
Metalic: Meta-Learning In-Context with Protein
Language Models

Jacob Beck∗, Shikha Surana, Manus McAuliffe, Oliver Bent, Thomas D. Barrett,
Juan Jose Garau Luis, & Paul Duckworth

InstaDeep
Boston, MA, USA & London, UK

∗Jacob_Beck@alumni.brown.edu, FirstInitial.LastName@instadeep.com

Abstract

Predicting the biophysical and functional properties of proteins is essential for in
silico protein design. Machine learning has emerged as a promising technique for
learning such prediction tasks. However, the relative scarcity of in vitro annotations
means that these models often have little, or no, specific data on the desired fitness
prediction task. As a result of limited data, protein language models (PLMs)
are typically trained on general protein sequence modeling tasks, and then fine-
tuned, or applied zero-shot, to protein fitness prediction. When no task data is
available, the models make strong assumptions about the correlation between the
protein sequence likelihood and fitness scores. In contrast, instead of restricting the
representations, we propose meta-learning over a distribution of standard fitness
prediction tasks, and demonstrate positive transfer to unseen fitness prediction tasks.
Our method, called Metalic (Meta-Learning In-Context), makes use of in-context
learning and fine-tuning, when data is available, to adapt to new tasks. Crucially,
the fine-tuning enables considerable generalization, even though it is not accounted
for during meta-training. The fine-tuned models achieve strong results with 18
times fewer parameters than state-of-the-art models. Moreover, our method sets a
new state-of-the-art on ProteinGym, an established fitness-prediction benchmark.
We believe that meta-learning across protein fitness tasks will play a vital role in
advancing protein fitness prediction methods.

1 Introduction

The accurate prediction of the functional and biophysical properties of proteins, such as stability or
binding affinity, is a critical challenge in the physical sciences with far-reaching implications for drug
discovery, medical research and agriculture. Protein design seeks to optimize one, or a collection of
these properties, referred to as fitness. While protein fitness can be measured in vitro, the process
is often laborious and time-consuming. Consequently, machine learning models have emerged as a
powerful tool to accelerate protein design by predicting fitness directly from amino acid sequences in
silico. However, due to the complex interplay between protein sequences and fitness, and the limited
availability of high-quality data, accurate prediction is a challenging task.

In recent literature, protein language models (PLMs) are commonly used to model protein fitness
[Madani et al., 2020, Rives et al., 2021, Rao et al., 2021, Lin et al., 2022, Notin et al., 2023, Truong Jr
and Bepler, 2024]. While PLMs are not directly trained to predict fitness, they are trained to model
the likelihood of naturally occurring proteins, which is assumed to correlate strongly with their fitness.
By predicting masked amino acids, or subsequent amino acids, over known proteins at scale, PLMs
can capture much of the structure and resultant properties deriving from the amino acid sequence. In
practice, PLMs are further fine-tuned on protein fitness data. While this paradigm is highly effective,

Foundation Models for Science Workshop,38th Conference on Neural Information Processing Systems (NeurIPS
2024).



Conventional protein 
fitness prediction 

approaches

Our approach

Amount of 
data needed

Pre-training
Protein language modeling

Meta-training
Fitness prediction

Fine-tuning
Fitness prediction

MVLSPADKTNVKA
AWGKVGAHAGEY
GAEALERMFLSFP

…
TTKTYFPHFDLSH
GSAQVKGHGKKV

MVLSPADKTNVKA
AWGKVGAHAGEY
GAEALERMFLSFP

…
TTKTYFPHFDLSH
GSAQVKGHGKKV

MVLSPADKTNVKA 1.0
AWGKVGAHAGEY 2.1
GAEALERMFLSFP 0.0

… …
TTKTYFPHFDLSH 1.4
GSAQVKGHGKKV 0.0

QLAKEDLISYEAIS 0.0
GNTKDTAASNNAL 0.0
LQEVDSWLDSTLI 1.2

… …
PVTAYILTGAGLPS 9.3
SRTGGYSQFTNW 3.5

MKIILFLIATTVAFG 0.6
AKGIVQVDNKFSD 1.7
TVKSLIEKFLENAG 3.4

… …
KHFKFLGGSNDRV 0.0
PAGKGVIVAVNLTR 5.4

ADALTNAVAHVDD 0.1
MPNALSALSDLHA 0.4
HKLRVDPVNFKLL 1.0

… …
SHCLLVTLAAHLPA 0.3
EFTPAVHASLDKFL 0.7

MVLSPADKTNVKA 1.0
AWGKVGAHAGEY 2.1
GAEALERMFLSFP 0.0

… …
TTKTYFPHFDLSH 1.4
GSAQVKGHGKKV 0.0

Multiple landscapes

Figure 1: An overview of meta-learning paradigm for protein fitness prediction. PLMs are trained
over massive quantities of unlabeled data, whereas meta-learning is trained over a smaller quantity of
labelled fitness data. Using this extra data is critical given the limited data for fine-tuning at test time.

when there is severely limited data, or no data, as in de novo design, PLMs provide limited utility. For
example, in order to use a PLM when there is no data available, it must be assumed that the protein
fitness is solely a function of protein likelihood [Truong Jr and Bepler, 2024, Hawkins-Hooker et al.,
2024], and for masked language models, it may also be assumed that each amino acid contributes
independently to the fitness [Meier et al., 2021, Hawkins-Hooker et al., 2024, Notin et al., 2024].

While limited or no data may be available for specific protein fitness prediction tasks, there are often
other related protein prediction tasks that can serve as a valuable source of additional data. Advances
in high-throughput assays, such as deep mutational scanning, have enabled the compilation of large
datasets containing over one hundred distinct fitness prediction tasks [Notin et al., 2024]. Training
over a distribution of related tasks, to reason about new tasks, is a process called meta-learning.

To address the challenge of limited data in protein fitness prediction, we propose Metalic, a method
that integrates in-context meta-learning, protein language models, and fine-tuning. Meta-learning,
or learning to learn, aims to improve the learning process by leveraging experience from other
learning problems. Metalic makes use of PLMs and fine-tuning, but adds an additional step of
meta-learning over additional protein tasks. The additional meta-learning phase is depicted in Fig. 1,
and is critical given the limited protein fitness data available in each task for inference at test-time.
Meta-learning shifts the burden of handcrafting assumptions and inductive biases for our algorithms
to collecting additional tasks for learning [Beck et al., 2023]. In the setting of protein fitness design,
for example, when no data is available for fine-tuning, meta-learning over a distribution of tasks
enables us to forgo the assumption that fitness is solely a function of protein likelihood. Instead,
Metalic learns the relationship between protein embeddings and fitness through meta-learning, setting
a new state-of-the-art (SOTA) on the ProteinGym benchmark [Notin et al., 2024].

We present Metalic, an in-context meta-learning approach to tackle the problem of protein fitness
prediction, and make the following contributions:

• We introduce a method that combines in-context meta-learning with PLMs and fine-tuning
for protein fitness prediction.

• We advance SOTA for zero-shot protein fitness prediction on the ProteinGym benchmark.
• We attain strong performance for few-shot protein fitness prediction with 18 times fewer

parameters.
• We ablate each component of our method to understand the contributions of each part and

underscore their necessity.
• We empirically validate the superiority of our method to alternative forms of meta-learning.

2 Related Work

Meta-Learning Meta-learning aims to create a sample-efficient learning algorithm by training over
a distribution of tasks. The goal is to learn algorithms such that they can rapidly adapt to new tasks
during inference. This inference-time adaptation is often called the inner loop, for which there are

2



two primary forms found in the literature: gradient-based meta-learning [Finn et al., 2017, Zintgraf
et al., 2019] and in-context meta-learning [Santoro et al., 2016, Mishra et al., 2017, Nguyen and
Grover, 2022].

Gradient-based algorithms and in-context algorithms differ both in their computational efficiency and
capacity for out-of-distribution generalization. Gradient-based approaches explicitly adapt model
parameters within in the inner loop using standard gradient-based learning. Commonly, the model
initialization are the only parameters learned over the task distribution. The meta-training process
explicitly computes gradients through this adaptation process, effectively learning a parameter
initialization that can be adapted to new tasks with only a few gradient steps at inference [Finn
et al., 2017, Zintgraf et al., 2019, Vuorio et al., 2019]. However, this comes with considerable
computational overhead – in particular when calculating meta-gradients through the inner loop
process – which makes gradient-based meta-learning less suitable for large models. Alternatively,
in-context meta-learning adapts at inference time by conditioning on a task-specific dataset in context,
i.e., conditioning on the data points over which gradient based approaches would train. Typically, this
is achieved by modelling the inner loop with a sequence model that can explicitly condition on the
provided data [Santoro et al., 2016, Mishra et al., 2017, Ni et al., 2022, Nguyen and Grover, 2022,
Beck et al., 2024a,b]. Such methods have been found to typically be more sample- and compute-
efficient than gradient-based adaption, but can perform worse when provided with out-of-distribution
tasks given the lack of explicit gradient-based learning in the inner-loop [Beck et al., 2023].

In this paper, we only train for in-context meta-learning, but find that this is still compatible with
task-specific fine-tuning at inference. In the the meta-reinforcement learning setting, this combination
has been shown to be possible by increasing task-specific data for fine-tuning [Xiong et al., 2021].
In contrast, we evaluate in the supervised setting and do not give increased data at inference time.
While prior work has combined gradient-based and in-context meta-learning without restrictions
[Vuorio et al., 2019, Rusu et al., 2018], these works compute expensive meta-gradients to learn how
to account for fine-tuning. Despite not explicitly meta-learning gradient-based adaptation, we find
that in-context meta-learning alone provides a strong foundation for subsequent fine-tuning and that
both aspects are critical for achieving high performance.

Likelihood-Based Fitness Prediction with PLMs Leveraging PLMs is standard practice in protein
fitness prediction [Rives et al., 2021, Notin et al., 2023, Rao et al., 2021, Truong Jr and Bepler, 2024].
In the few-shot setting, PLMs intended for sequence generation are repurposed by fine-tuning for
protein fitness prediction [Rives et al., 2021]. In the zero-shot setting, it is assumed that the fitness
correlates with the likelihood of the proteins associated sequence of amino acids, as predicted by a
PLM [Meier et al., 2021, Truong Jr and Bepler, 2024]. Furthermore, if using a masked PLM, it is
often assumed that each amino acid contributes independently to the fitness [Meier et al., 2021]. In
this work, we likewise leverage PLMs for protein fitness prediction. However, in contrast, we make
use of additional data in the form of additional fitness prediction tasks on other proteins. Specifically,
we meta-learn how to use a PLM for protein fitness prediction, rather than relying on assumptions.
Only after meta-learning, do we fine-tune our model. Leveraging meta-learning over multiple tasks
enables us to avoid restrictive constraints on the model representation and achieve SOTA performance.
While multi-task learning has been leveraged previously for protein fitness prediction [Xu et al.,
2022], that work did not leverage any sort of meta-learning, and had limited success. We will show
that in-context meta-learning is necessary in order to achieve strong results.

In-Context PLMs We build upon existing PLMs that make use of in-context data for protein fitness
prediction [Notin et al., 2022, Truong Jr and Bepler, 2024, Notin et al., 2023, Rao et al., 2021].
However, these methods do not meta-learn how to make use of their context. These methods either
learn to use the context only for protein language modelling, and then assume that the likelihood from
the generative model correlates with fitness [Truong Jr and Bepler, 2024, Notin et al., 2022, Rao et al.,
2021], or these models make use of the context with fitness information for protein fitness prediction,
but not by meta-learning over multiple protein tasks [Notin et al., 2023]. Of these ProteinNPT
[Notin et al., 2023] is the most related to our method, since we use the same attention architecture
to condition on fitness information about related proteins in-context, and it makes use of gradient
steps to fine-tune to the target task. In comparison, our method meta-learns over many more tasks
how to make use of the fitness information, which we find to be critical (Section 4). Additionally, our
method is the first to make use of the aforementioned procedure to allow fine-tuning and in-context
conditioning on the very same context at inference time.

3



QLAKEDLISYEAIS 0.0
GNTKDTAASNNAL 0.0
LQEVDSWLDSTLI 1.2

… …
PVTAYILTGAGLPS 9.3
SRTGGYSQFTNW 3.5

MKIILFLIATTVAFG 0.6
AKGIVQVDNKFSD 1.7
TVKSLIEKFLENAG 3.4

… …
KHFKFLGGSNDRV 0.0
PAGKGVIVAVNLTR 5.4

ADALTNAVAHVDD 0.1
MPNALSALSDLHA 0.4
HKLRVDPVNFKLL 1.0

… …
SHCLLVTLAAHLPA 0.3
EFTPAVHASLDKFL 0.7

MVLSPADKTNVKA 1.0
AWGKVGAHAGEY 2.1
GAEALERMFLSFP 0.0

… …
TTKTYFPHFDLSH 1.4
GSAQVKGHGKKV 0.0

Multiple protein 
landscapes

MVLSPADKTNVKA 0.0
… …

TTKTYFPHFDLSH 1.4

ARVHGKKERLSTY ?
GSAQVKGHGKKV ?
GAEALERMFLSFP ?

… …
TTKTYFPHFDLSH ?

PLM 

Support 
set

Query 
set

Axial attention

ARVHGKKERLSTY 1.7
GSAQVKGHGKKV 0.0
GAEALERMFLSFP 0.0

… …
TTKTYFPHFDLSH 1.5

Self-attention is 
computed over rows 
followed by columns

In the zero-
shot setting, 
no support 

set is 
passed to 
the model

Fitness predictions for 
the query set

MVLSPADKTNVKA 0.0
… …

TTKTYFPHFDLSH 1.4

ARVHGKKERLSTY ?
GSAQVKGHGKKV ?
GAEALERMFLSFP ?

… …
TTKTYFPHFDLSH ?

…Support 
set

Query 
set

Multiple fine-tuning support 
and query sets are derived 

from the support set 

The fine-tuning 
support and query sets 
are used to do several 

gradient updates 

Axial attention
PLM

MVLSPADKTNVKA 0.0
… …

TTKTYFPHFDLSH 1.4

ARVHGKKERLSTY ?
GSAQVKGHGKKV ?
GAEALERMFLSFP ?

… …
TTKTYFPHFDLSH ?

Axial attention
PLM

ARVHGKKERLSTY 1.7
GSAQVKGHGKKV 0.0
GAEALERMFLSFP 0.0

… …
TTKTYFPHFDLSH 1.5

Predictions over the 
original query set

1

2

PLM 
embeddings

(a) Meta-training

QLAKEDLISYEAIS 0.0
GNTKDTAASNNAL 0.0
LQEVDSWLDSTLI 1.2

… …
PVTAYILTGAGLPS 9.3
SRTGGYSQFTNW 3.5

MKIILFLIATTVAFG 0.6
AKGIVQVDNKFSD 1.7
TVKSLIEKFLENAG 3.4

… …
KHFKFLGGSNDRV 0.0
PAGKGVIVAVNLTR 5.4

ADALTNAVAHVDD 0.1
MPNALSALSDLHA 0.4
HKLRVDPVNFKLL 1.0

… …
SHCLLVTLAAHLPA 0.3
EFTPAVHASLDKFL 0.7

MVLSPADKTNVKA 1.0
AWGKVGAHAGEY 2.1
GAEALERMFLSFP 0.0

… …
TTKTYFPHFDLSH 1.4
GSAQVKGHGKKV 0.0

Multiple protein 
landscapes

MVLSPADKTNVKA 0.0
… …

TTKTYFPHFDLSH 1.4

ARVHGKKERLSTY ?
GSAQVKGHGKKV ?
GAEALERMFLSFP ?

… …
TTKTYFPHFDLSH ?

PLM 

Support 
set

Query 
set

Axial attention

ARVHGKKERLSTY 1.7
GSAQVKGHGKKV 0.0
GAEALERMFLSFP 0.0

… …
TTKTYFPHFDLSH 1.5

Self-attention is 
computed over rows 
followed by columns

In the zero-
shot setting, 
no support 

set is 
passed to 
the model

Fitness predictions for 
the query set

MVLSPADKTNVKA 0.0
… …

TTKTYFPHFDLSH 1.4

ARVHGKKERLSTY ?
GSAQVKGHGKKV ?
GAEALERMFLSFP ?

… …
TTKTYFPHFDLSH ?

…Support 
set

Query 
set

Multiple fine-tuning support 
and query sets are derived 

from the support set 

The fine-tuning 
support and query sets 
are used to do several 

gradient updates 

Axial attention
PLM

MVLSPADKTNVKA 0.0
… …

TTKTYFPHFDLSH 1.4

ARVHGKKERLSTY ?
GSAQVKGHGKKV ?
GAEALERMFLSFP ?

… …
TTKTYFPHFDLSH ?

Axial attention
PLM

ARVHGKKERLSTY 1.7
GSAQVKGHGKKV 0.0
GAEALERMFLSFP 0.0

… …
TTKTYFPHFDLSH 1.5

Predictions over the 
original query set

1

2

PLM 
embeddings

(b) Fine-tuning

Figure 2: An overview of Metalic. Meta-training our model over many protein prediction tasks
enables in-context learning (left (a)). Fine-tuning the in-context learning on the support set requires
sub-sampling smaller support and query sets, and enables generalization at test time (right (b)).

3 Methods

3.1 Problem Setting

We consider a fitness prediction task, T , to be defined by a dataset of the form
DT = {(xi, yi≡fT (xi))}Ni=1, where xi is a sequence of amino acids, and yi ∈ R is the associ-
ated scalar fitness value assigned by the (unknown) underlying fitness function fT . In the few-
shot setting, the task-specific data is typically split into non-overlapping support and query sets:
D(S)

T = {(x(S)
i , y

(S)
i )}N(S)

i=1 and D(Q)
T = {(x(Q)

i , y
(Q)
i )}N(Q)

i=1 such that D(S)
T ∩D(Q)

T = ∅. The support
set provides data for task-specific adaptation, and the query set provides data for evaluating the
adapted performance. The size of the support set is referred to as the shot. Note that even when the
support set is empty (zero-shot), the model can still adapt to the task using information from the
query set, i.e., other sequences in the protein landscape that do not have a provided fitness score.

Meta-learning for protein fitness prediction requires not just a single task, but multiple tasks, D =
D1, . . .DT over which to learn. The full dataset of tasks, D, can be seen as defining a distribution
of tasks which can be split into training and test tasks in the usual way. Concretely, for in-context
meta-learning the goal is to learn a function with parameters θ conditioned on the full support set and
unlabelled inputs from query set, fθ({x(Q)

i }N(Q)

i=1 ,D(S)
T ). In our case, rather than directly predicting

the fitness values the query set, we instead follow prior works that use a preference-based objective
that aims to correctly rank the query set in order of fitness [Krause et al., 2022, Brookes et al., 2023,
Hawkins-Hooker et al., 2024].

3.2 Metalic

Architecture Our work leverages the ProteinNPT architecture proposed by Notin et al. [2023] as
an in-context PLM for fitness prediction. Here we briefly summarise the key elements as illustrated
in Fig. 2, but defer the reader to Appendix A.3 and the original paper for full details.

Protein sequences in both the support and query set are converted to per-residue embeddings using a
pre-trained PLM; in our case we take the third layer of ESM2-8M [Lin et al., 2022]. Fitness scores in
the query set are set to zero. All fitness scores are then projected to match the dimension of the residue
embedding with a simple linear layer, summed with a learned embedding denoting if the row belongs
to the support or query set, and finally concatenated along the sequence dimension. This tensor
is then processed via axial attention blocks [Ho et al., 2019]., each of which applies self-attention
separately along the sequences and across the sequences. Axial attention reduces the computational
complexity of self-attention from O(K2L2) to O(K2 + L2), where K is the shot and L is the length

4



of a protein. Finally, a linear layer conditions on the fitness embedding and mean-pooled sequence
embedding of to predict each query value, i.e. {v(Q)

i }N(Q)

i=1 = fθ({x(Q)
i }N(Q)

i=1 ,D(S)
T ), which is then

used to rank them by fitness.

Meta-Training Following prior works that use a preference-based objective [Krause et al., 2022,
Brookes et al., 2023, Hawkins-Hooker et al., 2024], we reframe the relative score prediction of the
neural network on two sequences as parameterizing a binary classifier that sequence x(Q)

i has a higher
fitness value that sequence x

(Q)
j :

p
(
y
(Q)
i > y

(Q)
j

)
= σ

(
v
(Q)
i − v

(Q)
j

)
, (1)

where σ is a sigmoid function and the dependency of the query values on θ has been dropped for
brevity. This classifier is optimized with respect to every pairwise comparison between sequences in
the query set corresponding to the loss function

L(θ,D(Q)
T ,D(S)

T ) = −
N(Q)∑
i=1

N(Q)∑
j=1
j ̸=i

I
(
y
(Q)
i > y

(Q)
j

)
log σ

(
v
(Q)
i − v

(Q)
j

)
, (2)

where I is an indicator function. Intuitively, this is optimising N (Q)×(N (Q)−1) binary classification
problems. Note that we only compute the loss over the query set to avoid encouraging memorization
of the support set. Adapting this to meta-learning (Fig. 2a), the objective becomes to find the
parameterization that minimises the loss across the task distribution,

J (θ,D) = −EDT ∈DED(S)
T ,D(Q)

T ∈DT
L(θ,D(Q)

T ,D(S)
T ). (3)

Fine-Tuning Metalic uses fine-tuning, during inference alone, in order to enable generalization,
without having to account for the fine-tuning procedure during meta-training. This process is depicted
in Fig. 2b.

The combination of in-context learning and fine-tuning creates a unique problem. Since fine-tuning
occurs at inference time, labels for the query set, {y(Q)

i }N(Q)

i=1 , are not available for training. While
labels for the support set, {y(S)i }N(S)

i=1 , are available, propagating gradients from the support set would
encourage memorization of the support set, since the labels are also passed as input in-context.
While prior methods that combine in-context and gradient-based meta-learning [Rusu et al., 2018,
Vuorio et al., 2019] would encounter this issue, this problem is exacerbated for Metalic. Whereas
prior methods compress inputs to a representation with a constant number of dimensions, Metalic
uses self-attention, which scales with the number of inputs, allowing them to be stored without
compression. Moreover, whereas prior methods use meta-gradients that could adjust the gradient
update procedure so as to be useful for generalization and not memorization, Metalic does not take
into account the fine-tuning process during meta-training.

We address the issue of memorization by sub-sampling from the support set. The fine-tuning
procedure is the same as during meta-training, with the exception that the support set is sub-sampled.
In order to compute updates on a single support set, the support set is sub-sampled into multiple
smaller support and query sets, D(S′)

T ⊆ D(S)
T and D(Q′)

T ⊆ D(S)
T . Concretely, this corresponds to

fine-tuning on unseen data using the objective,

J (θ,D(S)
T ) = −ED(S′)

T ,D(Q′)
T ∈D(S)

T
L(θ,D(Q′)

T ,D(S′)
T ). (4)

After fine-tuning, Metalic then conditions on the complete support set in-context, allowing no data to
go to waste.

Using Metalic’s unique combination of in-context meta-learning followed by fine-tuning, we enable
the generalization of extensive fine-tuning, while also precluding expensive computation. If a typical
gradient-based meta-learning method requires O(m) meta-gradients and O(mn) regular gradients
for meta-training, Metalic requires no meta-gradients and O(m) regular gradients, constituting a
linear reduction with superior performance to efficient alternatives, as demonstrated in Appendix A.2.

5



4 Experiments

In this section we evaluate Metalic on fitness prediction tasks from the benchmark ProteinGym [Notin
et al., 2024]. We evaluate in the few-shot setting, with limited support data, and the zero-shot setting,
with no support data. To establish SOTA results in the zero-shot setting, we first compare to given
predictions provided by ProteinGym. To establish strong performance in the few-shot setting, since
predictions are not provided, we train baselines from Hawkins-Hooker et al. [2024], and establish
that Metalic matches or exceeds the performance of all baselines in all domains. We then perform
ablations of Metalic, to show the benefits of meta-learning, in-context learning, and fine-tuning.
Finally, we compare to the gradient-based method, Reptile Nichol et al. [2018], to show that taking
account of gradients during training is an unnecessary complication.

4.1 Experimental Setup

In our experiments, we focus on ProteinGym deep mutational scans. There are 121 single-mutant
tasks available, which we augment with multi-mutant tasks from ProteinGym as well, bringing the
total to 185 tasks. We evaluate over eight held-out single-mutant tasks, following Hawkins-Hooker
et al. [2024]. All fitness values are standardized by subtracting the mean and dividing by the standard
deviation by task. Additionally, we remove any multi-mutant tasks that have overlapping proteins
with single-mutant tasks to increase the difficulty of single-mutant prediction. To fit the backward
pass on an Nvidia A100 device, we limit to tasks in which the maximum protein length is ≤ 750.

We use a query set size of 100, and the size of the support set is determined by our evaluation setting
and is one of three sizes: 0, 16, or 128. We also use an additional set of 128 points just for early
stopping of the fine-tuning process, for all models except ProteinNPT, following the implementation
of Hawkins-Hooker et al. [2024]. We then evaluate remaining points in the task, with a maximum of
2,000 points total, by dividing the data into multiple query sets. If the model, can fit a larger query
size, such as baselines that do not involve meta-learning, then we pass the remaining data as a single
query set. If the data is not divisible by the query set size, it is left out from evaluation. However, we
sample the support data over three independent samples, avoiding systemic exclusion.

All evaluation uses the Spearman rank correlation, in line with prior work [Notin et al., 2023,
Truong Jr and Bepler, 2024, Hawkins-Hooker et al., 2024]. We compute the Spearman correlation
per task, and then average over tasks. For all evaluations of our models, we compare over three seeds
for training and report the mean and standard deviation. Each context, consisting of a support and
query set, consists of ≤ 171,000 tokens. We meta-train for 100,000 updates and fine-tune for 100.
Fine-tuning uses the same procedure, including an Adam optimizer and cosine learning rate scheduler.
Using a single Nvidia A100, training our model takes roughly 3 to 13 days per seed, depending on
support size and frequency of fine-tuned evaluation.

4.2 Zero-Shot

The first setting we evaluate is the zero-shot performance of our model, when there is no support
set for fine-tuning. In Table 1 we report predictions provided by ProteinGym for each baseline to
compute the zero-shot Spearman correlation (ρ). We compare to provided predictions, on our data
splits, to enable a fair comparison to the strongest models available without retraining each baseline
from scratch ourselves. We include the best performing model, and notable models, as baselines. We
find that Metalic outperforms every reported baseline and is SOTA at zero-shot prediction.

Our method significantly outperforms strong baselines with many more parameters, such as ESM1-v-
650M. The 8× 106 parameter PLM used by our method, ESM2-8M, without our method, achieves a
score of only .121 ρ, demonstrating the large contribution of our meta-learning procedure. The next
strongest method after ours is VESPA [Marquet et al., 2022]. Note, unlike our method, VESPA is
specific to single variant mutants and specific to zero-shot context. Similar to our method, VESPA
learns to make zero-shot predictions using features derived from pre-trained PLMs.

The strong performance of our method in the zero-shot setting can be attributed to meta-learning.
Since there is no data for fine-tuning, the zero-shot performance increase over ESM2-8M derives
entirely from our meta-training procedure. In this case, other methods generally assume that the
likelihood of a PLM correlates with fitness in order to make fitness predictions, whereas our model
learns to make use of the information contained in PLM embeddings to make predictions zero-shot.

6



Model Name n = 0

Metalic .475 (max)
.465 ± .007 (mean ± std)

VESPA .464
TranceptEVE-Medium .457
ESM1-v-650M .437
Tranception-Medium .427
Progen2-Medium .419
ESM2-650M .399
MSA Transformer .398
ESM2-8M .121

Table 1: Spearman correlation in the zero-shot setting. Results are computed using predictions
provided by ProteinGym. Most baselines use a pre-trained PLM, so the process is deterministic in the
zero-shot setting. For other baselines, we interpret the predictions provided by Notin et al. [2024] as
indicating a highly performant model. For comparison, we report our highest performing model, and
also provide the mean and standard deviation, for quantifying the variation in meta-training. Metalic
achieves SOTA performance in either case.

Moreover, our method still conditions on an unlabeled query set, and the protein embeddings in that
query set, which allow for meta-learning a form of in-context unsupervised adaptation.

4.3 Fine-Tuning Results

Model Name n = 0 n = 16 n = 128

Metalic .465 ± .007 .490 ± .003 .547 ± .006
Metalic-NoFT .465 ± .007 .476 ± .004 .468 ± .006

ESM1-v-650M .384 ± .000 .452 ± .000 .553 ± .000
ESM2-8M .105 ± .000 .226 ± .000 .406 ± .000
PoET .416 ± .003 .475 ± .026 .588 ± .006
ProteinNPT (ESM1-v) N/A .321 ± .009 .473 ± .002

Table 2: Spearman correlation for the 0, 16, and 128-shot setting. All results are re-computed for this
paper with standard deviation over seeds reported to show spread. We additionally report Metalic
without fine-tuning (Metalic-NoFT). Metalic matches or exceeds all baselines.

In Table 2 we report Spearman correlation with a support set of size 0, 16, and 128, and we compare
to baselines that we train and evaluate ourselves over multiple seeds. We re-train these methods using
the models provided by Hawkins-Hooker et al. [2024] to provide a comparison over multiple seeds
between these methods in a range of practical settings. All models use the same preference-based
loss function as Metalic, for a fair comparison.

Again, we find that Metalic has the strongest performance evaluated in the 0-shot and 16-shot settings,
and has comparably strong performance in the 128-shot settings, with 18 times fewer parameters for
the underlying embedding model. From these results we also see that fine-tuning drastically improves
our model, in the 16-shot and 128-shot settings, by comparing to our method without fine-tuning (No
FT). Moreover, we see that our model is also able to outperform contemporary models, such as PoET
[Truong Jr and Bepler, 2024], that make use of multi-sequence alignment and in-context learning.
Note that for a fair comparison, none of these methods, including our own, make use of ensembling.

Consistent with the motivation of meta-learning, results are strongest when the data is most limited.
Meta-learning adds an additional training stage to learn prior beliefs and inductive biases from related
data. The more fine-tuning data is restricted, the more prior data is useful.

4.4 Ablations

In Table 3 we report ablations of Metalic. Spearman correlation is reported in the zero-shot and
fine-tuned 128-shot settings. The results justify all components of our method.

7



Model Name n = 0 n = 128
Metalic .465 ± .007 .547 ± .006
Metalic-NoFT .465 ± .007 .468 ± .006
Metalic-NoICL .443 ± .008 .495 ± .011
Metalic-NoMetaTrain -.047 ± .044 .163 ± .018
Metalic-NoAug .459 ± .004 .522 ± .009

Table 3: Ablations in the 0 and 128-shot setting. Results show the importance of fine-tuning, in-
context learning, meta-training, and additional training tasks as augmentation.

Most detrimental to performance was removing meta-training our method (NoMetaTrain). This
ablation is identical to Metalic, with the exception that there is no additional meta-learning stage over
multiple protein landscapes. We see that without meta-learning, the initial zero-shot predictions have
near zero correlation with the fitness and that the 128-shot predictions are critically impaired.

We also ablate the ability to attend to the rest of the proteins in context by turning off the column
attention in the axial attention layers (NoICL), we ablate the fine-tuning stage of training (NoFT), and
we ablate the multi-mutant data augmentation by restricting D to single-mutant variants (NoAug).
Removing in-context learning decreases performance in both settings, indicating an ability to adapt in
an unsupervised fashion even from the query set alone in the zero-shot setting. Removing fine-tuning
decreased performance in the 128-shot setting, indicating the need for fine-tuning for generalization
to held-out data. Finally, ablating the multi-mutant augmentation decreased performance in both
settings, indicating the advantage of additional meta-training data.

4.5 Gradient-Based Meta-Learning

Model Name n = 128
Metalic .510 ± .004
Reptile-3-3 .430 ± .013
Reptile-3-100 .469 ± .011
Metalic-Reptile .487 ± .001

Table 4: Comparison to the gradient-based Reptile [Nichol et al., 2018] method after 16,000 steps.
Results show that accounting for fine-tuning during meta-training is unnecessary.

In this section, we compare Metalic to the same architecture but trained with Reptile [Nichol et al.,
2018], an efficient method for gradient-based meta-learning. Unlike Metalic, Reptile does not
use in-context learning and modifies the outer-loop during meta-training to take into account the
subsequent fine-tuning. While accounting for the fine-tuning during meta-training comes with
increased computational costs and can increase bias and variance [Vuorio et al., 2021], Reptile
provides a simplified algorithm that can be run more efficiently. The primary differences between
Reptile and Metalic are that Reptile adjusts the meta-learning loss to account for fine-tuning during
meta-training, while Metalic has in-context learning. Details are provided in Appendix A.2.

Even though Reptile is more compute-efficient than other gradient-based methods, it is still not
efficient. Our method makes use of 100 updates on the support data for fine-tuning. Reptile uses
gradient updates during both meta-training and fine-tuning. Due to compute limitations, we cannot
use 100 steps during each forward pass of meta-training. We therefore evaluate Reptile with 3
gradient steps during meta-training and 3 during fine-tuning, so that train and test match (Reptile-3-3),
and we evaluate Reptile with 3 steps during meta-training and 100 during fine-tuning, so that test
time matches our method (Reptile-3-100). Note that even Reptile-3-3 uses three times the compute
as Metalic. Finally, we evaluate Reptile-3-100 with Metalic, to evaluate whether the benefits of each
are orthogonal and whether they can be used in conjunction (Metalic-Reptile).

Results are reported in Table 4. We evaluate in the 128-shot setting. Note that Reptile is not applicable
in the zero-shot setting, since it requires some data on which to fine-tune. We train all methods
for 16,000 steps, given the increased computation. We observe that Metalic is superior to Reptile,
indicating that gradient-based meta-learning to be unnecessary. We also observe that Metalic used in
conjunction with Reptile (Metalic-Reptile) performs better than Reptile, but worse than Metalic alone.

8



Our results are in line with prior work showing that accounting for gradient updates during training
(in their case, without in-context learning) can be detrimental when there are a limited number of
tasks for meta-training or limited data for the inner-loop [Gao and Sener, 2020, Triantafillou et al.,
2020]. Collectively, this evidence further justifies the choice of fine-tuning only after meta-training.

5 Discussion

(a) Untrained Attention (b) Trained Attention

Figure 3: Axial attention maps over the query set in the zero-shot setting. Each row shows attention to
other proteins in a context, normalized to 1 over the row, and averaged over both layers and mutation
location. Attention map halfway through training (left) and at the end of training (right). Each protein
learns to pay attention to itself, while still attending to other significant proteins in context.

In this section we briefly investigate the in-context learning abilities of Metalic through the use of
attention maps. In section 4 we show that in-context learning is vital to Metalic by ablating the
attention between proteins and showing decreased performance. Notably, the in-context learning
was beneficial not only in the few-shot setting, but also in the zero-shot setting. This suggests an
interesting phenomenon: The emergence of unsupervised in-context learning from the query set
alone. To confirm this phenomenon, in Fig. 3 we show the attention maps in the axial attention
layers between proteins in the query set. Over the course of training, we observe the emergence of a
diagonal line from the top left to the bottom right of the maps. This line indicates that each protein
learns to pay attention to itself to predict fitness. (This diagonal is more apparent when averaging over
multiple contexts, as depicted in Appendix A.1.) Additionally, we observe bright vertical lines, which
demonstrates that there exist some significantly informative proteins that all others proteins attend to.
Finally, we observe that no rows that are entirely dark off the diagonal entries. This demonstrates that
no protein pays attention to just itself. Taken together, these results further corroborate the effect and
necessity of in-context meta-learning. Additional attention maps can be found in Appendix A.1.

6 Conclusion

In this paper, we have demonstrated new state-of-the-art results on a standard protein fitness prediction
benchmark dataset when fine-tuning data is limited. In order to do so, we proposed Metalic, which
makes use of both in-context meta-learning and subsequent fine-tuning. Critically, we have demon-
strated the ability of meta-learning to take advantage of additional data from other proteins fitness
prediction tasks, while remaining computationally tractable by deferring fine-tuning to test time
alone. Unique within the meta-learning literature, we show that in-context meta-learning provides
a useful initialization for further fine-tuning, and provides a method that can make use of test time
data for both fine-tuning and in-context learning. Metalic additionally demonstrates the ability to
learn from the query set alone (zero-shot), performing unsupervised in-context learning. Future work
could investigate leveraging Metalic’s unique in-context learning ability to act as an auto-regressive
fitness model (i.e., a world model in the meta-reinforcement learning setting [Beck et al., 2023]), for
optimally trading off exploration and exploitation when designing novel proteins. Given its efficacy
at leveraging additional data, we believe that meta-learning will play a crucial role in advancing
protein fitness prediction methods, with Metalic being a foundational first step in that direction.

9



References
Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon

Whiteson. A survey of meta-reinforcement learning. arXiv, 2023.

Jacob Beck, Matthew Jackson, Risto Vuorio, Zheng Xiong, and Shimon Whiteson. Splagger: Split
aggregation for meta-reinforcement learning. Reinforcement learning conference, 2024a.

Jacob Beck, Risto Vuorio, Zheng Xiong, and Shimon Whiteson. Recurrent hypernetworks are
surprisingly strong in meta-rl. Advances in Neural Information Processing Systems, 2024b.

David H Brookes, Jakub Otwinowski, and Sam Sinai. Contrastive losses as generalized models of
global epistasis. arXiv, 2023.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. International conference on machine learning, 2017.

Katelyn Gao and Ozan Sener. Modeling and optimization trade-off in meta-learning. Advances in
neural information processing systems, 2020.

Alex Hawkins-Hooker, Jakub Kmec, Oliver Bent, and Paul Duckworth. Likelihood-based fine-tuning
of protein language models for few-shot fitness prediction and design. In ICML 2024 Workshop on
Efficient and Accessible Foundation Models for Biological Discovery, 2024.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidi-
mensional transformers. arXiv, 2019.

Ben Krause, Nikhil Naik, Wenhao Liu, and Ali Madani. Don’t throw away that linear head: Few-
shot protein fitness prediction with generative models, 2022. URL https://openreview.net/
forum?id=hHmtmT58pSL.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa,
Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, and Alexander Rives. Language models of
protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv, 2022.

Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand, Raphael R Eguchi,
Po-Ssu Huang, and Richard Socher. Progen: Language modeling for protein generation. arXiv,
2020.

Céline Marquet, Michael Heinzinger, Tobias Olenyi, Christian Dallago, Kyra Erckert, Michael
Bernhofer, Dmitrii Nechaev, and Burkhard Rost. Embeddings from protein language models
predict conservation and variant effects. Human genetics, 2022.

Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alex Rives. Language models
enable zero-shot prediction of the effects of mutations on protein function. Advances in neural
information processing systems, 2021.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. arXiv preprint arXiv:1707.03141, 2017.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning
via sequence modeling. In International conference on machine learning, 2022.

Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. Recurrent model-free rl can be a strong
baseline for many pomdps. In International Conference on Machine Learning, 2022.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv,
2018.

Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N Gomez, Debora
Marks, and Yarin Gal. Tranception: protein fitness prediction with autoregressive transformers and
inference-time retrieval. In International Conference on Machine Learning, pages 16990–17017.
PMLR, 2022.

10

https://openreview.net/forum?id=hHmtmT58pSL
https://openreview.net/forum?id=hHmtmT58pSL


Pascal Notin, Ruben Weitzman, Debora Marks, and Yarin Gal. Proteinnpt: Improving protein
property prediction and design with non-parametric transformers. Advances in Neural Information
Processing Systems, 2023.

Pascal Notin, Aaron Kollasch, Daniel Ritter, Lood Van Niekerk, Steffanie Paul, Han Spinner, Nathan
Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, et al. Proteingym: Large-scale benchmarks
for protein fitness prediction and design. Neural Information Processing Systems, 2024.

Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu, and
Alexander Rives. Msa transformer. In International Conference on Machine Learning. PMLR,
2021.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the National
Academy of Sciences, 2021.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. In International conference
on learning representations, 2018.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine
learning, 2016.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A dataset
of datasets for learning to learn from few examples. In International Conference on Learning
Representations, 2020.

Timothy Truong Jr and Tristan Bepler. Poet: A generative model of protein families as sequences-of-
sequences. Advances in Neural Information Processing Systems, 2024.

Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Multimodal model-agnostic meta-
learning via task-aware modulation. Advances in neural information processing systems, 2019.

Risto Vuorio, Jacob Austin Beck, Gregory Farquhar, Jakob Nicolaus Foerster, and Shimon Whiteson.
No dice: An investigation of the bias-variance tradeoff in meta-gradients. In Deep RL Workshop
NeurIPS 2021, 2021.

Zheng Xiong, Luisa M Zintgraf, Jacob Austin Beck, Risto Vuorio, and Shimon Whiteson. On the
practical consistency of meta-reinforcement learning algorithms. In Fifth Workshop on Meta-
Learning at the Conference on Neural Information Processing Systems, 2021.

Minghao Xu, Zuobai Zhang, Jiarui Lu, Zhaocheng Zhu, Yangtian Zhang, Ma Chang, Runcheng
Liu, and Jian Tang. Peer: a comprehensive and multi-task benchmark for protein sequence
understanding. Advances in Neural Information Processing Systems, 2022.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In International conference on machine learning, 2019.

A Appendix

A.1 Attention Maps

In this section we provide additional attention maps beyond those presented in Section 5. The
attention maps in Section 5 demonstrated that proteins attend to themselves, in addition to other
significant proteins in the context, halfway through training and at the end of training. Here, we
provide an attention map at the beginning of training for comparison in Fig. 4. Unsurprisingly, the
attention map at the beginning of training is uniform, since no meta-learning has occurred to enable
in-context learning. In the main body, the attention maps used a query set of size 50 to make the
maps easier to interpret, and evaluated a single context. Here, we additionally provide the map over a

11



Figure 4: Axial attention maps over the query set in the zero-shot setting at the beginning of training.

(a) Untrained Attention (b) Trained Attention

Figure 5: Axial attention maps over the query set in the zero-shot setting with query size 100.
Attention map halfway through training (left) and attention map at the end of training (right).

query size of 100, as this is the query size used for training all models, and we average over the batch
of size 4. These maps are depicted in Fig. 5. Here, the diagonal attention is more apparent in these
maps, since the relevant proteins vary between contexts, but the diagonal, averaged over contexts,
does not vary. Additionally, we see the same pattern of bright vertical lines, indicating the presence
of some significantly informative proteins to which all the others attend. No protein pays attention
just to itself, indicating that Metalic learns to leverage in-context learning.

A.2 Reptile Details

This section provides additional details on how Reptile [Nichol et al., 2018] works. In order to account
for fine-tuning during meta-training, gradient-based methods generally compute a meta-gradient that
requires the computation of higher order derivatives, which can be computationally intractable for a
large model. The costs can be especially burdensome when many gradient steps are needed for out
of distribution adaptation. For this reason, Reptile avoids meta-gradients by changing optimization
during meta-training. Here, the new parameters are updated, not by gradient descent, but rather by
moving toward the mean, after each theta is adapted to a task, θT , by fine-tuning on that task. From
time-step t to t+ 1 of this outer-loop optimization process, Reptile can be written:

θt+1 = θt + βEDT ∈D
[
θtT − θt

]
. (5)

We had to choose several implementation details for Reptile. First, note that Reptile sub-samples the
support set during fine-tuning and has no distinct query set. In our implementation, we sub-sample

12



mini-batches of size 50 to match the query size of Metalic for sub-sampling in the 128-shot setting.
Reptile also has several options for the outer loop optimization. We choose to use the batched version
with a batch size of 4 to match Metalic. We also choose to use the direct update given in Equation (5),
rather than taking the difference over the learning rate, (θtT − θt)/α as an approximation of a gradient
to be used with the Adam optimizer. We do so to avoid complications from having to tune the β1
parameter of Adam, for which Metalic uses .9, but the original Reptile implementation uses 0, and to
avoid complications regarding when to reset Adam’s momentum statistics.

A.3 Hyper-Parameters

Since we build upon the axial attention of ProteinNPT [Notin et al., 2023], we follow their choice for
most hyper-parameters, with a few exceptions. Most notably, in our experiments, we use the third
layer of ESM2 as an embedding for each protein, given the strong performance and reduced number
of parameters. Additionally, we use a ranking loss from Hawkins-Hooker et al. [2024], and do not
use the CNN or additional inputs (such as zero-shot predictions) from ProteinNPT. We likewise
found conditioning on the wild-type unhelpful. The same set of hyper-parameters are used for each
setting: 0-shot, 16-shot, and 128-shot. We used the same learning rate for fine-tuning Metalic as for
meta-training. We found the default ProteinNPT learning rate to be too large, and decreasing by a
factor of 10 to be sufficient. Complete details on hyper-parameters used are available in Table 5. We
tuned relatively few of the hyper-parameters of our method, and mostly tuned over a single seed.
There is likely room for improvement in the hyper-parameter selection of Metalic.

Hyper-Parameter Description Value
Training Steps The total number of training steps in meta-training 100,000
Warm-Up Fraction The fraction of total time steps spent linearly warm-

ing up, preceding cosine decay
0.05

Batch Size The number of contexts evaluated per training step.
Note that gradient accumulation is used for each con-
text in the batch, so this scales training time linearly.

4

Weight Decay Weight decay applied to non-bias parameters only 5e-3
Learning Rate The learning rate for meta-training and fine-tuning 3e-5
Min LR Fraction The minimum fraction of the LR maintained during

the cosine decay in learning rate scheduling
1e-5

Adam Eps The epsilon value for the Adam optimizer 1e-8
Adam Beta1 The beta1 value for the Adam optimizer 0.9
Adam Beta2 The beta2 value for the Adam optimizer 0.999
Gradient Clip Value The maximum norm allowed for the gradient 1.0
ESM embed model The full name for the ESM2 model used esm_t6_8M_UR50D
ESM embed layer The layer from the ESM2 model used as an embed-

ding
3

Number Fine-tune Steps The number of gradient updates for fine-tuning after
meta-training

100

Num ProteinNPT Lay-
ers

The number of layers using axial attention, as in
ProteinNPT

5

Condition on Pooled Se-
quence

Whether each sequence is pooled or ignored after
axial attention

True

MLP Layer Sizes The number and size of fully connected layers after
axial attention

[768,]

Embed Dim The embedding dimension for all inputs including
the protein sequences and fitness values

768

Axial Forward Embed
Dim

The hidden size of the feed-forward layer within the
ProteinNPT layer

400

Attention Heads The number of heads in self-attention 4
Dropout Prob The probability of dropout during training and fine-

tuning for layers other than axial attention
0.0

Attention Dropout The probability of dropout during training and fine-
tuning for axial attention layers

0.1

Table 5: Hyper-Parameters for Metalic.

13



For the majority of baselines no tuning was required, other than Reptile. For the baselines, we
used reference predictions for Table 1 and reference implementations for Table 2, neither of which
required tuning. Our implementation of Reptile in Table 4 did introduce one new hyper-parameter:
β in Equation (5), which is the outer-loop learning rate. Unlike in Metalic, the outer loop (i.e.,
meta-training) update magnitude, and thus the outer loop learning rate, depend on the inner loop
update magnitude. For Reptile, we use the same inner loop learning rate as Metalic, but we tune the
outer loop learning rate. Given the increased computational cost of Reptile, we use a single seed over
three learning rates for 10,000 steps. We tune over the following learning rates: the learning rate for
Metalic, which is 3e−5; a learning rate of 1, which corresponds to the learning rate of Metalic if you
interpret (θtT − θt)/α as the gradient [Nichol et al., 2018]; and a learning rate of 1

n , where n is the
number of inner-loop updates (3 in this case), which corresponds to the learning rate of Metalic if
you interpret (θtT − θt)/(αn) as the gradient. We found a learning rate of 1 to perform best, in line
with the outer loop learning rate of Metalic and the interpretation of the gradient from Nichol et al.
[2018]. Results of the learning rate tuning are presented in table Table 6.

Model Name 1. .333 3e−5

Reptile-3-3 .420 .350 .091
Reptile-3-100 .444 .396 .181
Metalic-Reptile .476 .411 .190

Table 6: Reptile tuning results for the 128-shot setting. Results show over 10,000 steps for one seed
each.

A.4 Results for All Seeds

In this section we report each seed individually for each experiment conducted in the main body.

Model Name n = 0
Metalic .47, .46, .46
VESPA .464
TranceptEVE-Medium .457
ESM1-v-650M .437
Tranception-Medium .427
Progen2-Medium .419
ESM2-650M .399
MSA Transformer .398
ESM2-8M .121

Table 7: Spearman zero-shot results for each seed in Table 1.

Model Name n = 0 n = 16 n = 128

Metalic .47, .46, .46 .49, .49, .49 .54, .55, .55
Metalic-NoFT .47, .46, .46 .48, .48, .47 .48, .46, .46

ESM1-v-650M .38, .38, .38 .45,.45,.45 .55, .55, .55
ESM2-8M .11, .11, .11 .23, .23, .23 .41, .41, .41
PoET .41, .42, .42 .48, .50, .44 .60, .59, .58
ProteinNPT (ESM1-v) N/A .31, .31, .33 .47, .47, .48

Table 8: Spearman results for the 0, 16, and 128-shot setting for each seed in Table 2.

14



Model Name n = 0 n = 128
Metalic .47, .46, .46 .54, .55, .55
Metalic-NoFT .47, .46, .46 .48, .46, .46
Metalic-NoICL .44, .45, .43 .51, .49, .49
Metalic-NoMetaTrain -.079, .016, -.079 .19, .15, .15
Metalic-NoAug .46, .46, .46 .53, .51, .52

Table 9: Spearman results for ablations for each seed in Table 3.

Model Name n = 128
Metalic .51, .51, .51
Reptile-3-3 .44, .42, .43
Reptile-3-100 .44, .49, .48
Metalic-Reptile .49, .49, .49

Table 10: Spearman results for Reptile experiments for each seed in Table 4. Results are given after
16,000 training steps.

15


	Introduction
	Related Work
	Methods
	Problem Setting
	Metalic

	Experiments
	Experimental Setup
	Zero-Shot
	Fine-Tuning Results
	Ablations
	Gradient-Based Meta-Learning

	Discussion
	Conclusion
	Appendix
	Attention Maps
	Reptile Details
	Hyper-Parameters
	Results for All Seeds


