
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REMOVE SYMMETRIES TO CONTROL MODEL EXPRES-
SIVITY

Anonymous authors
Paper under double-blind review

ABSTRACT

When symmetry is present in the loss function, the model is likely to be trapped
in a low-capacity state that is sometimes known as a “collapse.” Being trapped
in these low-capacity states can be a major obstacle to training across many sce-
narios where deep learning technology is applied. We first prove two concrete
mechanisms through which symmetries lead to reduced capacities and ignored
features during training. We then propose a simple and theoretically justified al-
gorithm, syre, to remove almost all symmetry-induced low-capacity states in neu-
ral networks. When this type of entrapment is especially a concern, removing
symmetries with the proposed method is shown to correlate well with improved
optimization or performance. A remarkable merit of the proposed method is that
it is model-agnostic and does not require any knowledge of the symmetry.

1 INTRODUCTION

The unprecedented scale and complexity of modern neural networks, which incorporate a vast num-
ber of neurons and connections, inherently introduce a high degree of redundancy in model param-
eters. This complexity in the architecture and the design of loss functions often implies that the
loss functions are invariant to various hidden and nonlinear transformations of the model parame-
ters. These invariant transformations, or “symmetries,” in the loss function have been extensively
documented in the literature, with common examples including permutation, rescaling, scale, and
rotation symmetries (Simsek et al., 2021; Entezari et al., 2021; Dinh et al., 2017; Neyshabur et al.,
2014; Tibshirani, 2021; Zhao et al., 2023; Godfrey et al., 2022).

A unifying perspective to understand how these symmetries affect learning is the framework of re-
flection symmetries (Ziyin, 2024).1 A per-sample loss function ℓ possesses a P -reflection symmetry
if for all θ, and all data points x,

ℓ((I − 2P)θ, x) = ℓ(θ, x). (1)

The solutions where θ = (I − P)θ are the symmetric solutions with respect to P . It has been shown
that almost all models contain quite a few reflection symmetries. Permutation, rescaling, scale, and
rotation symmetries all imply the existence of one or multiple reflection symmetries in the loss.

Recent literature has shown that symmetries in the loss function of neural networks often lead to the
formation of low-capacity saddle points within the loss landscape (Fukumizu, 1996; Li et al., 2019).
These saddle points are located at the symmetric solutions and often possess a lower capacity than
the minimizers of the loss. When a model encounters these saddle points during training, the model
parameters are not only slow to escape them but also attracted to these solutions because these
the gradient noise also vanish close to these saddles (Chen et al., 2023). Essentially, the model’s
learning process stagnates, and it fails to achieve optimal performance due to reduced capacity.
However, while many works have characterized the dynamical properties of training algorithms
close to symmetric solutions, no methods are known to enable full escape from them.

Because these low-capacity saddles are created by symmetries, we propose a method to explicitly
remove these symmetries from the loss functions of neural networks. The method we propose is
theoretically justified and only takes one line of code to implement. By removing these symmetries,
our method allows neural networks to explore a more diverse set of parameter spaces and access
more expressive solutions. The main contributions of this work are:

1Essentially, this is because the common symmetries in deep learning all contain Z2 as a subgroup.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1. We show how discrete symmetries in the model can severely limit the expressivity of neural
networks in the form commonly known as “collapses” (Section 4);

2. We propose a simple method that provably removes almost all symmetries in neural networks,
without having any knowledge of the symmetry (Section 5);

3. We apply the method to solve a broad range of practical problems where symmetry-impaired
training can be a major concern (Section 6).

We introduce the notations and problem setting for our work in the next section. Closely related
works are discussed in Section 3. All proofs and experimental details are deferred to the appendix.

2 DISCRETE SYMMETRIES IN NEURAL NETWORKS

Notation. For a matrix A, we use A+ to denote the pseudo-inverse of A. For groups U and G,
U ⊲ G denotes that U is a subgroup of G. For a vector θ and matrix D, ∥θ∥2D ∶= θTDθ is the norm
of θ with respect to D. ⊙ denotes the element-wise product between vectors.

Let f(θ, x) be a function of the model parameters θ and input data point x. For example, f could
either be a sample-wise loss function ℓ or the model itself. Whenever f satisfies the following
condition, we say that f has the P -reflection symmetry (general symmetry groups are dealt with in
Theorem 5 in Section 5).
Definition 1. Let P be a projection matrix and θ′ be a point. f is said to have the (θ′, P)-reflection
symmetry if for all x and θ, (1) f(θ + θ′, x) = f((I − 2P)θ + θ′, x), and (2) Pθ′ = θ′.

The second condition is due to the fact that there is a redundancy in the choice of θ′ when θ′ ≠ 0.
Requiring Pθ′ = θ′ removes this redundancy and makes the choice of θ′ unique. Since every pro-
jection matrix can be written as a product of a (full-rank or low-rank) matrix O with orthonormal
columns, one can write P = OOT and refer to this symmetry as an O symmetry. In common deep
learning scenarios, it is almost always the case that θ′ = 0 (for example, this holds for the common
cases of rescaling symmetries, (double) rotation symmetries, and permutation symmetries, see The-
orem 2-4 of Ziyin (2024)). A consequence of θ′ = 0 is that the symmetric projection Pθ of any θ
always has a smaller norm than θ: thus, a symmetric solution is coupled to the solutions of weight
decay, which also favors small-norm solutions. As an example of reflection symmetry, consider a
simple tanh network f(θ, x) = θ1 tanh(θ2x). The model output is invariant to a simultaneous sign
flip of θ1 and θ2. This corresponds to a reflection symmetry whose projection matrix is the identity
P = ((1,0), (0,1)). The symmetric solutions correspond to the trivial state where θ1 = θ2 = 0.

To be more general, we allow θ′ to be nonzero to generalize the theory and method to generic
hyperplanes since the purpose of the method is to remove all reflection symmetries that may be
hidden or difficult to enumerate. Let us first establish some basic properties of a loss function with
P -reflection, to gain some intuition (again, proofs are in the appendix).
Proposition 1. Let f have the (θ′, P)-symmetry and Let f ′(θ) = f(θ + θ†). Then, (1) for any θ†

such that Pθ† = θ′, f(θ + θ†) = f((I − 2P)θ + θ†), and (2) f ′ has the (θ′ − θ†, P) symmetry.

Therefore, requiring Pθ′ = θ′ reduces different manifestations of the symmetry to a unique one and
simply shifting the function will not remove any symmetry. This proposition emphasizes the subtle
difficulty in removing a symmetry.

3 RELATED WORKS

One closely related work is that of Ziyin (2024), which shows that every reflection symmetry in the
model leads to a low-capacity solution that is favored when weight decay is used. This is because
the minimizer of the weight decay is coupled with stationary points of the reflection symmetries –
the projection of any parameter to a symmetric subspace always decreases the norm of the param-
eter, and is thus energetically preferred by weight decay. Our work develops a method to decouple
symmetries and weight decay, thus avoiding collapsing into low-capacity states during training. Be-
sides weight decay, an alternative mechanism for this type of capacity loss is gradient-noise induced
collapse, which happens when the learning rate - batchsize ratio is high (Chen et al., 2023).

Contemporarily, Lim et al. (2024) empirically explores how removing symmetries can benefit neural
network training and suggests a heuristic for removing symmetries by hold a fraction of the weights
unchanged during training. However, the proposed method is only proved to work for explicit

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

permutation symmetries in fully connected layers. This is particularly a problem because most of
the symmetries in nonlinear systems are unknown and hidden (Cariglia, 2014; Frolov et al., 2017). In
sharp contrast, the technique proposed in our work is both architecture-independent and symmetry-
agnostic and provably removes all known and unknown P -reflection symmetries in the loss.

4 SYMMETRY IMPAIRS MODEL CAPACITY

We first show that reflection symmetry directly affects the model capacity. For simplicity, we let
θ′ = 0 for all symmetries. Let f(x, θ) ∈ R be a Taylor-expandable model that contains a P -reflection
symmetry. Let ∆ = θ − θ0. Then, close to any symmetric point θ0 (any θ0 for which Pθ0 = 0), for
all x, Ziyin (2024) showed that

f(x, θ) − f(x, θ0) =∇θf(x, θ0)(I − P)∆ +O(∥P∆∥)2
´¹¹¸¹¹¹¶

Symmetry subspace

+ 1
2
∆TPH(x)P∆ +O(∥∆∥3)
´¹¹¸¹¹¹¶

Symmetry-broken subspace

, (2)

where H(x) is the Hessian matrix of f . An important feature is that the symmetry subspace is a
generic expansion where both odd and even terms are present, and the first order term does not vanish
in general. In contrast, in the symmetry-broken subspace, all odd-order terms in the expansion
vanish, and the leading order term is the second order. This implies that close to a symmetric
solution, escaping from it will be slow, and if at the symmetric solution, it is impossible for gradient
descent to leave it. The effect of this entrapment can be quantified by the following two propositions.
Proposition 2. (Symmetry removes feature.) Let f have the P -symmetry, and θ be intialized at θ0
such that Pθ0 = 0. Then, the kernalized model, g(x, θ) = limλ→0(λ−1f(x,λθ + θ0) − f(x, θ0)),
converges to

θ∗ = A+∑
x

∇θf(x, θ0)T y(x) (3)

under GD for a sufficiently small learning rate. Here A ∶= (I −P)∑x∇θf(x, θ0)T∇θf(x, θ0)(I −
P) and A+ denotes the Moore–Penrose inverse of A.

Figure 1: Training loss ℓ as a function of
the iteration t for a fully connected network
on MNIST. Starting from a low-capacity
state, vanilla neural networks are trapped un-
der SGD or Adam training (left). Blacker
lines correspond to higher-capacity initial-
izations, where more neurons are away from
the permutation-symmetric state. When the
symmetries are removed, the capacity of the
initialization no longer affects the solution
found at the end of the training (right).

This means that in the kernel regime2, being at a sym-
metric solution implies that the feature kernel features are
being masked by the projection matrix:

∇θf(x, θ0) → (I − P)∇θf(x, θ0), (4)

and learning can only happen given these masks. This
implies that the model is not using the full feature space
that is available to it.
Proposition 3. (Symmetry reduces parameter dimen-
sion.) Let f have the P -symmetry, and θ ∈ Rd be in-
tialized at θ0 such that Pθ0 = 0. Then, for all time steps
t under GD or SGD, there exists a model f ′(x, θ′) and
sequence of parameters θ′t such that for all x,

f ′(x, θ′t) = f(x, θt), (5)

where dim(θ′) = d − rank(P).

The existence of this type of dimension reduction when
symmetry is present has also been noticed by previous
works in case of permutation symmetry (Simsek et al.,
2021). Intuitively, the above two results follow from the fact that the symmetric subspaces of reflec-
tion symmetries (and any general discrete symmetries) are a linear subspace, and so gradient descent
(and thus gradient flow) cannot take the model away from it, despite the discretization error. This
means that, essentially, the model is identical to a model with a strictly smaller dimension through-
out its training, no matter whether the training is through GD or SGD. When there are multiple
symmetries, there is a compounding effect. An alternative perspective to this problem is through the
classical framework of singular learning theories, where each symmetry corresponds to a singularity
and directly affects the asymptotic performance of the model (Watanabe & Opper, 2010).

2Technically, this is the lazy training limit (Chizat et al., 2018).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

See Figure 1 for an illustration. We initialize a two-layer ReLU neural network on a low-capacity
state where a fraction of the hidden neurons are identical (corresponding to the symmetric states of
the permutation symmetry) and train with and without removing the symmetries. We see that when
the symmetries are removed (with the method proposed in the next section), the model is no longer
stuck at these neuron-collapsed solutions.

5 REMOVING SYMMETRY WITH STATIC BIAS

Next, we prove that a simple algorithm that involves almost no modification to any deep learning
training pipeline can remove almost all such symmetries from the loss without creating new ones.
From this section onward, we will consider the case where the function under consideration is the
loss function (a per-batch loss or its expectation): f = ℓ.

5.1 COUNTABLE SYMMETRIES

We seek an algorithm that eliminates the reflection symmetries from the loss function ℓ. This sub-
section will show that when the number of reflection symmetries in the loss function is finite, one
can completely remove them using a simple technique. The symmetries are required to have the
following property and the loss function is assumed to obey assumption 1.
Property 1. (Enumeratability) There exists a countable set of pairs of projection matrices and
biases S = {(θ†

i , Pi)}Ni such that ℓ(θ, x) has the θ†
i -centric Pi-reflection symmetry for all i. In

addition, ℓ does not have any (θ†, P) symmetry for (θ,P) ∉ S.

Assumption 1. There only exists countably many pairs (c0, θ̃) such that g(x) = ℓ(θ, x) − c0θ

contains a θ̃-centric P symmetry, where we require Pc0 = c0 and P θ̃ = θ̃.

This assumption is satisfied by common neural networks with standard activations. The main pur-
pose of this assumption is to rule out the pathological of a linear or quadratic deterministic objective,
which never appears in practice or for which symmetry is not a concern.3

For symmetry removal, we propose to utilize the following alternative loss function. Let θ0 be drawn
from a Gaussian distribution with variance σ0 and ℓ be the original loss function:

ℓr(θ, x) = ℓ(θ + θ0) + γ∥θ∥2. (6)

γ is nothing but the standard weight decay. We will see that using a static bias along with weight
decay is essential for the method to work. We find that with unit probability, the loss function ℓr
contains no reflection symmetry:
Theorem 1. Let ℓ satisfy Property 1 and Assumption 1. Then, with probability 1 (over the sampling
of θ0), there exists no projection matrix P and reflection point θ′ such that ℓr has the (θ′, P)-
symmetry.

The core mechanism of this theorem is decoupling of the solutions of the symmetries from the solu-
tions of the weight decay. With weight decay, a solution with a small norm is favored, whereas with
a random bias, the symmetric solutions are shifted by a small constant and no longer overlap with
solutions that have a small norm. Equivalently, this method can be implemented as a random bias in
the L2 regularization: ℓr(θ, x) = ℓ(θ)+γ∥θ+ θ0∥2. This is a result of the fact that simple translation
does not change the nature of the function. There are two remarkable parts of the theorem: (1) it not
only removes all existing symmetries but also guarantees that there are no remaining ones; (2) the
proof works as long as θ0 is nonzero. This hints at the possibility of using a small and random θ0,
which removes all symmetries in principle and also does not essentially affect the solutions of the
original objective. In this work, we will refer to the method in Eq. (6) as syre, an abbreviation for
“symmetry removal.”

5.2 UNCOUNTABLY MANY SYMMETRIES

In deep learning, it is possible for the model to simultaneously contain infinitely many reflection
symmetries. This happens, for example, when the model parameters have the rotation symmetry
or the double rotation symmetry (common in self-supervised learning problems or transformers). It

3An example that violates this assumption is when ℓ(θ, x) = cT0 θ. ℓ(θ, x) − cT0 θ has infinitely many
reflection symmetries everywhere and for every data point because it is a constant function.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

turns out that adding a static bias and weight decay is not sufficient to remove all symmetries, but
we will show that a simple modification would suffice.

We propose to train on the following alternative loss instead, where ar stands for “advanced re-
moval”:

ℓar(θ) = ℓ(θ + θ0) + γ∥θ∥2D, (7)
where D is a positive diagonal matrix in which all diagonal elements of D are different. The simplest
way to achieve such a D is to set Dii ∼ Uniform(1 − ϵ,1 + ϵ), where ϵ is a small quantity.
Theorem 2. Any (θ′, P)-symmetry that ℓar satisfies obeys: (1) Pθ0 = θ′ (2) and PD =DP .
Conditions (1) and (2) implies that there are at most finitely many (θ′, P)-symmetry ℓar can have.
When there does not exist any symmetry that satisfies this condition, we have removed all the sym-
metries. In the worst case where ℓ is a constant function, there are 2N symmetries where N is
the number of reflection symmetries. If we further assume that every P is associated with at most
finitely many θ′, then we, again, remove all symmetries with probability 1. The easiest way to
determine this D matrix is through sampling from a uniform distribution with a variance σD ≪ 1.

5.3 STRENGTH OF SYMMETRY REMOVAL

While any level of θ0 and σD are sufficient to remove the symmetries, one might want to quantify
the degree to which the symmetries are broken. This is especially relevant when the model is located
close to a symmetric solution and requires a large gradient to escape from it. Also, a related question
that may arise in practice is how large one should choose σ0 and σD, which are the variances of θ0
and D. The following theorem gives a quantitative characterization of the degree of symmetry
breaking.4

Theorem 3. Let the original loss satisfy a (θ∗, P)-symmetry, where θ∗ ∈ Rd. Then, for any local
minimum θ ∈ Θ(1), if σD = o(σ0) and Pθ ≠ 0,

∆ ∶= 1

∥Pθ∥
[ℓar(θ + θ∗) − ℓar((I − 2P)θ + θ∗)] = Ω(γσ0). (8)

This theorem essentially shows a “super-Lipschitz” property of the difference between the loss func-
tion values between parameters and their reflections. This means that with a random bias, the sym-
metry will be quite strongly removed, as long as we ensure σD ≪ σ0, which is certainly ensured
when σD = 0. As a corollary, it also shows that after applying a static bias, no symmetric solution
where Pθ = 0 can still be a stationary point because as Pθ → 0, the quantity ∆ converges to the
projection of the gradient onto symmetry breaking subspace.
Corollary 1. For any θ such that Pθ = 0, P∇θℓar = Ω(γσ0).

Now, the more advanced question is the case when there are multiple reflection symmetries, and one
wants to significantly remove every one of them.
Theorem 4. Let ℓ contain N reflection symmetries: {(Pi, θ

∗
i)}Ni=1. Let

∆i ∶=
ℓar(θ + θ∗i) − ℓar((I − 2Pi)θ + θ∗i)

∥Piθ∥
. (9)

Then, for any local minimum θ ∈ Θ(1), letting γσ0 = Ω (2ϵN1−δ) guarantees that Pr(mini ∣∆i∣ > ϵ) > δ
for any ϵ and δ < 1.
In the theorem, the probability is taken over the random sampling of the static bias. Namely, the
achievable strengths of symmetry-breaking scales inversely linearly in N , the size of the minimal set
of the entire group generated by N reflections. In general, without further assumptions there is no
way to improve this scaling because, for example, the smallest of N independent bounded variables
roughly scales as 1/N towards its lower boundary.

General Groups. Lastly, one can generalize the theory to prove that the proposed method removes
symmetries from a generic group. Let G be the linear representation of a generic finite group,
possibly with many nontrivial subgroups. If the loss function ℓ is invariant under transformation by
the group G, then

∀g, ℓ(θ) = ℓ(gθ). (10)
4Because θ0 and D are randomly sampled, the big-O notation x ∈ O(z) is used to mean that as the scaling

parameter tends to infinity, ∃c0 such that Pr(∥x∥ < c0z) → 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Because G is finite, it follows that the representations g must be full-rank and unipotent.

The following theorem shows that at every symmetric solution, there exists an escape direction with
a strong gradient that pulls the parameters from every subgroup of the related symmetry. In other
words, it is no longer possible to be trapped in a symmetric solution. While general groups appear
less common in deep learning scenarios, they exist in a lot of application scenarios with equivariant
networks (Cohen & Welling, 2016), where it is common to incorporate generic group structures into
the model.

Letting U be a subgroup of G, we denote with the overbar the following matrix:

U = 1

∣U ∣ ∑u∈U
u. (11)

Note that U is a projection matrix: U U = U . This means that I − U is also a projection matrix.
Importantly, U projects a vector into the symmetric subspace. For any u ∈ U , uU = U . Likewise,
I − U projects any vector into the symmetry-broken subspace, a well-known result in the theory of
finite groups (Gorenstein, 2007). We denote by

∆V = ∥(I − V)∇θℓ∥ (12)

the strength of the symmetry removal for the subgroup V .
Theorem 5. Let Γ(G) denote the smallest minimal generating set for the group G. Z denotes the
number of minimal subgroups of G. Let ℓ be invariant under the group transformation G and let θ
be in the invariant subspace of a subgroup U ⊲ G. Then, for every subgroup V ⊲ U ⊲ G,
1. ∆V = Ω(γσ0rank(I − V));
2. minV ⊲U ∆V = Ω(γσ0rank(I − V)Z−1);
3. if G is abelian, minV ⊲U ∆V = Ω(γσ0rank(I − V)∣Γ(U)∣−1);5

4. additionally, for any ϵ > 0 and δ < 1, Pr(minV ⊲U ∆V > ϵ) > δ, if γσ0 = Ω (2ϵ∣Γ(U)∣1−δ).

Item (2) of the theorem is essentially due to the fact that removing symmetries from a larger group
can be reduced to removing them from one of its subgroups. Conceptually, this result has the same
root as the classical theory of combinatorial designs, where averaging over a subset of groups has the
same effect as averaging over the whole group (Lindner & Rodger, 2017). In general, 1 ≤ Z ≤ ∣G∣
(and sometimes≪ ∣G∣), and so this scaling is not bad. For the part (3) of the theorem, the term ∣Γ(U)∣
is especially meaningful. It is well-known that ∣Γ(U)∣ ≤ log ∣U ∣, and so the worst-case symmetry-
breaking strength is only of order 1/ log ∣U ∣, which is far slower than what one would expect. In fact,
for a finite group with size N , the number of subgroups can grow as fast as N logN (Borovik et al.,
1996), and thus, one might naively think that the minimal breaking strength decreases as N− logN .
This theorem shows that the proposed method is highly effective at breaking the symmetries in the
loss function or the model.

Figure 2: With the proposed
method, the robustness of the fea-
ture increases with the input di-
mension. The same may happen
under vanilla weight decay, but
the effect is not strong. The co-
variance matrix is measured from
the first-layer output with batch
size 1000, and we set eigenval-
ues larger than 10−4 to zero.

A numerical example is shown in Figure 2, which validates a ma-
jor prediction of the theorem: a symmetry is easier to remove if it
is high-dimensional. We train a two-layer ReLU net in a teacher-
student scenario and change the input dimension. This experiment
holds the number of (permutation) symmetries fixed and directly
controls rank(I − V). As the input dimension increases, the sym-
metry of the learned model becomes lower. In comparison, without
a static bias, having a high dimension is not so helpful.

5.4 HYPERPARAMETER AND IMPLEMENTATION REMARK

As discussed, there are two ways to implement the method (Eq. (6)
or Eq. (7)). In our experiments, we stick to the definition of Eq. (6),
where the model parameters are biased, and weight decay is the
same as the standard implementation. For the choice of hyperpa-
rameters, we always set σD = 0 as we find only introducing σ0 to

5This result can be generalized to the case where all projectors V̄ commute with each other, even if G is
nonabelian. Namely, this is a consequence of the properties of the representations of G and of G itself.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Training with syre in standard settings. The result shows that biasing the models by a small static
bias does not change the performance of standard training settings. Left: Application of the method to a linear
regression problem. Here, α−1 = d/N is the degree of parameterization. A well-known use of weight decay is
to prevent double descent when α = 1. Here, we see that the proposed method works as well as vanilla weight
decay. Because there is no reflection symmetry in the problem, the proposed method should approximate
vanilla weight decay. Mid: Test accuracy of Resnet18 on the CIFAR-10 datasets. The blue line denotes the
performance of Resnet, and the shadowed area denotes its standard deviation estimated over 10 trials. For
σ0 < 0.2, there is no significant difference between the performance of the vanilla Resnet and syre Resnet.
Right: linear regression with a redundant parametrization (Poon & Peyré, 2021). The loss function takes the
form ℓ(u,w) = ∥(u⊙w)Tx − y∥2. Due to symmetry, the point (ui,wi) = 0 is a low-capacity state where the
i-th neuron is “dead”. Training with style, the model stayed away from any trapping low-capacity state during
training. In comparison, training with vanilla SGD or a heuristic for fixing the weights does not fix the problem
of collapsing to a low-capacity state.

be sufficient for most tasks. Experiments with standard training settings (see the next section for
the Resnet18 experiment on CIFAR-10) show that choosing σ0 to be at least an order of magnitude
smaller than the standard initialization scale (usually of order 1/

√
d for a width of d) works the best.

We thus recommend a default value of σ0 to be 0.01/
√
d, where 1/d is the common initialization

variance. For the rest of the paper, we state σ0 in relative units of
√
d
−1

for this reason. That being
said, we stress that σ0 is a hyperparameter worth tuning, as it directly controls the tradeoff between
optimization and symmetry removal.

6 EXPERIMENT

First, we show that the proposed method is compatible with standard training methods. We then
apply the method to a few settings where symmetry is known to be a major problem in training. We
see that removing symmetries with the proposed method is well correlated with improved model
performance for these problems.

6.1 COMPATIBILITY WITH STANDARD TRAINING

Ridge linear regression. Let us first consider the classical problem of linear regression with d-
dimensional data, where one wants to find minw∑i(wTxi − yi)2. Here, the use of weight decay
has a well-known effect of preventing the divergence of generalization loss at a critical dataset size
N = d (Krogh & Hertz, 1992; Hastie et al., 2019). This is due to the fact that the Hessian matrix
of the loss becomes singular exactly at N = d (at infinite N and d). The use of weight decay shifts
all the eigenvalues of the Hessian by γ and removes this singularity. In this case, one can show that
the proposed method is essentially identical to the simple ridge regression. The ridge solution is
w∗ = E[γI +A]−1E[xy], where A = E[xxT], and the solution to the biased model is

w∗ = E[γI +A]−1(E[xy] + γθ0). (13)

The difference is negligible with the original solution if either γ and θ0 are small. See Figure 3-left.

Reparametrized Linear Regression. A minimal model with emergent interest in the problem
of compressing neural networks is the reparametrized version of linear regression (Poon & Peyré,
2021), the loss function of which is ℓ(u,w) = ∥(u ⊙ w)Tx − y∥2, where we let u, w, x ∈ R200

and y ∈ R. Due to the rescaling symmetry between every parameter ui and wi, the solutions where
ui = wi = 0 is a low-capacity state where the i-th neuron is “dead.” For this problem, we compare
the training with standard SGD and syre. We also compare with a heuristic method (W-fix), where a
fraction ϕ = 0.3 of weights of every layer is held fixed with a fixed variance κ = 0.01 at initialization.
This method has been suggested in Lim et al. (2024) as a heuristic for removing symmetries and is

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: The degree of symmetry versus the objective value for two choices of B and various training methods
with different hyperparameters. The proposed method is the only method to smoothly interpolate between
optimized solutions and solutions with low symmetry. syre performs well in both cases. Left: objective with
unstructured symmetry Right: structured symmetry.
found to work well when there is permutation symmetry. We see that both the vanilla training
and the W-fix collapse to low-capacity states during training, whereas the proposed method stayed
away from them throughout. The reason is that the proposed method is model-independent and
symmetry-agnostic, working effectively for any type of possibly unknown symmetry in an arbitrary
architecture.
ResNet. We also benchmark the performance of the proposed method for ResNet18 with different
σ0 on the CIFAR-10 datasets in Figure 3. When σ0 = 0, the syre model is equivalent to the vanilla
model. Figure 3 shows that the difference in performance between the vanilla Resnet and syre
Resnet is very small and becomes neglectable when σ0 < 0.2. We thus recommend a default value
of σ0 ≤ 0.01/

√
d.

6.2 BENCHMARKING SYMMETRY REMOVAL

In this section, we benchmark the effect of symmetry control of the proposed method for two con-
trolled experiments. To compare the influence of syre and other training methods on the degree of
symmetry, we consider minimizing the following objective function:

(wTw)2 −wTBw ∶= (wTw)2 −
d

∑
i=1

λi(vTi w)2,

where w ∈ Rd is the optimization parameter and B ∈ Rd×d is a given symmetric matrix with eigen-
values λi and eigenvectors vi (vTi vi = 1). The objective function has n reflection symmetries
Piw ∶= w − 2(vTi w)vi. Hence, we define the degree of symmetry as ∑d

i=1 1{vTi w < cth}, where
cth is a given threshold. Depending on the spectrum of B, the nature of the task is different. We
thus consider two types of spectra: (1) an unstructured spectrum where B = G +GT for a Gaussian
matrix G, and (2) a structured spectrum where B = diag(v) where v is a random Gaussian vec-
tor. Conceptually, the first type is more similar to rotation and double rotation symmetries in neural
networks where the basis can be arbitrary, while the second is a good model for common discrete
symmetries where the basis is often diagonal or sparse. For the first case we choose cth = 10−3 and
for the second case we choose cth = 10−1.

In Figure 4, we compare syre, W-fix, drop out, weight decay, and the standard training methods in
this setting for d = 1000 and two choices of B. In both cases, we use Gaussian initialization and
gradient descent with a learning rate of 10−4. For syre and weight decay, we choose weight decay
from 0.1 to 10. For W-fix, we choose ϕ from 0.001 to 0.1. For dropout, we choose a dropout rate
from 0.01 to 0.6. Figure 4 shows that for both cases, syre is the only method that effectively and
smoothly interpolates between solutions with low symmetry and best optimization. This is a strong
piece of evidence that the proposed method can control the degree of symmetries in the model.

6.3 FEATURE AND NEURON COLLAPSES IN SUPERVISED LEARNING

See Figure 5, where we train the vanilla and syre four-layer networks with various levels of weight
decay γ and various levels of input-output covariance α. The dataset is constructed by rescaling the
input by a factor of α for the MNIST dataset. The theory predicts that the syre model can remove
the permutation symmetry in the hidden layer. This is supported by subfigures in Figure 5, where
vanilla training results in a low-rank solution. Meanwhile, the accuracy of the low-rank solution is
significantly lower for a large γ or a small α, which corresponds to the so-called neural collapses.
Also, we observe that syre shifts the eigenvalues of the representation by a magnitude proportional
to σ0, thus explaining the robustness of the method against collapses in the latent representation (See
Figure 8).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Performance of a 4-layer FCN for datasets with various weight decay γ and data distributions with
varyings strengths of linear correlation α. As the theory predicts, the covariance of the model with vanilla
weight decay has a low-rank structure and performs significantly worse. In the main figures, solid lines denote
training accuracy and dashed lines denote test accuracy. The dashed black line corresponds to random guess.
Subfigures show the rank of the covariance matrix of the first layer output before (solid lines) and after (dashed
lines) activation with batch size 1000. We set eigenvalues smaller than 10−4 to 0. Left: α = 1 and different γ.
Right: γ = 0.01 and different α.

Hyperparameter Low-rankness Penult. Layer Acc. Last Layer Acc.
vanilla - 70% 46.8% 22.2%

syre σ0 = 0.1 0% 46.8% 31.7%
σ0 = 0.01 0% 46.2% 32.5%

σ0 = 0.1, all layers 0% 44.6% 30.7%
σ0 = 0.01, all layers 0% 45.4% 32.4%

Table 1: Performance of the linearly evaluated Resnet18 on CIFAR100 for the unsupervised self-constrastive
learning task. Here, the low-rankness measures the proportion of eigenvalues smaller than 10−5. Our experi-
ment indicates that symmetry-induced reduction in model capacity can explain about 50% of the performance
difference between the representation of the two layers.

6.4 POSTERIOR COLLAPSE IN BAYESIAN LEARNING

Wang & Ziyin (2022) points out that a type of posterior collapse in Bayesian learning (Lucas et al.,
2019; Wang et al., 2021) is caused by the low-rankness of the solutions. We show that training
with syre could overcome this kind of posterior collapse. In Figure 9, we train a β-VAE (Kingma
& Welling, 2013; Higgins et al., 2016) on the Fashion MNIST dataset. Following Wang & Ziyin
(2022), we use β to weigh the KL loss, which can be regarded as the strength of prior matching. Both
the encoder and the decoder are a two-layer network with SiLU activation. The hidden dimension
and the latent dimension are 200. Only the encoder has weight decay because the low-rank problem
is caused by the encoder rather than the decoder. We also choose the prior variance of the latent
variable to be ηenc = 0.01. Other settings are the same as Wang & Ziyin (2022). Posterior collapse
happens at β = 10, signalized by a large reconstruction loss in the right side of Figure 9. However,
the reconstruction loss decreases, and the rank of the encoder output increases (according to the left
side of Figure 9) after we use weight decay and syre. This is further verified by the generated image
in Figure 10. Therefore, we successfully remove the permutation symmetry of the encoder.

6.5 LOW-CAPACITY TRAP IN SELF-SUPERVISED LEARNING

A common but bizarre practice in self-supervised learning (SSL) is to throw away the last layer of
the trained model and use the penultimate learning representation, which is found to have much bet-
ter expressiveness than the last layer representation. From the perspective of symmetry, this problem
is caused by the rotation symmetry of the last weight matrix in the SimCLR loss. We train a Resnet-
18 together with a two-layer projection head over the CIFAR-100 dataset according to the setting
for training SimCLR in Chen et al. (2020). Then, a linear classifier is trained using the learned rep-
resentations. Our implementation reproduces the typical accuracy of SimCLR over the CIFAR-100
dataset (Patacchiola & Storkey, 2020). As in Chen et al. (2020), the hidden layer before the pro-
jection head is found to be a better representation than the layer after. Therefore, we apply our syre
method to the projection head or to all layers. According to Table 1, syre removes the low-rankness
of the learned features and increases the accuracy trained with the features after projection while not
changing the representation before projection. Thus, symmetry-induced reduction in model capacity
can explain about 50% of the performance difference between the representation of the two layers.
Also, an interesting observation is that just improving the expressivity of the last layer is insufficient

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 6: Loss of plasticity in continual learning in an RL setting. We use the PPO algorithm (Schulman et al.,
2017) to solve the Slippery-Ant problem (Dohare et al., 2023). The rank and the performance of the vanilla
PPO decrease quickly, while the rank and the performance of PPO with syre remain the same, beyond that
of PPO with weight decay. Left: the effective rank of the policy network as defined in Dohare et al. (2023).
Right: returns. Each trajectory is averaged over 5 different random seeds.

to close the gap between the performance of the last layer and the penultimate layer. This helps us
gain a new insight: symmetry is not the only reason why the last layer representation is defective.

6.6 LOSS OF PLASTICITY IN CONTINUAL LEARNING

A form of low-capacity collapse also happens during continual learning, i.e., the plasticity of the
network gradually decreases as the model is trained on more and more tasks. This problem is
common in both supervised and reinforcement learning settings and may also be relevant to the
finetuning of large language models (McCloskey & Cohen, 1989; Ash & Adams, 2020; Dohare
et al., 2021; Abbas et al., 2023).

Supervised Learning. In Figure 11, we train a CNN with two convolution layers (10 channels
and 20 channels) and two fully connected layers (320 units and 50 units) over the MNIST datasets.
For the data, we randomly permute the pixels of the training and test sets for 9 times, forming
10 different tasks (including the original MNIST). We then train a vanilla CNN and a syre CNN
over the 10 tasks continually with SGD and weight decay 0.01. The inset of Figure 11 shows that
the rank of the original model gradually decreases, but the syre model remains close to full rank.
Correspondingly, in the right side of Figure 11, the accuracy over the test set drops while the rank
of the original model collapses, but the accuracy of the syre model remains similar.

Reinforcement Learning. In Figure 6, we use the PPO algorithm for the Slippery-Ant problem
(Dohare et al., 2023), a continual variant of the Pybullet’s Ant problem (Coumans & Bai, 2016) with
friction that changes every 5M steps. Hyperparameters for the PPO algorithm are borrowed from
Dohare et al. (2023), and we use a weight decay of 0.002 for both PPO with weight decay and with
syre. Figure 6 suggests that syre is effective in maintaining the rank of the model during continual
training and obtains better performance than pure weight decay.

7 CONCLUSION

Symmetry-induced neural-network training problems exist extensively in machine learning. We
have shown that the existence of symmetries in the model or loss function may severely limit the
expressivity of the trained model. We then developed a theory that leverages the power of repre-
sentation theory to show that adding random static biases to the model, along with weight decay, is
sufficient to remove almost all symmetries, explicit or hidden. We have demonstrated the relevance
of the method to a broad range of applications in deep learning, and a possible future direction is to
deploy the method in large language models, which naturally contain many symmetries. Lastly, it
is worth noting that on its own, symmetry is neither good nor bad. For example, practitioners may
be interested in introducing symmetries to the model architecture in order to control the capacity
of the model. However, with too much symmetry, the training of models becomes slow and likely
to contain many low-capacity traps. Meanwhile, a model completely without symmetry may have
undesirably high capacity and be more prone to overfitting. Having the right degree of symmetry
might thus be crucial for achieving both smooth optimization and good generalization. With our
proposed method, it becomes increasingly possible to deliberately fine-grain engineer symmetries
in the loss function, introducing desired symmetries and removing undesirable ones.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
in continual deep reinforcement learning. arXiv preprint arXiv:2303.07507, 2023.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. Advances in neural
information processing systems, 33:3884–3894, 2020.

Alexandre Borovik, Laszlo Pyber, and Aner Shalev. Maximal subgroups in finite and profinite
groups. Transactions of the American Mathematical Society, 348(9):3745–3761, 1996.

Marco Cariglia. Hidden symmetries of dynamics in classical and quantum physics. Reviews of
Modern Physics, 86(4):1283, 2014.

Feng Chen, Daniel Kunin, Atsushi Yamamura, and Surya Ganguli. Stochastic collapse: How gradi-
ent noise attracts sgd dynamics towards simpler subnetworks. arXiv preprint arXiv:2306.04251,
2023.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
arXiv preprint arXiv:1812.07956, 2018.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International confer-
ence on machine learning, pp. 2990–2999. PMLR, 2016.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning, 2016.

L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio. Sharp Minima Can Generalize For Deep Nets. ArXiv
e-prints, March 2017.

Shibhansh Dohare, Richard S Sutton, and A Rupam Mahmood. Continual backprop: Stochastic
gradient descent with persistent randomness. arXiv preprint arXiv:2108.06325, 2021.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Parash Rahman, Richard S Sutton, and A Rupam
Mahmood. Maintaining plasticity in deep continual learning. arXiv preprint arXiv:2306.13812,
2023.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296,
2021.

Valeri P Frolov, Pavel Krtouš, and David Kubizňák. Black holes, hidden symmetries, and complete
integrability. Living reviews in relativity, 20:1–221, 2017.

Kenji Fukumizu. A regularity condition of the information matrix of a multilayer perceptron net-
work. Neural networks, 9(5):871–879, 1996.

Charles Godfrey, Davis Brown, Tegan Emerson, and Henry Kvinge. On the symmetries of deep
learning models and their internal representations. Advances in Neural Information Processing
Systems, 35:11893–11905, 2022.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empiri-
cal investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Daniel Gorenstein. Finite groups, volume 301. American Mathematical Soc., 2007.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. 2016.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Seijin Kobayashi, Yassir Akram, and Johannes Von Oswald. Weight decay induces low-rank atten-
tion layers. arXiv preprint arXiv:2410.23819, 2024.

Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In Advances
in neural information processing systems, pp. 950–957, 1992.

Xingguo Li, Junwei Lu, Raman Arora, Jarvis Haupt, Han Liu, Zhaoran Wang, and Tuo Zhao. Sym-
metry, saddle points, and global optimization landscape of nonconvex matrix factorization. IEEE
Transactions on Information Theory, 65(6):3489–3514, 2019.

Derek Lim, Moe Putterman, Robin Walters, Haggai Maron, and Stefanie Jegelka. The empirical
impact of neural parameter symmetries, or lack thereof. arXiv preprint arXiv:2405.20231, 2024.

Charles C Lindner and Christopher A Rodger. Design theory. Chapman and Hall/CRC, 2017.

James Lucas, George Tucker, Roger Grosse, and Mohammad Norouzi. Don’t blame the elbo! a
linear vae perspective on posterior collapse, 2019.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Massimiliano Patacchiola and Amos J Storkey. Self-supervised relational reasoning for representa-
tion learning. Advances in Neural Information Processing Systems, 33:4003–4014, 2020.

Clarice Poon and Gabriel Peyré. Smooth bilevel programming for sparse regularization. Advances
in Neural Information Processing Systems, 34:1543–1555, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Berfin Simsek, François Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram Gerst-
ner, and Johanni Brea. Geometry of the loss landscape in overparameterized neural networks:
Symmetries and invariances. In International Conference on Machine Learning, pp. 9722–9732.
PMLR, 2021.

Ryan J Tibshirani. Equivalences between sparse models and neural networks. Working Notes. URL
https://www. stat. cmu. edu/˜ ryantibs/papers/sparsitynn. pdf, 2021.

Yixin Wang, David Blei, and John P Cunningham. Posterior collapse and latent variable non-
identifiability. Advances in neural information processing systems, 34:5443–5455, 2021.

Zihao Wang and Liu Ziyin. Posterior collapse of a linear latent variable model. Advances in Neural
Information Processing Systems, 35:37537–37548, 2022.

Sumio Watanabe and Manfred Opper. Asymptotic equivalence of bayes cross validation and widely
applicable information criterion in singular learning theory. Journal of machine learning research,
11(12), 2010.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kentaro Yoshioka. vision-transformers-cifar10: Training vision transformers (vit)
and related models on cifar-10. https://github.com/kentaroy47/
vision-transformers-cifar10, 2024.

Bo Zhao, Robert M Gower, Robin Walters, and Rose Yu. Improving convergence and generalization
using parameter symmetries. arXiv preprint arXiv:2305.13404, 2023.

Liu Ziyin. Symmetry induces structure and constraint of learning. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
7AF0AMI4AE.

13

https://github.com/kentaroy47/vision-transformers-cifar10
https://github.com/kentaroy47/vision-transformers-cifar10
https://openreview.net/forum?id=7AF0AMI4AE
https://openreview.net/forum?id=7AF0AMI4AE

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A THEORETICAL CONCERNS

A.1 PROOF OF PROPOSITION 1

Proof. Part (1). Note that we have

θ† = Pθ† + (I − P)θ† = θ′ + (I − P)θ†. (14)

Thus,
(I − 2P)(I − P)θ† = (I − P)θ†. (15)

Therefore, we have

f(θ + θ†) = f((θ + (I −P)θ†) + θ′) = f((I − 2P)(θ + (I −P)θ†) + θ′) = f((I − 2P)θ + θ†). (16)

This proves part (1).

Part (2). By definition,

f ′(θ − θ† + θ′) = f(θ + θ′) (17)

= f((I − 2P)θ + θ′) (18)

= f ′((I − 2P)θ − θ† + θ′). (19)

This completes the proof.

A.2 PROOF OF PROPOSITION 2

Proof. By (2), g(x, θ) simplifies to a kernel model

g(x, θ) = ∇θ0f(x, θ0)(I − P)θ. (20)

Let us consider the squared loss ℓ(θ) = ∑x ∣∣y(x) − g(x, θ)∣∣2 and denote A ∶= ∑x(I −
P)∇θ0f(x, θ0)T∇θ0f(x, θ0)(I − P), b ∶= (I − P)∑x∇θ0f(x, θ0)T y(x). Assuming the learning
rate to be η, the GD reads

θt+1 = θt − 2η(Aθt − b), (21)

where θ0 = 0. If

η < 1

2λmax(A)
, (22)

GD converges to

θ∗ = lim
t→∞

t

∑
k=0
(I − 2ηA)k ∗ 2ηb

= A+b,
(23)

which is the well-known least square solution.

A.3 PROOF OF PROPOSITION 3

Proof. According to Ziyin (2024, Theorem 4), we have

P∇θℓ(x, θ0) = 0. (24)

Therefore, after one step of GD or SGD, we still have Pθ1 = 0. By induction, we have Pθt = 0.

Finally, suppose that {ai}d−rank(P)i=1 forms a basis of kerP , and define f ′(x, θ′) ∶=
f(x,∑d−rank(P)

i=1 θ′iai) for dim(θ′) = d − rank(P). By choosing θ′i = θTai, we have f ′(x, θ′t) =
f(x, θt).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.4 LEMMAS

Lemma 1. Let x ∈ Rd and P be a projection matrix. Let f(x) be a scalar function that satisfies

f(x + x′) = f((I − 2P)x + x′) + cTPx, (25)

where c is a constant vector. Then, there exists a unique function g(x) such that

1. g(x) has the x′-centric P -symmetry,

2. and f(x) = g(x) + 1
2
cT0 Px.

Proof. (a) Existence. f(x) = g(x) + 1
2
cT0 x. Let us suppose g(x) is not x′-centric P -symmetry.

Then, there exists x such that

g(x + x′) − g((I − 2P)x + x′) =∆ ≠ 0. (26)

Then, by definition, we have that

cT0 Px = f(x + x′) + f((I − 2P)x + x′) (27)

= g(x + x′) − 1

2
cT0 P (x + x′) − g((I − 2P)x + x′) − cT0 P (x + x′) (28)

=∆ + 1

2
cT0 P (x + x′) −

1

2
cT0 P ((I − 2P)x + x′) (29)

=∆ + cT0 Px. (30)

This is a contradiction. Therefore, there must exist g(x) that satisfies the lemma statement.

(b) Uniqueness. Simply note that the expression of g is uniquely given by6

g(x) = f(x + x′) − f((I − 2P)x + x′). (31)

A.5 PROOF OF THEOREM 1

Proof. We prove by contradiction. Let us suppose there exists such pair, (θ′, P). By definition, we
have that

ℓr(θ + θ′) = ℓ(θ + θ′ + θ0) + γ∥θ + θ′∥2. (32)
By assumption, we have that

ℓ((I − 2P)θ + θ′ + θ0) + γ∥(I − 2P)θ + θ′∥2 = ℓ(θ + θ′ + θ0) + γ∥θ + θ′∥2, (33)

and, so, for all θ,
ℓ((I − 2P)θ + θ′ + θ0) = ℓ(θ + θ′ + θ0) + 4γθTPθ′. (34)

There are two cases: (1) Pθ′ = 0 and (2) Pθ′ ≠ 0.

For case (1), we have that ℓ((I − 2P)θ + θ′ + θ0) = ℓ(θ + θ′ + θ0), but this can only happen if the
original loss ℓ has the (θ′ + θ0)-centric P -symmetry. By Property 1, this implies that

θ′ + θ0 = θ†
i (35)

for some i. Applying P on both sides, we obtain that

Pθ0 = Pθ†
i . (36)

But, θ0 is a random variable with a full-rank covariance while the set {Pθ†
i} has measure zero in the

real space, and so this equality holds with probability zero.

6Alternatively, note that cTx is odd and that g(x) can be shifted by a constant to be an even function. The
uniqueness follows directly from the fact that every function can be uniquely factorized into an odd function
and an even function.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

For case (2), it follows from Lemma 1 that for a fixed x and θ0, ℓ(θ) can be uniquely decomposed
in the following form

ℓ(θ) = g(θ) − 2γθTPθ′, (37)
where g(θ) has the θ′ + θ0-centric P -symmetry.

Let c0 = 2γPθ′ and θ̃ = P (θ′+θ0). Then ℓ(θ)+c0θ has the θ̃-centric P symmetry. We also have θ̃−
c0
2γ
= Pθ0. According to Assumption 1, there are only countable many such {c0, θ̃} pairs. However,

Pθ0 is a standard Gaussian random variable, which leads to a contradiction with probability 1.

Remark. It is easy to see that Assumption 1 could be slightly relaxed. We only require {θ̃ − c0
2γ
} to

have a zero measure, which is also a necessary and sufficient condition.

A.6 PROOF OF THEOREM 2

Proof. We prove by contradiction. Let us suppose there exists such pair, (θ′, P). By definition, we
have that

ℓar(θ + θ′) = ℓ(θ + θ′ + θ0) + γ∥θ + θ′∥2D. (38)
By assumption, we have that

ℓ((I − 2P)θ + θ′ + θ0) + γ∥(I − 2P)θ + θ′∥2D = ℓ(θ + θ′ + θ0) + γ∥θ + θ′∥2D, (39)

and, so, for all θ,

ℓ((I − 2P)θ + θ′ + θ0) = ℓ(θ + θ′ + θ0) + 4θTPD((I − P)θ + θ′). (40)

There are two cases: (1) PD((I − P)θ + θ′) = 0 and (2) PD((I − P)θ + θ′) ≠ 0.

Like before, there are two cases. For case (2), the proof is identical, and so we omit it. For case (1),
it must be the case that for some P , and θ′

ℓ((I − 2P)θ + θ′ + θ0) = ℓ(θ + θ′ + θ0). (41)

This is possible if and only if P (θ′+θ0) = θ†
i for some i and P = Pi for the corresponding projection

matrix. However, because Pθ′ = 0, this requires that

P (θ′ + θ0) = θ†
i . (42)

By the definition of the reflection symmetry, we have that

Pθ′ = θ′. (43)

This means that
θ′ = θ†

i − Pθ0. (44)
At the same time, we have

PD((I − P)θ + θ′) = 0, (45)
which implies that

PD(I − P)θ = −PDθ′. (46)
Because the right hand side is a constant that only depends on θ. This can only happen if both sides
are zero, which is achieved if:

PD(I − P) = 0, (47)
and

θ†
i = Pθ0. (48)

The first condition implies that

PD = PDP =DTPT =DP, (49)

which implies that P and D must share the eigenvectors because they commute. Noting that

Pθ†
i = θ

†
i , (50)

we obtain that θ†
i is an eigenvector of P and so θ†

i is an eigenvector of D, but D is diagonal and with
nonidentical diagonal entries, θ†

i much then be a one-hot vector, and P must also be diagonal and
consists of values of 1 and 0 in the diagonal entries.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.7 PROOF OF THEOREM 3

Proof. First of all, note that shifting parameters of ℓ is the same as shifting the parameters of the
weight decay. Therefore, for any local minimum θ′,

ℓar(θ′) = ℓ(θ) + γ∥θ − θ0∥2, (51)

where θ = θ′ + θ0.

Therefore,

ℓar(θ′ + θ∗) − ℓar((I − 2P)θ′ + θ∗) (52)

= ℓ(θ + θ∗) + γ∥θ + θ∗ − θ0∥2D − ℓ((I − 2P)θ + θ∗) − γ∥(I − 2P)θ + θ∗ − θ0∥2D (53)

= γ∥θ + θ∗ − θ0∥2D − γ∥(I − 2P)θ + θ∗ − θ0∥2D (54)

= γ(zT⊥ (D − I)z∥ + zT⊥D(θ∗ − θ0)), (55)

where we have used the definition of reflection symmetry in the third line. In the fourth line, we
have defined z⊥ = Pθ and z∥ = (I − P)θ. Thus,

∥θ∥2 = ∥z⊥∥2 + ∥z∥∥2 = Θ(1). (56)

Thus, we have that

Θ(ℓar(θ′ + θ∗) − ℓar((I − 2P)θ′ + θ∗)) = γΘ(zT⊥ (D − I)z∥) +Θ(zT⊥D(θ∗ − θ0)) (57)
= γΘ(σD∥z⊥∥) +Ω(σ0∥z⊥∥), (58)

where we have used the fact that each element of θ∗−θ0 is Ω(σ0) because θ∗ is an arbitrary constant
and θ0 ∼ N(0, σ2). By the assumption that σD = o(σ0), we obtain the desired relation

ℓar(θ′ + θ∗) − ℓar((I − 2P)θ′ + θ∗) = Ω(γσ0)∥z⊥∥. (59)

This finishes the proof.

A.8 PROOF OF THEOREM 4

Proof. First of all,

Pr(min
i
∣∆i∣ > ϵ) = Pr(∣∆1∣ > ϵ ∧ ... ∧ ∣∆N ∣ > ϵ) (60)

≥max(0,
N

∑
i

Pr(∣∆i∣ > ϵ) −N + 1), (61)

where we have applied the Frechet inequality in the second line.

The sum∑N
i Pr(∣∆i∣ > ϵ) can also be lower bounded if each ∆i is a Gaussian variable with variance

σi:
N

∑
i

Pr(∣∆i∣ > ϵ) ≥
N

∑
i

(1 − 2ϵ√
2πσ2

i

) (62)

≥ N − 2ϵN

mini
√
2πσ2

i

. (63)

Thus, for Pr(mini ∣∆i∣ > ϵ) to be larger than 1 − δ, we must have

min
i

σi ≥
2ϵN√

2π(1 − δ)
. (64)

Now, we show that ∆i-s are indeed Gaussian variables. From the previous proof, it is easy to see
that for a unit vector ni,

∆i = γnT
i (θ∗ − θ0) + o(γσ0). (65)

Therefore, ∆i is a Gaussian variable with standard deviation γσ0. Thus, mini σi = γσ0. Thus, we
have obtained the desired result

γσ0 ≥
2ϵN√

2π(1 − δ)
. (66)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.9 PROOF OF THEOREM 5

Before we start proving Theorem 5, we introduce a definition that facilitates the proof.
Definition 2. (Symmetry reduction.) We say that removing a symmetry from group G1 reduces to
removing the symmetry due to group G2 if for any vector n,

∥(I −G2)n∥ ≤ ∥(I −G1)n∥. (67)

Now, we are ready to prove the main theorem.

Proof. We first show (I − V)T∇θℓ(θ) = 0. For any g ∈ V and z ∈ R, we have

ℓ(θ + zn) = ℓ(g(θ + zn)), (68)

where n is an arbitrary unit vector. Taking the derivative with respect to z, and recalling that gθ = θ,
we have

(gn)T∇θℓ(θ) = nT∇θℓ(θ). (69)
Accordingly, we have

(V n)T∇θℓ(θ) ∶=
1

∣V ∣ ∑g∈V
(gn)T∇θℓ(θ) = nT∇θℓ(θ). (70)

Due to the arbitrary choice of n, we have (I − V)T∇θℓ(θ) = 0.

Therefore,

(I − V)T∇θℓar(θ) = γ(I − V)T∇θ∥θ − θ0∥2D (71)

= 2γ(I − V)TD(θ − θ0) (72)

= 2γ(I − V)T θ0 + o(γσ0(1 + σD)). (73)

As θ0 is a Gaussian vector with mean 0 and variance σ2
0 , ∣∣(I − V)T θ0∣∣ is a Gaussian vari-

able with mean 0 and variance ∣∣I − V ∣∣2σ2
0 = Ω(rank(I − V)σ2

0), which gives ∥(I − V)∇θℓ∥ =
Ω(γσ0

√
rank(I − V)).

Now, we prove part (2) of the theorem. Note that if V ⊲ U and if θ0 ∈ kerV , then θ0 ∈ kerU . This
means that for any group U such that V ⊲ U and any vector θ0

∥(I − V)θ0∥ < ∥(I −U)θ0∥. (74)
This means that to remove the symmetry from a large group U , it suffices to remove the symmetry
from one of its minimal subgroups. Thus, let MG denote the set of minimal subgroups of the group
G, we have

min
V ⊲G
∥(I − V)θ0∥ ≥ min

V ⊲MG

∥(I − V)θ0∥. (75)

The number of minimal subgroups is strictly upper bounded by the number of elements of the group
because all minimal subgroups are only trivially intersect each other. This follows from the fact
that the intersection of groups must be a subgroup, which can only be the identity for two different
minimal subgroups. Therefore, the number of minimal subgroups cannot exceed the number of
elements of the group. This finishes the second part of the theorem.

For the third part, we show that the symmetry broken subspace of any subgroup contains the symme-
try broken subspace of a group generated by one of the generators and so it suffices to only remove
the symmetries due to the subgroups generated by each generator. Let us introduce the following
notation for a matrix representation z of a group element:

z = 1

ord(z)

ord(z)
∑
i=1

zi, (76)

where ord(z) denotes the order of z. This is equivalent to the symmetry projection matrix of the
subgroup generated by z.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Now, let G be abelian. Then, both U and V are abelian. Let us denote by Γ(U) = {zi} the mininal
generating set of U . Suppose that for all n ≠ 0 such that n ∈ im(I −V), we must have n ∉ im(I −zj)
for all j. This means that

n ∉ ⋃
j

im(I − zj). (77)

Or, equivalently,
n ∈ ⋂

j

im(zj). (78)

However, the space ⋂j im(zj) ⊆ im(V) because V is a subgroup of U , which is generated by
z1,⋯, zm. To see this, let n ∈ im(zj) for all j, then,

zjn = n (79)

for all j. Now, let v = ∏i z
di(v)
i ∈ V , we have

(I − V)n = (I −∑
v
∏
i

z
di(v)
i)n = 0 (80)

This means that n is in both im(V) and im(I −V), which is possible only if n = 0 – a contradiction.
Therefore, as long as I−V̄ is not rank 0, it must share a common subspace with one of the I−zj , and
so removing the symmetry from any subgroup V of U can be reduced to removing the symmetry
from the cyclic group generated by one of its generators from the minimal generating set.7

Therefore, we have proved that removing symmetries due to any subgroup of U can be reduced to
removing the symmetry from a (proper or trivial) subgroup of each of the cyclic decompositions of
the group U , each of which is generated by a minimal generator of U . By the fundamental theorem
of finite abelian groups, each of these groups is of order pk for some prime number p. Because each
of these groups is cyclic, it contains exactly k nontrivial subgroups. Taken together, this means that
if ∣U ∣ = pk1

1 ...pkm
m , we only have to remove symmetries from at most

m

∑
i

ki = log ∣U ∣ (81)

many subgroups. This completes part (3).

For part (4), we denote ∆i ∶= (I − Vi)T∇θℓar(θ) for i = 1,⋯, ∣Γ(U)∣. According to (73), ∆i is
approximately a Gaussian variable with zero mean and variance γ2rank(I − V)σ2

0 . Therefore,

∣Γ(U)∣
∑
i

Pr(∣∆i∣ > ϵ) ≥ ∣Γ(U)∣ −
2ϵ∣Γ(U)∣

mini

√
2πγ2rank(I − V)σ2

0

. (82)

For Pr(mini ∣∆i∣ > ϵ) to be larger than 1 − δ, we must have

γσ0 ≥
2ϵ∣Γ(U)∣

√
2π rank(I − V)(1 − δ)

. (83)

7This holds true even if V is a subset of ⟨zj⟩.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 7: For the same setting as Figure 2, the rank of the covariance matrix decreases with the label noise
and increases with the input noise. We set eigenvalues smaller than 10−3 to zero.

Figure 8: The spectrum of the covariance matrix of the model with vanilla weight decay (Left) and the syre
model (Right) for γ = 0.01 and α = 1. Clearly, the vanilla model learns a low-rank solution.

B ADDITIONAL EXPERIMENTS AND EXPERIMENTAL DETAIL

B.1 TEACHER-STUDENT SCENARIO

This section gives some additional details and additional experiments in the teacher-student scenario
in Figure 2. Specifically, we implement a two-layer network with tanh activation, 300 hidden units,
and different input units. The network outputs a ten-dimensional vector corresponding to ten dif-
ferent classes. We then randomly generate such a network as the teacher model, 10000 standard
Gaussian samples as the training set, and 1000 standard Gaussian samples. For both the syre and the
vanilla model, we choose the Adam optimizer, learning rate 0.01, and weight decay 0.01.

As additional experiments, we also measure the influence of noisy labels and noisy input on the rank
of the model in Figure 7. For the label noise, we randomly change 0% to 80% of the labels, and
for the input noise, we add a Gaussian noise to the input with standard deviation 0 to 1.6. Figure
7 suggests that the rank of the vanilla model decreases in the face of noisy labels and increases in
the face of noisy input, perhaps because the latter can be regarded as data augmentation. The syre
model, however, is not affected.

B.2 SUPERVISED LEARNING

This section presents some additional experiments for Section 6.3. Figure 8 gives the eigenvalue
distribution of the networks in Fig.5, which further supports the claim that the vanilla network leads
to a low-rank solution. In all the experiments above and in Section 6.3, we use a four-layer FCN
with 300 neurons in each layer trained on the MNIST dataset with batch size 64.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 9: Rank and reconstruction loss for a VAE is trained on the Fashion MNIST dataset. The covariance of
the model with vanilla weight decay has a low-rank structure and larger reconstruction loss. More importantly,
posterior collapse happens at β = 5 but is mitigated with weight decay. Left: the rank of the encoder output
with batch size 1000. We set eigenvalues smaller than 10−6 to 0. Right: reconstruction loss of vanilla and syre
models.

Figure 10: Examples of Fashion MNIST reconstruction with syre and β = 10. Left: No weight decay. Right:
γ = 1000. Clearly, the posterior collapse is mitigated by imposing syre with weight decay.

Figure 11: Performance and accuracy of a CNN trained on a continual learning task (permuted MNIST
(Goodfellow et al., 2013; Kirkpatrick et al., 2017)). The main figure shows the test accuracy, and the subfigure
shows the rank of the convolution layers output with batch size 1000, where we set eigenvalues smaller than
10−4 to 0. The results suggest that the rank of the model with vanilla weight decay gradually decreases, and
the model completely collapses after the sixth task, while the syre model remains unaffected.

B.3 POSTERIOR COLLAPSE

See Figures 9 and 10.

B.4 CONTINUAL LEARNING

See Figure 11.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 12: Test accuracy and rank of ViT for CIFAR10 (adapted from Yoshioka (2024)) with various
weight decay γ and data distributions with varyings strengths of linear correlation α. As the theory
predicts, the covariance of features of the model with vanilla weight decay has a low-rank structure
and performs significantly worse. Dashed black lines correspond to random guesses. Subfigures
show the rank of the covariance matrix of the final layer input with batch size 512. We set eigenval-
ues smaller than 10−4 to 0. Left: α = 1 and different γ. Right: γ = 0.0001 and different α.

batchsize MLP syre-MLP ResNet syre-ResNet ViT syre-ViT
512 95 ± 0.1 97 ± 1 18.4 ± 0.7 19.2 ± 0.9 80 ± 1 84 ± 2
256 48 ± 1 49 ± 1 18.6 ± 0.2 19.6 ± 0.4 48 ± 5 57 ± 3
128 26 ± 1 26 ± 1 19.9 ± 0.4 20.9 ± 0.3 39 ± 1 47 ± 2

Table 2: The per-batch time (ms) of various models.

batchsize MLP syre-MLP ResNet syre-ResNet ViT syre-ViT
512 382 384 7020 7049 4216 4218
256 360 382 3936 4254 2482 2484
128 360 382 2096 2190 1574 1574

Table 3: The GPU memory usage (M) of various models.

B.5 VISION TRANSFORMER (VIT)

Similar to Section 6.3, we train the vanilla and syre ViT with various levels of weight decay γ and
various levels of input-output covariance α. The dataset is constructed by rescaling the input by a
factor of α for the CIFAR10 dataset. As the theoretical prediction, we can see that syre removes
the rotation symmetries symmetry of transformers (Kobayashi et al., 2024) and leads to a full-rank
solution with higher accuracy, as shown in Figure 12. Moreover, syre also performs better than the
σ-asymmetric network proposed in Lim et al. (2024).

B.6 TIME AND MEMORY CONSUMPTION

The time and memory consumption of various models used in previous sections is given in Tables 2
and 3. In all experiments, we train the models on the CIFAR10 dataset with a signal A6000 GPU. It
is clear that syre has a neglectable influence on time and memory consumption. This is as expected
because syre only adds a static bias to training.

B.7 LINEAR MODEL CONNECTIVITY

We also test the influence of syre on the linear model connectivity with the same setting as Lim
et al. (2024). Specifically, we obtain two well-behaved MLP with parameters θ1 and θ2, and test
the performance of another MLP with parameters λθ1 + (1 − λ)θ2 for 0 < λ < 1. By removing
the permutation symmetry of MLP, we expect that the MLP with parameters λθ1 + (1 − λ)θ2 also
performs well. Figure 13 suggests that syre performs similarly to W-asymmetric networks proposed
in Lim et al. (2024), while our methods have much fewer hyperparameters.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 13: Linear mode connectivity: test accuracy and loss curves along linear interpolations be-
tween trained networks. We train MLPs over the MNIST dataset.

Figure 14: Ranks of the gradient covariance and NTK (Left: beginning of training. Right: end of
training.) against the theoretical upper bound implied by Propositions 3 and 2. Two observations
agree with our expectation: (1) the ranks of both matrices decrease as more and more neurons are
stuck at the entrapped subspace, and (2) the ranks are always upper bound by the theoretical upper
bound.

C SYMMETRY AND RANK OF THE NTK

In this section, we show that the rank of the NTK and gradient reduces as more and more of the neu-
rons are in the symmetric state (namely, the fixed point induced by the group averaging projector).

Due to the difficulty in computing the spectrum of the NTK, we restrict to a two-layer subnetwork
within a large network trained on MNIST with the number of neurons 10 → 64 → 10, with 1280
many parameters. This means that the gradient second moment has dimension 1280 × 1280, and
the model is trained on 1500 data points. Thus, the empirical NTK can be seen as a matrix having
dimension 1500 × 1500. Here, the symmetry projection we consider is due to the permutation
symmetry, whose projection has a rank of 20 (because every neuron has ten outgoing weights and
incoming weights). Thus, according to the Propositions 3 and 2, the maximum possible rank for the
NTK and the gradient is 1280−20×n, where n is the number of neurons projected to the symmetry
fixed point. See Figure 14.

23

	Introduction
	Discrete Symmetries in Neural Networks
	Related Works
	Symmetry Impairs Model Capacity
	Removing Symmetry with Static Bias
	Countable Symmetries
	Uncountably Many Symmetries
	Strength of Symmetry Removal
	Hyperparameter and Implementation Remark

	Experiment
	Compatibility with Standard Training
	Benchmarking Symmetry Removal
	Feature and Neuron Collapses in Supervised Learning
	Posterior Collapse in Bayesian learning
	Low-Capacity Trap in Self-supervised Learning
	Loss of Plasticity in Continual Learning

	Conclusion
	Theoretical Concerns
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Additional Experiments and Experimental Detail
	Teacher-student Scenario
	Supervised Learning
	Posterior Collapse
	Continual Learning
	Vision Transformer (ViT)
	Time and Memory Consumption
	Linear Model Connectivity

	Symmetry and Rank of the NTK

