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Abstract

Associative memory models based on Hopfield networks and self-attention based
on key-value mechanisms have been popular approaches in the study of memory
mechanisms in deep learning. It has been pointed out that the state update rule
of the modern Hopfield network (MHN) in the adiabatic approximation is in
agreement with the self-attention layer of Transformer. In this paper, we go
beyond this approximation and investigate the relationship between MHN and self-
attention. Our results show that the correspondence between Hopfield networks
and Transformers can be established in a more generalized form by adding a
new variable, the hidden state derived from the MHN, to self-attention. This new
attention mechanism, modern Hopfield attention (MHA), allows the inheritance
of attention scores from the input layer of the Transformer to the output layer,
which greatly improves the nature of attention weights. In particular, we show
both theoretically and empirically that MHA hidden states significantly improve
serious problem of deep Transformers known as rank collapse and token uniformity.
We also confirm that MHA can systematically improve accuracy without adding
training parameters to the Vision Transformer or GPT. Our results provide a new
case in which Hopfield networks can be a useful perspective for improving the
Transformer architecture.

1 Introduction

The relationship between associative memory in Hopfield networks [22] [1]], which has attracted
interest from neuroscientists, and Transformers [46] based on key-value memory that have been
studied in machine learning has attracted interest from the research community [45] 142} [3| 148 21]].
One of the most interesting results is the finding in [40,31] that translating modern Hopfield networks
into neural networks yields the Transformer architecture that has been very successful in natural
language processing [38,|9] and computer vision [12]. What, then, do more general modern Hopfield
networks imply for deep learning? This paper gives a concrete answer to this question.

Hopfield networks [22} |1] are a class of models for associative memory. Despite these interesting
properties, classical Hopfield networks have the limitation of small storage capacity. Recently, [30]
proposed Dense Associative Memory which can achieve storage capacity that scales exponentially
or power-wise with respect to the number of neurons by introducing high nonlinearity [7]]. These
models with large storage capacity are collectively referred to as modern Hopfield networks [40, [31]].

Recent advances in Transformer architecture, including its application to language models, have led
to significant advances in the study of self-attention mechanisms. These advances have also shed new
light on Hopfield networks. In [40], it was shown that the state update rules of modern continuous
Hopfield networks (MCHNSs) have a mathematical structure exactly equivalent to that of the self-
attention mechanism. Furthermore, [31] developed this relationship theoretically, pointing out that
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Figure 1: (a) The left figure shows the layer structure of Transformer architecture using modern
Hopfield attention (MHA). As the hidden state H,, propagates through each attention layer, infor-
mation from the upper layer’s attention scores is reused in the lower layers. Attention score Q,, K,’
is accumulated in the hidden state of each layer, and this value is used for attention calculation.
(b) A visualization of the token uniformity in layers 12 and 24 of GPT-2 (Medium) trained on the
Wikitext103 dataset, showing a violin plot of the cosine similarity between the tokens. For GPT-2 in
the left column, there is a strong peak at similarity 1, and both layers have a mode of 1. On the other
hand, in the case of GPT-2 with MHA in the right column, the cosine similarity is kept low and the
uniformity of the tokens is dramatically improved.

the self-attention layer of Transformer coincides with the adiabatic limit of generic modern Hopfield
networks. Thus, it is expected that there is a deep relationship between the Transformer’s architectural
design and associative memory. Still the connection, however, lack fundamental understanding.

Therefore, we consider the question: is it possible to interpret modern Hopfield networks without
adiabatic approximation in terms of Transformers? The adiabatic limit approximation removes the
hidden state dynamics from MCHN. In this paper, we show that maintaining this dynamics introduces
a hidden state on the Transformer side, thereby creating a mechanism for the propagation of attention
score information from the upper to the lower layers.

By implementing this new attention mechanism into Transformer architectures, this paper introduces
a new type of self-attention layer called modern Hopfield attention (MHA), as shown in Figure [T[a).
MHA does not require additional parameters, and the increase in computational complexity is very
small. Nevertheless, simply using MHA instead of the usual attention layer, performance gains can
be obtained in various natural language processing and image recognition tasks. Furthermore, we
found that MHA effectively solves the problem known as rank collapse, or token uniformity, where
Transformer’s tokens lose diversity as Figure[T[b). These results indicate that ideas derived from the
Hopfield network may provide a new perspective for Transformer research.

In summary, our contributions are as follows:

* By investigating the relationship between MCHN and Transformer beyond the adiabatic
approximation, we showed that this correspondence can be further generalized. Based on
the correspondence with MCHN, we proposed a new type of attention mechanism with
hidden state, MHA. The MHA-based Transformer improves the nature of attention weights
by sharing attention score information across layers.

* By training Transformers with MHA, we experimentally showed that the MHA mechanism
also contributes to the performance of the Transformers. In particular, we investigated
image recognition with Vision Transformer and text generation tasks with GPT-2, and
confirmed that MHA actually improves their performance. This method does not generate
any additional parameters, and thus can lead to performance gains with only a small increase
in computational complexity.

* Theoretically and experimentally, we showed that the reason why MHA works so well as an
alternative to self-attention is related to rank collapse. The hidden state of MHA is likely
to enhance its performance by cleverly improving Transformer’s rank collapse as Figure



[[[b). Our results suggest that the Hopfield Networks can provide guidance for improving
the Transformer architectures.

2 Related Works

The relationship between the modern Hopfield network and the Transformer was investigated in
[40,131]], and various improvements and extensions have been made to the modern Hopfield network
(341531 26l 2501411 15, 21} 24} 23], 49| [19] [17].

In [40], the authors demonstrate the fast convergence of the Modern Hopfield Network (MHN) and
justify its use as a conventional module in Transformer-related architectures. On the other hand, in
this study’s MHA, we propose a dynamic structure that maintains and updates hidden states across
layers. More specifically, our MHA naturally incorporates Hopfield recursion into the Transformer
layer structure, as “state accumulation and updating” are performed in each layer.

Research on improving the design of Transformer architecture using this relationship has also been
conducted in [20]]. Unlike these studies, this paper focuses on the effect of keeping hidden state
dynamics of MCHN.

In this paper, we saw that hidden states lead to reuse of attention scores across layers. Attention score
reuse has been studied [[16} [10] from technical perspective, including improvements to the Pre-LN
Transformer. These studies are focus only on encoder architecture and do not consider the special
combination of moving average with ’ and skip connection modification with « as in MHA. On
the other hand, this paper showed that the more extended attention mechanisms in MHA can be
understood in terms of modern Hopfield networks, and examines its effects including the decoder
Transformer. Furthermore, the essential role of MHA is clarified theoretically and experimentally in
terms of rank collapse.

3 Method: Transformers from Hopfield Network

In this chapter, we review the methods [40} 31] used to derive Transformer from MCHN and give a
careful treatment of discretization, which has been ignored in previous studies. As a result, we show
that hidden state of MCHN leads to significant changes in the mechanisms of self-attention.

3.1 Self-Attention Mechanism

Let T be the number of input tokens with dimension d. X, € R7*¢ is the feature obtained
by concatenating the input token vectors x,, of the n-th attention layer. The attention weight of
Transformer is given by the row-wise softmax value of the attention score, which is given by the inner
product of the query and the key, and the dot-product self-attention is calculated by weighting and
adding the value vectors together as X, 1 = softmax (QnK il ) V.., where the query, key, value are
given by linear projections of the input X, as Q,, = X, Wq, K,, = X, W and V,, = X,, Wy
[46]). Each token vector is a slice &,, = (X,,);.. of the feature tensor. Then the formula for attention
mechanism for each token is «,, 1 = softmax (qu,T ) V.

3.2 Modern Continuous Hopfield Network and its Discretization

MCHN is a network model with bipartite graph connectivity connecting two dynamic variables
x and h. The connections are given by the network’s weights W, in which the memories to be
associated are stored. x is called the visible state or feature neuron, and h is called the hidden state
or memory neuron. In the context of the associative memory model, given a collapsed x as an initial
configuration, the complete x is reproduced by association through the time evolution of the state.
The time evolution of MCHN is given by the following update rule [31]:

da - dh

TUE:f(h)Wl -z, ThE:g(w)Wz—h, O



where 7, j, are the time constants of the dynamic systenﬂ The activation functions f(-) and g(-) are
given by the Lagrangian functions Ly, ,, for h and «
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In this paper, the vectors b = (hg), f (h) = (fo (R)), T = (z;) and g (z) = (g; (x)) are all row
vectors. In order to see the correspondence with Transformer below, let us derive discrete time
counterpart of MCHN. We then discretize this update rule with a finite difference At = ¢, — t,, as
follows
T Th

Kvt (@1 — ®n) = f (hn) W -z, At (
where x,, = x(t,,) and h,, = h(t,,). Introducing the ratio between the discretization step width and
the time constant as % =1—«and f—ht =1 — o/, we obtain

hn+1 - hn) =g (mn) W2 - hn7 (3)

Tpt1 = ATy + (1 - Oé)f (hn) WlTv h71,+1 = O/hn + (1 - O/)g ((1377) WZ- (4)

In past studies, the effect of the discretization step « was ignored as negligible, but the precise
derivation here leads to an interesting modification of Transformer. In this paper, we give empirical
and theoretical results in which « and o/’s effect is extremely important.

3.3 Adiabatic Limit and Self-Attention

Specific MCHN model is determined by explicitly selecting the Lagrangians. Model B of [31] is
given by the following choice of Lagrangians

1
Ly, =log (Z eh“> , L,= §||:c||§ )
a

These Lagrangians give the activation functions
fo = softmax (hy), ¢g; = ;. (6)
The adiabatic limit in [31] 7, =~ 0 implies h,, = x,, W5. The update rule for @) is then given by
Zni1 = ax, + (1 — a)softmax (x, Wy) W, @)
Translating by the rule g, = =, Wy, W, = X,Wy =V, W) = XnWKWC; = K'Wq;r
according to [40, [31], we obtain @, ;1 = ax, + (1 — a)softmax (g, K ")V, where X, is the
concatenated tensor of the embedding vectors of all tokens 1, - ,x,7. When a = 0, i.e.,
At = T, this update rule is exactly a usual self-attention mechanism in [46]. In the following, we

consider general « and o to investigate the effect of the hidden state dynamics, which are ignored in
the adiabatic limit above.

3.4 Hidden State Dynamics and Modern Attention Attention

If the adiabatic limit is not taken and a finite f—; is kept, the dynamics of the hidden state is

% (Bntr —hn) = g (@n1) Wa = hngr. (8)

In the following, we use the new parameterization f—ht = 1;—?/ to obtain a simple formula. The
dynamics of Model B is then

Tl = ax, + (1 — a)softmax (h,) W\, h,p1=a'h, + (1 — )z, Wo. 9)

Using the same translation rules as before, we get the following novel modification of attention layer

Z, 11 = ax, + (1 — a)softmax (h,) V;,, h,=0d'h, 1+ (1—a)g.K, . (10)

'In the following discussion, we do not assume the tying of W7, and W5. This breaking of the symmetry of
the memory matrix violates the assumption of monotonically decreasing energy function in the mathematical
discussion of [31]. Interpreting the energy function of MHA in asymmetric settings is a very interesting
theoretical challenge for future research.



Thus, if the dynamics of the hidden state in the MHN is maintained and mapped to the self-attention
layer, a new variable h, determined by the value of the attention scores, is added to the self-attention
layer. This variable continues to accumulate the value of the attention score in each layer in the form
of an exponential moving average across layers. Through this variable, the attention weights of each
layer of the Transformer will have a coordinated behavior. In the following, we will investigate the
effect of adding this hidden state on the attention layer from the Transformer’s perspective. In this
paper, this extended attention mechanism with hidden states will be referred to as Modern Hopfield
Attention (MHA). Compared to the cost O(dT?) of computing the dot product of self-attention, the
computational complexity added by updating the hidden state is about O(T2). For Transformer that
uses more than several hundred dimensions of d, this is a small increase in computational complexity.

4 Empirical Results

In this chapter, we experimentally investigate how the performance of the model changes when MHA
is actually used in place of Transformer’s self-attention module. We take the Vision Transformer
(ViT) as a representative example of an encoder Transformer model and the GPT-2[39] architecture
as a representative example of a decoder Transformer model, and confirm that MHA does indeed
lead to systematic performance improvements in several experiments.

4.1 Architecture with MHA

In the following, we will focus on the simplest case « = «’. It is straightforward to choose both
parameter independently, but consider only this case to reduce the hyperparameters. By using our
update rule instead of the attention layer, a new tensor called the hidden state H, propagates
across the layers. This tensor accumulates the attention score QK in each layer in the form of
an exponential moving average. It is not the original attention score that gives the attention weight,
but the softmax of the hidden state. At the same time, a skip connection with the weight (1 — «)
linked to the coefficient « of the exponential moving average of the hidden state is added according
to equation (1'1;0]), and the balance between the two effects, controlled by «, is considered to determine
the behavior of the MHA. The detailed structure of the architecture corresponding to (I0) is illustrated

in Figure[Tfa).

In the following experiments, we will employ scaled dot-product attention according to the usual
Transformer design and introduce the coefficient ﬁ in the argument of the softmax function.

4.2 Text Generation: GPT-2

To determine the impact of MHA on Transformer performance, we first trained GPT-2 Small(124M)
and Medium(350M) [39]] on text generation task and tested their performance. The dataset used was
WikiText103 [33]. The following experiments in this paper were conducted using up to eight A100
GPUs. The detailed training settings are described in the supplemental material.

To fairly compare the effectiveness of MHA, we trained the GPT-2 architecture and an architecture
in which the self-attention layers of GPT-2 are replaced by MHA in the same setting from scratch
and compared their perplexity. Table[I]shows the results. The interest of this paper is not to create a
SOTA model with detailed hyperparameter tuning, etc., but to see the robustness of the MHA effect,
so o was simply set to 0.5 based on rough hyperparameter search.

As Table|I|shows, there is a clear improvement in perplexity in both the Small and Medium MHA
models. Hopfield networks have often been experimented with in comparison to encoder Transformers
[40], but our result shows that such comparisons is also useful for decoders.

Table 1: Comparison of the perplexity of GPT-2 and its MHA counterpart trained on the WikiText103
dataset for two cases: GPT-2 Small with 124M parameters and GPT-2 Medium with 350M parameters.
In both cases, the introduction of MHA improved the perplexity.

Small(124M) Medium(350M)
self-attention MHA(a = 0.5) | self-attention MHA(«a = 0.5)
22.87 20.70 [ 20.85 19.61




4.3 Text Generation: LLaMA Architecture

To evaluate the effectiveness of Modern Hopfield Attention in more practical text generation architec-
tures, we conducted additional experiments on LLaMA, in addition to GPT-2, using the miniLLaMA
implementation. Furthermore, besides WikiText-103, we individually examined cases where CNN
DailyMail [18] and BookCorpus [56] were used as training datasets. The results are summarized
in Table 2] Even in practical architectures such as LLaMA, whose refined design aims to enhance
performance, MHA was found to exert a consistent improvement in perplexity, demonstrating its
systematic effectiveness beyond simpler baseline models.

dataset | self-attention MHA
WikiText-103 14.49 14.29
DailyMail 19.36 18.97
BoocCorpus 23.76 23.50

Table 2: Comparison of the perplexity of LLaMA and its MHA counterpart (v = 0.5) trained on
various datasets. In all cases, the introduction of MHA led to improved perplexity.

4.4 Image Recognition: ViT

Next, the Vision Transformer (ViT) was employed as the Transformer decoder model, and again to
fairly compare the effect of MHA, two architectures, the ViT architecture and the architecture in
which the self-attention layers of ViT are replaced by MHA, were trained in the same configuration.
We trained these models in image recognition tasks.

The model used in this study is ViT [12]], and the data sets used are CIFAR10/CIFAR100 [29] and
ImageNet-1k [8]. The detailed training setup is shown in the supplemental material.

model size | modeltype [ CIFARIO CIFARIO0

ViT-Tiny(5.5M) self-attention 93.265 73.080

MHA(a = 0.5) 93.015 72.030

MHA(a = 0.7) | 93.775 72.570

ViT-Small(22M) self-attention 95.450 74.485

MHA(« = 0.5) 95.335 75.420

MHA(a = 0.7) 95.440 75.590

ViT-Base(86M) self-attention 96.190 75.360

MHA(a = 0.5) 96.175 76.215

MHA(a =0.7) | 96.490 75.590

ViT-Large(303M) self-attention 96.310 72.910

MHA(a = 0.5) 96.500 75.775

MHA(a =0.7) | 96.690 75.365

Table 3: Experimental results are shown for ViTs and their MHA counterparts. For simple tasks such
as CIFAR10, performance is close to saturation and there is no clear effect of MHA. On the other
hand, for CIFAR100, the performance improvement due to MHA is clear for the larger model. This
is a common property of &« = 0.5 and o = 0.7.

44.1 CIFAR10/100

First, as a simple case, we review the results for CIFAR10 in the left column of the Table |3} for
CIFARI10, the effect of MHA is not clearly visible, partly because the performance is basically close
to saturation due to the ease of the task. However, it is interesting to note that the effect of MHA is
starting to appear in the Base and Large models, which have a high learning capacity. In any case,
CIFARI10 is not a sufficient task for the purpose of observing changes in Transformer performance
with scratch training.

So let’s look at the results for CIFAR100, where the task is more difficult: as shown in Table 3} the
larger the model, the larger and clearer the improvement compared to the baseline ViT. Interestingly,



in both cases of the two « choices shown here, the performance improvement relative to ViT can be
seen when the model is larger than the Small model.

4.4.2 ImageNet-1k

In the experiments on ImageNet-1k, due to computational resource constraints, we adopt ViT-B
(86M) as a model of good enough size to obtain nontrivial training results. The results of 300-epoch
training of ViT-B and its MHA counterpart from scratch with ImageNet-1k are shown in Table
Following the standard training setup, AdamW/[32]] was used for optimizer and cosine decay for
learning rate scheduling. Random erasing[34], mixup[52], cutmix[351]], and RandomAugment[6]]
were used for augmentation. For details, please refer to the supplemental material.

Table 4: Classification validation accuracies for ViT-B(86M) and its MHA counterpart.

Dataset [ self-attention | MHA(a = 0.5) [ MHA(« = 0.7)
ImageNet-1k ‘ 76.074 ‘ 76.434 ‘ 77.058

As shown in Table [d] the performance improvement in ViT-B was also observed in ImageNet-1k.
Although the performance improvement is less than 1%, this performance difference is considered a
non-trivial result compared to the examples in previous studies on ViT improvement. As in previous
experiments, this increase in performance is produced by adding only a small amount of computation
without adding any training parameters. This is an interesting result, which suggests that hidden states
may help improve attention mechanisms. In the next chapter, we will investigate both theoretically
and experimentally regarding how hidden states produce these performance gains.

4.4.3 Downstream Tasks

To evaluate MHA'’s effectiveness across diverse tasks, we measured the transfer performance of a
pre-trained ImageNet model using linear probing. Using a pre-trained ViT and its MHA counterpart
as backbones, we conducted transfer learning experiments on four commonly used downstream
datasets (Oxford Flowers 102 [35], Food-101 [4], Stanford Dogs [27], and Stanford Cars [28]]).
Results in Table[5]show that the MHA variants achieve consistently good transfer performance.

dataset | self-attention MHA
Flower102 81.15 93.85
Food101 74.51 87.99
Stanford dogs 95.00 83.64
Stanford cars 51.54 87.54

Table 5: Comparison of the transfer accuracy of ImageNet-1K pre-trained ViT and its MHA counter-
part (oo = 0.7) on various downstream datasets.

4.5 Effect of Combining o and o/

Our update rule has two hyperparameters « and o, but for simplicity, we have so far restricted
our discussion to the case where both values are equal a = o/. However, as shown in Figure a),
these two quantities essentially work differently. « is a quantity that balances the value after attention
computation and the strength of the skip connections in the attention module. On the other hand, o’
is the coefficient of the exponential moving average in accumulating the attention scores to hidden
states.

A nontrivial result (I0) derived from MCHN is that these two independent effects are simultaneously
added to the Transformer. To see whether these two are really both necessary, or whether they work
in concert, let us try an experiment in which « and o’ are varied independently.

Table [] shows the change in performance when one of the hyperparameters is fixed at 0.5 and the
value of the other is varied. When only « is moved from the original « = 0.5 = o' to @ = 1, the
performance drops to chance-level accuracy. This is evident from the fact that all values except for
the skip connection are set to 0. On the other hand, when « is set to 0, the performance degrades to



Table 6: Performance change of ViT-T when two hyperparameters are changed independently

CAIFAR100 MHA(« = 0.5)

o 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
score | 71.16 71.13 7229 70.77 7212 7213 72.06 72.02 7198 70.72 66.10
CAIFAR100 MHA (o = 0.5)

Q 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
score | 69.89 71.20 71.26 71.64 72.02 7213 7266 70.52 7046 67.70 1.00

69.89. Thus, it can be seen that further performance improvement is realized by adding not only «’
but also . Similarly, when « is fixed, setting o’ to 0 also results in poorer performance.

S How MHA improves Transformers

5.1 Problem and Improvement of Transformer Layers

Next, let us examine why MHA leads to performance gains in various tasks. It is known that as the
depth of Transformer increases, training becomes more difficult and performance tends to saturate
rapidly. The phenomenon of rank collapse has been discussed as one cause of this problem. It
is possible that our model mitigates the problem without explicit regularization or other means.
Therefore, we provide below some theoretical and empirical results that support this hypothesis.

5.1.1 Rank Collapse

It has been observed that as the depth of the Vision Transformer increases, the patch tokens become
extremely similar and rapidly lose diversity [44][55)]. This phenomenon is now understood as
token uniformity, rank collapse, or oversmoothing [[11} 144} 55150, 1361 143} [15} 14, 137, 477, |2} 13ﬂ
Various innovations have been proposed to reduce this problematic phenomenon in order to improve
Transformer performance [44, 155! [2].

Rank collapse [[L1]] is defined as a phenomenon in which Transformer feature rapidly collapses into a
rank 1 matrix with increasing depth. Thus, for the feature X (/) of the L-th layer, rank collapse is
formulated as the property that the residual of deep Transformer feature rapidly converges to zero as
follows

|Res(X M))|| ~ 0 for L > 1, (11)

where Res( X)) is the residual Res(X) = X —1x " for & = arg min, || X —1z " ||. This convergence
means the feature is approximately a rank one matrix X (©) ~ 12 7.

5.2 Theoretical Implication

For a clear theoretical analysis of the causes of rank collapse, we consider a deep network consisting
of only the self-attention layers according to [L1]. It is also straightforward to extend the discussion
to the actual Transformer architecture [[11]]. Let us consider a self-attention-only network consisting
of L layers without skip connection

AttnNet(X) = MHSA o - - - o MHSA(X). (12)
MHSA (X)) is the multi-head self-attention module. The number of heads and embedding dimension
of each MHSA are H and d. In [[L1], this attention-only network has been shown to cause very
serious rank collapse:
Theorem 5.1 ([1L1])). The norm of the residual of attention-only network AttnNet(X) decays as

3L

||Res (AttnNet( X)) ||1,00 < (rC) 2

|Res (X) [I3. (13)

1,007

where r = % and C' is certain constant. This suggests the double exponential decay of the rank.

The rank collapse in [T1]] refers to the phenomenon where the tokens corresponding to each row of a feature
become perfectly proportional vectors. This means perfect token uniformity. On the other hand, the phenomenon
observed in actual Transformers is that many, if not all, tokens are perfectly aligned, forming a group of tokens
with a mutual cosine similarity of 1.



The definition of the norm || - |1, in this paper is the composite of operator norms || X ||1 .o =
VIX 11X oo

In [11]], it was shown that skip connection and the addition of an FFN layer are effective in reducing
this serious collapse. Interestingly, however, even though our MHA is not specifically designed to
prevent rank collapse, it is able to prevent the decay phenomenon in attention-only networks without
any skip connection. Even when removing skip connections completely by setting o = 0, a non-zero
o’ leads to the following mitigation of rank collapse in the attention-only network:

Theorem 5.2. By keeping non-zero o/, the upper-bound of inequality evaluation is improved as
follows

3m_1

|Res (AtnNet(X)) 1,00 < maxZ_o (r(1—a/)Ch) 2 (ra’Ca)” 7™ ||Res(X) |3 7. (14)

This suggests the avoidance of exponential decay.

Proof. See the supplemental material for detailed proof. The sketch of the proof is as follows: by
introducing the hidden state as o’ # 0, the decaying effect of rank by single attention layer can be
evaluated as follows

||Res(MHSA(X) || < max (r1(1 — o/)HRes(X)||37 rgo/||Res(X)||) , (15)

where r1 o = rC 2 and the norm here is || - ||1,00. Notice that the second argument in the max
function significantly reduces the third-order decaying effect in [11]. By applying this inequality
repeatedly over L layers, we obtain the following inequality
3l_1
[Res(AttnNet(X))| < max ((r1(1 —a)) ||Res(X)||3L7 e (rad)” ||Res(X)|> . (16)
where - - - means (r1(1 — o))" ~D/2(rya/)3" E=m) (||Res( X)) form=1,--- ,L—1. O

On the right hand side of this inequality (T4), the m = L term is the very term that created the double
onential decay of the original self-attention mechanism [L1]], but the m = 0 term dominates in
(4

) and relaxes the rank decay to linear decay as (ra’C3)" ||[Res (X)l1,00 since

(ri(1 = a)) " 702 (rpa)> Emm) ([Res( X)) < (r20) " ([Res(X)DE. (A7)

Note that we assume 71 2, ||[Res(X)|| < 1 following the logic of [LI]]. This decaying factor is

controlled by the hidden states of the h-th head of the ¢/-th layer Hy j, = o' Hy—1 ,+(1 —O/)Qe,thTh
and the weight matrix W‘(/%’ ,, Tor the value and output linear projection of attention module as
Cy = maxy maxy, W 1,00 Hen 1

In [[L1], such an effect was created by introducing skip connection, but in the MHA, the hidden state
contribution already produces such an effect without using skip connection. Also, setting o’ = 0
reproduces the double exponential decay results of the original attention-only network (13).

5.3 Empirical Results

Using the theoretical analysis setup used in previous studies, we showed that MHA can effectively
prevent rank collapse in the previous section. However, since these setups are based on several
theoretical simplifications, it is unclear whether the rank collapse reduction also occurs in actual
Transformers. In particular, it is not clear whether the introduction of MHA has any further effect in
usual architectures with skip connection to reduce rank collapse. In this section, we will confirm that
MHA does indeed further reduce rank collapse in a few controlled experiments.

Since the skip-free network was shown to suffer from rank collapse as it gets deeper, let’s examine
the effect of MHA on the actual performance degradation with depth. Table[7]shows the results of
trained models from depths 1 to 12 for the skip-free networks and their MHA versions, and evaluating
their performance. As can be seen from the results in the left column of the table, when the depth
increases beyond 4 layers, the performance drops sharply due to multilayering. On the other hand, for
the models in the right column using MHA, it can be seen that the degradation of the model due to
multilayering is kept at a fairly mild level. Thus, the MHA model can effectively utilize the depth of



Table 7: Changes in performance as skip-free networks based on ViT-T are deepened.
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Figure 2: The violin plots of cosine similarity between tokens in several layers for (a) GPT-2 (Medium)
trained on Wikitext103 and (b) ViT-B trained on CIFAR100. MHA layers with high average similarity
of tokens exist, but tokens with a perfect similarity of 1, as in the case of self-attention, disappear,
preventing their ranks from dropping.

the model than the original model. Therefore, it is highly likely that MHA can significantly improve
rank collapse, which becomes more severe as the network becomes deeper, even in real networks.

Next, let us examine cases of actual Transformer architectures with skip connections and FEN layers.
Figure 2] shows the measured cosine similarity between tokens in several layers for GPT-2 (Medium)
and ViT-B trained on CIFAR100, displayed as violin plots. See the supplementary material for more
detailed plots. It is noteworthy that in the cases of normal GPT-2 and ViT-B, the mode of similarity is
1.0 for all layers, while the violin plot shows a sharp peak around 1.0. This indicates that even with
the addition of the skip connection and FFN layers, there is still a non-negligible token uniformity, or
partial rank collapse. On the other hand, the results for the GPT-2 and ViT models with MHA show
that the peaks in the original models have disappeared and the mode values have been reduced to
very small values. This indicates that MHA does indeed play a role in dramatically removing token
uniformity in GPT-2 and ViT.

6 Conclusion

In this paper, we examine the question of whether new insights can be obtained from the modern
Hopfield network for Transformer. The results showed that by introducing the hidden state of MCHN
into Transformer, a new attention mechanism called MHA, which inherits attention scores from
layer to layer, has been discovered and can be useful for improving ViT and GPT performance.
MHA was also found to play a role in solving the rank collapse problem in deep Transformer. The
MHA’s mechanism to prevent the rank collapse may have contributed to Transformer’s improved
performance. We hope that this research will open new possibilities for the systematic design of
Transformer architectures using Hopfield networks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract reflects the results of Sections[8land 2]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The Supplementary Material describes the limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The Supplementary Material describes proof.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Codes and settings are included in the Supplementary Material.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code and other materials included in the supplemental material will be
released on GitHub after acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: settings and details are included in the Supplementary Material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: Due to the high cost of training Transformer models.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Computational resources are described in§.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The study was conducted in compliance with the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This study is a basic study of the Hopfield network and Transformer, and
therefore does not directly have a broader impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Since this is basic research, such risks are minimal.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: A link to the referenced code is posted at the top of the code.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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