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Abstract

Time series models are ubiquitous in fields of science that deal with temporally structured
data. Recent advancements in time series analysis have seen a growing trend toward the
popularity of tailor-made transformer neural networks with customized attention blocks
and hand-crafted intricate design features. We show, perhaps surprisingly and against this
current trend, that a simple time series generative transformer model, dubbed tsGT, based
on a vanilla decoder-only architecture with the discretization of real values outperforms more
sophisticated contemporary models on selected prediction tasks. We evaluate tsGT against
eleven baselines and show that it surpasses its deterministic peers on MAE and RMSE,
and the stochastic ones on QL and CRPS on four commonly used datasets: electricity,
traffic, ETTm2, and weather. We use a well-known and theoretically justified rolling
window evaluation protocol and provide a detailed analysis of tsGT’s ability to model the
data distribution and predict marginal quantile values. We provide an implementation of
our method at https://github.com/ts-gt/tsgt.

1 Introduction

Researchers and practitioners use data in the form of time series to predict and analyze future events, estimate
relationships, and make informed decisions across a diverse range of scientific fields. With applications
spanning medicine, finance, economics, meteorology, astronomy, transportation, and manufacturing, the
significance of time series methods cannot be overstated.

The generative mechanism behind time series data is often modeled as an autoregressive stochastic process
(Hamilton, 2020). These models encompass a broad range of approaches, such as classical econometrics
techniques like ARMA (Whittle, 1951) and ARCH models (Engle, 1982), or recurrent neural networks
(Hochreiter & Schmidhuber, 1997) and transformers (Vaswani et al., 2017) in deep learning. In particular,
the last class of models emerged as a powerful architecture that fuels many of the recent advances in machine
learning, including text generation (Brown et al., 2020), solving mathematical problems (Lewkowycz et al.,
2022), hyperparameter tuning (Chen et al., 2022), or EEG analysis (Kostas et al., 2021).

Transformers have also made their way to the time series domain (Li et al., 2019; Woo et al., 2022; Zhou
et al., 2022; Wu et al., 2021; Zhou et al., 2021; Wen et al., 2023; Drouin et al., 2022; Ashok et al., 2024;
Rasul et al., 2024). Interestingly, contemporary models often feature domain-specific design choices in neural
network architectures, input processing, or loss function formulation. Many models are deterministic, and the
evaluation protocol is often limited to using pointwise metrics within a single time window. Some of these
choices offer benefits, including simplicity, ease of interpretation, and computation efficiency. However, in this
paper, we focus on a general approach to time series modeling and a well-established evaluation protocol.

We present a simple time series generative transformer, dubbed tsGT, based on a vanilla decoder-only
transformer with a real value discretizer. tsGT is stochastic and uses a general-purpose architecture without
any domain-specific complex inductive biases. This approach has several important benefits, including the
reduced cost of training due to the decreased number of dataset-specific hyperparameters and facilitates
effective scaling with data, computation, and model size (Sutton, 2019; Kaplan et al., 2020; Hoffmann et al.,
2022). It also allows us to incorporate any progress in transformer efficiency, which is an active field of
research (Tay et al., 2022; Zhou et al., 2024; Tang et al., 2024), directly into tsGT.
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We show that the simplicity of tsGT leads to a considerable increase in performance on selected prediction
tasks in four commonly used datasets: electricity, traffic, ETTm2, and weather, with respect to eleven
baseline models. tsGT significantly outperforms its deterministic peers on mean absolute error (MAE) and
root means square error (RMSE) metrics and its stochastic peers on quantile loss (QL) and continuous ranked
probability score (CRPS). Importantly, we focus on testing the models’ predictive capabilities, employing a
rolling window analysis, which is a well-known time-series procedure that is robust to outliers and assesses
the methods’ stability over time. In particular, this allows us to backtest the stochastic modeling abilities of
tsGT on a granular, per-quantile level (McNeil et al., 2015) and demonstrate that for higher quantile values
tsGT outperforms its stochastic peers. Finally, we demonstrate that tsGT preserves temporal information
and does not adhere to a recent critique of transformers models for time series modeling Zeng et al. (2023).

Our contributions are as follows:

• We propose tsGT, a general-purpose transformer stochastic time series model. Additionally, we focus
on using a rolling window evaluation protocol and backtesting the predictive performance.

• We show that in terms of MAE and RMSE, tsGT outperforms contemporary deterministic transformer
models. Interestingly, tsGT uses the same training hyperparameters across the datasets.

• We rigorously assess tsGT’s predictive performance. In particular, we show that tsGT outperforms
stochastic baselines on QL and CRPS, analyze tsGT’s ability to model data distribution, and
demonstrate that it preserves temporal information.

2 Related work

The classical treatment of time series modeling can be found in (Hamilton, 2020; Brockwell & Davis, 2009;
Hyndman & Athanasopoulos, 2021). Historically, much of the progress in the field has been driven by
financial and risk management applications (Nobel Foundation, 2003; Zivot & Wang, 2006; Tsay, 2010;
McNeil et al., 2015). More recently, deep learning methods (Goodfellow et al., 2016), such as RNNs and
Transformers have made their way into the field (Salinas et al., 2020; Li et al., 2019). Transformers are strong
sequence-to-sequence architectures, and their large-scale variants are known as large language models (LLMs).
There is an overwhelming abundance of LLMs, including GPT variants (Radford et al., 2019; Brown et al.,
2020; OpenAI, 2023), PaLM (Chowdhery et al., 2022), LLaMA (Touvron et al., 2023), or Gemini (Team
et al., 2023). See (Liang et al., 2022; Zhao et al., 2023; Yang et al., 2023) for recent surveys on the topic.
Adaptation of LLMs to time series tasks has been explored in (Gruver et al., 2024; Wu et al., 2023). While
our work focuses on training transformer models, which are smaller then modern LLMs by several orders of
magnitude, we employ architectural choices found to be useful in LLMs, including rotary embeddings (Su
et al., 2021) and GELU activation function (Hendrycks & Gimpel, 2016).

Following the popularity of transformers, there has been a surge of transformer-inspired time series models;
see (Wen et al., 2023) for a recent survey. Recent deterministic models include ETSformer (Woo et al., 2022),
FEDformer (Zhou et al., 2022), Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021), PatchTST (Nie
et al., 2022), Crossformer (Zhang & Yan, 2023). Some of these models were criticized by Zeng et al. (2023),
as they were shown to be permutationally invariant in some evaluation settings and to fall short of a simple
MLP-based model (DLinear). Other all-MLP models for time series include N-BEATS (Oreshkin et al., 2020),
N-HiTS (Challu et al., 2022) and TSMixer (Chen et al., 2023). Stochastic transformer time series models
include ConvTrans (Li et al., 2019), Temporal Fusion Transformer (Lim et al., 2021), IQN-Transformer
(Gouttes et al., 2021), FQFormer (Jawed & Schmidt-Thieme, 2022), Tactis (Drouin et al., 2022; Ashok et al.,
2024). Multivariate modeling of time series has been explored, and joint distribution of variates has been
approached via Gaussian Processes (Salinas et al., 2019), attention copulas, hypernetworks, deep sigmoidal
flows (Drouin et al., 2022; Ashok et al., 2024), diffusion models (Rasul et al., 2021a), GANs (Brophy et al.,
2021), and normalizing flows (Rasul et al., 2021b).

Recently, first time series foundation models trained on vast datasets started to emerge: Lag-Llama (Rasul
et al., 2024), which also uses decoder-only architecture but does not discretize real values, contains parametric
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distribution heads, and heavily relies on cyclic, lag, and summary statistics covariates. Other attempts to
create time series foundational models Garza & Mergenthaler-Canseco (2023); Das et al. (2023).

There are multiple ways of handling real-valued data in the literature. Typically, the raw time series values
are normalized before further processing, e.g., by scaling to a certain interval (Li et al., 2019) or centered and
standardized (Nie et al., 2022). After that, the data is tokenized, via bucketing (Chen et al., 2021; Janner
et al., 2021; Chen et al., 2022; Reed et al., 2022) or k-means (Shafiullah et al., 2022), or directly embedded as
a multivariate vector e.g., by introducing covariates (Li et al., 2019), modeling multivariate time series (Zhou
et al., 2021; Wu et al., 2021; Zhou et al., 2022; Woo et al., 2022), or patching (Nie et al., 2022; Zhou et al.,
2023). tsGT handles preprocessing of real-valued data in three steps: (a) the values are normalized to [0, 1]
interval, similar to (Li et al., 2019), (b) the values are quantized into a fixed precision, and (c) the values
are split into digits. The last step is similar to (Nogueira et al., 2021; Chowdhery et al., 2022; Gruver et al.,
2024), where tokenization of string representation of numbers into digits was used to improve parsing simple
text-based math problems. Steps (b) and (c) can also be viewed as a form of vector quantization (VQ) (Gray,
1984; Lendasse et al., 2005; Oord et al., 2017), although VQ is often used differently, i.e., to compress the
data into a finite set of prototype vectors; see also VQ-AR (Rasul et al., 2022) in the context of time series
modeling.

The contemporary time series methods mentioned above are trained and evaluated on a fixed time window. In
this paper, we perform a rolling-window analysis, i.e., we train and evaluate models on multiple overlapping
windows (McNeil & Frey, 2000; González-Rivera et al., 2004; McNeil et al., 2015). This allows assessing the
methods’ stability over time and their predictive performance via backtesting procedure (McNeil et al., 2015).
Finally, we leave the efficient transformer implementation out of the paper’s scope, since it is a challenge
studied intensively across the deep learning field, see e.g., (Tay et al., 2022). This allows us to focus on
modeling complex stochastic properties of continuous data using a plug-and-play design, which facilitates the
integration of efficiency-related innovation in the field.

3 Time series model: tsGT

Time series notation We consider a time series which ends at time t and has a length T , Xt−T +1:t =
(Xt−T +1, . . . , Xt). Our goal is to predict the H timesteps following t, i.e., Xt+1:t+H = (Xt+1, . . . , Xt+H). The
raw data Xt−T +1:t forms an input to the model, and no additional covariates are provided (such as series id,
timestamp, or other exogenous factors).

Transformer backbone Motivated by strong sequence-to-sequence Transformers performance, we use
a decoder-only transformer (Vaswani et al., 2017), with pre-normalization (Radford et al., 2019), rotary
embeddings (Su et al., 2021), and GELU activation function (Hendrycks & Gimpel, 2016). These choices
are inspired by recent successful architectures like GPT-3 (Brown et al., 2020) or LLaMA (Touvron et al.,
2023). Notice that we do not use time series-specific architectural modifications, such as 1D convolutions
(Li et al., 2019), frequency domain (Wu et al., 2021; Zhou et al., 2022), seasonal-trend decomposition (Woo
et al., 2022), patching (Nie et al., 2022), copulas, hypernetworks, or Deep Sigmoidal Flows (Drouin et al.,
2022; Ashok et al., 2024). For architectural details, see Appendix A-B.

Input and output discretization Following the success of transformers in language modeling, where the
input consists of sequences from a finite alphabet, we discretize the real-valued data into a stream digits.
Discretization is performed in three stages: (a) normalization of data, (b) quantization into fixed precision,
and (c) discretization into digits.

During the stages (a) and (b), the values are divided by a normalizing constant and squeezed to the interval
[0, 1], a procedure also found in (Salinas et al., 2020; Janner et al., 2021; Chen et al., 2022; Reed et al., 2022),
see Appendix A.

Next, each value a ∈ [0, 1] is tokenized to digits in a fixed precision p ∈ N+ in base B > 1, via a function
τ(a) = (τ1(a), . . . , τp(a)), defined through an equation ⌊a ·Bp⌋ =

∑p
k=1 τk(a) ·Bp−k. For example, with p = 3

and B = 10, a number a = 0.123 is represented as three tokens 1, 2, 3.
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With a slight abuse of notation, we denote by τ(X) a series of tokens resulting from breaking a normalized
time series X into digits (with a length of τ(X) being p times larger than the length of X). For each k, a
model gθ outputs a conditional distribution gθ(·|τ1, . . . , τk) over the next (k + 1)-th token (digit). If we denote
τ ′ = (τ ′

1, . . . , τ ′
pT +pH) = τ(Xt−T +1:t+H), the conditional distribution of the predicted horizon is given by

gθ(τ ′
pT +1, . . . , τ ′

pT +pH |τ ′
1, . . . , τ ′

pT ) =
pT +pH∏
k=pt+1

gθ(τ ′
k|τ ′

1, . . . , τ ′
k−1).

The distribution of each real-valued number returned by the model is induced by the joint probability of
p consecutive digits and the mapping inversing the tokenization procedure. This joint probablity is recovered
via a chain rule as a product of non-parametric conditional distributions returned by the model. This
procedure gives the model probabilistic flexibility, allowing a range of complex and multi-modal distributions.

Loss function We use a standard transformer training objective of predicting the next token with a
weighted cross-entropy loss:

L(θ) = EX∼Data
τ ′=τ(X)

[
pT∑

k=1
β(k−1)%p log gθ(τ ′

k|τ ′
1, . . . , τ ′

k−1)
]

. (1)

Here β ∈ (0, 1] is a hyperparameter discriminating between the significance of digits, and k%p denotes the
remainder of t divided by p.

Simulation For clarity of exposition, we omit discretization details in what follows, letting the reader
infer specific details. The predictions are generated autoregressively using a standard Monte Carlo method.
Assuming that for a time series of length T ending at time t, Xt−T +1:t, we have already generated h steps
of predictions, we generate the next value, Xt+h+1, as the sample from the model evaluated on Xt−T +1:t+h.
Consequently, we append Xt+h+1 to the sequence, resulting in Xt−T +1:t+h+1, and the procedure is repeated.
In this paper, we make I = 1024 simulations of H steps following t, for every considered t.

4 Experimental setup

Below, we present the setup used for our experiments, postponing experimental results to the next section. In
Section 5, our main result shows the tsGT outperforms the baselines on all considered datasets and metrics.

Transformer architecture We set the precision p = 3 and base B = 10. During training, the raw time
series input window is T = 256, which translates to pT = 768 tokens fed to the transformer. During inference,
we set the prediction horizon H = 24, and the raw time series input window equals T = 256 −H = 232.
In all our experiments, the transformer decoder comprises 6 layers and 4 self-attention heads, with an
embedding dimension of 256. Our models have ≈ 3.2M trainable weights. For training, we use a batch size
16, Adam optimizer, and scheduling the learning rate (multifactor approach with a constant of 0.03, linear
warmup of 1000 steps, and square root decay). Additionally, we apply a weight decay with the rate of 10−5

and do not use early stopping. See Appendix B for more details.

Baseline models We include as baselines several contemporary transformer and non-transformer methods.
Models from the former category include FEDformer (Zhou et al., 2022), Informer (Zhou et al., 2021),
Autoformer (Wu et al., 2021), ETSformer (Woo et al., 2022), IQN-Transformer (Gouttes et al., 2021),
PatchTST (Nie et al., 2022), and a family of stochastic models inspired by Li et al. (2019). This family
includes variants with different parametric marginal distributions: Gaussian, Laplace, and t-student. Non-
transformer models include DLinear (Zeng et al., 2023) and TSMixer (Chen et al., 2023), representing linear
and MLP-based approaches, respectively. Among the baselines, IQN-Transformer, Gaussian, Laplace, and t-
student are stochastic, and other ones are deterministic. For the deterministic models, we use hyperparameters
proposed by their open-source implementations. For the details on the hyperparameters used, see Appendix
B. The models’ approximate parameter count is as follows: FEDformer 18M, Informer 12M, Autoformer 11M,
and ETSformer 6M. For more details on baselines, see Appendix C-D, and Appendix G for computational
infrastructure used.
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Table 1: Performance of models in terms of error metrics MAE and RMSE (lower values are better). Each
entry is computed using IQM and accompanied by a 90% bootstrap confidence interval (in brackets) computed
over W = 100 training windows and all time series.

metric model electricity traffic ETTm2 weather

MAE t-student∗ 0.126(0.125, 0.126) 0.273(0.272, 0.274) 0.187(0.172, 0.204) 0.125(0.116, 0.134)

Laplace∗ 0.127(0.126, 0.127) 0.272(0.272, 0.273) 0.186(0.171, 0.204) 0.125(0.116, 0.134)

Gaussian∗ 0.125(0.124, 0.125) 0.275(0.274, 0.276) 0.182(0.168, 0.199) 0.135(0.126, 0.145)

IQN∗ 0.124(0.123, 0.124) 0.349(0.348, 0.351) 0.183(0.169, 0.200) 0.129(0.121, 0.137)

Informer 0.235 (0.233, 0.236) 0.195 (0.193, 0.196) 0.195 (0.194, 0.197) 0.224 (0.223, 0.226)

ETSformer 0.201 (0.200, 0.203) 0.192 (0.191, 0.193) 0.193 (0.192, 0.195) 0.206 (0.204, 0.207)

FEDformer 0.179 (0.178, 0.180) 0.162 (0.161, 0.164) 0.156 (0.154, 0.157) 0.180 (0.178, 0.181)

Autoformer 0.169 (0.167, 0.170) 0.161 (0.159, 0.162) 0.152 (0.151, 0.154) 0.173 (0.172, 0.174)

DLinear 0.065 (0.064, 0.065) 0.181 (0.180, 0.182) 0.094 (0.089, 0.101) 0.111 (0.105, 0.118)

PatchTST 0.062 (0.062, 0.062) 0.152 (0.152, 0.153) 0.094 (0.089, 0.101) 0.079 (0.073, 0.085)

TSMixer 0.063 (0.062, 0.063) 0.153 (0.152, 0.154) 0.090 (0.084, 0.096) 0.087 (0.081, 0.092)

tsGT∗ 0.057 (0.057, 0.058) 0.114 (0.114, 0.115) 0.092 (0.086, 0.098) 0.056 (0.052, 0.061)

RMSE t-student∗ 0.164(0.163, 0.165) 0.398(0.397, 0.400) 0.215(0.198, 0.235) 0.143(0.133, 0.154)

Laplace∗ 0.165(0.165, 0.166) 0.399(0.397, 0.401) 0.215(0.198, 0.235) 0.143(0.132, 0.153)

Gaussian∗ 0.162(0.161, 0.163) 0.399(0.398, 0.401) 0.209(0.193, 0.228) 0.154(0.143, 0.165)

IQN∗ 0.161(0.160, 0.162) 0.513(0.510, 0.515) 0.210(0.194, 0.229) 0.149(0.139, 0.159)

Informer 0.324 (0.322, 0.327) 0.257 (0.255, 0.259) 0.257 (0.255, 0.259) 0.307 (0.305, 0.310)

ETSformer 0.267 (0.265, 0.270) 0.248 (0.246, 0.249) 0.249 (0.247, 0.251) 0.270 (0.268, 0.272)

FEDformer 0.249 (0.247, 0.251) 0.216 (0.214, 0.218) 0.205 (0.203, 0.207) 0.249 (0.247, 0.251)

Autoformer 0.235 (0.233, 0.237) 0.215 (0.213, 0.216) 0.205 (0.203, 0.206) 0.239 (0.237, 0.241)

DLinear 0.084 (0.083, 0.084) 0.277 (0.276, 0.278) 0.114 (0.107, 0.121) 0.128 (0.121, 0.136)

PatchTST 0.080 (0.080, 0.081) 0.241 (0.239, 0.242) 0.114 (0.107, 0.121) 0.094 (0.087, 0.101)

TSMixer 0.081 (0.081, 0.082) 0.241 (0.239, 0.242) 0.108 (0.102, 0.116) 0.101 (0.095, 0.109)

tsGT∗ 0.075 (0.074, 0.075) 0.201 (0.200, 0.203) 0.113 (0.105, 0.121) 0.068 (0.063, 0.074)

∗ Stochastic model

Datasets To assess the performance of our method against the baseline models we use four real-life datasets,
which are commonly used in the field: electricity, traffic, ETTm2, and weather, see Wu et al. (2021). The
electricity and traffic datasets are rich in periodic patterns. ETTm2 introduces additional complexity, as
it contains negative values, outliers, and displays unpredictable behavior. Finally, weather dataset contains
time series with varying scales, frequent outliers, and features a considerable number of zero values in certain
series.

Every dataset comprises S time series and each data point is time-stamped. The value S is dataset-dependent,
e.g., for electricity S = 321 and for traffic S = 862. The training window spans 365 · 24 = 8760
timesteps, immediately followed by the evaluation horizon of length H = 24. See Appendix E for further
details.

Metrics and evaluation protocol We evaluate the models on a rolling-window basis. Namely, each
dataset is divided into W = 100 consecutive and overlapping time windows of equal length. For each time
window, we train a separate model and evaluate it on H time steps immediately following that window.
This makes the evaluation more robust to outliers and allows us to assess the methods’ stability over time.
Furthermore, we can compute metrics on a more fine-grained scale and perform backtest. Importantly, this
evaluation protocol is well-established in time series literature (Kupiec, 1995; González-Rivera et al., 2004;
McNeil et al., 2015), and differs from what is typically used for many transformer baseline models (only one
evaluation window and no predictive power assessment, e.g., due to models’ determinism). In what follows,
we introduce the necessary definitions and describe how we aggregate the results. For additional information,
see Appendix F.
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For error metrics, we use root-mean-square error (RMSE) and mean-absolute error (MAE), well-established
measures that can be computed for deterministic models. For stochastic models, we first compute the mean
of the prediction and then compute the error, to achieve fairness in comparison with deterministic models.
The metrics are given by the following formulas:

RMSE(w, s) =

√√√√ 1
H

1
F s,w

H∑
h=1

(
1
I

I∑
i=1

X̂s,w
h,i −Xs,w

h

)2

,

MAE(w, s) = 1
H

1
F s,w

H∑
h=1

∣∣∣∣∣1I
I∑

i=1
X̂s,w

h,i −Xs,w
h

∣∣∣∣∣
where w, s, H, and I are the training window, series, horizon length, and number of samples, respectively.
Furthermore, Xs,w

h is the ground truth target value and X̂s,w
h,i is the prediction of a given method, for series

s, prediction horizon h, and simulation i. The normalizing factor F s,w is the average absolute value of the
ground truth series s in the training window w. In this paper, we assume H = 24 and I = 1024.

For quantile metrics, we report a Quantile Loss (QL) and a Continuous Ranked Probability Score (CRPS)
(Zamo & Naveau, 2018; Berrisch & Ziel, 2021). Quantile Loss is defined as

QLα(w, s) = 2
H

1
F s,w

H∑
h=1

(
α− 1∆s,w

h,α
≤0

)
(Xs,w

h − q̂s,w
h (α)),

where q̂s,w
h (α) is the α-quantile predicted by the model for series s, prediction horizon h, training window

w, and α ∈ (0, 1). To compute q̂s,w
h (α) we use an empirical estimator based on I = 1024 samples from the

model. CRPS summarizes the quantile loss over multiple quantile levels,

CRPS(w, s) = 1
M

M∑
m=1

QLαm
(w, s),

where αm = m
M+1 (we use M = 20).

We aggregate error metrics (RMSE, MAE) and quantile metrics (QL, CRPS) for each dataset by summarizing
the values over time series and windows via interquartile mean (IQM) (Agarwal et al., 2021). IQM discards
bottom and top 25% values and calculates the mean of the remaining 50%, making it robust to outliers.
In our experiments, IQM gave results comparable to or more conservative than the median. For results
aggregated using an average please see Appendix J.

Backtest In addition to the above-mentioned metrics, we use the Kupiec backtest procedure (Kupiec,
1995; McNeil et al., 2015) to measure the model’s predictive performance. In particular, how well the model
captures the data distribution and the corresponding quantiles. The test is based on the number of quantile
violations, defined as:

v̂s
h,α =

W∑
w=1

1(q̂s,w
h (α) < Xs,w

h ).

If the model correctly models the data randomness, i.e., the test’s null hypothesis is true, v̂s
h,α has the

Binomial distribution with parameters (1− α, W ), see (McNeil et al., 2015, Section 9.3.1). The likelihood
ratio test is given by

T s
h,α = 2 log

Bin(v̂a
h,α, v̂s

h,α/W, W )
Bin(v̂s

h,α, 1− α, W ) ,

where Bin(k, p, n) =
(

n
k

)
pk(1 − q)n−k. Under the null hypothesis, T s

h,α is asymptotically distributed as
χ-squared distribution with one degree of freedom, χ2(1). Consequently, the p-value is given as p-values

h,α =
P(χ2(1) > T s

h,α).
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Table 2: Performance of the models in terms of quantile metrics QL and CRPS (lower values are better).
Each entry is computed using IQM with 90% bootstrap confidence intervals (in brackets) computed over
W = 100 training windows and all time series in each dataset.

metric model electricity traffic ETTm2 weather

CRPS t-student 0.11 (0.105, 0.106) 0.24 (0.235, 0.237) 0.18 (0.166, 0.198) 0.12 (0.108, 0.125)

Laplace 0.11 (0.106, 0.107) 0.24 (0.234, 0.236) 0.18 (0.166, 0.199) 0.12 (0.107, 0.124)

Gaussian 0.1 (0.103, 0.104) 0.23 (0.229, 0.23) 0.17 (0.157, 0.186) 0.12 (0.114, 0.131)

IQN 0.1 (0.101, 0.102) 0.27 (0.271, 0.273) 0.17 (0.155, 0.185) 0.11 (0.103, 0.118)

tsGT 0.04 (0.042, 0.042) 0.08 (0.081, 0.082) 0.07 (0.068, 0.078) 0.04 (0.037, 0.044)

QL50% t-student 0.13 (0.125, 0.126) 0.27 (0.272, 0.274) 0.19 (0.172, 0.204) 0.12 (0.116, 0.134)

Laplace 0.13 (0.126, 0.127) 0.27 (0.272, 0.273) 0.19 (0.171, 0.204) 0.12 (0.115, 0.134)

Gaussian 0.12 (0.124, 0.125) 0.28 (0.274, 0.276) 0.18 (0.168, 0.199) 0.14 (0.126, 0.145)

IQN 0.12 (0.123, 0.125) 0.34 (0.337, 0.34) 0.18 (0.168, 0.2) 0.13 (0.119, 0.136)

tsGT 0.06 (0.055, 0.056) 0.1 (0.103, 0.104) 0.09 (0.086, 0.098) 0.05 (0.047, 0.056)

QL75% t-student 0.11 (0.11, 0.111) 0.25 (0.252, 0.254) 0.17 (0.153, 0.182) 0.11 (0.102, 0.12)

Laplace 0.11 (0.111, 0.112) 0.25 (0.253, 0.255) 0.17 (0.153, 0.183) 0.11 (0.101, 0.12)

Gaussian 0.11 (0.107, 0.108) 0.25 (0.247, 0.249) 0.16 (0.146, 0.173) 0.13 (0.118, 0.137)

IQN 0.11 (0.108, 0.109) 0.32 (0.317, 0.32) 0.16 (0.143, 0.17) 0.11 (0.102, 0.118)

tsGT 0.05 (0.046, 0.047) 0.09 (0.09, 0.091) 0.08 (0.072, 0.082) 0.04 (0.04, 0.047)

QL95% t-student 0.06 (0.06, 0.061) 0.16 (0.162, 0.164) 0.12 (0.103, 0.129) 0.06 (0.053, 0.068)

Laplace 0.06 (0.057, 0.058) 0.16 (0.155, 0.157) 0.11 (0.102, 0.128) 0.06 (0.05, 0.064)

Gaussian 0.06 (0.056, 0.057) 0.14 (0.139, 0.14) 0.09 (0.082, 0.105) 0.06 (0.051, 0.063)

IQN 0.05 (0.052, 0.053) 0.15 (0.152, 0.153) 0.09 (0.076, 0.098) 0.05 (0.045, 0.055)

tsGT 0.02 (0.016, 0.017) 0.04 (0.037, 0.037) 0.03 (0.029, 0.035) 0.02 (0.015, 0.017)

In experiments, we report the fraction of time series and horizons for which their p-value in the underlying
likelihood ratio test is at least γ ∈ (0, 1):

p-valueα = 1
SH

H∑
h=1

S∑
s=1

1(p-values
h,α ≥ γ).

Informally, this tells us for how many time series and horizons the model correctly predicts tail events
according to the Kupiec test with significance level γ; here γ = 5%.

5 Experiments

The key finding of this section is that tsGT surpasses existing state-of-the-art methods in RMSE and MAE
metrics, as detailed in Section 5.1. This highlights the advantage of stochastic models, showing they not
only apply to a broader array of scenarios but also provide more accurate pointwise predictions compared
to deterministic models. We further analyze the behavior of these models from a distributional perspective
in Sections 5.2 to 5.3. It is important to note that such stochastic analysis is not possible for most of the
contemporary baselines due to their determinism. Our model outperforms stochastic baselines on QL and
CRPS (Section 5.2) and does a good job at predicting quantiles (Section 5.3) for datasets electricity and
traffic. However, all models struggle on ETTm2 and weather datasets, highlighting the need for rigorous
evaluation and an inflow of new ideas to the field. Finally, we confirm in Section 5.4 that tsGT does not
suffer from weaknesses pointed out by Zeng et al. (2023). Additional experiments are available in Appendix:
for ablations on scaling, normalization, β, discretization, or embeddings, see Appendix I; for an application
of time series forecasting to an atypical task of predicting hand-drawn images, see Appendix H.
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Table 3: Fraction of horizon-series pairs in each dataset with p-values exceeding 5% for Kupiec’s PoF test on
each quantile.

metric model electricity traffic ETTm2 weather

p-value50% t-student 72.7% 89.9% 85.1% 68.5%
Laplace 73.7% 89.5% 88.1% 65.1%
Gaussian 73.2% 88.6% 90.5% 70.4%
IQN 74.0% 46.3% 94.0% 65.5%
tsGT 88.0% 88.9% 63.1% 48.8%

p-value75% t-student 24.6% 6.7% 0.0% 15.3%
Laplace 22.7% 6.6% 0.0% 14.3%
Gaussian 36.4% 21.1% 5.4% 17.7%
IQN 24.1% 17.0% 1.8% 9.7%
tsGT 78.0% 80.7% 11.9% 40.3%

p-value95% t-student 0.7% 0.0% 0.0% 11.9%
Laplace 1.6% 0.2% 0.0% 13.7%
Gaussian 1.6% 0.7% 0.0% 17.1%
IQN 3.0% 18.8% 0.0% 3.4%
tsGT 67.2% 71.8% 0.0% 21.2%

5.1 Main result: performance on error metrics

Our experiments reveal that tsGT outperforms baselines on electricity, traffic, and weather datasets,
see Table 1. Importantly, tsGT’s confidence intervals do not overlap with those of the other models. On
ETTm2, tsGT matches the performance of DLinear, PatchTST, and TSMixer, as their confidence intervals
overlap.

Interestingly, stochastic methods that employ parametric marginal distributions (Gaussian, Laplace, and
t-student) often match or surpass the performance of more intricate transformer-based models, e.g., Informer,
ETSformer, FEDformer, Autoformer on electricity. This observation, especially when combined with
further improvement to those results when applying tsGT, highlights the value of stochastic modeling in time
series forecasting.

We hypothesize that the reasons for the overall tsGT’s strong performance are threefold. First, the stochastic
nature of tsGT allows us to simulate multiple predictions and compute their mean achieving a variance
reduction effect. Second, our model benefits from the transformer’s dense learning signal in the form of
the next token prediction objective. In particular, this incentivizes the emergence of rich internal data
representations. Third, tsGT models complex non-parametric marginal distributions allowing to capture
stochastic behavior of individual time series. This is possible due to our tokenization strategy, which also
makes it easy for the transformer to handle real-valued data.

5.2 Analysis: quantile metrics

In this section, we investigate the models’ performance on quantile metrics QL and CRPS1, as defined in
Section 4. These metrics are useful in ranking the models and the results are presented in Table 2. We
observe that tsGT outperforms other methods on CRPS by a significant margin. This is encouraging, as this
metric summarizes how the model fares in predicting quantiles at multiple levels. The results for QL50%,
QL75%, and QL95% confirm this conclusion. Having ranked the models, we conduct a detailed analysis of
their performance in the next section.

1Such an analysis is unavailable for deterministic baselines considered in this paper, i.e., Informer, ETSformer, FEDformer,
Autoformer, DLinear, PatchTST, and TSMixer.
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Figure 1: Color-coded p-values from backtesting tsGT on electricity. Each rectangle represents the results
for backtesting tsGT on one of the following levels: 50%, 75%, and 95%. The height of a rectangle equals
H = 24, corresponding to the number of prediction steps, and a width equals to S = 321, the number of time
series in electricity.

5.3 Analysis: backtest

In this section, we study the methods’ ability to model the data distribution. The findings are presented in
Table 3, which reports the outcomes of a backtesting procedure proposed by Kupiec (1995) and described in
Section 4 and Appendix F. Namely, the table’s entries represent a fraction of all time series and horizons for
which the models passed the test. This number summarizes how accurately each model captures the data
distribution.

Table 3 indicates that tsGT achieves the highest performance at quantile levels 75% and 95% across all
datasets. For median, the results vary: tsGT leads on electricity, matches the performance of t-student,
Laplace, and Gaussian on traffic, and performs adequately on weather, but does not surpass the baselines.

The results presented in Table 3 reveal two key insights. First, there is clearly a negative correlation between
α and models’ ability to predict α-quantile. For many models this drop in performance is severe. Yet, tsGT
stands out as it consistently maintains good performance across all quantile levels on electricity and
traffic. Second, there is a stark difference in the difficulty of data distribution modeling between datasets.
This is particularly visible for ETTm2 and weather, where all the methods achieve good or very good results
for modeling the median but collapse for higher quantile levels. We suspect this difficulty stems from the
high volatility and unpredictability of time series in these specific datasets.

We notice that the Laplace and t-student approaches do not perform particularly well at 75% and 95%
quantile levels on any dataset. This is surprising, given that these distributions are characterized by heavy
tails, making them natural candidates for solving the task at hand.

Finally, it is instructive to delve into tsGT’s modeling capabilities on a dataset where it excels. Figure 1
showcases p-values from backtesting tsGT on electricity across three quantile levels (50%, 75% and 95%),
24 prediction horizons, and 321 individual time series. Each cell in the depicted matrices corresponds to
a single p-value, color-coded green for acceptance or red for rejection at the 5% significance level. Green
dominates all matrices, indicating a generally high model performance. However, we observe that the amount
of red color increases with higher quantile levels, reflecting the rates from Table 3: 88.0% for α = 50%,
78.0% for α = 75%, and 67.2% for α = 95%. Additionally, we can see that for certain time series, predicting
quantiles across any horizon remains particularly challenging, as indicated by the vertical red lines.

5.4 Analysis: input permutation

Transformer models, including Informer, Autoformer, and FEDformer have been criticized for insufficient
handling of temporal dependencies, and some even exhibit permutational invariance (Zeng et al., 2023). This
can be viewed as a serious issue, as the sequential order often plays a crucial role in time series modeling.
Additionally, Zeng et al. (2023) demonstrated that these methods underperform with respect to a simple

9



Under review as submission to TMLR

Table 4: Performance of tsGT after a random shuffling of input during inference.
metric model electricity traffic ETTm2 weather

MAE tsGT + shuffling 0.283(0.282, 0.285) 0.590(0.589, 0.592) 1.306(1.199, 1.426) 0.210(0.197, 0.225)

tsGT 0.057(0.057, 0.058) 0.114(0.114, 0.115) 0.092(0.086, 0.098) 0.056(0.052, 0.061)

RMSE tsGT + shuffling 0.328(0.327, 0.329) 0.733(0.731, 0.735) 1.398(1.291, 1.517) 0.239(0.224, 0.255)

tsGT 0.075(0.074, 0.075) 0.201(0.200, 0.203) 0.113(0.105, 0.121) 0.068(0.063, 0.074)

MLP-based model, DLinear. We show that tsGT suffers a significant drop in performance when randomly
shuffling the input (Table 4) and that its performance is superior to DLinear (Table 1), addressing the main
concerns of (Zeng et al., 2023) about using transformers for time series modeling.

6 Limitations and future work

Quadratic time and memory complexity of self-attention This well-known issue of transformers
negatively impacts the options for making long-horizon predictions. However, due to the generality of our
approach, any progress in this area, which is an active field of research (Tay et al., 2022; Zhou et al., 2024;
Tang et al., 2024), can be directly applied to tsGT and is left as a future work.

Backtesting Backtesting is an effective tool to measure the predictive performance of the model, particularly
in situations when adequate risk capturing is of special importance. For large transformer models, this can be
computationally expensive. However, a low-rank adaptation technique (Hu et al., 2021) holds some promise
in alleviating this problem.

Access to marginal probability distribution function Generic transformer models allow sampling
trajectories but do not give easy access to the probability distribution functions. It would be interesting to
see how this obstacle can be overcome.

Uncertainty-aware model It would be beneficial to study whether tsGT can evaluate its own uncertainty,
similarly to (Kadavath et al., 2022).

Normalization Normalization has some non-trivial interactions with digit distribution (Hill, 1995) and in
the future work, we would like to test other recently developed normalization schemes (Kim et al., 2022; Nie
et al., 2022).

Explainability Reverse engineering transformer models remains a challenging task. Nevertheless, recent
advancements in the so-called mechanistic interpretability, see (Nanda et al., 2023; Chughtai et al., 2023;
Wang et al., 2023), offer promising approaches to address this issue. Investigating the underlying circuits of
learned time series transformers is an exciting avenue for future research.

7 Conclusions

In this paper, we propose tsGT, a general-purpose transformer stochastic time series model. We focus on
evaluating the model’s predictive capabilities, employing a rolling window analysis, a well-known time-series
procedure. We show that tsGT outperforms the current state-of-the-art models on MAE and RMSE on four
popular datasets: electricity, traffic, ETTm2, weather. Similarly, we demonstrate that tsGT surpasses
its stochastic peers on QL and CRPS. We complement these results with a thorough analysis using the
Kupiec backtest. We show how the models behave on datasets of varying complexity and at different quantile
levels. We go as deep as showing the test results for each prediction period, quantile level, and time series
in electricity. We close the analysis showing that tsGT is not permutationally invariant. This addresses
a prominent critique directed towards some contemporary time series transformer models, raised by (Zeng
et al., 2023). Appendix contains results of additional ablation studies.
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A Model’s architecture

A.1 Transformer

The transformer (Vaswani et al., 2017) is a deep neural network model that relies on the attention mechanism.
We employ a decoder-only variant of this architecture, a common choice in natural language modeling (Radford
et al., 2019; Brown et al., 2020). A transformer model takes a sequence of tokens as input and outputs a
sequence of logits over all the tokens. The transformer’s central object is a residual stream, which serves as a
working memory for the model. Each token undergoes the initial embedding into a space of dimension dmodel,
after which it is processed by N decoder layers. These layers consist of attention and feed-forward (FF)
blocks. These blocks can be conceptualized as operations on the residual stream. Specifically, each one of
nheads heads inside the attention block operates on dimension dhead = dmodel/nheads and moves information
between positions, while the FF block writes or removes from tokens’ residual streams (Nanda et al., 2023).
The FF block incorporates nonlinearity (we use the Gaussian Error Linear Unit or GELU) and is composed
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of a two-layer multilayer perceptron (MLP) with a hidden space of dimension dff. The inputs to attention,
feed-forward blocks, and the output logits layer are processed by layer norms.

The causal self-attention mechanism for each element of the sequence assigns different weights to each
preceding token based on its relevance to the current element, which allows for flexible and context-aware
representations. Independent attention operations are executed H times, once for every attention head,
enabling the model to learn distinct representations. For each head, the attention function can be expressed
as:

Attention(X) = softmax
(

QKT + M√
dhead

)
V,

where Q = XW Q, K = XW K and V = XW V for W Q, W K , W V ∈ Rdmodel×dhead are trainable linear
projections of the residual stream normalized by layer norm, and M is a causal mask with zeros below the
diagonal and negative infinity elsewhere. The outputs of attention heads are concatenated and linearly
projected to dmodel. We also extend the attention mechanism by incorporating rotary encodings (Su et al.,
2021). For more details on the transformer architecture, please refer to the original work of Vaswani et al.
(2017).

A.2 Data normalization

Here we describe the data normalization procedure, i.e., step (a) described in the input and output dis-
cretization part of Section 3. Inspired by (Salinas et al., 2020), we scale model input X by dividing it by
µX = r + 1

T

∑T
t=1 |Xt|, where T denotes the sequence length and r is a positive constant. We invert the

scaling at the model’s output. During prediction, we calculate the scaling factor based only on the context to
prevent information leaks from the prediction horizon.

A.3 Data quantization and discretization into digits

Algorithm 1 Digit Factorization
Requires: x normalized input (see Appendix A.2) to be discretized into p digits in base v

v vocabulary size, which acts as the number base
p precision to be used in the discretization

l, h lower and upper bounds used for squashing x into [0, 1]
1: function DigitFactorization(x; p, v, l, h)
2: x← clip((x− l)/(h− l), 0, 1) ▷ Squash to [0, 1]
3: D ← []
4: r ← 1
5: for i = 1 to p do
6: r ← r/v
7: d← min(⌊x/r⌋, v − 1)
8: D.append(d)
9: x← x− d · r

10: return D

The input to the transformer decoder (Appendix A.1) is normalized (Appendix A.2) and discretized into
digits, see Algorithm 1. The selected number base v equals the vocabulary size used for the model. We
squash the input x into [0, 1] interval and extract p most significant digits. Hence, a sequence of length T is
discretized into a sequence of p · T digits. We notice that the higher the precision, the longer the input. Put
differently, with a fixed context length, increasing p reduces the amount of raw data fed into the model. This
is a limitation caused by the quadratic complexity of transformers, see also Section 6.
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For datasets that do not contain negative values, i.e., electricity and traffic, we set the parameters l
and h in Algorithm 1 to 0 and 10, respectively. For datasets ETTm2 and weather, which contain negative
values, we set l = −10 and h = 10.

B Hyperparameters

B.1 Hyperparameters of baselines

The hyperparameters used to configure and train the baselines are given in Table 5 and Table 6. The
parameters were chosen according to configurations supplied in the respective public repositories, except for
pred_len, seq_len and label_len, which were adjusted to match the training and evaluation setup of this
work.

Table 5: Hyperparameters of baselines. Names refer to parameters in the corresponding code repositories.
Autoformer ETSformer FEDformer Informer PatchTST DLinear TSMixer

d_model 512 512 512 512 128 — 64
d_ff 2048 2048 2048 2048 256 — 32-64

activation gelu gelu gelu gelu gelu gelu relu
e_layers / n_block 2 2 2 2 3 — 2 - 8

d_layers 1 1 1 1 — — —
n_heads 8 8 8 8 16 — —
seq_len 232 232 232 232 232 232 232

pred_len 24 24 24 24 24 24 24
label_len 116 0 116 116 48 48 —

distilling in encoder True True True True True — —
train_epochs 3-10 3-10 3-10 3-10 100 100 100

batch_size 32 32 32 32 24 - 128 16 - 32 32
learning_rate 1e-4 1e-5 - 1e-3 1e-4 1e-4 1e-4 1e-4 - 5e-2 1e-4 - 1e-3

dropout 0.05 0.05 0.05 0.05 0.2 — 0.3 - 0.9
loss mse mse mse mse mse mse mse

lradj type1 type1 type1 type1 TST, type3 type3 —
ES patience 3 3 3 3 10 - 20 — 5

RevIn — — — — True — True

Table 6: Hyperparameters of baseline models which are adjusted per-dataset.
model parameter electricity traffic ETTm2 weather

Autoformer train_epochs 10 3 10 10
ETSformer train_epochs 10 3 10 10

K 3 3 3 1
learning_rate 3e-4 1e-3 1e-5 1e-3

FEDformer train_epochs 10 3 10 10
Informer train_epochs 10 3 10 10
PatchTST early stopping patience 10 10 20 20

batch_size 32 24 128 128
DLinear learning_rate 1e-3 5e-2 1e-4 1e-3

batch_size 16 16 16 32
TSMixer learning_rate 1e-4 1e-4 1e-3 1e-4

n_block 4 8 2 4
d_ff 64 64 64 32
dropout 0.7 0.7 0.9 0.3
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B.2 Hyperparameters of tsGT

We performed a grid search over the number of layers (4, 6, 8), multifactor constant which controls the learning
rate (0.01, 0.03, 0.1), the number of attention heads (2, 4, 8), dimension of model (64, 128, 256, 512), dropout
(0.1, 0.2, 0.3, 0.4, 0.5), precision (1, 2, 3), and vocabulary size (1024, 512, 10). Based on this grid search, we
chose a universal set of hyperparameters which is summerized in Table 7.

Table 7: Hyperparameters for tsGT
dmodel 256

dff 512
activation gelu

N 6
nheads 4

T 256
H 24

train_steps 105

batch_size 16
multifactor constant 0.03

dropout 0.1
precision 3

vocab_size 10

C Stochastic baselines

C.1 Distribution-based baselines

As a stochastic baseline for our model, inspired by Li et al. (2019), we implement models that predict the
parameters of the probability distributions. We use a transformer backbone and train the models to maximize
the log probability of training data. We compare against 3 different symmetric distributions: t-student,
Laplace, and Gaussian. For all those, we train the scale and location parameters of the distribution. We use
training pipeline based on next token prediction. The hyperparameters of the model and the optimizer are
fixed. They are kept the same as those used for tsGT (see Table 7).

Similar to Li et al. (2019) we use convolutional attention, and set the kernel width to 3, after running a
hyperparameter search. We also use additional covariates. All models use series index, a logarithm of the
timestep, and an hour, as well as either a day in case of electricity and traffic datasets, or a minute in
case of ETTm2 and weather.

C.2 Implicit Quantile Baseline

Another stochastic baseline is inspired by Gouttes et al. (2021). We train a transformer architecture with
Implicit Quantile Module (IQM) that learns the inverse of the cumulative probability function using Quantile
Loss. Again, the hyperparameters of the Transformer backbone and training hyperparameters are fixed.
They are kept the same as those used to tune tsGT (see Table 7). The only hyperparameter left is the width
of the embedding in the IQM head, which is kept at 256 to match the size of the hidden representation of
the transformer. We train a transformer with IQM head to perform next token prediction, by minimizing
quantile loss. For more details on the IQM and its exemplar application for time series modeling please refer
to Gouttes et al. (2021).

D Deterministic baselines

Among others, we used the following methods as baselines: FEDformer (Zhou et al., 2022), Informer (Zhou
et al., 2021), Autoformer (Wu et al., 2021), ETSformer (Woo et al., 2022).
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Figure 2: Visualization of data from each of the four real-life datasets. The first row displays a year’s worth
of data for a selected series. The second and the third rows zoom in on the suffix of those trajectories.

All the above-mentioned baseline models, except for ETSformer, include additional data to the input; these
are composed of timestamps (e.g., minute, hour, week, month, and year) or other types of information (e.g.,
holidays and events). This is done by adding additional learnable encoding to the architecture. The baselines
deterministically output a prediction trajectory.

Each model proposes some efficiency improvements to reduce the quadratic memory complexity of the
transformer: (Li et al., 2019) proposes log-sparse attention while (Zhou et al., 2021; 2022; Wu et al., 2021)
use low-rank property of attention.

Furthermore, each baseline implements a time series-specific architectural change: (Li et al., 2019) introduces
1d-conv attention, (Zhou et al., 2021) designs a decoder to produce prediction trajectories directly, (Wu et al.,
2021) introduces a seasonal-trend decomposition with an auto-correlation block, (Zhou et al., 2022; Woo
et al., 2022) explore attention mechanisms in the frequency domain.

E Data

We use four real-life datasets popular in the field: electricity, traffic, ETTm2, and weather, see Wu et al.
(2021) and the references therein. Exemplary trajectories are visualized in Figure 2, and datasets statistics
are provided in Table 8.

The electricity dataset records the hourly electricity consumption of 321 customers from July 2016 to July
2019. The traffic dataset comprises hourly Caltrans data from July 2016 to July 2018 on road occupancy
rates for San Francisco Bay area freeways, measured by 862 sensors. Both electricity and traffic are
characterized by a large number of periodic patterns.
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Dataset Total length Number of sequences Frequency
electricity 26,304 321 1H

traffic 17,544 862 1H
ETTm2 69,680 7 15T

weather 52,704 21 10T

Table 8: Statistics of the datasets used in this paper.

The ETTm2 dataset was collected from electricity transformers in a province of China and contains seven time
series representing, e.g., load and oil temperature recorded every 15 minutes between July 2016 and July
2018. It includes negative values, outliers, and erratic behavior.

The weather dataset holds the recordings of 21 meteorological indicators collected every 10 minutes between
January 2020 and January 2021 in Germany. The data includes air temperature or humidity and is
characterized by varying scales, outliers, and a significant number of zero values.

F Metrics

Error metrics Error metrics are defined in the paragraph ‘Metrics and evaluation protocol’ in Sec-
tion 4. The normalizing constant F s,w, for w ∈ {1, . . . , W} and s ∈ {1, . . . , S} is defined as F s,w =

1
T w

end
−T w

start

∑T w
end

k=T w
start
|Xs,w

k |, where T w
start, T w

end are the training window’s w beginning and the end, and Xs,w

is the ground truth series.

Backtest metrics We use the Kupiec proportion of failures (POF) likelihood ratio test (Kupiec, 1995) to
backtest the model. We use W = 100 train windows and train the model on each, starting from randomly
initialized weights. Denote by Xs,w

h the ground truth target value for series s ∈ {1, . . . , S}, prediction
horizon h ∈ {1, . . . , H}, and training window w ∈ {1, . . . , W}. Let α be the confidence level and denote the
corresponding quantile estimate of the model for the h-step ahead prediction in window w and series s, by
q̂s,w

h (α). Then, the number of model failures to correctly predict the quantile can be measured by a statistics
v̂s

h,α defined as:

v̂s
h,α =

W∑
w=1

1(q̂s,w
h (α) < Xs,w

h ).

If the model is correct (that is, under the null hypothesis), v̂s
h,α has the Binomial distribution with parameters

(1− α, W ), see (McNeil et al., 2015, Section 9.3.1). The likelihood ratio test is given by

T s
h,α = 2 log Bin(v̂a

h,α, f̂s
h,α, W )− 2 log Bin(v̂s

h,α, 1− α, W ),

where f̂h,α ≜ v̂s
h,α/W and Bin(k, p, n) =

(
n
k

)
pk(1− q)n−k. Under the null hypothesis, T s

h,α is asymptotically
distributed as χ-squared distribution with one degree of freedom, χ2(1).

Correspondingly, the p-value is computed as

p-values
h,α = F χ2(1)(T s

h,α),

where Fχ2(1) = 1 − F χ2(1) is the cumulative distribution function of χ2(1). We report a proportion of all
time series for which the p-value is at least γ, i.e.,

p-valueα = 1
SH

H∑
h=1

S∑
s=1

1(p-values
h,α ≥ γ),

where S denotes the number of time series in the dataset.
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G Computational infrastructure, cost, and source code

We conducted our experiments using a cluster with Nvidia A100 graphics cards. Each training used a single
GPU card, up to 128GB of RAM, and 16 CPU cores. Training our model took between 30 minutes and 2
hours, depending on the number of time series in the dataset. The simulation phase (when we sampled 1024
predictions) took up to 3.5 hours. We estimate the overall cost of reproducing the results to be 2000 GPUh.

The project’s overall cost, including development, prototyping, and evaluation of our method and benchmarking
the baseline methods, took approximately 80K GPUh.

H The Quick, Draw! Dataset

To check how our method performs on tasks, which do not involve ‘traditional’ time series, we trained tsGT
on apple sketches of The Quick, Draw! Dataset2. This dataset is a collection of 50 million drawings divided
into 345 categories, gathered from players of the game Quick, Draw!. In this experiment, we treat sketches as
two-dimensional (x, y) time series, an extension to our univariate input and output discretization schema
from Section 3.

When modelling a d-variate time series, we consider Xt−T +1:t = (Xt−T +1, . . . , Xt), where now Xt ∈ Rd. A
time series X is translated into a sequence of tokens, by first flattening it into a one-dimensional sequence of
intertwined series, which has a length d · T . Each value in such sequence is then broken down into digits,
as described in Section 3. This results in a series of tokens τ(X) = (τt(X))p·d·T

t=1 of length p · d · T . After
processing it with tsGT, tokens are generated one by one and gathered into groups of size p · d which are later
reinterpreted as distinct time steps of a multivariate series.

In evaluation, we remove and reconstruct a part of the image with the model. Selected examples are shown
in Figure 3. We observe that, in general, the reconstructions are plausible and faithfully depict high-level
features (e.g., the shape is ’closed’). On the negative side, the model struggles with low-level details. Samples
of tsGT reconstructing images from the banana, castle, or flower classes are given in Figure 4, Figure 5, and
Figure 6, respectively.

Figure 3: Reconstruction of apple sketches by tsGT. The ground truth images are shown in the top row. In the
bottom row, the partial ground truth trajectory used to prompt tsGT is shown in blue, and the reconstructed
trajectory is highlighted in orange.

I Ablations

In this section, we present several ablation studies. We analyze different design choices for scaling the raw time
series input, normalization to [0, 1], embeddings, and significance weighting. We conducted the experiments
on electricity dataset.

I.1 Scaling the raw time series input

Before data is fed to the transformer, it is scaled. tsGT performs that by dividing the input sequence of
length T by its mean (following Li et al. (2019)). This approach, however, leaks data in the sense that each

2https://github.com/googlecreativelab/quickdraw-dataset
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Figure 4: Reconstruction of banana sketches by tsGT. The ground truth images are shown in the top row.
In the bottom row, the partial ground truth trajectory used to prompt tsGT is shown in blue, and the
reconstructed trajectory is highlighted in orange.

Figure 5: Reconstruction of castle sketches by tsGT. The ground truth images are shown in the top row.
In the bottom row, the partial ground truth trajectory used to prompt tsGT is shown in blue, and the
reconstructed trajectory is highlighted in orange.

Figure 6: Reconstruction of flower sketches by tsGT. The ground truth images are shown in the top row.
In the bottom row, the partial ground truth trajectory used to prompt tsGT is shown in blue, and the
reconstructed trajectory is highlighted in orange.
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token is scaled by the statistic dependent on the whole context. Theoretically, the model could exploit this
information during training at the expense of its performance at prediction time when it suffers a distribution
shift by only having access to the mean of T − H values. To check whether this matters in practice, we
implemented a causal normalization procedure, where each value in the sequence is normalized only by the
mean of the preceding input prefix. Using a well-known recursive property of rolling mean avoids information
leaks and, consequently, distribution shift at inference time. We present the results of the comparison in
Table 9. Somewhat surprisingly, the only significant difference between the approaches is on QL-99, where
the non-causal approach achieves better results. This might suggest that the data leak problem is not too
severe or that the other data preprocessing steps mitigate the problem. The non-causal approach used in
tsGT is also conceptually simpler and easier to code.

Table 9: Comparison of different normalization methods on electricity dataset. The presented values
are Inter Quantile Means computed over 10 training windows and 321 training time series. 95% bootstrap
confidence interval is provided in brackets.

model RMSE MAE QL-99 QL-95
tsGT per-ts norm. 0.062(0.058, 0.067) 0.047(0.044, 0.050) 0.004(0.004, 0.004) 0.014(0.013, 0.015)

tsGT causal norm. 0.063(0.058, 0.068) 0.048(0.044, 0.051) 0.005(0.004, 0.005) 0.015(0.014, 0.016)

I.2 Normalization to [0, 1]

Appendix A.3 describes the scaling of the normalized input data to [0, 1]. tsGT follows Li et al. (2019) in
reducing the range of data by dividing by a constant factor (10 in our case) and clipping the outcome to
[0, 1]. Note that this procedure clips all the negative values to 0, which is undesirable for datasets containing
negative values. Instead, for such datasets (ETTm2, weather) we add a constant value of 10 to the time series
values, divide by 20, and clip to range [0, 1].

Alternatively, we tested a sigmoid function for softer scaling. Intuitively, this approach could preserve outliers
better as it provides additional space for samples far from the average value. The results of the comparison
can be found in Table 10. The metric values are higher for the approach used by tsGT, though the approaches
are comparable in statistical terms.

Table 10: Comparison of different preprocessing methods on electricity dataset. The presented values
are Inter Quantile Means computed over 10 training windows and 321 training time series. 95% bootstrap
confidence interval is provided in brackets.

model RMSE MAE QL-99 QL-95
tsGT clip 0.062(0.058, 0.067) 0.047(0.044, 0.050) 0.004(0.004, 0.004) 0.014(0.013, 0.015)

tsGT squash 0.064(0.059, 0.069) 0.048(0.045, 0.052) 0.004(0.004, 0.004) 0.014(0.013, 0.015)

I.3 Significance weighting β

To train tsGT, we use a weighted loss, see equation 1. The parameter β controls the contribution of each
digit to the loss according to its significance. We compare the performance of different values of β, see Table
11. In most cases, the metrics for β = 0.3 (used in tsGT) are the most favorable, though from a statistical
perspective, the outputs are rather stable under different choices of β.

I.4 Discretization and embeddings

Normalized real values are discretized before being passed to tsGT, as described in Section A.2. When we fix
the normalization factor, the function that assigns the most significant digit to raw values splits the space of
raw inputs R into B regions. By the linearity of transformations, those regions, apart from the two outermost
ones, form intervals of the same length. We could consider other discretization schemes, which assign the
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Table 11: Comparison of different β values on electricity dataset. The presented values are Inter Quantile
Means computed over 10 training windows and 321 training time series. 95% bootstrap confidence interval is
provided in brackets.

model RMSE MAE QL-99 QL-95
tsGT β=0.3 0.062(0.058, 0.067) 0.047(0.044, 0.050) 0.004(0.004, 0.004) 0.014(0.013, 0.015)

tsGT β=0.6 0.065(0.061, 0.071) 0.050(0.046, 0.054) 0.004(0.004, 0.005) 0.015(0.014, 0.016)

tsGT β=0.9 0.064(0.059, 0.069) 0.048(0.045, 0.052) 0.004(0.004, 0.004) 0.014(0.013, 0.015)

tsGT β=0.99 0.065(0.061, 0.069) 0.049(0.047, 0.052) 0.004(0.003, 0.004) 0.014(0.013, 0.015)

Table 12: Comparison of different approaches to discretization and digit embedding. “Quantile discretization”
refers to a discretization schema in which the most significant digits appear with the similar frequency.
“Separate embeddings” refers to the experiment in which the same digits appearing at different positions in a
representation of a number are assigned different vectors in the embedding space.

metric model electricity ETTm2

MAE tsGT – quantile discretization 0.060(0.059, 0.060) 0.095(0.088, 0.102)

tsGT – separate embeddings 0.062(0.061, 0.062) 0.092(0.087, 0.099)

tsGT 0.057(0.057, 0.058) 0.092(0.086, 0.098)

RMSE tsGT – quantile discretization 0.078(0.077, 0.078) 0.116(0.107, 0.125)

tsGT – separate embeddings 0.080(0.079, 0.080) 0.114(0.107, 0.123)

tsGT 0.075(0.074, 0.075) 0.113(0.105, 0.121)

most significant digits differently. In particular, we consider a function which splits the raw input space
into B uneven intervals, such that those intervals contain a similar number of observed values. Intuitively,
instead of evenly splitting the input space, we split evenly along the quantiles of empirical distribution of
time series values. We present the results of this ablation in Table 12. On the two datasets on which we run
this ablation, we find no advantage to using this method.

Our model uses the same tokens to represent digits of different significance. Potentially, using the exact same
embeddings coupled with the distributional differences between tokens appearing on different positions could
impact models performance. We check, if allowing tsGT to learn different embeddings for digits appearing on
different positions could improve its performance, but find that this is not the case, as evident from Table 12.
We hypothesize that out method is able to capture temporal dependencies well enough to distinguish the
position in which a digit appears and builds common internal representation of numbers.

J Additonal experimental results
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Table 13: Performance of models in terms of error metrics MAD and RMSE (lower values are better). Each
entry is an average and accompanied by a 90% bootstrap confidence interval (in brackets) computed over
W = 100 training windows and all time series.

metric model electricity traffic ETTm2 weather

MAD t-student∗ 0.165(0.163, 0.169) 0.314(0.313, 0.315) 0.465(0.403, 0.534) 0.392(0.316, 0.492)

Laplace 0.167(0.164, 0.170) 0.314(0.313, 0.316) 0.489(0.409, 0.587) 0.394(0.320, 0.493)

Gaussian 0.165(0.162, 0.168) 0.315(0.314, 0.316) 0.467(0.395, 0.552) 0.405(0.330, 0.507)

IQN 0.166(0.163, 0.170) 0.418(0.416, 0.420) 0.455(0.389, 0.530) 0.428(0.342, 0.537)

Informer 0.277(0.275, 0.280) 0.242(0.240, 0.244) 0.245(0.243, 0.247) 0.272(0.266, 0.279)

ETSformer 0.260(0.257, 0.264) 0.242(0.240, 0.244) 0.243(0.241, 0.246) 0.262(0.256, 0.269)

FEDformer 0.222(0.220, 0.225) 0.206(0.205, 0.208) 0.201(0.198, 0.203) 0.228(0.222, 0.235)

Autoformer 0.213(0.211, 0.216) 0.208(0.206, 0.210) 0.203(0.200, 0.205) 0.223(0.218, 0.230)

PatchTST 0.089(0.088, 0.091) 0.193(0.192, 0.194) 0.175(0.157, 0.196) 0.313(0.239, 0.414)

DLinear 0.095(0.094, 0.097) 0.220(0.219, 0.221) 0.174(0.156, 0.194) 0.351(0.277, 0.450)

TSMixer 0.096(0.091, 0.102) 0.192(0.191, 0.193) 0.168(0.150, 0.189) 0.339(0.263, 0.440)

tsGT∗ 0.085(0.081, 0.091) 0.155(0.154, 0.156) 0.178(0.158, 0.199) 0.298(0.219, 0.401)

RMSE t-student∗ 0.216(0.213, 0.219) 0.486(0.484, 0.488) 0.513(0.448, 0.587) 0.543(0.389, 0.768)

Laplace 0.218(0.215, 0.221) 0.488(0.486, 0.490) 0.540(0.455, 0.642) 0.546(0.393, 0.769)

Gaussian 0.214(0.211, 0.217) 0.482(0.480, 0.484) 0.513(0.438, 0.603) 0.556(0.402, 0.776)

IQN∗ 0.218(0.215, 0.221) 0.612(0.609, 0.615) 0.506(0.438, 0.585) 0.628(0.450, 0.858)

Informer 0.403(0.398, 0.407) 0.343(0.340, 0.346) 0.347(0.343, 0.350) 0.394(0.383, 0.410)

ETSformer 0.351(0.347, 0.356) 0.326(0.323, 0.329) 0.326(0.323, 0.330) 0.356(0.345, 0.372)

FEDformer 0.324(0.321, 0.328) 0.293(0.290, 0.296) 0.283(0.279, 0.286) 0.334(0.323, 0.349)

Autoformer 0.314(0.310, 0.318) 0.295(0.292, 0.298) 0.292(0.289, 0.296) 0.329(0.318, 0.344)

DLinear 0.124(0.121, 0.128) 0.352(0.351, 0.354) 0.209(0.187, 0.233) 0.501(0.347, 0.720)

PatchTST 0.117(0.115, 0.121) 0.320(0.318, 0.321) 0.208(0.186, 0.232) 0.464(0.310, 0.687)

TSMixer 0.124(0.119, 0.131) 0.317(0.315, 0.318) 0.199(0.178, 0.222) 0.489(0.336, 0.713)

tsGT∗ 0.114(0.109, 0.121) 0.285(0.283, 0.287) 0.220(0.195, 0.246) 0.455(0.297, 0.678)

∗ Stochastic model
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Table 14: Performance of the models in terms of quantile metrics QL and CRPS (lower values are better).
Each entry is an average with 90% bootstrap confidence intervals (in brackets) computed over W = 100
training windows and all time series in each dataset.

metric model electricity traffic ETTm2 weather

CRPS t-student 0.14 (0.139, 0.145) 0.28 (0.274, 0.277) 0.46 (0.398, 0.529) 0.37 (0.296, 0.47)

Laplace 0.14 (0.14, 0.146) 0.27 (0.274, 0.276) 0.48 (0.405, 0.56) 0.37 (0.297, 0.471)

Gaussian 0.14 (0.136, 0.141) 0.27 (0.266, 0.268) 0.45 (0.385, 0.523) 0.39 (0.317, 0.496)

IQN 0.14 (0.138, 0.144) 0.32 (0.322, 0.325) 0.44 (0.373, 0.511) 0.38 (0.3, 0.49)

tsGT 0.06 (0.061, 0.066) 0.12 (0.116, 0.118) 0.14 (0.127, 0.161) 0.24 (0.168, 0.342)

QL50% t-student 0.17 (0.163, 0.169) 0.31 (0.313, 0.315) 0.47 (0.403, 0.534) 0.39 (0.317, 0.492)

Laplace 0.17 (0.164, 0.17) 0.31 (0.313, 0.315) 0.49 (0.411, 0.586) 0.39 (0.32, 0.495)

Gaussian 0.16 (0.162, 0.168) 0.32 (0.314, 0.316) 0.47 (0.396, 0.551) 0.4 (0.328, 0.503)

IQN 0.17 (0.164, 0.17) 0.4 (0.397, 0.4) 0.45 (0.39, 0.531) 0.41 (0.327, 0.518)

tsGT 0.08 (0.078, 0.085) 0.15 (0.146, 0.147) 0.17 (0.155, 0.194) 0.27 (0.196, 0.373)

QL75% t-student 0.15 (0.151, 0.159) 0.31 (0.308, 0.311) 0.44 (0.386, 0.505) 0.47 (0.36, 0.621)

Laplace 0.16 (0.153, 0.161) 0.31 (0.31, 0.313) 0.46 (0.392, 0.536) 0.48 (0.367, 0.629)

Gaussian 0.15 (0.147, 0.155) 0.3 (0.298, 0.301) 0.44 (0.379, 0.506) 0.51 (0.392, 0.66)

IQN 0.16 (0.152, 0.16) 0.39 (0.387, 0.39) 0.41 (0.355, 0.475) 0.47 (0.353, 0.618)

tsGT 0.07 (0.067, 0.078) 0.13 (0.133, 0.135) 0.16 (0.14, 0.187) 0.33 (0.218, 0.482)

QL95% t-student 0.1 (0.099, 0.109) 0.24 (0.234, 0.237) 0.4 (0.335, 0.467) 0.5 (0.356, 0.693)

Laplace 0.1 (0.096, 0.106) 0.23 (0.226, 0.229) 0.4 (0.337, 0.47) 0.49 (0.347, 0.685)

Gaussian 0.1 (0.092, 0.101) 0.21 (0.204, 0.207) 0.33 (0.283, 0.389) 0.46 (0.321, 0.648)

IQN 0.1 (0.092, 0.102) 0.22 (0.216, 0.219) 0.34 (0.285, 0.407) 0.45 (0.311, 0.64)

tsGT 0.03 (0.029, 0.032) 0.07 (0.067, 0.068) 0.09 (0.073, 0.111) 0.31 (0.168, 0.498)
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