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ABSTRACT

Recently, diffusion models have emerged as a new paradigm for generative mod-
els. Despite the success in domains using continuous signals such as vision and
audio, adapting diffusion models to natural language is under-explored due to
the discrete nature of texts, especially for conditional generation. We tackle this
challenge by proposing DIFFUSEQ: a diffusion model designed for sequence-
to-sequence (SEQ2SEQ) text generation tasks. Upon extensive evaluation over
a wide range of SEQ2SEQ tasks, we find DIFFUSEQ achieving comparable or
even better performance than six established baselines, including a state-of-the-
art model that is based on pre-trained language models. Apart from quality, an
intriguing property of DIFFUSEQ is its high diversity during generation, which
is desired in many SEQ2SEQ tasks. We further include a theoretical analysis re-
vealing the connection between DIFFUSEQ and autoregressive/non-autoregressive
models. Bringing together theoretical analysis and empirical evidence, we demon-
strate the great potential of diffusion models in complex conditional language gen-
eration tasks. 1

1 INTRODUCTION

Among existing generative models, GAN (Goodfellow et al., 2014) suffers from the instability
issue (Salimans et al., 2016), subjecting to mode collapse (Metz et al., 2017); VAE (Kingma &
Welling, 2014) has to rely on surrogate objectives to approximate maximum likelihood training and
Flow-based models (Dinh et al., 2017) has to use specialized architectures to construct reversible
transform. Diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021) have circumvented sev-
eral of these limitations and emerged as a new paradigm for generative models, theoretically un-
derpinned by non-equilibrium thermodynamics (Sohl-Dickstein et al., 2015) and score-matching
network (Song & Ermon, 2019). To date, the major breakthroughs are in domains using continuous
signals, such as vision (Saharia et al., 2022a;b; Ramesh et al., 2022) and audio (Kong et al., 2020).
However, extending continuous diffusion models to natural language remains an open challenge due
to the inherently discrete nature of texts.

On the basis of unconditional generation in continuous space which is illustrated in Figure 1(a), ex-
isting efforts (Hoogeboom et al., 2021; Austin et al., 2021) start customizing diffusion models to text
in discrete space on unconditional language modeling (i.e., free text generation). Diffusion-LM (Li
et al., 2022), as in Figure 1(b), models texts in continuous space and proposes to use an extra-trained
classifier as guidance (i.e., the condition signal x) to impose subtle changes (usually complex, fine-
grained constraints) on generated sentences. Nonetheless, these models do not naturally generalize
to conditional language modeling (i.e., the model assigns probabilities p(w|x) to sequences of words
w given x). In the more general sequence-to-sequence (SEQ2SEQ) setting where the condition x is
also a sequence of words, applying Diffusion-LM can be difficult. The reason is that classifiers are
attributes-oriented, and we can not train hundreds-of-thousands classifiers to model the semantic
meaning between conditions and generated sentences.

SEQ2SEQ is an essential setting in NLP that covers a wide range of important tasks such as open-
ended sentence generation, dialogue, paraphrasing, and text style transfer. In this paper, we propose

1Code is available at https://github.com/Shark-NLP/DiffuSeq
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Figure 1: The demonstration of unconditional, classifier-guided, and classifier-free diffusion models.

DIFFUSEQ, depicted in Figure 1(c), a classifier-free diffusion model that supports SEQ2SEQ text
generation tasks. By modeling the conditional probability of the target sentence w given context x
using one single model, one advantage of DIFFUSEQ is that this paradigm allows a complete model
to fit data distribution and utilize conditional guidance, rather than depending on a separate classifier.

Different from canonical generation approaches in an autoregressive (AR) left-to-right manner (Rad-
ford et al., 2019), DIFFUSEQ generates text tokens parallelly in the non-autoregressive (NAR) way.
To corroborate the effectiveness of our DIFFUSEQ, we conduct experiments on four SEQ2SEQ tasks.
Compared to AR and NAR models, which suffer from the “degeneration” problem (Holtzman et al.,
2019) and rely on decoding strategies, DIFFUSEQ can achieve considerable sentence-level diversity
without sacrificing the quality (see § 4.2).

To sum up, we make a series of technical and conceptual contributions: (a) we are the first to
deploy the diffusion model on SEQ2SEQ text generation, and our proposed DIFFUSEQ as a condi-
tional language model is trained end-to-end in a classifier-free manner; (b) we establish a theoretical
connection among AR, NAR and DIFFUSEQ models, and justify DIFFUSEQ as an extension of
iterative-NAR models; (c) with strong empirical evidence, we demonstrate the great potential of
diffusion models in complex conditional language generation tasks.

2 PRELIMINARY AND PROBLEM STATEMENT

Preliminary. A diffusion model typically contains forward and reverse processes. Given a data
point sampled from a real-world data distribution z0 ∼ q(z), the forward process gradually cor-
rupts z0 into a standard Gaussian noise zT ∼ N (0, I). For each forward step t ∈ [1, 2, ..., T ], the
perturbation is controlled by q(zt|zt−1) = N (zt;

√
1− βtzt−1, βtI), with βt ∈ (0, 1) as differ-

ent variance scales. Once the forward process is completed, the reverse denoising process tries to
gradually reconstruct the original data z0 via sampling from zT by learning a diffusion model fθ.

Problem Statement. Many recent efforts have been devoted to adapting diffusion models to dis-
crete texts (See § 5). However, they all focus on unconditional sequence modeling. In this paper,
we target the sequence-to-sequence text generation tasks. In particular, given a m-length source
sequence wx = {wx

1 , ..., w
x
m}, we aim to learn a diffusion model that can produce a n-length target

sequence wy = {wy
1 , ..., w

y
n} conditioning on the source sequence.

3 DIFFUSEQ

We propose DIFFUSEQ to extend vanilla diffusion models to learn conditional text generation (as
shown in Figure 2), concerning the model architecture and the training objective.

Forward Process with Partial Noising. In the beginning of forward process, we follow Diffusion-
LM (Li et al., 2022) to design an embedding function EMB(w) to map the discrete text w into a
continuous space. In particular, given a pair of sequence wx and wy , DIFFUSEQ learns a unified
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Figure 2: The diffusion process of our conditional diffusion language model DIFFUSEQ. Given the
source wx and the target wy , we pair-wisely transform them into continuous space z0. The partial
Gaussian noise is iteratively added on the target space of zt.

feature space of wx and wy by embedding transformation and concatenation as EMB(wx⊕y) =
[EMB(wx

1 ), ..., EMB(wx
m), EMB(wy

1), ..., EMB(wy
n)] ∈ R(m+n)×d. The transformation allows us to

adapt discrete textual input into the standard forward process, by extending the original forward
chain to a new Markov transition qϕ(z0|wx⊕y) = N (EMB(wx⊕y), β0I).

We denote zt = xt ⊕ yt to simplify the wordings, where xt and yt represent parts of zt that belong
to wx and wy , respectively. For each forward step q(zt|zt−1), we gradually inject noise into last
step’s hidden state zt−1 to obtain zt. Unlike conventional diffusion models that corrupt the whole
zt (both xt and yt) without distinction, we only impose noising on yt. This modification (termed
partial noising) allows us to adapt diffusion models for conditional language modeling.

Reverse Process with Conditional Denoising. The ultimate goal of the reverse process is to
recover the original z0 by denoising zt: pθ(z0:T ) := p(zT )

∏T
t=1 pθ(zt−1|zt). We model the

learning process pθ(zt−1|zt) = N (zt−1;µθ(zt, t), σθ(zt, t)) using the proposed diffusion model
DIFFUSEQ: fθ(zt, t), where the µθ(·) and σθ(·) is the parameterization of the predicted mean and
standard deviation of q(zt−1|zt) in forward process, derived using Bayes’ rule. The detailed deriva-
tions are in Appendix A. With the partial nosing strategy adopted in the forward process, we can
impose the input as the condition when denoising as shown in Figure 1. The proposed conditional
denoising is classifier-free by nature: we do not require extra-trained classifiers to control the de-
noising process.

Specifically, we use a transformer architecture to model fθ, which spontaneously models the se-
mantic relation between xt and yt. We compute the variational lower bound (LVLB) following the
original diffusion process. Lround corresponds to rounding operation in Figure 2.

LVLB = Eq(z1:T |z0)

[
log

q(zT |z0)
pθ(zT )︸ ︷︷ ︸
LT

+

T∑
t=2

log
q(zt−1|z0, zt)
pθ(zt−1|zt)︸ ︷︷ ︸

Lt−1

+ log
qϕ(z0|wx⊕y)

pθ(z0|z1)︸ ︷︷ ︸
L0

− log pθ(w
x⊕y|z0)︸ ︷︷ ︸

Lround

]
.

(1)

We further simplify the training objective as follows (details in Appendix A):

min
θ

LVLB = min
θ

[
T∑

t=2

||z0 − fθ(zt, t)||2 + ||EMB(wx⊕y)− fθ(z1, 1)||2 − log pθ(w
x⊕y|z0)

]

→ min
θ

[
T∑

t=2

||y0 − f̃θ(zt, t)||2 + ||EMB(wy)− f̃θ(z1, 1)||2 +R(||z0||2)

]
, (2)

here we use f̃θ(zt, t) to denote the fractions of recovered z0 corresponding to y0. Note that al-
though in the first term, we only compute the loss w.r.t y0, due to the attention mechanism in the
transformer, the reconstruction of y0 also takes x0 into account, thus the gradients from the first term
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will also affect the learning of x0. The mathematically equivalent regularization term R(||z0||2))
regularize the embedding learning. We further share the embedding function between source and
target sequences, enabling the training of two different feature spaces jointly. This sets DIFFUSEQ
away from existing solutions in vision such as GLIDE (Nichol et al., 2022).

Training and Inference Methods. In our preliminary experiments, we find that the high diversity
in NLP datasets and long diffusion steps often result in insufficient training. We hypothesize the
reason is that sampling step t uniformly causes unnecessary noise in the LVLB objective. We hence
employ importance sampling (Nichol & Dhariwal, 2021) to address this problem.

LVLB = Et∼pt

[
Lt

pt

]
, pt ∝

√
E[L2

t ],
∑T−1

t=0 pt = 1. (3)

Intuitively, the importance-weighted sampling algorithm will spend more steps on diffusion steps
with larger Lt, and vice versa.

To conduct SEQ2SEQ generation given the condition EMB(wx), we randomly sample yT ∼
N (0, I) and concatenate yT with EMB(wx) to obtain zT . We can now repeat the reverse process
until we arrive at z0. At each sampling step, an anchoring function is executed towards reparame-
terized zt. Specifically, the anchoring function: (a) operates rounding on zt to map it back to word
embedding space following Li et al. (2022); (b) replaces the part of recovered zt−1 that belongs to
wx with the original x0, considering that this part is recovered from corrupted zt via fθ and not
strictly equals to x0. Note that (b) is designed for DIFFUSEQ.

To improve the quality of generation, we apply the widely used Minimum Bayes Risk (MBR) de-
coding strategy (Koehn, 2004). We first generate a set of candidate samples S from different random
seeds of DIFFUSEQ and select the best output sequence that achieves the minimum expected risk
under a meaningful loss function (e.g. BLEU or other cheaper metrics like precision). In practice,
we use the negative BLEU score in our implementation.

Connections to AR, Iter-NAR, and Fully-NAR Models. To better understand the behavior of
DIFFUSEQ, we give the theoretical connection to autoregressive (AR), iterative non-autoregressive
(iter-NAR), and fully non-autoregressive (fully-NAR) models. We argue that DIFFUSEQ can be seen
as an extension of iter-NAR model. Detailed graphical learning discrepancies of these four cases are
discussed in Appendix B for reference.

AR models learn p(wy
1:n|wx) by autoregressive decomposition based on left-context:

pAR(w
y
1:n|wx) = p(wy

1 |wx)︸ ︷︷ ︸
initial prediction

∏
i=1,...,n−1

p(wy
i+1|w

y
1:i,w

x)︸ ︷︷ ︸
progressive left-context prediction

, (4)

while fully-NAR models (Gu et al., 2018; Qian et al., 2021) learn the conditional probability given
independent assumption for fast inference:

pfully-NAR(w
y
1:n|wx) =

∏
i=1,...,n

p(wy
i |w

x). (5)

To make a better analogy to AR and NAR models, we use a lossless way to formulate iterative
NAR models (Gu et al., 2019; Ghazvininejad et al., 2019) by introducing a series of intermediate
sequences wy

1:K−1,w
y
K = wy with K editable iterations:

piter-NAR(w
y
1:n|wx) =

∑
wy

1 ,...,w
y
K−1

∏
i=1...n

p(wy
1,i|w

x)︸ ︷︷ ︸
initial prediction

∏
k=1..K−1

∏
i=1...n

p(wy
k+1,i|w

y
k,1:n,w

x)︸ ︷︷ ︸
progressive full-context prediction

.
(6)

Previous study (Huang et al., 2022) shows that there is a gap called conditional total correlation
between AR Eq. (4) and fully-NAR Eq. (5) learning paradigms, because of lossy decomposition of
NAR models. However, when comparing iter-NAR Eq. (6) with AR Eq. (4) models, they both can
be factorized into an initial prediction term and a progressive prediction process based on different
context (i.e. left-context in AR and full-context in iter-NAR), and the discrepancy pointed out by
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Huang et al. (2022) is therefore closed in iter-NAR assuming sufficient steps. By showing DIF-
FUSEQ is an extension of the iter-NAR model, we offer a justification that it will not suffer from the
conditional total correlation for the same reason.

A straight-forward way to formulate pure continuous diffusion models is to introduce a series of
Gaussian noise-corrupted features along with diffusion steps: y1:T−1,y0 = y,yT ∼ N (0, I).

pdiffusion(w
y|wx) =

∫
yT ,...,y0

p(wy|y0,w
x)︸ ︷︷ ︸

final prediction

∏
t=T,...,1

p(yt−1|yt,w
x)︸ ︷︷ ︸

progressive full-context diffusion

, (7)

where p(yt−1|yt,w
x) describes the diffusion step on continuous representations y. The rounding

operation in DIFFUSEQ maps the continuous vectors y to discrete wy for each time step t, we in
addition introduce this into Eq. (7):

pDIFFUSEQ(w
y|wx) =

∑
wy

T ,...,wy
1

∫
yT ,...,y0

p(wy|y0,w
x)

∏
t=T,...,1

p(wy
t |yt,w

x)p(yt−1|wy
t ) (8)

=
∑

wy
T ,...,wy

1

∫
yT ,...,y0

p(wy
T |yT ,w

x)
∏

t=T−1,...,0

p(yt|wy
t+1)p(w

y
t |yt,w

x). (9)

By rearranging Eq. (8) into Eq. (9), we can see DIFFUSEQ can be seen as a more generalized form of
iter-NAR Eq. (6) before marginalizing out {yT , . . . ,y0}, despite the different initialization of yT

2.
A more detailed derivation is shown in Appendix C.

4 EXPERIMENTS

We conduct experiments to validate the effectiveness of DIFFUSEQ on four different tasks, against
six strong AR/NAR baselines.

4.1 EXPERIMENTAL SETUP

Tasks and Datasets. SEQ2SEQ generation covers a wide range of tasks, among which we choose
four typical and popular tasks. Open domain dialogue requires models to generate informative
responses given a dialogue context. We use Commonsense Conversation Dataset (Zhou et al.,
2018), which is extracted from Reddit single-round dialogs, with over 3 million conversational
pairs. Question generation(QG) aims to generate questions given a context as input. To obtain
sufficient training samples, we use the dataset Quasar-T (Dhingra et al., 2017) preprocessed by Lin
et al. (2018), and then generate document-question pairs to obtain 119K training samples (details in
Appendix D.1). Text simplification aims to revise the complex text into sequences with simplified
grammar and word choice. Jiang et al. (2020) constructs a corpus consisting of 677K complex-
simple sentences with revision alignment. Paraphrase task generates an alternative surface form
in the same language expressing the same semantic content. We adopt widely used QQP 3 sourced
from the community question answering forum Quora, with 147K positive pairs.

Baselines. We consider three groups of models as baselines, covering both AR and NAR architec-
tures. The first group of methods adopts encoder-decoder architecture (Cho et al., 2014) which is
well-studied for SEQ2SEQ tasks, and we conduct experiments on two popular models: GRU with
attention and Transformer (Vaswani et al., 2017). The second group is the finetuned large pre-trained
language model (PLM), among which GPT2 (Radford et al., 2019) has demonstrated great success
in almost all SEQ2SEQ tasks. We further compare to GPVAE (Du et al., 2022), which augments a
pre-trained T5 (Raffel et al., 2020) with VAE to improve the generation diversity. For the last group
of baselines, we consider LevT (Gu et al., 2019), a widely used, strong iterative NAR model. All
baselines are trained following instructions in their papers, and details can be found in Appendix D.2.

2For NAR models, yT is uniform copied from the source sentence or unk’s token embedding (Gu et al.,
2018); for diffusion models, yT is sampled from normal distribution N (0, I).

3https://www.kaggle.com/c/quora-question-pairs
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Table 1: The overall results of different methods on different SEQ2SEQ tasks. The first group ⋄
of methods adopt autoregressive encoder-decoder architecture and the second group • is the fine-
tuned large pre-trained language model (also in autoregressive manner) while the last group ‡ is
non-autoregressive. The best results are bold, and the best results without PLMs are underlined.

Tasks Methods BLEU↑ R-L↑ Score↑ dist-1↑ selfB↓ / div-4↑ Len

Open
Domain
Dialogue

GRU-attention ⋄ 0.0068 0.1054 0.4128 0.8998 0.8008/0.1824 4.46
Transformer-base ⋄ 0.0189 0.1039 0.4781 0.7493 0.3698/0.6472 19.5

GPT2-base FT• 0.0108 0.1508 0.5279 0.9194 0.0182/0.9919 16.8
GPT2-large FT • 0.0125 0.1002 0.5293 0.9244 0.0213/0.9938 16.8
GPVAE-T5• 0.0110 0.1009 0.4317 0.5625 0.3560/0.5551 20.1

NAR-LevT ‡ 0.0158 0.0550 0.4760 0.9726 0.7103/0.1416 4.11
DIFFUSEQ (Ours) ‡ 0.0139 0.1056 0.5131 0.9467 0.0144/0.9971 13.6

Question
Generation

GRU-attention ⋄ 0.0651 0.2617 0.5222 0.7930 0.9999/0.3178 10.1
Transformer-base ⋄ 0.1663 0.3441 0.6307 0.9309 0.3265/0.7720 10.3

GPT2-base FT • 0.0741 0.2714 0.6052 0.9602 0.1403/0.9216 10.0
GPT2-large FT • 0.1110 0.3215 0.6346 0.9670 0.2910/0.8062 9.96
GPVAE-T5• 0.1251 0.3390 0.6308 0.9381 0.3567/0.7282 11.4

NAR-LevT ‡ 0.0930 0.2893 0.5491 0.8914 0.9830/0.4776 6.93
DIFFUSEQ (Ours)‡ 0.1731 0.3665 0.6123 0.9056 0.2789/0.8103 11.5

Text
Simpli-
fication

GRU-attention ⋄ 0.3256 0.5602 0.7871 0.8883 0.9998/0.3313 18.9
Transformer-base ⋄ 0.2693 0.4907 0.7381 0.8886 0.6924/0.5095 18.5

GPT2-base FT • 0.3083 0.5461 0.8021 0.9439 0.5444/0.6047 16.1
GPT2-large FT • 0.2693 0.5111 0.7882 0.9464 0.6042/0.5876 15.4
GPVAE-T5 • 0.3392 0.5828 0.8166 0.9308 0.8147/0.4355 18.5

NAR-LevT ‡ 0.2052 0.4402 0.7254 0.9715 0.9907/0.3271 8.31
DIFFUSEQ (Ours) ‡ 0.3622 0.5849 0.8126 0.9264 0.4642/0.6604 17.7

Paraphrase

GRU-attention ⋄ 0.1894 0.5129 0.7763 0.9423 0.9958/0.3287 8.30
Transformer-base ⋄ 0.2722 0.5748 0.8381 0.9748 0.4483/0.7345 11.2

GPT2-base FT • 0.1980 0.5212 0.8246 0.9798 0.5480/0.6245 9.67
GPT2-large FT • 0.2059 0.5415 0.8363 0.9819 0.7325/0.5020 9.53
GPVAE-T5 • 0.2409 0.5886 0.8466 0.9688 0.5604/0.6169 9.60

NAR-LevT ‡ 0.2268 0.5795 0.8344 0.9790 0.9995/0.3329 8.85
DIFFUSEQ (Ours) ‡ 0.2413 0.5880 0.8365 0.9807 0.2732/0.8641 11.2

Evaluation. We evaluate the generated sequences from two aspects: quality and diversity. To
evaluate the quality, we use the standard metric BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) score. Since string-similarity-based metrics can be unsatisfactory for open-ended generation,
we also report BERTScore (Zhang et al., 2019) that assesses the semantic similarity between gen-
erated sentences and references. Details are in Appendix D.4. Higher scores of BLEU, ROUGE
and BERTScore reflect better performance. As for diversity, we use distinct unigram (dist-1) to
measure intra-diversity within each generated sentence, where the lower dist-1 indicates that the
generated sentence contains more repeated words. For sentence-level diversity evaluation, we con-
sider sentence-level self-BLEU (Zhu et al., 2018) to measure the n-gram overlap between the set
of outputs w.r.t one source sentence, and we additionally use diverse 4-gram (div-4) (Deshpande
et al., 2019) to measure the ratio of distinct 4-grams in the set of outputs per source sentence. The
lower self-BLEU and higher div-4 suggest higher diversity of generation. For each method including
DIFFUSEQ, we generate 3 samples for each source sentence to compute the diversity metrics.

Implementation Details. Our DIFFUSEQ is based on the 12 layers of Transformer with 12 at-
tention heads, where the time step embedding is plugged akin to the position embedding. The
maximum sequence length is 128, with embedding dimension d = 128, diffusion steps T = 2, 000
and a square-root noise schedule. To reduce the out-of-vocabulary generation, we apply Byte Pair
Encoding (Sennrich et al., 2016) to construct the vocabulary. After conducting the diversity beam
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Table 2: Sample outputs in QQP test set, conditioned on the same x.

Original sentence: How do I make friends. Paraphrase reference: How to make friends ?

GPT2-large finetune GPVAE-T5 DIFFUSEQ
How can I make friends? How can I make friends? How can I make friends better?
How can I make friends? How do I make friends? How can I make friends?
How can I make friends? How can I make friends? How do you make friends?
How can I make friends? How can I make friends? What is the best way to make friends?
How do I make friends and
keep them?

What’s the best way to make
friends and make make friends?

How can I make friends and more
something?

search (DBS) (Vijayakumar et al., 2016) for the Transformer-base model and GPT model, we find
that DBS does not always promote diversity over temperature sampling and therefore we list the
best diversity results. We compute the accuracy metrics of DIFFUSEQ using MBR with the size of
candidate samples |S| = 10. The experiment is deployed on NVIDIA A100 Tensor Core GPUs, and
we use 4 GPUs on training and single GPU on sampling.

4.2 MAIN RESULTS

As shown in Table 1, we conclude that DIFFUSEQ achieves comparable or even higher generation
quality compared with strong baselines. At the same time, DIFFUSEQ consistently demonstrates its
superiority in generating diverse outputs given the same input sequence.

As we can see from Table 1, DIFFUSEQ wins competitions over at least one quality metric against 6
baselines × 4 tasks. Although NAR models such as LevT can also outperform AR baselines some-
times, they still lag well behind DIFFUSEQ by large margins (i.e., relative improvements over 50%
for BLEU in QG task and R-L in Dialogue task). Even compared with pre-trained then finetuned
GPT2 models, DIFFUSEQ still delivers superior performance than the base variant, and is compara-
ble with the large variant, which has 8.2 times more parameters than DIFFUSEQ. These empirical
results amply support our findings in § 3, where we theoretically analyze the potential of diffusion
models in modeling text sequences compared with AR models given sufficient diffusion steps.

DIFFUSEQ, as a member of the deep generative model family, also exhibit the capacity to generate
highly diverse sequences. As suggested by self-BLEU (lower is better) and div-4 (higher is better),
in almost all cases, DIFFUSEQ significantly outperforms 4 AR baselines in terms of sentence-level
diversity (i.e., producing diverse outputs given the same input). For diversity in word choice within
one sentence, we consider dist-1: a higher dist-1 indicates less repetition within a sentence. As
we can see from Table 1, DIFFUSEQ has less repetition compared with encoder-decoder methods,
but still fall behind the pre-trained GPT2 models (the same situation with BERTScore). These
results suggest there is still room for improvement (e.g., use pre-training techniques) in diffusion
models’ token-level choice. Different from NAR-LevT, DIFFUSEQ does not rely on an extra length
prediction module but automatically decides by the padding token instead and is able to generate
longer output sentences, indicated by the last column for average generation length.

In Table 2, we provide examples to showcase DIFFUSEQ’s ability to generate diverse samples. More
examples can be found in Appendix D.5.
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4.3 ANALYSIS

We conduct a series of analysis to investigate the effectiveness of different aspects in DIFFUSEQ.

Diversity Ensures Quality. Generating high-quality texts with high diversity is an important re-
quirement for many text generation applications and the trade-off between quality and diversity is
always a critical concern in open-ended NLG tasks (Zhang et al., 2021). Different from AR models
relying on the decoding strategy like temperature and nucleus sampling (Holtzman et al., 2019) and
VAE models sampling latent variable from Gaussian Prior, the natural advantage of DIFFUSEQ is
to generate different sentences along with a series of random Gaussian noise. In Figure 4, we elu-
cidate that DIFFUSEQ have better trade-off between generation quality (BLEU) and sentence-level
diversity (div-4). Here we further demonstrate that the high diversity provided by DIFFUSEQ can be
turned into better quality.

MBR is a common strategy to improve generation quality by aggregating and ranking candidate
sequences, and we find that the upper bound of MBR is decided by a diversified candidate set. To
valid this, we simultaneously apply MBR on both DIFFUSEQ and GPT2 with various candidate sizes
|S|. The results are shown in Figure 3. As we can see, DIFFUSEQ lags behind GPT2 without using
MBR (|S| = 1) or with a small candidate set (|S| = 3). However, as |S| increases, DIFFUSEQ starts
to outperform GPT2 by an increasing margin. The reason is that autoregressive models like GPT2
tend to generate highly similar candidates (as discussed in § 4.2), which impedes the effectiveness
of MBR. As |S| increases to 20, DIFFUSEQ still shows better rising trends than GPT2. Our findings
also stress the importance of better ranking methods in diffusion research.

Step-wise Analysis against Iterative NAR. Given the underlying theoretical connection between
iterative NAR and DIFFUSEQ discussed in § 3, we empirically investigate the behavior of LevT
and DIFFUSEQ by analyzing their step-wise quality (i.e. BLEU) and diversity (i.e. div-4) curves.
As is suggested in Figure 5, LevT grows fiercely in quality at the very beginning of generation, and
quickly slows down in the successive refinement process. But DIFFUSEQ behaves differently, with
BLEU score growing slowly at first, increasing rapidly as the diffusion process progresses and finally
surpassing LevT. It is also observed that the diversity of both LevT and DIFFUSEQ is determined
at the very early stage regardless of future refinement or diffusion, where DIFFUSEQ consistently
outperforms LevT on diversity at any stage of generation. We conjecture that DIFFUSEQ explores
more possible results at the first half of generation process, and soon converges to several potential
candidates when it is closed to the end of steps. In this case, DIFFUSEQ shows its capacity to take
both generation quality and diversity into consideration, and this is the capacity that iterative-NAR
and even AR models can not obtain, due to the different learning paradigms.

Inference Speed. The slow sampling speed is one of the major concerns about diffusion models.
Here we fix the number of diffusion steps during training for DIFFUSEQ while shrinking the infer-
ence steps following DDIM (Song et al., 2020). As we can see from Figure 6, when reducing the
inference to 1,000 diffusion steps on single GPU, DIFFUSEQ achieves a higher BLEU score than
GPT2-large yet registers a closer inference speed to GPT2-large.

Effectiveness of Joint Training. In DIFFUSEQ, the representations of wx and wy are jointly
trained using the same embedding function EMB(·) (stated in § 3). To validate the effectiveness
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Table 3: Results with or without joint training for Question Generation task.

Setting BLEU↑ R-L↑ Score↑ selfB↓ / div-4↑
DIFFUSEQ (w/o reranking) 0.1567 0.3484 0.5947 0.2789/0.8103
Fix EMB(wx) as pre-trained 0.0110 0.0687 0.3769 0.0174/0.9376

of this joint training strategy, we compared it with the training strategy commonly used in text-to-
image diffusion models (Nichol et al., 2022; Ramesh et al., 2022). In particular, we decouple the
training of EMB(wx) and EMB(wy) by replacing EMB(wx) with representations extracted from a
pre-trained BERT-tiny model (Turc et al., 2019). From Table 3, we find that the decoupled training
strategy results in poor performance.

5 RELATED WORK

Diffusion Models for Text Modeling. Text-to-Image generation using diffusion models has de-
veloped many potential applications. Models such as Imagen (Saharia et al., 2022b) and DALL-
E (Ramesh et al., 2022) are usually two-staged relying on the pre-trained models, requiring the
alignment between the embedding vectors from two sources. GLIDE (Nichol et al., 2022) explores
diffusion model with classifier-free (Ho & Salimans, 2022) guidance by setting guidance scale dur-
ing training. The target space of these models is not discrete text space but stable vectors of pixel
values. There are other works of diffusion on text generation, but they stick to the original encoder-
decoder architecture and the diffusion process is interspersed on the decoder (Savinov et al., 2021),
or the latent space (Yu et al., 2022).

For text generation using the diffusion models, Hoogeboom et al. (2021) introduce the multinomial
diffusion for character-level text generation, the forward categorical noise is applied through the
Markov transition matrix. Austin et al. (2021) generalize discrete text diffusion models by introduc-
ing the absorbing state ([MASK]). However, discrete diffusion models may suffer from the scaling
of the one-hot row vectors, and they only generate text samples unconditionally in discrete space.
Diffusion-LM (Li et al., 2022) and Analog Bits (Chen et al., 2022) propose a new language model
diffused on the continuous latent representations, with different mapping functions that connect the
discrete and continuous space of texts. Compared with our work, we focus on the SEQ2SEQ dif-
fusion models for text generation in the continuous space and our work is the first to explore this
setting to the best of our knowledge.

Diffusion Models for Conditional Generation. Related to conditional-VAE (Zhao et al., 2017),
we can consider the latent encoded input x as a condition. Diffusion-LM (Li et al., 2022) adopts
the plug-and-play approaches (Dathathri et al., 2020) to compose fine-grained constraints on the
generated sentences, but it fails to condition on the whole source sentence in SEQ2SEQ tasks. Noted
that this controllable generation method is orthogonal to our DIFFSEQ, in other words, we can fur-
ther add classifier-guided constraints on the SEQ2SEQ output to further control the text generation.
There are other conditional diffusion models on the time series prediction like CSDI (Tashiro et al.,
2021) or audio generation like WaveGrad (Chen et al., 2021), but their class conditions are usually
attributes that are easy to model, while the contextual texts as conditions are much more complex.

6 CONCLUSIONS

We propose DIFFUSEQ to tackle SEQ2SEQ tasks in a diffusion way, which contains the strong po-
tential to achieve better generation quality and diversity trade-off. The capability enables favorable
characteristics of DIFFUSEQ to further enhance the quality of final results, by leveraging a minimum
Bayes risk decoding algorithm. Besides, we theoretically connect the AR and NAR models to DIF-
FUSEQ, and show that DIFFUSEQ is a powerful extension of iterative-NAR model. The empirical
results demonstrate that DIFFUSEQ is also a powerful model for text generation, matching or even
surpassing competitive AR, iterative NAR, and large-scale pre-trained models on quality and diver-
sity. Given the limited progress of current diffusion models on text generation, our study addresses
promising achievements by such a new sequence-to-sequence learning paradigm.
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A OBJECTIVE DERIVATIONS OF DIFFUSEQ

The diffusion model is well-known as its ability to achieve the trade-off between flexibility and
tractability of the models’ probability distributions, compared with GAN, VAE and Flow-based
models. Following Ho et al. (2020); Nichol & Dhariwal (2021); Song et al. (2020), we systematically
define the forward noising process and reverse denoising process on latent continuous space z.

The forward noising is to perturb the structure of data z0. z0 is finally changed into the partial
Gaussian noise with yT ∼ N (0, I) through T -step forward random disturbance

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI), (10)

with t = 1, 2, ..., T and {βt ∈ (0, 1)}Tt=1 are the variance schedule. Let αt = 1 − βt and ᾱt =∏t
i=1 αi, we have:

zt =
√
αtzt−1 +

√
1− αtϵt−1 =

√
αtαt−1zt−2 +

√
1− αtαt−1ϵ̄t−2

=... =
√
ᾱtz0 +

√
1− ᾱtϵ,

(11)

where ϵ stands for Gaussian noises. In the end, q(zt|z0) = N (zt;
√
ᾱtz0, (1 − ᾱt)I). We use a

sqrt noise schedule in Diffusion-LM (Li et al., 2022), that is, ᾱt = 1−
√

t/T + s with s as a small
constant at the start of noise level. The reverse process then denoises zt, aiming to recover original
z0, and is defined as:

pθ(z0:T ) := p(zT )

T∏
t=1

pθ(zt−1|zt), pθ(zt−1|zt) = N (zt−1;µθ(zt, t), σθ(zt, t)). (12)

The learning of pθ is based on our diffusion model DIFFUSEQ: fθ(zt, t), where the µθ(·) and σθ(·) is
the predicted parameterization of the mean and standard variation of q(zt|zt−1) in forward process.
Using Bayes’ rule:

q(zt−1|zt, z0) = q(zt|zt−1, z0)
q(zt−1|z0)
q(zt|z0)

(13)

Substitute Eq. (11) to it and we can get the parameterized mean of q(zt−1|zt, z0):

µt(zt, z0) =

√
αt(1− ᾱt−1)

1− ᾱt
zt +

√
ᾱt−1βt

1− ᾱt
z0, (14)

and for brevity, we short the coefficient of zt and z0 as U and E respectively.

We can use the variational lower bound to optimize the negative log-likelihood E[− log pθ(x0)] ≤
LVLB. The objective can be further rewritten to be a combination of several KL-divergence and
entropy terms following Sohl-Dickstein et al. (2015).

LVLB = LT + LT−1 + · · ·+ L0 = Eq(z1:T |z0)

[
log

q(zT |z0)
pθ(zT )

+

T∑
t=2

log
q(zt−1|z0, zt)
pθ(zt−1|zt)

+ log
qϕ(z0|wx⊕y)

pθ(z0|z1)
− log pθ(w

x⊕y|z0)

]
.

(15)

For 1 ≤ t ≤ T − 1, we compute the parameterization of Lt by substituting Eq. (14) to minimize the
difference from µt and µθ following Ho et al. (2020):

Lt = Ez0

[
log

q(zt|z0, zt+1)

pθ(zt|zt+1)

]
= Ez0

[
1

C
||µt(zt, z0)− µθ(zt, t)||2

]
= Ez0

[
1

C
|| Uzt + Ez0 − (Uzt + Efθ(zt, t))||2

]
=

E
C
Ez0

[||z0 − fθ(zt, t)||2],
(16)
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where C = 2||σθ||2 is a loss independent constant. Then the optimization of training loss minθ LVLB
can be further simplified as:

min
θ

[
||µ(zT )||2 +

T∑
t=2

||z0 − fθ(zt, t)||2 + ||EMB(wx⊕y)− fθ(z1, 1)||2 − log pθ(w
x⊕y|z0)

]

→min
θ

[
T∑

t=2

||z0 − fθ(zt, t)||2 + ||EMB(wx⊕y)− fθ(z1, 1)||2 − log pθ(w
x⊕y|z0)

]

→min
θ

[
T∑

t=2

||y0 − f̃θ(zt, t)||2 + ||EMB(wy)− f̃θ(z1, 1)||2 +R(||z0||2)

]
.

(17)

B GRAPHICAL MODELS OF AR, FULLY NAR, ITERATIVE NAR AND
DIFFUSEQ MODELS

We start from the conditional sequence generation problem, which aims to learn a conditional proba-
bility p(wy

1:n|wx) with wx and wy . AR models learn p(wy
1:n|wx) by autoregressive decomposition

based on left-context:

pAR(w
y
1:n|wx) = p(wy

1 |wx)︸ ︷︷ ︸
initial prediction

∏
i=1,...,n−1

p(wy
i+1|w

y
1:i,w

x)︸ ︷︷ ︸
progressive left-context prediction

, (18)

consisting of an initial prediction and an autoregressive left-context prediction process, while fully-
NAR models (Gu et al., 2018; Qian et al., 2021) learn the conditional probability given independent
assumption for fast inference:

pfully-NAR(w
y
1:n|wx) =

∏
i=1,...,n

p(wy
i |w

x). (19)

To make a better analogy to AR and NAR models, we use a lossless way to formulate iterative
NAR models (Gu et al., 2019; Ghazvininejad et al., 2019) by introducing a series of intermediate
sequences wy

1:K−1,w
y
K = wy as:

piter-NAR(w
y
1:n|wx) =

∑
wy

1 ,...,w
y
K−1

p(wy
1 |wx)

∏
k=1...K−1

p(wy
k+1|w

y
k,w

x)

=
∑

wy
1 ,...,w

y
K−1

p(wy
1 |wx)

∏
k=1...K−1

p(wy
k+1|w

y
k,w

x)

=
∑

wy
1 ,...,w

y
K−1

∏
i=1...n

p(wy
1,i|w

x)︸ ︷︷ ︸
initial prediction

∏
k=1..K−1

∏
i=1...n

p(wy
k+1,i|w

y
k,1:n,w

x)︸ ︷︷ ︸
progressive full-context prediction

(20)

Previous study (Huang et al., 2022) shows that there is a gap called conditional total correlation
between AR and fully-NAR learning paradigms, because of the lossy decomposition of NAR mod-
els. This gap is mainly responsible for the performance drop from AR to NAR models. However,
when comparing iter-NAR, Eq. (20), with AR models, they both can be factorized into an initial
prediction term and a progressive prediction process based on different context (i.e. left-context in
AR and full-context in iter-NAR). The discrepancy as pointed out by Huang et al. (2022) is there-
fore closed in iter-NAR assuming sufficient steps. By showing DIFFUSEQ is an extension of the
iter-NAR model, we offer a justification that it will not suffer from the conditional total correlation
for the same reason.
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A straight-forward way to formulate naive diffusion models is to introduce a series of Gaussian
noise-corrupted features y1:T−1,y0 = y,yT ∼ N (0, I) on continuous space as:

pdiffusion(w
y|wx) =

∫
yT ,...,y0

p(wy|y0,w
x)︸ ︷︷ ︸

final-step prediction

∏
t=T,...,1

p(yt−1|yt,w
x)︸ ︷︷ ︸

progressive full-context diffusion

(21)

=

∫
yT ,...,y0

∏
i=1,...,n

p(wy
i |y0,i,w

x)
∏

t=T,...,1

∏
i=1,...,n

p(yt−1,i|yt,w
x) (22)

where p(yt−1|yt,w
x) describes the diffusion process on contiguous representations y. The total

number of diffusion steps is denoted as T . Thereafter we omit the independent decomposition on
wy and yt. To apply diffusion models on discrete space, the rounding operation in DIFFUSEQ maps
the continuous vectors y to discrete wy for each time step t, we hence in addition introduce both
contiguous feature y and the discrete text wy to represent the discrete text into Eq. (21):

p(wy|wx) =
∑

wy
T ,...,wy

1

∫
yT ,...,y0

p(wy
T |yT ,w

x)
∏

t=T−1,...,0

p(wy
t |yt,w

x)p(yt|wy
t+1) (23)

=
∑

wy
T ,...,wy

1

∫
yT ,...,y0

p(wy|y0,w
x)

∏
t=T,...,1

p(yt−1|wy
t )p(w

y
t |yt,w

x) (24)

=

∫
yT ,...,y0

p(wy|y0,w
x)

∑
wy

T ,...,wy
1

∏
t=T,...,1

p(yt−1|wy
t )p(w

y
t |yt,w

x) (25)

=

∫
yT ,...,y0

p(wy|y0,w
x)

∏
t=T,...,1

∑
wy

t

p(yt−1|wy
t )p(w

y
t |yt,w

x) (26)

By rearranging Eq. (23) and Eq. (24), we can see that DIFFUSEQ can be seen as a more generalized
form of iter-NAR before marginalizing out {yT , . . . ,y0}, where Eq. (23) and Eq. (24) are equivalent
with different computation order, despite the different initialization of yT . For NAR models, yT is
uniform copied from the source sentence or unk’s token embedding (Gu et al., 2018); for diffusion
models, yT is sampled from normal distribution N (0, I).

It is notable that unlike AR and fully NAR models generating text all at once, iterative NAR and
diffusion models feature a self-corrected text generation process. The graphical comparison is shown
in Figure 7.

C FROM DIFFUSEQ TO ITERATIVE NAR AND DIFFUSION MODELS

From DIFFUSEQ to Iterative NAR We show how to derive DIFFUSEQ to iterative non-
autoregressive model on discrete space.
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Figure 7: Graphical Models of AR, Fully NAR, iterative NAR and DIFFUSEQ models. For sim-
plicity, we omit source node wx. Gray nodes indicate dependency on the source node while white
nodes are independent to the source node.

pDIFFUSEQ(w
y|wx)

=
∑

wy
T ,...,wy

1

∫
yT ,...,y0

p(wy|y0,w
x)

∏
t=T,...,1

p(yt−1|wy
t )p(w

y
t |yt,w

x)

=
∑

wy
T ,...,wy

1

∫
yT ,...,y0

p(wy
T |yT ,w

x)
∏

t=T−1,...,0

p(wy
t |yt,w

x)p(yt|wy
t+1) reorder computation

=
∑

wy
T ,...,wy

1

p(wy
T |yT ,w

x)
∏

t=T−1,...,0

∫
yt

p(wy
t |yt,w

x)p(yt|wy
t+1)

=
∑

wy
T ,...,wy

1

p(wy
T |yT ,w

x)
∏

t=T−1,...,0

p(wy
t |w

y
t+1,w

x)) marginalize over y

=
∑

wy
1 ,...,w

y
K−1

p(wy
1 |wx)

∏
k=1...K−1

p(wy
k+1|w

y
k,w

x) align t and k reversely.

= piter-NAR(w
y|wx)

From DIFFUSEQ to diffusion model We show how to derive DIFFUSEQ to the straight-forward
diffusion model on continuous space.
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pDIFFUSEQ(w
y|wx)

=
∑

wy
T ,...,wy

1

∫
yT ,...,y0

p(wy|y0,w
x)

∏
t=T,...,1

p(yt−1|wy
t )p(w

y
t |yt,w

x)

=

∫
yT ,...,y0

p(wy|y0,w
x)

∏
t=T,...,1

∑
wy

t

p(yt−1|wy
t )p(w

y
t |yt,w

x)

=

∫
yT ,...,y0

p(wy|y0,w
x)

∏
t=T,...,1

p(yt−1|yt,w
x) marginalize over wy

= pdiffusion(w
y|wx)

D DETAILS OF EXPERIMENTS

D.1 PROCESSING OF QUESTION GENERATION DATASET

To construct high-quality document-question pairs from the Quasar-T dataset, which consists of
⟨documenti, question, answer⟩ triplets, we extract ⟨documenti, question⟩ pairs if answer ex-
actly matches documenti. After pre-processing, we obtain 119K document-question training pairs.

D.2 SETTINGS OF BASELINES

We compare the settings of different models, including the number of parameters and how to sample
the different output sentences, as shown in Table 4. For plain GRU-based encoder-decoder methods,
we do not implement diversity search algorithms on it, thus its sentence-level diversity could be very
poor. For NAR-LevT, we set max iteration to 9 and follow the termination condition mentioned in
the original paper. For GPVAE-T5, we tune the scalar to find the best trade-off between quality and
diversity on the dev set. The scalars of all four tasks are set to 2. We implement GPT2 baselines
using HuggingFace Transformers and for the baseline Transformer-base, we use Fairseq.

Table 4: The comparison for different models

Models # Parameters Learning Paradigm Diversity Source

GRU-attention 65M encoder-decoder -
Transformer-base 80M encoder-decoder Temperature/DBS

GPT2-base FT 117M pretrain-finetune Hybrid strategy4

GPT2-large FT 774M pretrain-finetune Hybrid strategy
GPVAE-T5 220M pretrain+VAE Gaussian sampling

NAR-LevT 80M non-autoregressive -
DIFFUSEQ 91M non-autoregressive Gaussian sampling

D.3 DIVERSITY AND QUALITY TRADE-OFF SETTINGS

We list the details to obtain Figure 4. For GPVAE-T5, we set different scalars as 1, 2, 3, 4. For
DIFFUSEQ, we choose trained models at different training steps to achieve different trade-off points.
For other baselines, there is no explicit factor to control the diversity generation, so we leave them
as single points in the figure.

4Including top-p sampling, temperature, diversity beam search (DBS) and etc. Implement using Hugging-
Face Transformers https://github.com/huggingface/transformers
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D.4 METRICS

The used BLEU score is sentence-level smoothed from BLEU-1 to 4, and used ROUGE-L score
is longest common subsequence based statistics. The implementation is based on NLTK5 and
torchmetrics. The n-gram based metrics may fail to capture the semantic meaning of sentences,
so we consider using BERTScore6. Specifically, we use microsoft/deberta-xlarge-mnli
to help BERTScore correlate better with human scores.

D.5 GENERATION RESULTS

For different tasks we list some generation examples. As we can see in Table 5, Table 6 and Table 7,
DIFFUSEQ tends to generate diverse outputs, but sometimes the sentence is not as fluent as finetuned
GPT2.

Table 5: Sample outputs with different random seed in Dialogue test set.

Utterance: How long does the dye last?
Response: Just did this two days ago, not sure how it’ll fade yet!

GPVAE-T5 NAR-LevT

* I’m not sure, I’m not sure. I’ve tested it a few
times, but I don’t know for sure. I’ve * half .

* I’m not sure. I’m not sure how long it lasts, I’m
sure it ’ll get better. It’s been a while since * half .

* I’ve been using it for about a year and a half.
I’ve been using it for about a year and a half. * half .

GPT2-large finetune DIFFUSEQ

* Two weeks in my case. * About an hour, 5 days or so.

* I’ve had it for about a year. * 4 days.

* The dye can sit around for a month then you
can wash it. * I’m not sure about this, about the same

kind of time.

Table 6: Sample outputs with different random seed in Question Generation test set.

Statement: The Japanese yen is the official and only currency recognized in Japan.
Question: What is the Japanese currency?

GPVAE-T5 NAR-LevT
* What is the japanese currency * What is the basic unit of currency for Japan ?
* What is the japanese currency * What is the basic unit of currency for Japan ?
* What is the japanese currency * What is the basic unit of currency for Japan ?

GPT2-large finetune DIFFUSEQ
* What is the basic unit of currency for Japan? * What is the Japanese currency
* What is the Japanese currency * Which country uses the “yen yen” in currency
* What is the basic unit of currency for Japan? * What is the basic unit of currency?

5https://www.nltk.org/_modules/nltk/translate/bleu_score.html
6https://github.com/Tiiiger/bert_score
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Table 7: Sample outputs with different random seed in Text Simplification test set.

Complex sentence: People can experience loneliness for many reasons, and many life events
may cause it, such as a lack of friendship relations during childhood and adolescence, or
the physical absence of meaningful people around a person.

Simplified: One cause of loneliness is a lack of friends during childhood and teenage years.

GPVAE-T5 NAR-LevT

*

People can experience loneliness for many
reasons, and many life events may cause it,
such as a lack of friendship relations during
childhood and adolescence, or the physical
absence of meaningful people around a person

* People may experience reashapphap-
phapphapphapphappabout life reasit.

*

People can experience loneliness for many
reasons, and many life events may cause it,
such as a lack of friendship relations during
childhood and adolescence, or the physical
absence of meaningful people around a person

* People may experience reashapphap-
phapphapphapphappabout life reasit.

*

People can experience loneliness for many
reasons, and many life events may cause it,
such as a lack of friendship relations during
childhood and adolescence, or the physical
absence of meaningful people around a person

* People may experience reashapphap-
phapphapphapphappabout life reasit.

GPT2-large finetune DIFFUSEQ

* Loneliness can be caused by many things. * Many life events may cause of loneliness

* Loneliness can affect people in many ways. * People can also be very experience
loneliness for many reasons.

* Loneliness can be caused by many things. * People can experience loneliness for many
reasons, and many life events may, cause it.
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