, including optimal
control and various machine learning applications. As future work, we point out the possibility of a
rather simple extension on the HT-structure of the algorithms that now exist for the TT-decomposition:
rounding, orthogonalization, search for the maximum element by the top-k-like methods, etc.

4We used the TT-cross method from https://github.com/AndreiChertkov/teneva.
5We used the implementation of the TTOpt https://github.com/AndreiChertkov/ttopt.
6See https://github.com/facebookresearch/nevergrad.
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A DESCRIPTION OF THE USED BENCHMARKS

In all numerical experiments on approximation and optimization, we used a single set of bench-
marks Jamil & Yang (2013); Vanaret et al. (2020); Dieterich & Hartke (2012) representing discretized
analytical functions of a multidimensional argument. A description of the functions is presented
in Table 4. We note that they have a complex landscape and are often used when testing surrogate
modeling and optimization algorithms.

B MULTIDIMENSIONAL APPROXIMATION WITH NEURAL NETWORKS

In the main text, we considered the tensor-based TT-cross method as a baseline in the case of
approximation problems. To demonstrate that the proposed method HTBB outperforms other modern
approaches, in this section we present approximation results obtained using the well-known CatBoost
model Prokhorenkova et al. (2018) and neural networks with relu-type nonlinearities and fully
connected 4 layers (“MLP-1” in the results presented below), 3 layers (“MLP-2”), and 5 layers
(“MLP-3”), while in all cases the number of neurons in the inner layer is about 1000.

For the same set of 14 analytical functions and a generated training dataset of size 10k, we present
the results for dimensions 256, 512, and 1024 in Table 5, Table 6, and Table 7 respectively (for ease

Table 4: Benchmark functions for performance analysis of the proposed method.

FUNCTION BOUNDS ANALYTICAL FORMULA

ALPINE [−10, 10]
∑d

i=1|xi sinxi + 0.1xi|

CHUNG [−10, 10]
(∑d

i=1 x
2
i

)2

DIXON [−10, 10] F(x) = (x1 − 1)2 +
∑d

i=2 i ·
(
2x2

i − xi−1

)2
GRIEWANK [−100, 100]

∑d
i=1

x2
i

4000
−

∏d
i=1 cos

(
xi√
i

)
+ 1

PATHOLOGICAL [−100, 100]
∑d−1

i=1

(
0.5 +

sin2
√

100x2
i+x2

i+1−0.5

1+0.001(x2
i−2xixi+1+x2

i+1)
2

)
PINTER [−10, 10]

∑d
i=1

(
ix2

i + 20i sin2 Ai + i log10 (1 + iB2
i )
)
,

WHERE Ai = xi−1 sinxi + sinxi+1 , Bi = x2
i−1 − 2xi +

3xi+1 − cosxi + 1)
WITH x0 = xd AND xd+1 = x1

QING [0, 500] F(x) =
∑d

i=1

(
x2
i − i

)2
RASTRIGIN [−5.12, 5.12] A · d+

∑d
i=1

(
x2
i −A · cos (2πxi)

)
,

WHERE A = 10

SCHAFFER [−100, 100]
∑d−1

i=1

(
0.5 +

sin2
(√

x2
i+x2

i+1

)
−0.5

(1+0.001·(x2
i+x2

i+1))
2

)
SCHWEFEL [0, 500] − 1

d

∑d
i=1 xi · sin (

√
|xi|)

SPHERE [−5.12, 5.12]
∑d

i=1 x
2
i

SQUARES [−10, 10]
∑d

i=1 ix
2
i

TRIGONOMETRIC [0, π]
∑d

i=1

(
d−

∑d
j=1 cosxj + i(1− cosxi − sinxi)

)2

WAVY [−π, π] 1− 1
d

∑d
i=1 cos (kxi) · e−

x2
i
2 ,

WHERE k = 10
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Table 5: Relative error of the result in additional experiments on approximation of multidimensional
functions for dimension 256.

Name MLP-1 MLP-2 MLP-3 CatBoost HTBB

Alpine 3.56E-02 3.57E-02 3.67E-02 3.78E-02 2.83E-15
Chung 8.07E-02 2.26E-01 8.14E-02 6.80E-02 7.87E-03
Dixon 7.37E-02 8.22E-01 7.14E-02 4.15E-02 5.65E-03
Griewank 9.76E-03 9.78E-03 9.21E-03 1.76E-02 2.83E-15
Pathological 5.77E-02 5.97E-02 5.86E-02 3.21E-02 3.92E-02
Pinter 2.06E-02 2.60E-02 2.07E-02 2.54E-02 1.23E-02
Qing 5.35E-02 5.38E-02 5.35E-02 6.13E-03 3.67E-02
Rastrigin 2.36E-02 2.40E-02 2.34E-02 3.41E-02 1.01E-14
Schaffer 5.79E-02 5.83E-02 6.55E-02 4.38E-02 1.87E-02
Schwefel 2.02E-02 2.27E-02 2.28E-02 1.81E-02 3.39E-14
Sphere 2.45E-02 2.34E-02 2.32E-02 3.33E-02 1.20E-14
Squares 2.80E-02 3.78E-02 2.60E-02 3.08E-02 1.07E-14
Trigonometric 1.17E-01 5.90E-01 1.18E-01 7.98E-02 2.76E-02
Wavy 3.85E-02 4.39E-02 3.95E-02 1.51E-02 8.56E-05

Table 6: Relative error of the result in additional experiments on approximation of multidimensional
functions for dimension 512.

Name MLP-1 MLP-2 MLP-3 CatBoost HTBB

Alpine 2.60E-02 2.60E-02 2.68E-02 3.03E-02 4.92E-15
Chung 5.75E-02 7.11E-01 5.74E-02 6.26E-02 7.86E-03
Dixon 5.26E-02 9.77E-01 5.24E-02 4.17E-02 3.75E-03
Griewank 9.08E-03 1.40E-02 1.03E-02 2.17E-02 1.37E-14
Pathological 4.70E-02 4.62E-02 4.95E-02 2.47E-02 3.80E-02
Pinter 1.71E-02 1.89E-02 1.48E-02 2.18E-02 8.80E-03
Qing 3.34E-02 3.94E-01 3.36E-02 3.21E-03 1.85E-02
Rastrigin 1.72E-02 1.79E-02 1.72E-02 3.16E-02 1.63E-14
Schaffer 4.29E-02 4.27E-02 4.34E-02 3.15E-02 1.94E-02
Schwefel 1.94E-02 1.75E-02 1.47E-02 1.78E-02 2.59E-13
Sphere 1.69E-02 1.73E-02 1.76E-02 3.19E-02 1.16E-14
Squares 2.35E-02 2.82E-02 2.18E-02 3.03E-02 1.08E-14
Trigonometric 8.24E-02 9.68E-01 8.20E-02 6.83E-02 2.74E-02
Wavy 2.84E-02 3.24E-02 2.92E-02 1.39E-02 1.18E-04

of comparison, we also duplicate the results for our method, which were already presented in the
main text). As follows from the reported results, for almost all benchmarks our method HTBB shows
significantly better result than the neural network-based approach.

C MULTIDIMENSIONAL OPTIMIZATION OF THE CUMULATIVE REWARD FOR
REINFORCEMENT LEARNING AGENTS

We conduct a series of additional numerical experiments for a more explicit demonstration of the
possibility of effective application of the proposed method HTBB to practical problems. As in the
work Sozykin et al. (2022), we consider four challenging problems of maximization of the cumulative
reward for reinforcement learning (RL) agents: InvertedPendulum, Swimmer, Lunar Lander, and
Half Cheetah from the well-known Mujoco / OpenAI-GYM collection Brockman (2016). The policy
is represented by a neural network with three layers and tanh activations, and its parameters are
discretized on a grid with limits from −1 to +1 and 3 nodes. Thus, as in the work Sozykin et al.
(2022), we obtain a discrete on-policy learning problem (search for the values of the neural network
parameters that lead to the maximum reward).
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Table 7: Relative error of the result in additional experiments on approximation of multidimensional
functions for dimension 1024.

Name MLP-1 MLP-2 MLP-3 CatBoost HTBB

Alpine 2.03E-02 1.81E-02 1.84E-02 2.34E-02 3.81E-04
Chung 3.99E-02 9.37E-01 4.01E-02 5.12E-02 7.64E-03
Dixon 1.00E+00 1.00E+00 1.00E+00 3.74E-02 2.83E-03
Griewank 1.13E-02 8.62E-03 9.64E-03 2.09E-02 3.16E-14
Pathological 3.35E-02 3.61E-02 3.27E-02 1.80E-02 3.76E-02
Pinter 1.24E-02 1.37E-02 1.18E-02 1.85E-02 8.38E-03
Qing 2.19E-02 9.58E-01 2.20E-02 1.41E-03 1.60E-02
Rastrigin 1.22E-02 1.20E-02 1.27E-02 2.56E-02 1.02E-04
Schaffer 3.51E-02 3.16E-02 3.15E-02 2.22E-02 1.52E-02
Schwefel 1.73E-02 1.26E-02 1.05E-02 1.45E-02 1.23E-13
Sphere 1.22E-02 1.22E-02 1.61E-02 2.57E-02 4.58E-14
Squares 2.02E-02 2.09E-02 1.69E-02 2.67E-02 2.38E-14
Trigonometric 1.00E+00 1.00E+00 1.00E+00 5.18E-02 2.38E-02
Wavy 2.36E-02 2.23E-02 1.96E-02 1.16E-02 3.38E-04

Table 8: Maximization results (reward values) for the HTBB, TTOpt, SPSA, and PSO applied to all
considered RL benchmarks.

BENCHMARK HTBB TTOPT SPSA PSO

INV. PENDULUM 1.0E+03 1.0E+03 3.2E+01 1.0E+03
SWIMMER 3.5E+02 3.5E+02 2.9E+01 3.1E+02
LUNAR LANDER 2.6E+02 1.4E+01 -2.9E+02 6.8E+01
HALF CHEETAH 1.9E+03 1.9E+03 -1.5E+00 1.7E+03

Table 9: Computation times (in seconds) for the HTBB, TTOpt, SPSA, and PSO applied to all
considered RL benchmarks.

BENCHMARK HTBB TTOPT SPSA PSO

INV. PENDULUM 2.7E+02 8.7E+02 5.2E+02 7.3E+03
SWIMMER 1.5E+04 1.5E+04 1.5E+04 1.4E+04
LUNAR LANDER 3.6E+03 9.0E+03 7.5E+03 4.7E+03
HALF CHEETAH 1.2E+04 1.2E+04 1.4E+04 1.2E+04

The computation results for the budget value equal 100 K are presented in In Table 8 (the final reward
at the end of training for each of the optimization methods and each of the considered problems),
and Table 9 (the related computation times). Figure 5 shows the corresponding convergence graphs
for each of the methods. As follows from the reported values, for all four considered problems our
method HTBB leads to the best result and shows the best performance (in the context of computation
time) compared to baselines.
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Figure 5: Maximization results (reward values) for the HTBB, TTOpt, SPSA, and PSO applied to all
considered RL benchmarks.
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