
Generating High-Quality Explanations for Navigation
in Partially-Revealed Environments

Gregory J. Stein
Department of Computer Science

George Mason University, Fairfax, VA
gjstein@gmu.edu

Abstract

We present an approach for generating natural language explanations of high-level
behavior of autonomous agents navigating in partially-revealed environments. Our
counterfactual explanations communicate changes to interpratable statistics of the
belief (e.g., the likelihood an exploratory action will reach the unseen goal) that
are estimated from visual input via a deep neural network and used (via a Bellman
equation variant) to inform planning far into the future. Additionally, our novel
training procedure mimics explanation generation, allowing us to use planning
performance as an objective measure of explanation quality. Simulated experiments
validate that our explanations are both high-quality and can be used in interventions
to directly correct bad behavior; agents trained via our training-by-explaining
procedure achieve 9.1% lower average cost than a non-learned baseline (12.7%
after interventions) in environments derived from real-world floor plans.

If we are to welcome robots into our homes and trust them to make decisions on their own, they
should be able to clearly explain both what they are doing and why they are doing it in terms
that both expert and non-expert users can understand. As learning (particularly deep learning) is
increasingly used to inform decisions, it is equally important to ensure that data-driven systems
are easy to inspect and audit both during development and after deployment [33, 6]. The field of
explanatory artificial intelligence has developed significantly in recent years to address this need in
the hopes of improving reliability and combating problematic data biases that can go unnoticed when
decision-making is opaque. Myriad explainability tools aim to probe deep neural networks trained
via supervised learning, often with a focus on understanding perceptual tasks, like detecting objects
in images [24, 30, 28, 31, 38]. Yet in many real-world navigation and home care scenarios, robots
are expected to make effective decisions even when their knowledge of the world is incomplete or
stale; in this case, planning effectively requires making predictions about unseen space and about the
potential impact of actions far into the future [39, 29, 3], complicating efforts to apply existing tools
to explain robot behavior in this setting. In this work, we focus on the challenging task of navigation
in partially-revealed environments, in which reaching an unseen goal in minimum expected time may
require recognizing subtle visual cues—e.g., that green markings signal a route likely to reach the
goal—and incorporating multiple such observations when deciding where to explore next.

Designing an agent that both achieves state-of-the-art performance and can meaningfully explain
its actions has so far proven out of reach for existing approaches to planning under uncertainty.
Symbolic abstraction—in which actions correspond to interaction with symbols (e.g., objects) or
movement through the environment—is an effective tool for planning in fully-known environments
and yields plans that are interpretable-by-design, since symbolic task plans are human-understandable
by construction [25, 15]. Yet when planning under uncertainty, it is not always obvious how to abstract
knowledge without problematically degrading performance, particularly when the agent perceives
the world via high-dimensional sensor observations, like images. Owing to challenges associated
with data and computation, many state-of-the-art approaches to planning under uncertainty learn the

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

relationship between raw sensor observations and good behavior. Deep reinforcement learning has
proven incredibly effective (if somewhat brittle [7]) in this regard [41, 36, 1, 39]. However, many
such strategies are opaque by their nature and are neither well-suited to explaining themselves nor
compatible with most existing tools for post-hoc explanation [12, 25].

Clearly a shift in representation is necessary: we seek an agent for which decisions are expressed
in terms of symbols (so that planning is interpretable) yet can also make use of learning to ease the
onerous computational and data requirements of planning under uncertainty. It is a key insight of this
work that the learning over subgoals planning paradigm of Stein et al. [29], which blends symbolic
and data-driven planning, is well-suited to meet this need. In [29], symbolic actions each correspond
to revealing space beyond frontiers, boundaries between free and unknown space, while learning is
used to estimate compact statistics of unseen space that capture the impact of those actions—e.g., the
likelihood an exploratory action will succeed in reaching the goal. We leverage this representation to
develop a new approach to generate counterfactual explanations that communicate what changes to
these estimated statistics would result in a desired change in behavior.

In this work, we introduce a novel approach to navigation in partially-revealed environments by
which an agent can achieve state-of-the-art performance and also generate high quality human-
understandable explanations of its behavior, despite relying on learning (from visual observations) to
inform decision making. Specifically, our contributions address the following three questions:

1. What criteria must a planner satisfy if it is to be useful for generating explanations in
partially revealed environments? [Sec. 2] Our criteria (motivated by those of Lipton [15])
define what it means for planning to be interpretable-by-design for our problem setting.

2. How can we generate explanations of the agent’s high-level behavior? [Sec. 3] We show that
the subgoal-based planner of Stein et al. [29] meets our conditions for interpretable planning
under uncertainty and, leveraging this representation, we introduce a procedure to generate
counterfactual explanations. Explanations outline what changes to the agent’s belief would result
in a change in behavior, expressed in terms of estimated interpretable statistics of unknown space:
e.g., the likelihood an exploratory action will reach an unseen goal.

3. How can we validate that our explanations are high quality? [Sec. 4] We introduce a novel
training process in which training data is generated via the same procedure as our explanations.
This allows us to use planning performance as an objective measure of explanation quality.

We evaluate the performance of our approach in two different simulated environments in which an
agent is tasked to navigate to an unseen point goal in minimum expected time. We generate expla-
nations in two different simulated environment classes and show that the explanations qualitatively
match human intuition for how to correct the agent’s poor behavior in these domains. Our quantitative
results (Sec. 5) focus on the ability of our explanations to facilitate improving the agent’s behavior
and show that our joint training-by-explaining procedure demonstrates state-of-the-art performance
at test time, validating that our explanations are accurate and informative and demonstrating that an
agent can be both explainable and performant simultaneously in this application domain.

1 Preliminaries: planning in partially-revealed environments
A common way to model planning under uncertainty is as a Partially Observable Markov Decision
Process (POMDP) [9, 16, 21]. In this model, the agent’s behavior at time t is a function of its
belief bt, a distribution over possible states of the world, which the agent updates as it receives new
observations through interaction with the world. In a navigation context, the agent’s objective is to
minimize expected cost (travel distance) to reach an unseen goal. Belief-space planning in general is
incredibly computationally intensive. Planning (typically via the Bellman equation [21]) requires that
the agent iteratively envision how it might take action, gain new knowledge, update its belief, and
then take additional actions. In the worst case, the tree of possible actions and subsequent outcomes
stemming from the current belief state grows exponentially with planning horizon; planning far into
the future is fraught with challenges. In this work, we study a particular class of POMDP recently
coined as a Locally Observable Markov Decision Process [18], in which the agent’s local perception
is assumed to be perfect though limited by range and occlusions. This is a common problem setting
for agents equipped with either depth sensors or LIDAR and considerably simplifies planning through
observed space—space the agent has seen and is therefore assumed to know with perfect precision.
At every timestep, the agent receives its location, an occlusion-limited local occupancy map (as if

Code available at https://github.com/RAIL-group/xai-nav-under-uncertainty-neurips2021

2

https://github.com/RAIL-group/xai-nav-under-uncertainty-neurips2021

from a laser range finder), and an egocentric panoramic image of its surroundings and tasked to reach
a goal, specified as a world-space coordinate, in minimum time. Even with perfect local perception,
planning that requires the agent to reason about unseen space is still incredibly complex.

2 Interpretable-by-design planning in partially-revealed environments
Criterion for interpretable planning There are myriad choices of representations suitable for easing
the challenges of planning under uncertainty—as evidenced by our earlier discussion—yet we seek
in particular strategies that are said to be interpretable, a precondition for generating explanations [6].
A number of recent works consider what is implied by interpretability and propose taxonomies and
criteria by which we can understand how interpretable a model is [6, 15, 25, 33]. Yet these works are
broad in scope, requiring that we contextualize their criteria for our problem of interest. We propose
the following criteria for evaluating the interpretability of a model that relies on learning to plan
under uncertainty, motivated by those of Lipton [15], which will later serve as desiderata:

1. Decisions available to the agent should reflect how a human might describe their own
decision-making given the same information. Low-level actions like motion primitives are
not typically conducive for interpreting the behavior of an agent in an environment that requires
thousands of steps to reach the goal. For long-horizon planning, asking Why did the agent
decide to turn 5◦ versus 10◦ degrees left? is unlikely to yield useful explanations of the agent’s
decision-making process. High-level actions instead define temporally extended behaviors (e.g.,
entering a classroom or following a hallway) and often correspond to human-understandable
symbols, with which planning can better match human intuition. This condition is a prerequisite
to Lipton’s idea of decomposability, that each step of planning be intuitively understandable, and
is consistent with a significant body of work leveraging symbolic abstraction [5, 10].

2. High-level planning should rely on a model and explicitly consider the impact of the agent’s
actions into the future. Model-free planning strategies for planning under uncertainty, like the
impressive MERLIN agent [39], directly predict the goodness of an action, implicitly estimating
the impact that action will have on the agent’s belief and thereby complicating efforts to understand
the agent’s behavior. Yet in many planning scenarios, humans seem to explain their decisions by
explicitly enumerating the possible outcomes of actions that enter unknown space: e.g., whether
a hallway will lead to a faraway goal. If we are to understand why an agent chose one action
over another, its decision-making should match this structure; for planning under uncertainty to
be interpretable and to be useful for generating explanations, the planner should (like a human)
explicitly consider the different ways in which executing an action might accrue cost and update
the belief. This condition is consistent with Lipton’s algorithmic transparency.

3. The impact of actions, particularly those that enter unknown space, should be expressible via
a small number of human-understandable quantities. That the plan be compact is important
for human understanding. Yet the computational and memory requirements of belief-space
planning for large long-horizon tasks are prohibitive even for a computer, and such planning fails
to meet the interpretability criterion Lipton refers to as simulatability. The model employed by
the agent must therefore dramatically simplify the belief and the process of imagining the future.

Subgoal-based abstractions for interpretable navigation under uncertainty It is a key observation
of this work that the learning over subgoals planning paradigm of Stein et al. [29] satisfies our criteria
for interpretable-by-design goal-directed navigation under uncertainty; we provide an overview of
this approach here. Under this abstraction, subgoals each correspond to a high-level action to reveal
unknown space by exploring beyond a frontier, a boundary between free and unseen space. The
high-level outcome of each action is binary: an action either succeeds, if the agent discovers a route to
the unseen goal, or fails, if the region is a dead-end, prompting the agent to turn back. The expected
cost of each action at (corresponding to subgoal st) depends on its likelihood of success PS(at)
and the expected costs associated with success RS(at) and failure (exploration) RE(at). These
terms (collectively, the subgoal properties σ) implicitly1 depend on the belief bt and (intractable
to compute directly) are estimated via learning. The costs of navigating between subgoals involves
travel through observed space and can be computed via Dijkstra’s algorithm: D(bt, at). The expected
cost of executing high-level action at can be expressed via an approximation of the Bellman Equation

1We note that Stein et al. [29] make the dependency of the subgoal properties PS , RS , and RE on the belief
bt explicit. Eq. (1) reflects our simplified notation.

3

Figure 1: Explaining behavior for navigation under uncertianty The generated explanation is
consistent with the user’s expectations: to change its behavior, the robot must change its belief to
reflect that Subgoal 0 is unlikely to lead to the goal and Subgoal 1 has a higher likelihood.

written in terms of the high-level actions and their binary outcomes:

Q(bt, at) = D(bt, at) + PS(at)RS(at) + (1− PS(at))

[
RE(at) + min

a∈A(bt)\at
Q(b̃t+1, a)

]
, (1)

where b̃t+1 is the approximate future belief, which incorporates the knowledge that upon executing at
and failing to reach the goal the agent has moved (and is now at subgoal st) and that the region beyond
st is now known to be a dead end (even if we do not yet know precisely what it looks like). The
map of observed space is not directly updated during planning, avoiding many of the computational
challenges of updating the belief. Critically, the agent’s high-level plan defines the order in which
it aims to explore the unseen regions of the environment in search of the goal specified as a list
of subgoal-actions. We refer the reader to [29] for a full derivation of Eq. (1). Planning with this
model is iterative. Upon selecting a subgoal via Eq. (1), a low-level planner plots a trajectory through
the known map towards the chosen subgoal and the agent executes a short motion primitive along
this trajectory. At every timestep, new space may be revealed, and Eq. (1) must again used to select
the subgoal with lowest expected cost. This process repeats until the agent reaches the goal, which
can take thousands of steps. Since the agent is assumed to have perfect local perception, the agent’s
ability to reach the goal is limited only by vehicle dynamics.

Given estimates of the subgoal properties (PS , RS , and RE) for each subgoal-action available to
the agent, high-level planning via Eq. (1) satisfies our criteria for interpretable planning under
uncertainty. First, the decisions available to the agent correspond to choosing between exploring
different regions of space, clearly human-understandable. In addition, the impact of the agent’s
actions (whether it reaches the goal and the expected cost of each outcome) are easy to interpret and
relatively few in number. Finally, planning is done via a model, under which the impact of each
action are explicitly taken into account and can influence the agent’s behavior far into the future.

Estimating subgoal properties from images Too difficult to compute exactly, the subgoal properties
PS , RS , and RE needed to compute expected cost are estimated via a neural network. Consistent
with the approach of [29], subgoal properties are estimated from single sensor observations; thus, the
input data used to estimate the subgoal properties consists of (1) a single panoramic image, (2) the
relative position of the goal in the image frame, and (3) the relative position of the subgoal in the
image frame, all collected at the time the subgoal was created—i.e., the time at which the subgoal’s
corresponding frontier (a boundary between free and unknown space) was revealed. A feed-forward
(non-recurrent) neural network outputs the three quantities of interest; a logistic sigmoid function is
applied to produce the probability of success PS , so that it is a valid probability. The neural network

4

Algorithm 1: Generate Explanation
Data: mt, qt, ac, ah, nn_inputs, θ0
Result: Subgoal property changes, ∆σ

1 σ0 ← NN(nn_inputs, θ0)
2 ∆Q0 ← ∆Q({mt, qt,σ0}, {ah, ac})
3 θ ← θ0, ∆Q← ∆Q0

4 while ∆Q > 0 do
5 σ ← NN(nn_inputs, θ)
6 ∆Q← ∆Q({mt, qt,σ}, {ah, ac})
7 α← α(∆Q0,σ0, θ0)

8 Lcomp ← ∆Q

9 θ ← θ−η ∂Lcomp
∂σ
·
[
∇θσ ◦ 1α>α(M)

]
10 σf ← NN(nn_inputs, θ)
11 return σf − σ0

Algorithm 2: Train Subgoal Property Estimator
Data: dataset, θ0
Result: Neural Network Weights, θf

1 θ ← θ0
2 foreach datum ∈ dataset do
3 mt, qt, ao, nn_inputs← datum
4 ac ← arg mina∈A(mt)\ao Q({mt, qt,σ}, a)

5 σ ← NN(nn_inputs, θ)
6 ∆Q← ∆Q({mt, qt,σ}, {ao, ac}) . Eq. (2)
7 α← α(∆Q,σ, θ) . Eq. (3)
8 Lcomp ←

√
1− logsigmoid(−∆Q)

9 θ ← θ − η ∂Lcomp
∂σ

·
[
∇θσ ◦ 1α>α(M)

]
. Eq. (4)

−η∇θLsupervised − η∇θLbounds

10 return θ

Algorithms for generating explanations and training our subgoal property estimator, shown
side-by-side to emphasize their similarities, in particular lines 5–9, a key feature of our approach.
The details of explanation generation (Sec. 3) and training (Sec. 4) can be found in the text.

is a convolutional-then-fully-connected encoder similar to that of [3]; not the focus of this work, the
network architecture is described in detail in Appendix A.1.

3 Generating counterfactual explanations of high-level behavior
Explanations should answer fundamental questions about the agent’s behavior and provide recourse
for how to correct that behavior if necessary. Let’s say that, during an audit, the agent recently chose
action at, yet the human auditor may have thought that ah was a preferable option. The human
may want an explanation to better understand why did the agent select action at over action ah?
The obvious (if unhelpful) answer is that the agent believed the action it selected (at) was of lower
expected cost than was ah. Instead, since our agent’s behavior is determined by its estimates of
the subgoal properties (PS , RS , and RE for each subgoal), the explanations of its behavior should
feature these properties as well. Critically, since the agent’s objective is to explain a decision to
select one action over another, the explanation must contextualize the agent’s choice in relation to
the decision boundary between the two actions. With this in mind, explanations generated by our
system are counterfactual, specifying in natural language a set of changes to the (interpretable)
subgoal properties that would result in a change in behavior from one action to another.

Computing counterfactual explanations via gradient descent For the planning problem defined
by Eq. (1), a three element tuple consisting of (1) the observed map mt, (2) the robot pose qt, and
(3) the list of subgoal properties σt ∈ R3×Ns (where Ns is the number of subgoals) is a sufficient
statistic for the belief bt. We therefore use the notation Q({mt, qt,σt}, at) to represent the expected
cost of executing action at from map state mt and position qt given subgoal properties σt. While the
map mt and pose qt are provided to the agent, the subgoal properties σt are estimated from sensor
observations via a neural network, defined by its parameters θ; changing the network parameters θ
would result in a change in the subgoal properties (∆σ), which could change the agent’s behavior.

We use gradient descent to compute our explanations, which are defined by a set of subgoal property
changes ∆σ and therefore a change to the agent’s belief about unknown space. The decision boundary
between the two actions of interest—the agent’s selected action at and the human’s query action
ah—exists at the zero-crossing of the difference in the expected cost of the two actions:

∆Q({mt, qt,σt}, {ah, at}) ≡ Q({mt, qt,σt}, ah)−Q({mt, qt,σt}, at) . (2)

If we think of this difference in cost as a loss Lcomp = ∆Q, crossing the decision boundary can
be achieved via gradient descent over the parameters θ of the neural network used to estimate the
subgoal properties σ, which are therefore implicitly functions of θ. We run gradient descent until the
∆Q crosses zero (made easy with PyTorch [20]) indicating that the robot now prefers action ah over
at. The change in subgoal properties after optimization ∆σ forms the backbone of our explanation.

Ensuring explanations are compact Returning changes to every subgoal property—which number
three-times the number of subgoals, places the agent has yet to explore—is too much information to
present all at once if explanations are to be useful for understanding or auditing an agent’s behavior

5

[15]. As such, we wish to determine and communicate only the most important subgoal properties
when explaining behavior. We define the importance of each subgoal property as their relative
contribution to a change in ∆Q after one step of gradient descent. In differential form:

α(∆Q,σ, θ) ≡
[
∂∆Q

∂σ
◦ ∇θσ

]
· ∇θ∆Q
‖∇θ∆Q‖

, [Subgoal Property Importance] (3)

where ◦ is the Hadamard Product (elementwise multiplication). The subgoal property importance
vector α satisfies

∑
i αi = ‖∇θ∆Q‖ by construction. We communicate only the top N most

important subgoal properties as natural language explanations, including only a handful of changes to
key properties instead of returning a potentially-overwhelming amount of information to the human.

If we are to claim that the explanations are accurate despite only communicating a handful of subgoal
properties to the user, we must ensure that changing the agent’s behavior does not rely on changes not
communicated to the user. To ensure this, we use masked gradient descent to compute explanations:
the gradients from less important properties are multiplied by zero, so that only information from the
chosen most important properties are used to update the network parameters θ:

θi+1 ← θi − η
∂∆Q

∂σ
·
[
∇θσ ◦ 1α>α(M)

]
, [Masked Gradient Update] (4)

where η is the learning rate and α(n) is the nth order statistic of α; M is defined such that 1α>α(M)
is

a boolean vector that is true in the entries corresponding to the top-N elements of α (i.e.,M = |α|−N)
and false otherwise. See Alg. 1 for our complete explanation generation procedure.

Fig. 1 shows an example explanation generated using our procedure; note that the explanation only
includes four subgoal properties: those deemed by our agent to be the most important. We note
that all subgoal properties will change during explanation generation, even when using our masked
gradient descent procedure, since the network parameters θ are shared between all subgoal properties.
Even so, the explanations are still an accurate reflection of the underlying decision-making process:
updating the network parameters θ until the most important subgoal properties change by their
specified amounts would cause the change in behavior the explanation seeks to describe, even if other
subgoal properties are also updated in the process.

From subgoal property changes to natural language After generating the subgoal property
changes, we turn them into a natural language explanation using a simple rule-based grammar.
Subgoals are ordered by the importance of their most important property and their selected properties
are inserted into template strings and concatenated. We note that the way we have chosen to present
our explanations (e.g., Fig. 1) is only one way to present the information contained within our
counterfactual explanations. While in this work we focus on presenting the explanations in a way
that is both complete and precise, it might be that eschewing displaying exact numbers and instead
including only qualitative differences improves readability. Understanding how to best present our
explanations will require further study with human participants and is an important next step to more
deeply understand the effectiveness of our approach; we discuss this topic further in the future work
section of Sec. 7 and additional details can be found in Appendix A.3.

4 Training by explaining: validating explanation quality
A high-quality counterfactual explanation is both accurate, a faithful account of the agent’s decision-
making process, and is useful, rich with information that could be used to audit the agent and change
its behavior. While our explanations are accurate by construction (see Sec. 3), the utility of an
explanation can be challenging to measure. Often the measure of the quality of an explanation
includes the eyeballing metric; this metric serves an important purpose—particularly since explaining
is for communication with humans—yet Sundararajan et al. [30] point out that this approach is
problematically subjective. Moreover, as one of the primary functions of explanations in this
context will be to help improve or correct poor behavior, it is critically important to ensure that the
explanations can be useful in this capacity. The structure of our training procedure and our choice
of experimental results are therefore focused on this objective measure of an explanation’s utility:
whether explanations are sufficiently information-rich to facilitate correcting undesirable behavior.

With this in mind, we train our agent via the same procedure that is used to generate explanations.
This closes the loop between the two processes, allowing us to use the performance of the system as an
objective measure of the expected utility of the explanations: if the explanations were insufficient, the

6

agent would be unable to learn to plan effectively from those explanations and test-time performance
would be poor. During an offline data-collection phase, we rely on an oracle—an agent with full state
observability—to specify which subgoal corresponds to the shortest path of the unseen goal, thereby
serving the role of the human auditor. At each step, a datum is recorded, including the oracle’s action
ao, the observed map mt, the agent’s pose qt, and the agent’s observations o: all the information
needed to estimate the subgoal properties σ and, with them, the expected cost Q.

Training relies on the generation of one-step pseudo-explanations that aim to describe how the
estimated subgoal properties would need to change to decrease the expected cost of the oracle’s
action ao with respect to a comparison action ac, defined as the lowest-expected-cost action2 for the
current datum and network parameters θ. Stochastic gradient descent is used to iteratively update the
neural network properties θ so as to encourage the agent to select the action ao via minimization of
∆Q for each datum. Furthermore, so as to mirror the process of generating explanations, we also
use masked gradient descent from Eq. (4), in which only the most important subgoal properties are
allowed non-zero gradient during training. Each training iteration can be thought of as taking a
single step towards generating a counterfactual explanation for the selected datum. To train,
we cycle through many different data; to generate an explanation, we instead iterate using the same
datum until the decision boundary is crossed. Alg. 2 includes our full training procedure; note the
similarities as compared to our explanation generation process shown in Alg. 1.

Training-specific loss terms and details We note that the objective function being optimized during
training is different from the objective function during explanation generation: a few modifications
are needed to help stabilize training, handle vanishing gradients, and impose additional priors on the
known bounds on various quantities. While our primary objective is still to minimize ∆Q, training
an agent from scratch to minimize ∆Q does not yield the behavior we want. In particular, training
should prioritize samples in which the agent is near to the decision boundary, since these will have the
most direct impact on overall performance; optimization should focus less on scenarios in which the
agent already believes that the oracle’s action is best (∆Q < 0) or where modifying behavior would
require significant change (∆Q� 0). To achieve this prioritization, instead of directly minimizing
∆Q we define an alternative training comparison objective Lcomp =

√
1− logsigmoid(−∆Q),

which rescales ∆Q to (smoothly) prioritize points near to the boundary, as desired. Though a full
investigation is out of scope, we anecdotally find that this alternate objective is particularly important
in the more complex environments in which perfectly imitating the oracle is not possible with limited
perception. Applying a monotonic scalar function to ∆Q does not change the direction of its gradient
(in θ-space), and therefore using this modified objective yields identical explanations as does using
∆Q directly in the limit of small step size. We also add two training objectives that incorporate
additional knowledge and stabilize training. We add a supervised training objective Lsupervised: a
cross-entropy loss that incorporates labeled data (whether a subgoal leads to the goal) to account
for the potentially vanishing gradient associated with the logistic sigmoid function used to compute
PS . We also add Lbounds: a collection of hinge loss terms that penalize non-physical predictions
(negative values of RS and RE) and imposes heuristic bounds on the expected cost Q, computed
via a non-learned Dijkstra’s algorithm planner during data collection. Finally, we note that in our
Guided Maze environment (shown in Fig. 1) a high value of Lsupervised is sufficient to achieve good
performance without our training-via-explaining process, as is mentioned for a similar environment
used in [29]. So as to demonstrate the effectiveness of using our explanations during training, we
reduce the weight of Lsupervised by a factor of 40 for all learned planners trained in that environment.

Since each datum can have over a dozen panoramic images, we use a batch size of 1 and training
for each learned planner takes roughly 12 hours on a desktop Nvidia 2060 SUPER GPU. There is
considerable redundancy in the data—since many images appear in multiple datum—and so we train
for only a single epoch, yet divide the learning rate by half every time one-eighth of the data has been
consumed. Full training details can be found in Appendix A.2.

5 Results: simulated navigation under uncertainty
We show an annotated example explanation in our guided maze environment in Fig. 1; an agent trained
with the poor-performing learned baseline (described below) must explain why it did not select the
correct path, as indicated by a green path on the ground. The explanation matches our expectations:

2If the lowest-expected-cost action during training is already the oracle action ao, the next-lowest-expected-
cost action is chosen for comparison instead so that training increases the margin from the decision boundary.

7

Guided Maze Environment University Buildings Env.
Planner Average Dist. % Improve. Average Dist. % Improve.

All Subgoal Properties 14.94 23.2 43.52 6.8
4 Subgoal Properties 14.94 23.2 42.46 9.1

No Lcomp (Learned Baseline) 19.17 1.3 44.34 5.1
Non-Learned Baseline 19.45 — 46.70 —

Figure 2: Navigation under uncertainty performance Scatterplots each show the performance of a
learned planner versus the non-learned baseline for 1,000 trials in each environment; darker color
indicate higher data density. Planners trained via our training-via-explaining approach outperform
those that are not, validating that our explanations are useful for correcting poor behavior.

to change its behavior, the robot would need to believe that the subgoal corresponding to the only
path to the goal were more likely and that its current selection were less likely (among other small
changes). While this example and the explanation in Fig. 3 qualitatively show that our counterfactual
explanations can help to elucidate the agent’s decision-making process in human-understandable
terms, we additionally conduct two types of quantitative experiments that validate the goodness of our
experiments and the utility of our approach with an emphasis on demonstrating that our explanations
are sufficiently rich with information that they can support correcting poor behavior.

Planning Performance: Training via Explaining As discussed, our training procedure mirrors
how explanations are generated, and so we can use the performance of our agent as a measure of the
overall quality of our explanations. We conduct experiments in two different simulated environments:
(1) the Guided Maze, procedurally generated mazes in which a green path on the ground indicates the
(only) route to the goal and (2) the University Buildings environment, topologically complex maps
which are extruded from over one-hundred floor plans of university buildings augmented to include
obstacles to simulate clutter or furniture and in which long passages (that a human might identify as
hallways) connect faraway regions of space. Our University Buildings environment, generated with
aid of data from Whiting et al. [40], is quite large compared to many existing navigation benchmarks
(e.g., [27]) and its size and complexity are well-suited for studying long-horizon navigation under
uncertainty. Both environments are rendered via an in-house simulation environment built with
the Unity Game Engine [34]. Start and goal locations are randomly selected free-space points
generated via a fixed random seed, so that all planners are given the same set of tasks. We train
three models for each environment type: All Subgoal Properties, in which all subgoal properties
are used during training; 4 Subgoal Properties, where the gradient is limited to select only the
four most important subgoal properties; and No Subgoal Properties (No Lcomp) where only the
auxiliary losses Lsupervised and Lbounds are used during training. The “No Lcomp” planner serves as our
Learned Baseline, since it is trained without the explanatory module. We additionally compare to a
Non-Learned Baseline, an optimistic agent that plans (via Dijkstra’s algorithm) as if all unseen space
were unoccupied and therefore does not rely on subgoals to plan. For each environment, we train
our agents via data collected over 1,000 traversals (from start to goal) by our non-learned baseline:
at every step we record a single datum containing all the information an agent may need to make
a decision and the option chosen by an oracle. We evaluate performance over 1,000 traversals in
previously-unseen test environments for each planner to show generalization; evaluation across all
planners and environments takes roughly 10 days.

Our results, included in Fig. 2, show that training via our procedure yields improved results over
both our learned and non-learned baseline approaches. In the Guided Maze environments, it is clear
that our approach yields learned models that seems to understand the structure of the environment,
showing 23.2% improvement over the non-learned baseline. Performance on the more complicated
University Buildings environment further substantiates the goodness of our explanatory process: our

8

agent improves upon the non-learned baseline by 6.8% when trained with all subgoal properties
and by 9.1% when trained using the four most important properties at each iteration. Limiting the
number of subgoal properties in the University Buildings environment seems to regularize the model;
exploring this effect further will be a topic of future work. In both environments, the Learned Baseline
underperforms the other learned planners, substantiating that our training-via-explanation strategy
(and therefore our explanations) adds information valuable for correcting unwanted behavior.

Planner Avg. Dist Succeed

Non-Learned Baseline 85.05 —

No Intervention (Learned) 124.24 —
Intervened: 4 Subgoal Props. 93.77 37/50

Intervened: All Subgoal Props. 92.81 43/50

Figure 3: Explanation-Driven Intervention Results (top) &
Example (bot.) By accepting changes proposed by explanations
at key decision points, we correct poor behavior in many of the
worst trials in the University Buildings environment.

Quantitative Interventions via
Explanations Here we show
that individual explanations can
be used to directly update the be-
havior of our agent via interven-
tions. Generating explanations in-
volves updating the learned model
via gradient descent (see Alg. 1)
until the agent’s behavior changes
and the counterfactual explana-
tion therefore describes a change
to the agent’s learned model. In
an intervention, those changes are
accepted by the auditor: the agent
then permanently relies on the
newly updated learned model to
estimate subgoal properties and
plan for the remainder of the
trial. A successful intervention
changes the agent’s local behav-
ior to match the oracle for a sin-
gle time step and also results in
the agent continuing to perform
well until the goal is reached, as
measured by its overall naviga-
tion performance. For our exper-
iments, we select the 50 trials in
the University Buildings environ-
ment in which our 4 Subgoal Prop-
erties learned planner most under-
performs the non-learned baseline
and intervene at the start of the longest stretch of bad behavior—when the learned agent disagrees
with the oracle—thus providing us with a measure of the capacity of individual explanations to
improve an agent’s behavior.3 We run two sets of experiments, one in which explaining uses only 4
subgoal properties (as in training) and one where all are used.

Our intervention experiments show that individual explanations can be used to correct undesired
behavior; see Fig. 3 for statistics and an example intervention in the University Buildings environment.
We show an improvement of 24.5% when explaining with 4 subgoal properties and 25.3% when using
all properties. The primary cause of the performance difference between the two is the increased
chance of vanishing gradients when we limit the number of subgoals: which properties are most
important may change as the policy is updated and so the model may be unable to cross the decision
boundary, causing explaining to fail. Even when using all subgoal properties, for significant changes
in behavior the neural network used to estimate subgoal properties may exhibit vanishing gradients or
may propose non-physical changes (e.g., negative values for Q, the expected cost), which serve as
grounds for rejection of the explanations. We could add additional training objectives to overcome
these issues, yet these may problematically bias the explanations; exploring this relationship will be
the subject of future work. Even with these occasional failures, the cost savings in our University
Buildings environments from these interventions is non-trivial: 3.6% absolute cost savings when
intervening using four subgoal properties and 3.7% when using all properties.

3We note that in practice, a human serves the role of the auditor, and will first review the agent’s explanations
before deciding whether or not a change in behavior is necessary. Our intervention experiments are designed to
focus on and quantify the capacity of our explanations to facilitate these changes in behavior if requested.

9

6 Additional related work
Explainability Our approach to generating counterfactual explanations is similar to a number
of others that focus on the inputs to the learned algorithm, rather than estimates of interpretable
intermediate quantities. Nearly all (like ours) rely on gradient information to generate counterfactuals
so that explanations remain faithful to the underlying model, with a focus on either rule-based
symbolic decision systems [37] and perceptual systems [38, 28, 31, 30] and with applications to
natural language processing [22, 23, 8]. Our importance [Eq. (3)] is conceptually similar to saliency
used in many visual explanations [31, 30], yet saliency usually defines the explanation, rather than
being used to guide explaining. Recent survey and meta-analysis papers present taxonomies of the
recent explosion of explainable AI tools [32, 15, 6, 25], yet none focus in particular on planning
under uncertainty or its unique challenges and opportunities.

Planning In addition to the black-box, model-free approaches to planning discussed above, there are
a host of other techniques that impose more structure to make planning more interpretable; many are
in the space of self-driving [11, 42, 26], in which the model estimates intermediate understandable
quantities (e.g., where is safe to drive) and is trained end-to-end. These techniques are not yet
well-suited for long-horizon planning or explaining high-level behavior and how to correct it. A few
recent papers learn interpretable hierarchal ontologies (including so-called neural-symbolic planners)
[14, 35, 2, 17] yet are so far primarily useful for improving performance rather than for generating
explanations of high-level behavior. Recent work [19] generates post-hoc visual explanations for
agents trained via deep reinforcement learning, yet focuses on short-horizon objectives.

7 Limitations: implications and future work
If our approach is to be broadly adopted and enable more trustworthy autonomous agents, key
limitations must first be addressed. First, the model of [29] that we build upon for explaining makes
strong assumptions about planning that are untrue in general, including that exploring beyond a
subgoal fully-reveals an arm of the environment and that unknown space is simply connected. In envi-
ronments that violate these assumptions, performance and explanation quality may be prohibitively
poor. Getting good planning performance may also require that the agent “cheat” and estimate (for
example) artificially-high likelihoods to bias its behavior against missing potential routes to the goal.
The conflicting objectives of high-accuracy estimation versus predicting properties that optimize
performance has potentially problematic societal implications; our system’s estimates may mislead
the user if they differ from their implied interpretable meaning. Second, that explanation generation
can sometimes fail is prohibitive for widespread adoption of our approach; adding additional objec-
tives to the explanation loss function will likely overcome this limitation (see our discussion above)
yet may also problematically bias the explanations. Third, while our approach explains the agent’s
high-level behavior, the relationship between images and the estimated subgoal properties remains
opaque, presenting challenges in the event that the human who requested the explanation is uncertain
if the explanation is reasonable. There exists a body of work useful for elucidating this relation or
constructing networks with interpretability in mind [4], and we look forward to future work that
integrates these approaches with ours; we show preliminary results supporting the potential of these
strategies in Sec. A.4. Finally, while our quantitative results are devoted mostly to demonstrating that
our generated explanations are sufficiently rich with information that they can be used to improve
the agent’s behavior, how effectively a human can make use of these explanations to understand and
subsequently correct bad behavior remains a question for future study. Though our theoretical contri-
butions and qualitative results support the idea that our explanations are amenable for communication
to humans, maximizing communication may require further tuning of their presentation. Additional
work must be done to address these limitations, including additional human-in-the-loop experiments,
before our approach can be trusted on an agent that coexists with humans. We additionally hope that
our work will also prove useful for explaining even more complex behavior and Bradley et al. [3]
recently applied the learning over subgoals representation to multi-stage task planning; extending
our approach to support this application domain seems a promising direction for future work.

Despite these limitations, our explanation procedure represents a key step towards the design of more
trustworthy robotic agents, capable of explaining their behavior even when expected to act far into
the future and without full knowledge of their surroundings. Overall, we have shown that our natural
language counterfactual explanations of high-level behavior for navigation under uncertainty both
qualitatively meet our expectations and are quantitatively high-quality, that our explanation process
can help to train an agent from scratch and to directly correct unwanted behavior.

10

Acknowledgments and Disclosure of Funding
We thank Kevin Doherty, Leilani Gilpin, and Lucia Rafanelli for detailed feedback and thought-
provoking discussions that helped to hone the ideas presented here. We also acknowledge Chris
Bradley, Nick Roy, and other members of the MIT Robust Robotics group, who provided helpful
feedback on an early version of this work. G. J. Stein acknowledges funding from the Department of
Computer Science at George Mason University.

References
[1] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi, Q. Fis-

cher, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P.
de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever,
J. Tang, F. Wolski, and S. Zhang. DOTA 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680, 2019.

[2] T. R. Besold, A. d. Garcez, S. Bader, H. Bowman, P. Domingos, P. Hitzler, K.-U. Kühnberger,
L. C. Lamb, D. Lowd, P. M. V. Lima, et al. Neural-symbolic learning and reasoning: A survey
and interpretation. arXiv preprint arXiv:1711.03902, 2017.

[3] C. Bradley, A. Pacheck, G. J. Stein, S. Castro, H. Kress-Gazit, and N. Roy. Learning and
planning for temporally extended tasks in unknown environments. In International Conference
on Robotics and Automation (ICRA), 2021.

[4] C. Chen, O. Li, A. Barnett, J. Su, and C. Rudin. This looks like that: Deep learning for
interpretable image recognition. In Neural Information Processing Systems (NeurIPS), 2019.

[5] M. Fox, D. Long, and D. Magazzeni. Explainable planning. In Proceedings of IJCAI-17
Workshop on Explainable Planning, 2017.

[6] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. Explaining explanations:
An overview of interpretability of machine learning. In International Conference on Data
Science and Advanced Analytics (DSAA), pages 80–89, 2018.

[7] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement
learning that matters. In AAAI Conference on Artificial Intelligence, 2018.

[8] A. Jacovi, S. Swayamdipta, S. Ravfogel, Y. Elazar, Y. Choi, and Y. Goldberg. Contrastive
explanations for model interpretability. arXiv preprint arXiv:2103.01378, 2021.

[9] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101:99–134, 1998.

[10] H. A. Kautz and J. F. Allen. Generalized plan recognition. In Association for the Advancement
of Artificial Intelligence (AAAI), volume 86, 1986.

[11] J. Kim and M. Bansal. Attentional bottleneck: Towards an interpretable deep driving network.
In Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2020.

[12] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

[13] N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, B. Alsallakh, J. Reynolds, A. Melnikov,
N. Kliushkina, C. Araya, S. Yan, and O. Reblitz-Richardson. Captum: A unified and generic
model interpretability library for PyTorch, 2020.

[14] T. P. Le, N. A. Vien, and T. Chung. A deep hierarchical reinforcement learning algorithm in
partially observable markov decision processes. IEEE Access, 6:49089–49102, 2018.

[15] Z. C. Lipton. The mythos of model interpretability. Queue, 16(3):31–57, 2018.

[16] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observable
environments: Scaling up. In Machine Learning Proceedings 1995, pages 362–370, 1995.

11

[17] D. Lyu, F. Yang, B. Liu, and S. Gustafson. Sdrl: interpretable and data-efficient deep rein-
forcement learning leveraging symbolic planning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 2970–2977, 2019.

[18] M. Merlin, N. Parikh, E. Rosen, and G. Konidaris. Locally observable markov decision
processes. In ICRA 2020 Workshop on Perception, Action, Learning, 2020.

[19] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and A. Mordvintsev. The
building blocks of interpretability. Distill, 2018. https://distill.pub/2018/building-blocks.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
(NeurIPS), pages 8024–8035, 2019.

[21] J. Pineau and S. Thrun. An integrated approach to hierarchy and abstraction for pomdps.
Technical Report CMU-RI-TR-02-21, Carnegie Mellon University, Pittsburgh, PA, August
2002.

[22] L. Qin, A. Bosselut, A. Holtzman, C. Bhagavatula, E. Clark, and Y. Choi. Counterfactual story
reasoning and generation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2019.

[23] L. Qin, V. Shwartz, P. West, C. Bhagavatula, J. D. Hwang, R. L. Bras, A. Bosselut, and Y. Choi.
Back to the future: Unsupervised backprop-based decoding for counterfactual and abductive
commonsense reasoning. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020.

[24] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should I trust you?: Explaining the predictions
of any classifier. In International Conference on Knowledge Discovery and Data Mining, pages
1135–1144, 2016.

[25] C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

[26] A. Sadat, M. Ren, A. Pokrovsky, Y.-C. Lin, E. Yumer, and R. Urtasun. Jointly learnable behavior
and trajectory planning for self-driving vehicles. In International Conference on Intelligent
Robots and Systems (IROS), 2019.

[27] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun,
J. Malik, D. Parikh, and D. Batra. Habitat: A Platform for Embodied AI Research. In
International Conference on Computer Vision (ICCV), 2019.

[28] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-CAM: Visual
explanations from deep networks via gradient-based localization. In International Conference
on Computer Vision (ICCV), pages 618–626, 2017.

[29] G. J. Stein, C. Bradley, and N. Roy. Learning over subgoals for efficient navigation of structured,
unknown environments. In Conference on Robot Learning (CoRL), 10 2018.

[30] M. Sundararajan, A. Taly, and Q. Yan. Gradients of counterfactuals. arXiv preprint
arXiv:1611.02639, 2016.

[31] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In International
Conference on Machine Learning (ICML), 2017.

[32] H. Suresh and J. V. Guttag. A framework for understanding unintended consequences of
machine learning. arXiv preprint arXiv:1901.10002, 2019.

[33] H. Suresh, S. R. Gomez, K. K. Nam, and A. Satyanarayan. Beyond expertise and roles: A
framework to characterize the stakeholders of interpretable machine learning and their needs.
In CHI Conference on Human Factors in Computing Systems, 2021.

12

[34] Unity Technologies. Unity. https://unity3d.com, 2017.

[35] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K. Kavukcuoglu.
Feudal networks for hierarchical reinforcement learning. In International Conference on
Machine Learning, pages 3540–3549. PMLR, 2017.

[36] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre,
T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard,
D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring,
D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu,
D. Hassabis, C. Apps, and D. Silver. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

[37] S. Wachter, B. Mittelstadt, and C. Russell. Counterfactual explanations without opening the
black box: Automated decisions and the GDPR. Harvard Journal of Law & Technology, 31:
841, 2017.

[38] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu. Score-CAM:
Score-weighted visual explanations for convolutional neural networks. In Computer Vision and
Pattern Recognition (CVPR) Workshops, 2020.

[39] G. Wayne, C. Hung, D. Amos, M. Mirza, A. Ahuja, A. Grabska-Barwinska, J. W. Rae,
P. Mirowski, J. Z. Leibo, A. Santoro, M. Gemici, M. Reynolds, T. Harley, J. Abramson, S. Mo-
hamed, D. J. Rezende, D. Saxton, A. Cain, C. Hillier, D. Silver, K. Kavukcuoglu, M. Botvinick,
D. Hassabis, and T. P. Lillicrap. Unsupervised predictive memory in a goal-directed agent.
arXiv preprint arXiv:1803.10760, 2018.

[40] E. Whiting, J. Battat, and S. Teller. Topology of urban environments: Graph construction from
multi-building floor plan data. In Computer-Aided Architectural Design Futures (CAADFutures),
pages 114–128, 2007.

[41] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva, and D. Batra.
Decentralized distributed {ppo}: Learning near-perfect pointgoal navigators from 2.5 billion
frames. In International Conference on Learning Representations (ICLR), 2020.

[42] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun. End-to-end interpretable
neural motion planner. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (ICCV), 2019.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] To the best of our ability, the abstract and introduction are
relevant and accurate.

(b)Did you describe the limitations of your work? [Yes] Our final section (Sec. 7) includes a
discussion of the limitations of our approach; our results section (Sec. 5) also includes some
additional discussion.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Our final section
(Sec. 7) includes a discussion of the limitations of our approach. This includes a number of
key ways that our explanation strategy may fail, resulting in circumstances where the agent’s
behavior cannot be particularly well explained or where poor behavior cannot be corrected
and where explanations may potentially mislead the user, all prohibitive negative impacts for
the immediate adoption of our approach without further study.

(d)Have you read the ethics review guidelines and ensured that your paper conforms to them?
[Yes] We affirm that we have read these guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We enumerate all

assumptions made by our approach alongside the discussion that motivates its form. See
Sec. 4 and Sec. 3.

13

https://unity3d.com

(b)Did you include complete proofs of all theoretical results? [N/A] While we did make
theoretical contributions in the form of a novel approach to generating explanations, our
advances did not require proofs as such.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results (either in the supplemental material or as a URL)? [Yes] We have included all
code necessary to reproduce experiments as supplementary material. So as to ensure that it
can be easily reproduced, we provide tooling to build the code in a Docker container and
automatically identify and reproduce individual trials and experiments as desired. Further
details and instructions are included in a README provided alongside the code.

(b)Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] Some of these details are mentioned in the main text. These and the remaining
details are also included in the appendix: Sec. A.1 for learning architecture and Sec. A.2
for training details. We have tried to be as thorough as possible in describing our design
decisions.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [No] All learning algorithms are trained via identical configurations (with a
single, fixed random seed, network configuration, and hyperparameters shared between all),
with the only changes between them being the different numbers of subgoal properties used
during training. For our planning experiments and results, we include both the average cost
across 1,000 trials for each planner and environment and also include scatter-plots that show
the individual trials used to produce results (in lieu of error bars).

(d)Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [Yes] Details of the computational resources used
are mentioned in a few places in the main text and repeated in the Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Our simulation environments

and relevant data were either created in-house or have been given proper attribution.
(b)Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes] We

have included code written for the purposes of this project in the supplementary materials. As
our experiments are simulated, we also include a binary of our simulated environments which
can be used to generate data.

(d)Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] Data is collected via simulation.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Data is collected via simulation.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if applicable?

[N/A]
(b)Did you describe any potential participant risks, with links to Institutional Review Board

(IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount spent on

participant compensation? [N/A]

14

