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ABSTRACT

Recently, the integration of Large Language Models (LLMs) and knowledge
graphs has emerged as a promising approach for knowledge graph question an-
swering by enhancing the reasoning capability in knowledge-intensive applica-
tions. However, existing methods face a key trade-off: they either introduce
high computational costs when LLMs reason directly on graphs, or suffer from
poor reasoning quality due to over-reliance on retrieval methods. To address this
trade-off, we introduce a computationally efficient framework based on Retrieval,
Reranking, and Reasoning (Re®). Specifically, we first develop “cognitively-
informed retrieval” that improves subgraph retrieval quality via Question-Entity
(Q-E) discrepancy scoring and hierarchical information aggregation. Second, we
propose path-aware reranking, which employs lightweight cross-encoders to eval-
uate and prune reasoning paths efficiently. Last, we apply “agentic reasoning”
to perform autonomous reasoning on high-quality subgraphs while balancing rea-
soning quality and computational overhead. Extensive experimental results on
WebQSP and CWQ demonstrate that Re3 outperforms existing methods.

1 INTRODUCTION

Knowledge Graph Question Answering (KGQA) is a fundamental task in knowledge-intensive ap-
plications within Natural Language Processing (NLP), aiming to answer questions by reasoning
over structured Knowledge Graphs (KGs) (Qiu et al.| 2022). KGQA is widely used in open-domain
QA, digital assistants, and scientific discovery systems (Talmor & Berant, 2018} |Yih et al., [2016).
However, it remains a very challenging task due to the need for precise graph traversal, contextual
disambiguation, and multi-hop reasoning capabilities.

The recent development of Large Language Models (LLMs) significantly advanced this area, of-
fering flexible and powerful reasoning capabilities (Brown et al., 2020). Consequently, LLMs have
been increasingly incorporated into KGQA methods to enhance the flexibility of reasoning and re-
duce reliance on symbolic rules. However, LLMs still have inherent limitations in KGQA. For
instance, LLMs are prone to hallucination, find it difficult to enforce structural constraints, and of-
ten lack access to complete knowledge (Zhao et al., [2023). Simply combining LLMs with KGs
raises important questions about achieving optimal performance under resource constraints. How
can we ensure both efficiency and accuracy? How can structured graph information be systemat-
ically leveraged during reasoning? How can we design modular components that can be flexibly
combined based on resource constraints?

To address these challenges, recent studies focus on two main paradigms (Figure [T). First, Agent-
on-Graph (Chen et al., 2024b; |Ma et al., 2024} |Ao et al.,|2025) methods leverage LLMs’ reasoning
potential while lacking global information, necessitating frequent calls to advanced models lead to
excessive computational costs, limiting practical applications. Second, Retrieve-on-Graph (Luo
et al.| [2024; Feng et al.,|2024) methods retrieve relevant subgraphs as context. Despite their compu-
tational efficiency, they over-rely on retrieval methods and struggle to ensure the completeness and
accuracy of retrieved content. The existing approaches lack a theoretical foundation grounded in
cognitive science and information theory. Cognitive science suggests that reasoning integrates fast,
global and intuitive judgments (retrieval) with slow, detailed deliberate analysis (reasoning) (Kahne-
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Figure 1: A Comparison of Different KGQA Pipelines. Agent-on-Graph methods (a) often miss
global context, whereas Retrieve-on-Graph methods (b) lack fine-grained details. In contrast, the
Re? framework (c) provides a three-stage framework that integrates both.

man, [2011), while information theory emphasizes trade-off between information entropy and chan-
nel capacity (Miller, [1956).

Based on these insights from cognitive science and information theory, we hypothesize that the
critical balancing capability for efficient and high-quality KGQA can be effectively modeled via a
three-stage pipeline. Specifically, fast, cognitively-inspired retrieval ensures global context cover-
age; resource-constrained reranking optimizes information throughput; and agentic reasoning pro-
vides detailed, step-by-step analysis—together constituting our Re® framework. Second, we design
a path-aware reranking module that aligns with the human brain’s process for evaluating different
reasoning paths. This stage applies a lightweight, fine-tuned cross-encoder model to assess seman-
tic relevance and prune retrieved reasoning paths. It effectively removes noise while preserving
the most pertinent paths organized into coherent reasoning chains. Third, we propose an agentic
reasoning module that enables LLMs to perform autonomous reasoning on high-quality subgraphs
constructed from the previous stages. The module can adaptively invoke graph query tools when
information is insufficient, thereby reducing unnecessary LLM calls while improving performance
on complex QA tasks.

Extensive experimental results obtained on WebQSP and CWQ demonstrate that Re? outperforms
existing methods in complex multi-hop reasoning tasks. The main contributions of Re?® include:

* A theoretically principled KGQA framework: We propose Re?, a three-stage frame-
work that systematically addresses the trade-off issue in existing methods. Re? achieves a
favorable balance between reasoning accuracy and computational efficiency.

* Advanced retrieval and pruning techniques: We develop cognitively-informed retrieval
and path-aware reranking strategies that significantly improve subgraph quality while main-
taining high recall.

* An agentic reasoning paradigm: We implement a novel reasoning mechanism that en-
ables LLLMs to adaptively leverage graph query tools based on information sufficiency.
This approach reduces computational overhead without sacrificing reasoning quality.

2 RELATED WORK

2.1 LLM-BASED KGQA

Early KGQA methods, which adopt semantic parsing (Berant et al., [2013) or information re-
trieval (Yao & Van Durmel 2014) techniques, often suffer from limited generalization, scalability
issues, and poor handling of multi-hop or missing evidence queries (Du et al., 2023)). In contrast,
LLM-based approaches demonstrate promising results because they offer strong natural language
understanding, flexible adaptation to varied queries, and support for in-context or chain-of-thought
reasoning. Existing LLM-based KGQA methods can generally be categorized into “agent on graph”
and “retrieve on graph” approaches.

The agent on graph methods enable LLMs to act as intelligent agents that actively explore knowl-
edge graphs. Thinking-on-graph (Sun et al., 2024) and plan-on-graph (Chen et al.| [2024b)) utilize
multi-step reasoning and incorporate reflection mechanisms. However, they require invoking the
LLM at each reasoning step, resulting in a high computational cost when the graph size increases.

The retrieve on graph methods alleviate the reasoning burden on LLMs by pre-extracting relevant
subgraphs as context. Representative works include SubgraphRAG (Feng et al., 2024) etc. They
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Question: What year did the team with mascot named Lou Seal win the World Series? Topic Entity: [Lou Seal']. Answer: [2014 World Series']
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Figure 2: Re? has three main stages: (1) Cognitively-Informed Retrieval, which extracts high-quality
subgraphs using Q-E discrepancy scoring and hierarchical aggregation; (2) Path-aware Reranking,
which evaluates and prunes reasoning paths via a fine-tuned cross-encoder; and (3) Agentic Reason-
ing, which performs tool-augmented reasoning over refined subgraphs.

typically train specialized retrievers (e.g., MLPs or GNNs) to extract candidate subgraphs. How-
ever, these methods often over-rely on retriever performance and struggle to balance structural and
semantic information, which can result in incomplete or imprecise contextual information.

2.2 AGENTIC RETRIEVAL-AUGMENTED GENERATION

Applying RAG to KGQA faces unique challenges. For example, entity relationship descriptions in
KGs are often too concise and lack sufficient semantic context. Furthermore, it is difficult to both
preserve and use structural information during retrieval. In addition, balancing retrieval efficiency
and quality imposes significant computational constraints. Recent agentic RAG approaches
let al 2022} [Yang et al) 2024) endow LLMs with autonomous decision-making and tool usage
capabilities, enabling LLMs to select appropriate retrieval strategies based on the requirements of
specific queries. However, integrating knowledge graphs into agentic systems requires careful agent
architecture design to handle graph traversal complexity and reduce computational overhead during
multi-hop reasoning.

The Re? framework proposed in this paper draws on insights from cognitive science and information
theory, and achieves optimal integration of retrieval and reasoning through hierarchical information
aggregation, semantic path evaluation, and agentic reasoning mechanisms. This design addresses
the theoretical limitations of existing methods.

3 THE PROPOSED RE® METHOD

Given a Knowledge Graph (KG) G = (E, R,T) and a natural language question ¢, where E, R,
and 7" denote the sets of entities, relations, and triples, the task of KGQA is to predict the answer
entity set A C F in response to g.

As illustrated in Figure 2} we formalizes the above problem into three stages: cognitively-informed
retrieval, path-aware reranking, and agentic reasoning, which together refine reasoning quality
while ensuring efficiency. Importantly, each module is designed as a plug-and-play component that
can be independently enabled or disabled based on specific deployment requirements.
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3.1 COGNITIVELY-INFORMED RETRIEVAL

This stage constructs a high-recall subgraph S, for each question g via a retrieval function
R(q,G, M), leveraging a cognitive memory pool M to address the common problem of incom-
plete contexts in traditional question-entity retrieval.

We develop a two-stage retrieval approach that combines LLM-generated reasoning paths with a
novel cognitively-informed mechanism. Our approach builds upon the observation that LLMs can
generate plausible reasoning hypotheses, which, even if not entirely accurate, often align well with
correct reasoning patterns.

First, inspired by Hypothetical Document Embeddings (HyDE) (Gao et al.,|2023), we prompt LLMs
to generate Hypothetical Reasoning Paths (HyRPs) which act as semantic bridges between questions
and structured graph representations, offering richer retrieval signals than direct entity matching (J1
et al., [2024). Then, while HyRPs improve retrieval quality, they remain susceptible to LLM hallu-
cinations and semantic drift. To mitigate these issues, we develop the cognitively-informed retrieval
module that leverages a curated cognitive memory pool consisting of tra examples: (Question, Topic
Entity, Answers, Reasoning Paths).

Unlike conventional In-Context Learning (ICL) approaches (Brown et al.l [2020) that often retrieve
examples based on superficial similarity, our key innovation is the Question-Entity (Q-E) Discrep-
ancy scoring mechanism. This mechanism explicitly favors examples with similar reasoning patterns
(high question similarity) while discouraging excessive entity overlap. This ensures that retrieved
examples match the logical core of the question, leading to higher-quality context for downstream
reasoning.

For each question ¢ and the topic entity set &/, we compute the Q-E Discrepancy score for memory
candidates m; € M based on cosine similarity:

1
D(Q7mi) = COS(Q7mi) - E Z Cos(eq,mi), (1)
eq€E

where cos denotes cosine similarity between the corresponding vector representations.

With enhanced HyRPs generated using in-context examples, we apply a hybrid retrieval strategy
combining sparse methods (BM25 (Robertson et al., [2009)) for literal matches and a novel dense
retrieval approach specifically designed for knowledge graph structures.

The cornerstone of our dense retrieval is a hierarchical aggregation strategy that captures both
local relational semantics and high-level graph structure. This strategy implements a multi-layer
(L = 3) information propagation framework. We first initialize entity and relation embeddings in
complex space, where relations are modeled as rotations in complex space following RotatE (Sun
et al.l 2019). For any triple (h,r,t), the embedding satisfies: h® ® r°® = t°, where ® denotes
element-wise complex multiplication. Then, the entity representations are iteratively refined through
attention-weighted aggregation over neighbors:

R D D (G4 T M @)
e’€N(e)

where hgo) is entity e’s initial embedding to avoid information loss, hg) is its representation at layer
¢, and N (e) represents its neighbors. Attention uses the real part of the complex inner product with
temperature and neighbor-wise softmax:

aﬁ, = softmaxezeN(e)(Re(<hg)°, hi{)c>)/7_(z)). 3)
Here (z,y) = Y, x1 k. Directionality and multi-relations: we treat the KG as directed and include

inverse relations. For a neighbor ¢/, let R, s be all relations between e and €’ (including inverse),
and N'(e) = {e/ | |Re,er| > 0}.

This hierarchical approach guarantees both semantic richness and structural completeness of sub-
graphs, thereby significantly improving retrieval accuracy and downstream reasoning quality.
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3.2 PATH-AWARE RERANKING

Previous methods relying on dual-encoder architectures compute vector similarity between sepa-
rately encoded question and path representations, ignoring fine-grained interactions between them,
which leads to suboptimal path selection and redundant reasoning paths or subgraphs.

We propose a path-aware reranking module P, = (S, q), where C evaluates path relevance
via fine-grained interaction modeling, outputting a pruned set P, of high-quality reasoning paths.
To balance coverage and efficiency while avoiding excessive input length, we fine-tune a S00M-
parameter reranker model to assign a confidence score to each question-path pair, reflecting how
much the path semantically contributes to answering the question. The model adopts a cross-encoder
architecture, where the concatenated question and path are jointly encoded by a pre-trained Trans-
former (Liu et al., 2019)), followed by a feedforward classification head for scoring. Compared to
dual-encoder approaches, cross-encoders enable full token-level interaction between the input pairs,
which facilitates finer-grained semantic alignment and reasoning.

Moreover, due to the significant redundancy of tokens in the graph information represented as triples,
as shown in Figure2] we designed the “cluster” method to present graph information more efficiently
while maintaining information density(e.g., sharing entities/relations).

Specifically, for each retrieved reasoning path, we group entities sharing identical relation types and
topological positions relative to the question’s topic entity. Each cluster is condensed into a super-
node that aggregates entities with their shared relations, preserving semantic content and topological
context for more compact LLM reasoning.

3.3 AGENTIC REASONING

Although recent agent-on-graph frameworks (Sun et al., 2024; (Chen et al., 2024b)), enhance reason-
ing by incorporating structured graph information, they have two key limitations. (1) Local-view
bias: Limited access to global context and long-range dependencies causes LLMs to overlook criti-
cal entities, leading to suboptimal reasoning chains when processing noisy or non-central nodes. (2)
Inefficient error correction: Existing approaches rely on simple backtracking mechanisms that are
prone to getting stuck in loops or deviating from correct reasoning paths (Chen et al.| [2024b)).

To address the above limitations, we propose a subgraph-based agentic reasoning framework that
enables LLMs with graph reasoning capabilities over refined subgraphs, expressed as A = F(P,, q)
where F is the reasoning function and A is the predicted answer set. The LLM-driven agent dynam-
ically decides to answer directly or invoke specific graph tools (entity/relation/path queries) when
current information is insufficient. Once sufficient information is available, the LLM constructs
a more coherent reasoning chain and outputs the final answer. Specifically, we provide the LLM
with entity-query, relation-query, and path-query tools. The entity-query tool retrieves attributes
and related relations based on entity names. The relation-query tool queries entity pairs that meet
conditions based on relation types. The path-query tool queries possible reasoning paths based on
starting entities and conditions.

This framework allows LLMs with autonomous decision-making abilities, enabling dynamic tool
selection based on the current reasoning state. By enabling tool-aware, state-driven planning, our
approach facilitates more flexible and adaptive multi-hop reasoning.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Datasets: We evaluate our approach on two widely used multi-hop KGQA benchmarks: Com-
plexWebQuestions (CWQ) (Talmor & Berant, 2018]), which contains 31,170 natural language ques-
tions, and WebQSP (Yih et al., 2016), which includes 4,454 questions over Freebase (Bollacker et al.}
2008)). Following RoG [Luo et al.[(2024)), we use the Freebase snapshots released as RoG-webgsp
and RoG-cwqg on Hugging Face. Both datasets are challenging due to their requirements for accu-
rate subgraph retrieval and complex reasoning.
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Table 1: Main Results on Benchmark Datasets. The symbol - indicates that no performance was
reported in previous publications. None indicates no fine-tuning was performed. (*-Path) denotes
evaluation on refined datasets (WebQSP-Path, CWQ-Path; see Section 4.2)

. WebQSP CWQ
Method LLM Fine-tuned LLM Hit | F1 Hit | F1
ToG (Sun et al.}2024) GPT-4 None 82.6 — 69.5 —
PoG (Chen et al.,[2024b) GPT-4 None 87.3 — 75.3 —
RoG (Luo et al.}[2024) Llama2-7B Llama2-7B 85.7 70.8 62.6 56.2
EPERM (Long et al.|[2025) Llama2-7B Llama2-7B 88.8 72.4 66.2 58.9
GCR (Luo et al..[2025) GPT-40-mini Llama-3.1-8B 92.2 74.1 75.8 61.7
SubgraphRAG (Feng et al.)[2024) GPT-40-mini None 90.1 77.5 62.0 54.1
FRAG (Guo et al.![2025) GPT-40-mini None 86.7 — 68.0 —
Re? (*-Path) GPT-40-mini None 93.8 77.5 69.5 59.1
Re? GPT-40-mini None 91.5 73.1 66.4 57.5

Evaluation Metrics: Following previous works (Sun et al., 2024} |[Feng et al., 2024), we adopt two
standard metrics: Hit and F1 score for fair comparison with baselines. Hit measures if any correct
answer appears in the results, and F1 score combines precision and recall, calculated as the macro-
average across all questions. For internal analysis and ablation studies, we additionally use Hit@ 1
to evaluate if a correct answer is the top prediction.

Implementation Details: We employ GPT-40-mini as the default base model. For memory re-
trieval, hyperparameters were selected empirically: we set top-k to 3, apply pruning cut rates of
30% for initial retrieval and 20% for reranking, and use a pruning threshold of ¢ = 0.01. The only
component requiring additional training is BGE-reranker-v2-m3 (Chen et al.|[2024a)), which is fine-
tuned on our self-constructed dataset (see Section4.2)) with a learning rate of 4e-5 for 10 epochs on
an RTX 4090 GPU, taking approximately 40 minutes.

4.2 DATA PREPROCESSING AND RERANKER TRAINING

Prior KGQA research often uses shortest paths as gold standard reasoning paths (Luo et al.| 2024;
Feng et al.,2024), which often fail to capture the question’s logical reasoning requirements. Shortest
paths may connect entities through irrelevant relations that misalign with the question intent.

We address this by constructing valid reasoning paths as follows: extract all candidate paths of
length at most 3 between topic entities and answer nodes, then use GPT-40 to rank and validate
them based on semantic relevance and logical consistency with the question. And we further filter
out questions from WebQSP whose answers are not present in the knowledge graph, as these cannot
be solved through graph-based reasoning.

As a result, we obtained WebQSP-Path dataset (4,246 questions, 1,501 for testing) and CWQ-Path
dataset (31,558 questions, 3,531 for testing). These validated reasoning paths serve two purposes:
building the cognitive memory pool for our retrieval module and providing high-quality training
data for the reranking component.

We construct reranker training datasets from WebQSP-Path and CWQ-Path via three strategies: (1)
Adaptive construction, which modifies valid reasoning paths by adding, removing, or replacing sub-
paths; (2) Heuristic traversal, which performs beam search from the topic entity to collect candidate
paths; (3) Model-aware sampling, which leverages initial (non-finetuned) rerank scores to identify
high- and low-confidence paths. We treat paths containing answers as positive examples, and sample
hard negative examples from the remaining candidates to strengthen contrastive supervision.

We use the finetuned reranker model to compute confidence scores for all candidate paths from the
topic entity to answer nodes, retaining the top 20% highest-scoring paths. We additionally filter
candidates by a minimum score threshold of 0.01, yielding our final retrieved paths, which construct
the final pruned subgraph. This results in a reranker training dataset containing 11,125 training
samples and 4,132 test samples. Each sample includes a question with corresponding positive and
negative path lists, averaging 7.8 positive and 46.2 negative paths per training sample. For test
samples, we have an average of 3.2 positive and 29.2 negative paths per sample.



Under review as a conference paper at ICLR 2026

Table 2: Retrieval Performance with Different Table 3: Ablation Study on The WebQSP-

Strategies. Path across Different Hops (Hit only).
Strategy | ERretrieve | TRretrieve | Hitkgga | Fligqa Strategy | 1-hop | 2-hop | Full
Re? 99.9 93.5 93.8 77.0 Re? 951 | 92.8 | 93.8
w/o Memory 98.5 90.2 924 73.2 w/o Reranking | 93.6 88.6 | 91.9
w/o Agg 97.3 89.5 92.8 73.9 w/o Agentic 91.8 92.0 | 91.8

Note that, when reporting experimental results, we use the original WebQSP and CWQ testing sets
by default for fair comparison with existing methods, while selected ablation studies use the refined
datasets for isolating the impact of reasoning path quality.

4.3 PERFORMANCE COMPARISON

We compare Re? against the following baseline methods: (1) Agent-on-Graph approaches:
ToG (Sun et al) [2024) and EPERM (Long et al. 2025); (2) Retrieval-on-Graph approaches:
RoG (Luo et al.} 2024), GCR (Luo et al.| 2025), and SubgraphRAG (Feng et al.| 2024)).

Tablepresents performance comparisons on WebQSP and CWQ. Re? achieves consistently strong
performance across standard evaluation metrics. On WebQSP, our framework achieves 91.5% Hit
and 73.1% F1, while on CWQ, it attains 66.4% Hit and 57.5% F1. These high Hit values indicate
that Re? can consistently identify correct answers within its predictions.

Re®’s superior performance stems from its synergistic combination of global and fine-grained re-
trieval. The cognitively-informed retrieval provides comprehensive global context through hierar-
chical information aggregation, while the agentic reasoning enables targeted exploration of specific
graph regions when needed.

4.4 ABLATION STUDIES

We conduct comprehensive ablation studies on the WebQSP-Path dataset to verify the contribution
of each component in our Re? framework. These studies systematically demonstrate how each
module contributes to the overall performance and validate our core design principles. The plug-and-
play nature of our components allows for flexible configuration, as evidenced by the independent
evaluation of each module’s impact.

Impact of Cognitively-Informed Retrieval: To evaluate the effectiveness of the cognitively-
informed retrieval module, we design experiments comparing different memory configurations. Ta-
ble 2] presents results where “w/o Memory” removes the memory pool entirely, relying solely on
question-based retrieval.

Furthermore, leveraging the refined WebQSP-Path dataset, we use ER erieve to denote the recall of
answer entities in the retrieved subgraph and TRieuieve to denote the recall of reasoning-relevant
triples (i.e., triples that directly contribute to answering the question). And we use g, to denote
metrics for the question-answering task,

The results reveal several key insights. First, removing the cognitive memory pool (w/o Memory)
results in a 3.8% decrease in Flygq,, from 77.0% to 73.2%, indicating that contextual memory signif-
icantly enhances retrieval quality. The ER¢ieve decreases from 99.9% to 98.5%, demonstrating that
memory assists both in identifying relevant information and maintaining comprehensive coverage.

These results validate our core hypothesis that cognitively-informed retrieval provides essential con-
textual guidance for subgraph extraction. The modular design allows this component to be easily
integrated or removed based on system requirements.

Impact of Hierarchical Aggregation Strategy: We conducted ablation studies on the aggregation
module using a simple knowledge graph embedding (KGE) method to represent the vector graph. As
shown in Table|3] when maintaining the same context window size, the “w/o Agg” variant achieves
a 73.9% hit rate on the KGQA task, compared to 77.0% for the full model. Specifically, ERetieve
decreased from 99.9% to 97.3%, and the hierarchical aggregation strategy achieved TRiegieve Of
93.5%, significantly outperforming the 89.5% achieved by the simple KGE method.
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Table 4: Performance of Reranking Models

Category | Method | Fleerank | Hit@lygqa | Fligga
Original bge-reranker-v2-m3 19.9 80.8 69.3
& gwen3-reranker-0.6b 23.3 80.4 68.9
reranker (adaptive-only) 87.1 83.3 75.9

Fine-tuned | reranker (heuristic-only) 86.0 84.6 754
reranker (all) 88.6 86.7 77.5

Impact of Reranking Model: In WebQSP dataset testing, retrieved subgraphs .S, initially con-
tained 930 nodes on average, reduced to 42 nodes after reranking. As Table [3] shows, removing
the reranking module caused the Hit metric to drop from 93.8% to 91.9% while increasing average
LLM input token consumption from 4,028 to 14,765. Therefore, the reranking module represents
an optimal trade-off between accuracy and efficiency, simultaneously reducing computational costs
and enhancing model performance by focusing on the most relevant knowledge graph components.
This component can be seamlessly integrated or bypassed depending on computational constraints.

Table ] presents the effects of different reranking strategies, comparing both original and fine-tuned
reranking models. Fl ek represents the path-level F1 score evaluated on the reranker’s test set;
Hit@1ygqa and Flygq, represent performance metrics on the final KGQA task after all retrieval,
reranking, and reasoning steps (note: Hit@]1 is used here for internal analysis).

The results show that fine-tuned reranking models improve retrieved path quality. For instance,
the fine-tuned model trained on the combined dataset (including adaptive, heuristic, and model-
aware samples) achieves 88.6% F1 eank On the reranking test set, in contrast to 19.9% of the original
model. More importantly, this improvement translates to better KGQA performance, with Hit@ lygq,
increasing from 80.8% to 86.7% and Flygq, improving from 69.3% to 77.5%.

Impact of Agentic Reasoning: To verify the effectiveness of agentic reasoning, we compare Re?
with Re® w/o Agent ic (removing agentic reasoning) across different question complexity scenar-
ios. Table [3|reports performance under varying hops in the dataset.

The results demonstrate that removing the agentic reasoning component leads to a notable per-
formance degradation, with overall Hit rate decreasing by 2.0 percentage points (from 93.8% to
91.8%). We observe that this performance gap varies by question complexity: in 1-hop scenarios,
performance drops by 3.3 percentage points (from 95.1% to 91.8%), while in 2-hop scenarios, it
decreases by only 0.8 percentage points (from 92.8% to 92.0%).

This pattern suggests that for some 1-hop questions, initially retrieved context is insufficient due
to ambiguities or missing links; agentic reasoning helps dynamically supplement missing facts for
these cases. This dynamic supplementation of reasoning chains enables Re? to resolve uncertainties
that static retrieval-only approaches cannot address. These findings validate our hypothesis that
integrating agentic reasoning capabilities significantly enhances model performance by allowing
dynamic, context-aware information gathering during the reasoning process.

4.5 CROSS-MODEL GENERALIZATION

Table [5| demonstrates Re3’s comprehensive performance across different LLMs, examining both
effectiveness (Hit, Hit@1) and reliability (Hall@ 1, Hall).

To ensure transparency in our hallucination analysis, we formalize our detection protocol: a hal-
lucinated answer is defined as any predicted answer entity that does not exist in the target knowl-
edge graph (KG) used for evaluation. Even if such an entity may correspond to a factually correct
real-world answer, we mark it as hallucinated because it is not grounded in the provided, reliable
information source (the KG). Here, Hall@1 measures the percentage of questions where the top-1
answer contains hallucinated content, while Hall captures the overall percentage of hallucinated con-
tent across all generated answers. To ensure fair comparison, we conducted all experiments without
using thinking mode for all models.

The results demonstrate that Re® maintains consistent performance across varying model scales
and architectures, with Hit rates of 89.2-94.2% and Hit@1 rates of 82.5-88.6%, indicating strong
architecture-agnostic generalization. Among closed-source models, GPT-4.1 achieves the highest
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Figure 3: Analysis of Re? in Terms of Average Token Consumption across Different Models

Table 5: Performance and Hallucination Analysis of Re? across LLM Models on WebQSP-Path

Category | Base Model | Hitt | Hit@11 | Hall] | Hall@1]
Re3+GPT-4o0 93.8 86.9 | 10.39 5.06

3
Closed-source Re3+GPT-.4..1 94.2 88.6 9.06 5.53
Re”+Gemini-2.5-Pro 93.8 85.3 | 14.79 7.46
Open-source | RE.+DeepSeek-V3 91.3 87.4 | 7.88 3.94
P Re®*+Qwen3-235B-A22B | 91.5 86.7 6.66 3.13
Confieuration Re® w/o Agentic 91.9 84.2 | 15.12 8.86
& Re? (full) 93.8 86.7 9.93 4.26

accuracy (Hit: 94.2%, Hit@1: 88.6%), while among open-source models, DeepSeek-V3 exhibits ex-
ceptional performance with the highest Hit@1 (87.4%) and the lowest hallucination rates (Hall@1:
3.94%, Hall: 7.88%).

The configuration comparison reveals the critical role of our agentic reasoning component in miti-
gating hallucinations. The Re? framework reduces Hall@1 by 51.9% (from 8.86% to 4.26%) and
Hall by 34.3% (from 15.12% to 9.93%) compared to the variant without agentic reasoning. This
substantial improvement validates our hypothesis that autonomous verification mechanisms signifi-
cantly enhances factual groundedness by enabling models to verify answers dynamically against the
knowledge graph during reasoning.

4.6 EFFICIENCY ANALYSIS

The efficiency analysis of Re® reveals insights into the framework’s computational costs. As il-
lustrated in Figure [3] the average token consumption increases notably when the reranking module
is removed, indicating that the reranking process effectively reduces unnecessary token usage by
filtering out irrelevant information.

This efficiency is crucial in multi-hop scenarios, where the complexity of questions often leads to
increased token consumption. The ability to dynamically supplement reasoning chains with targeted
information retrieval enables Re® to achieve a better trade-off between performance and resource
utilization than retrieval-only approaches.

5 CONCLUSION

This paper presents Re? (Retrieval-Reranking-Reasoning), a theoretically principled framework that
addresses fundamental trade-offs in KGQA. These components synergistically realize our theoret-
ical framework’s objective: combining the comprehensive coverage of retrieval methods with the
precise reasoning capabilities of agent methods, while circumventing the inherent limitations of
both paradigms.Extensive experiments on WebQSP and CWQ demonstrate that Re? outperforms
existing methods, particularly excelling in complex multi-hop reasoning while substantially reduc-
ing computational overhead.

In our engineering practice, the Re? framework can be seamlessly integrated into current multi-
agent systems as a sub-agent for agentic knowledge graph retrieval. Future work will explore the
construction of a question answering paradigm over temporal knowledge graphs, aiming to better
integrate KGs with LLMs.



Under review as a conference paper at ICLR 2026

REFERENCES

Tu Ao, Yanhua Yu, Yuling Wang, Yang Deng, Zirui Guo, Liang Pang, Pinghui Wang, Tat-Seng
Chua, Xiao Zhang, and Zhen Cai. LightPROF: A lightweight reasoning framework for large
language model on knowledge graph. arXiv preprint arXiv:2504.03137, 2025.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1533-1544, 2013.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collab-
oratively created graph database for structuring human knowledge. In Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, SIGMOD ’08, pp. 1247-1250,
New York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605581026. doi:
10.1145/1376616.1376746. URL https://doi.org/10.1145/1376616.1376746.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in
Neural Information Processing Systems, 2020.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
tillation, 2024a.

Liyi Chen, Panrong Tong, Zhongming Jin, Ying Sun, Jieping Ye, and Hui Xiong. Plan-on-graph:
Self-correcting adaptive planning of large language model on knowledge graphs. arXiv preprint
arXiv:2404.07971, 2024b.

Huifang Du, Xixie Zhang, Meng Wang, Yunwen Chen, Daqi Ji, Jun Ma, and Haofen Wang. A
contrastive framework for enhancing knowledge graph question answering: Alleviating exposure
bias. Knowledge-Based Systems, 280:110996, 2023. ISSN 0950-7051. doi: https://doi.org/
10.1016/j.knosys.2023.110996. URL |https://www.sciencedirect.com/science/
article/pii/S0950705123007463.

Yonggiang Feng, Xien Liu, Lehan Qu, Zequn Zhang, Mingxiang Chen, Xin-Qiang Cai, Ming-ming
Yang, Wenge Rong, and Zhang Xiong. Subgraph-based retrieval-augmented generation frame-
work for knowledge graph question answering. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language Resources and Evaluation, 2024. URL
https://aclanthology.org/2024.1lrec-main.502/.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
relevance labels. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1762—1777, 2023.

Kai Guo, Harry Shomer, Shenglai Zeng, Haoyu Han, Yu Wang, and Jiliang Tang. Empowering
graphrag with knowledge filtering and integration. arXiv preprint arXiv:2503.13804, 2025.

Jiabao Ji, Bairu Hou, Zhen Zhang, Guanhua Zhang, Wenqi Fan, Qing Li, Yang Zhang, Gaowen
Liu, Sijia Liu, and Shiyu Chang. Advancing the robustness of large language models through
self-denoised smoothing. arXiv preprint arXiv:2404.12274,2024.

Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2011.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019. URL https://arxiv.org/abs/1907.11692,

Xiao Long, Liansheng Zhuang, Aodi Li, Minghong Yao, and Shafei Wang. Eperm: An evidence
path enhanced reasoning model for knowledge graph question and answering. arXiv preprint
arXiv:2502.16171, 2025.

10


https://doi.org/10.1145/1376616.1376746
https://www.sciencedirect.com/science/article/pii/S0950705123007463
https://www.sciencedirect.com/science/article/pii/S0950705123007463
https://aclanthology.org/2024.lrec-main.502/
https://arxiv.org/abs/1907.11692

Under review as a conference paper at ICLR 2026

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and
interpretable large language model reasoning. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=Z2GNWW7xZ6Q.

Linhao Luo, Zicheng Zhao, Gholamreza Haffari, Yuan-Fang Li, Chen Gong, and Shirui Pan. Graph-
constrained reasoning: Faithful reasoning on knowledge graphs with large language models,
2025. URL https://arxiv.org/abs/2410.13080.

Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, Cehao Yang, Jiaxin Mao, and Jian
Guo. Think-on-graph 2.0: Deep and faithful large language model reasoning with knowledge-
guided retrieval augmented generation. arXiv preprint arXiv:2407.10805, 2024.

George A Miller. The magical number seven, plus or minus two: Some limits on our capacity for
processing information. Psychological review, 63(2):81, 1956.

Yingqi Qiu, Yin-Wen Wang, Xing-Siye Jin, and Kang-Kang Zhang. Stepwise reasoning for multi-
relation question answering over knowledge graph with weak supervision. In WSDM ’22: The
Fifteenth ACM International Conference on Web Search and Data Mining, Virtual Event, AZ,
USA, February 21 - 25, 2022, pp. 842-851. ACM, 2022. doi: 10.1145/3488560.3498424. URL
https://doi.org/10.1145/3488560.3498424,

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Retrieval, 3(4):333-389, 2009.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M.
Ni, Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of
large language model on knowledge graph. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=nnVOl1PvbTv.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge graph embedding
by relational rotation in complex space. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=HkgEQnRgYQ.

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 641—
651, 2018.

Zukang Yang, Zixuan Zhu, and Xuan Zhu. CuriousLLM: Elevating multi-document question an-
swering with LLM-enhanced knowledge graph reasoning. arXiv preprint arXiv:2404.09077,
2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations, 2022.

Xuchen Yao and Benjamin Van Durme. Information extraction over structured data: Question an-
swering with Freebase. In Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 956-966, 2014.

Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value
of semantic parse labeling for knowledge base question answering. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
201-206, 2016.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-
Rong Wen. A survey of large language models. CoRR, abs/2303.18223, 2023. URL https:
//arxiv.org/abs/2303.18223.

11


https://openreview.net/forum?id=ZGNWW7xZ6Q
https://arxiv.org/abs/2410.13080
https://doi.org/10.1145/3488560.3498424
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=HkgEQnRqYQ
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

Under review as a conference paper at ICLR 2026

A  DATASETS

We evaluate our approach on two complex multi-hop KGQA datasets: ComplexWebQuestions
(CWQ) (Talmor & Berant, 2018)) and WebQSP (Yih et al.| 2016)). The detailed dataset statistics
are presented in Table[6] Both WebQSP and CWQ utilize Freebase KGs (Bollacker et al., 2008) for
reasoning and contain multi-hop, multi-answer complex question answering instances.

Table 6: Dataset Statistics

Statistic | WebQSP | CWQ
#Train Samples 2,826 | 27,639
#Test Samples 1,628 3,531
% Answers = 1 51.2% | 70.6%
% Answers 2—4 274% | 19.4%
% Answers 5-9 8.3% 6.0%
% Answers >10 12.1% 4.0%
%1-hop Questions 65.5% | 40.9%
9%2-hop Questions 34.5% | 38.3%
9% >3-hop Questions 0.0% | 20.8%

B REPRODUCIBILITY STATEMENT

B.1 ABLATION STUDIES

We conducted several ablation experiments with the following configurations:

w/o Memory: We eliminated all components related to the memory pool and HyPRs design, in-
stead utilizing only the question and entities directly for subgraph retrieval.

w/o Agg: We ablated the hierarchical aggregation strategy entirely, substituting it with a direct
application of dense semantic vectors from nodes and edges as knowledge graph embeddings.

w/o Reranking: We employed a composite retrieval scoring mechanism that incorporated both
BM2S5 scores and semantic similarity between questions and reasoning paths, retaining 50% of nodes
based on this metric.

w/o Agentic: In this configuration, we bypassed the judgment and retrieval processes, instead
feeding the question and path clusters directly to the LLM for answer generation.

B.2 THE SNAPSHOT FOR LLMSs

Here, we report the specific version numbers of the different LLMs used in the experiments, along
with the available parameter counts.

Table 7: Specific Version and Parameter Information of LLMs Used in Re?

Version | Params
gpt-40-2024-11-20 Not disclosed
gpt-40-mini-2024-07-18 Not disclosed
gpt-4.1-2025-04-14 Not disclosed
gemini-2.5-pro-preview-06-05 Not disclosed
deepseek-v3-250324 670B / 37B (MoE)

qwen3-235b-a22b-instruct-2507 | 235B /22B (MoE)
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B.3 INITIAL PROMPT (WITH IN-CONTEXT SAMPLES)

Initial Prompt Template

You are a helpful assistant designed to output JSON that aids in
navigating a knowledge graph to answer a provided question.
The response should include the following keys:

(1) reasoning.paths: List[str], a list of reasoning steps that
should be used to answer the question.
(2) candidate_answers: List[str], a list of candidate answers that

may be used to answer the question, answers should be simple and
specific as an Entity.

{samples}

0: {question}, {qg-entity}
A:

where {question} denotes the natural language question, {gq_entity} the topic entity set, and
{samples} in-context examples.

B.4 FINAL AGENT PROMPT (WITH SAMPLES AND TOOL-USE)

Final Agent Prompt Template

You are a helpful assistant designed to output JSON that aids

in using the provided question and the reasoning paths from a
knowledge graph,

you can think about the question and the reasoning paths carefully,
and give the answer (a node) based on the reasoning paths and your
knowledge.

REMEMBER :

(1) ONLY when you cannot find possible answers based on those
paths, you can use the tools to find the possible answers.

(2) If the tools cannot find the possible answers, you can use your
knowledge to find the possible answers.

(3) You have to give the possible answers based on the previous
tools result, reasoning paths and your knowledge.

(4) IF the answer ENTITY is in the context (tools result, reasoning
paths), you have to give the answer the same as the context.

The JSON format response should include the following keys:

(1) possible_answers: List[str], all possible answers to the
question.
(2) most_possible_answer: str, the most possible answer to the

question (CANNOT be empty) .
Here are some examples of the question and the reasoning paths:
{samples}

Reasoning paths: {reasoning_paths}
Question: {question}

Answer:

J

where {reasoning._paths} denotes reranked paths fed to the agent, {question} the input
question, and {samples} few-shot examples.
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B.5 KG TooL PSEUDOCODE

Regarding tool invocation, we primarily rely on the LLM’s built-in function-calling capability. In
the request’s parameter configuration, we specify the functions’ descriptions, parameters, and re-
turn values as a JSON specification, with detailed definitions. The LLM can autonomously select
functions to invoke, analyze the execution results, and plan subsequent actions.

We present pseudocode specifications for the major KG querying tools used in our agentic frame-
work. Each tool is illustrated with its typical SPARQL implementation.

Specific implementation details can be found in our publicly available code repository at:
https://anonymous.4open.science/r/Re3-0FFE

entity_query(e)

Purpose: Given an entity e, retrieve all relations (predicates) associated with e.
Pseudocode:

Input: e (entity)
SPARQL: SELECT ?r WHERE {
e 7r o

triple_query(e, r)

|
.

Purpose: Given an entity e and a relation r, retrieve all objects o such that (e, 7, 0) holds.
Pseudocode:

Input: e (entity), r (relation)
SPARQL: SELECT ?0 WHERE {
er ?0

entity_relation_type(e)

|
.

Purpose: Given an entity e, retrieve the types of all relations associated with e
Pseudocode:

Input: e (entity)

SPARQL: SELECT DISTINCT ?type WHERE {
e 7r 70 .
7r rdf:type ?type

triple_relation_type(e, r)

|
.

Purpose: Given an entity e and relation r, return the type of relation r for e.
Pseudocode:

Input: e (entity), r (relation)
SPARQL: SELECT DISTINCT ?type WHERE {
er 70 .
r rdf:type ?type

14
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B.6 VALID PATH SELECTION PROMPT

Valid Path Selection Prompt Template

Seriously analyze these paths, which of these paths can be used to
answer this question:

<Question>{question}</Question>
<Answer_Entity>{answer_entity}</Answer Entity>

NOTE: Please response with the following format:
Thought: <your thought>
Answer: <path id>

The paths are: {path_str}
Response:

J

where {question} denotes the input question, {answer_entity} the gold answer entity set,
and {path_str} the enumerated candidate paths with indices.

C DETAILED MEASUREMENT

C.1 HALLUCINATION DETECTION PROTOCOL

We formalize our detection protocol for hallucinated answers in KGQA.

Definition. We define a hallucinated answer as any predicted answer entity that does not exist in
the target knowledge graph (KG) used for evaluation (Freebase snapshot aligned with each dataset).
Even if such an entity may correspond to a factually correct real-world answer, we still mark it as
hallucinated because it is not grounded in the provided, reliable information source (the KG).

Metrics: Hall@1: the percentage of questions whose top-1 predicted answer is hallucinated (i.e.,
the top-1 prediction cannot be resolved to a KG entity).

Metrics: Hall: the percentage of evaluation instances whose predicted answer set contains any hal-
lucinated entity. For each instance, if any predicted entity is out-of-KG, it is counted as 1; otherwise
0. Hall is the mean over instances (akin to a hit-style computation at the instance level).

C.2 EFFICIENCY MEASUREMENT PROTOCOL AND CROSS-PAPER COMPARISONS

Here, we clarify the data sources and our accounting protocol.

Data sources for baselines. The numbers for the compared methods (e.g., number of model calls,
token counts) are directly taken from their publicly available papers, appendices, or official reposito-
ries. We did not re-implement or re-measure these systems; thus their efficiency figures are reported
“as published.” When a prior work provides multiple metrics or variants, we follow the authors’
primary setting.

Our accounting policy. All token counts reported for Re? are all-inclusive and computed end-to-
end per query. Specifically, we count: (i) all prompt tokens (system/developer/user), (i) all tool-use
messages including function/tool-call arguments and tool outputs when fed back to the model, (iii)
agent/controller messages, retries, and rollbacks, and (iv) model outputs. We also include tokens
associated with tool interactions even when cached results are returned (i.e., cache hits are not ex-
cluded), to reflect the actual message traffic processed by the model.

Tokenizer and budgets. We use the official tokenizer associated with each model provider and
count both input and output tokens. Within our own experiments, prompts and budgets are held
fixed across models unless otherwise noted.

Interpretation and limitations. Because external works may differ in tokenizer choice, inclu-
sion/exclusion of tool messages, prompt templates, and budget constraints, cross-paper comparisons
can only be approximate. However, our conservative, all-inclusive accounting for Re? imposes a
stricter measurement protocol, tending to slightly over-count rather than under-count. This makes

15



Under review as a conference paper at ICLR 2026

our efficiency numbers comparable under a uniform and conservative policy, while baseline numbers
are faithfully reproduced from the literature without modification.
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