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ABSTRACT

Offline-to-online reinforcement learning (O2O RL) offers a promising paradigm
that first pre-trains an offline policy and fine-tunes it with further online interac-
tions. Nevertheless, the distribution shift between the offline and online phase
often hinders the fine-tuning performance, sometimes even incurring performance
collapse. Existing methods mitigate this by enhancing training robustness with
Q-ensemble, training a density ratio estimator to balance offline and online data,
etc. But they often rely on components like ensemble and have higher training
costs. In this paper, we address this issue by establishing a concrete performance
bound for the optimal policies between two consecutive online steps. Motivated
by the theoretical insight, we propose a simple yet effective fine-tuning method,
Prioritized Experience Selection (PES). During the online stage, PES maintains a
dynamically updated priority queue containing a portion of high-return trajecto-
ries, and only selects online samples that are close to the samples in the queue for
fine-tuning. In this way, the distribution shift issue can be mitigated and the fine-
tuning performance can be boosted. PES is computationally efficient and com-
patible with numerous approaches. Experimental results on a variety of D4RL
datasets show that PES can benefit different offline and O2O RL algorithms and
enhance Q-value estimate. Our code is available and will be open-source.

1 INTRODUCTION

Online reinforcement learning (RL) (Sutton & Barto, 1999; François-Lavet et al., 2018) presents a
paradigm that the agent learns an optimal policy by interacting with the environment. However, this
trial-and-error manner also imposes inherent risks of high costs or even danger. Offline RL (Levine
et al., 2020; Prudencio et al., 2023), instead, learns the optimal policy from a previously collected
dataset, which could be sourced from historical data, expert knowledge, or behavior policies. Such
learning paradigm is promising since it eliminates the need for interacting with the environment.
Nevertheless, the performance of the offline RL algorithm often suffers from the size and quality
of the underlying static dataset, e.g., learning with a small dataset with poor quality makes it chal-
lenging to learn superior policies. To leverage the advantages of both online RL and offline RL, the
Offline-to-Online (O2O) RL paradigm (Xie et al., 2021; Ball et al., 2023; Wagenmaker & Pacchi-
ano, 2023) has been explored, where the agent is first pre-trained on the offline dataset, and then
further fine-tuned through online interactions with the environment. While this pre-training + fine-
tuning paradigm is widely used and proved effective in computer vision (Dosovitskiy et al., 2020;
Radford et al., 2021) and natural language processing (Devlin et al., 2018; Liu et al., 2019b; Brown
et al., 2020; Hu et al., 2021), its effectiveness in RL is generally not as promising. Especially, dur-
ing the fine-tuning phase, the “unlearning” phenomenon (Nakamoto et al., 2024; Nair et al., 2020;
Uchendu et al., 2023) may occur, which means that the policy improvement is slow, or there might
be a performance drop at the beginning of the fine-tuning phase. One reason for this phenomenon
is the distribution shift between offline and online stages (Lee et al., 2022; Uchendu et al., 2023;
Nair et al., 2020; Wen et al., 2023), i.e., the agent encounters unseen state-action pairs during online
interaction. Due to extrapolation error (Fujimoto et al., 2019; Kumar et al., 2019) and conservatism
in value function (Kumar et al., 2020; Lyu et al., 2022b), the agent cannot provide a good Q-value
estimate for online samples. There are many attempts to address the distribution shift issue. For
example, Wen et al. (Wen et al., 2023) leverage Q-ensemble and robustness regularization to smooth
the Q-function for policy fine-tuning. However, ensemble method introduces extra computational
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burden. Lee et al. (Lee et al., 2022) use balanced replay to select near-on-policy samples for fine-
tuning. However, one needs to train a density ratio estimator, which increases the complexity of
training. It necessities to develop a general and effective method for better policy fine-tuning.

In this paper, we propose a simple yet effective approach for online fine-tuning, Prioritized
Experience Selection, namely PES. We begin with the theoretical insight that, at the beginning
of the online phase, one should only use online transitions that do not deviate far from the visited
transitions to ensure smooth policy transfer. To further guarantee fast policy adaptation, we only
select good online transitions to fine-tune the policy. To that end, we maintain a priority queue
containing a portion of high-return trajectories encountered before during the online phase, and only
select online samples that are close to the samples in the queue for further fine-tuning. We determine
whether the online transition is close to the queue by searching its k-nearest neighbors in the queue
and measure their average deviations. We admit the transition if the calculated deviation is small and
vice versa. We leverage the KD Tree (Bentley, 1975) for efficient implementation. Meanwhile, we
dynamically update the priority queue to ensure that the samples are of high quality in the queue. In
this way, we make sure that the samples used for fine-tuning stay close to the previously encountered
samples, thus mitigating the distribution shift. Moreover, since the queue only contains high-return
trajectories, we also ensure that good online samples are used for fine-tuning, thereby improving
the sample efficiency. To further tackle the underlying over-conservative issue due to partial sample
selection, we adapt the selection threshold throughout the online phase to ensure data diversity.

PES is general and can be seamlessly integrated into different offline and O2O RL algorithms for
efficient online fine-tuning. Experimental results on various D4RL (Fu et al., 2020) datasets demon-
strate that PES can significantly benefit offline and O2O RL algorithms and mitigate distribution
shift. To ensure reproducibility, we provide the code in the supplementary materials.

2 BACKGROUND

We consider a Markov Decision Process (MDP) (Puterman, 1990) that can be specified by a tuple
⟨S,A, p, r, ρ, γ⟩, where S and A are the state space and action space, respectively, p : S × A → S
is the transition dynamics, r : S × A → R is the reward function, ρ is the initial state distribution,
and γ ∈ [0, 1) is the discount factor. The goal of reinforcement learning (RL) is to obtain a policy
πθ which maximizes the following object function: η(θ) = Eπθ

[
∑∞

t=0 γ
tr(st, at)|s0 ∼ ρ]. In the

context of offline RL, the agent is only accessible to a static dataset: D = {(si, ai, ri, si+1)}Ni=1.
Since the dataset cannot cover the entire state-action space, training solely on it will constrain the
agent’s performance. To further improve the performance of offline RL agents without incurring
excessive costs and risks, offline-to-online RL aims to fine-tune offline-trained agents with minimal
online interactions. Samples collected online are stored in Donline and training samples are drawn
from D ∪Donline for fine-tuning.

3 METHODOLOGY

3.1 A MOTIVATING EXAMPLE

Offline-to-online RL suffers from distribution shift during the online phase, which hinders the pre-
trained policy from achieving higher returns. Nevertheless, we argue that the distribution shift issue
can be effectively alleviated when leveraging the sample selection approach for filtering fine-tuning
data, even if the distribution shift is severe. We provide a motivating example to illustrate this point.

We choose IQL (Kostrikov et al., 2022), a popular offline RL algorithm for experiments. We first
pre-train IQL on halfcheetah-medium-v2 dataset for 1M gradient steps. To simulate a severe
distribution shift, we use halfcheetah-expert-v2 dataset for fine-tuning. As shown in Figure
1 (left), these two datasets exhibit distinct state-action distributions. We consider two approaches for
fine-tuning, (a) directly fine-tuning using samples from the halfcheetah-expert-v2 dataset,
tagged as IQL-Expert; (b) we construct a priority queue and initialize it with top-10 trajectories in
the halfcheetah-medium-v2 dataset, and then use halfcheetah-expert-v2 dataset to
fine-tune IQL with the sample selection mechanism, i.e., ignoring samples that deviate far from the
queue. We denote this variant as IQL-PES.
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Figure 1: Left: Visualization results of state-action distributions of halfcheetah-medium-v2 and
halfcheetah-expert-v2 datasets using t-SNE (Van der Maaten & Hinton, 2008). Right: The fine-
tuning performance of IQL-Expert and IQL-PES. The shaded region denotes the standard deviation.

We present the performance comparison of IQL-Expert and IQL-PES in Figure 1 (right), where we
observe a significant performance decrease for IQL-Expert during the fine-tuning stage, indicating
that even when expert samples are used for fine-tuning, the performance can decline due to signifi-
cant distribution shift. However, IQL-PES demonstrates robustness, and incurs stable performance
improvement despite the distribution shift. The experience selection mechanism allows IQL-PES to
choose expert samples with minimal distribution shift for fine-tuning. This toy example sheds light
on the necessity of selecting proper and useful data during the fine-tuning phase.

3.2 OFFLINE-TO-ONLINE RL WITH PRIORITIZED EXPERIENCE SELECTION

For a typical online fine-tuning process, the agent collects transitions in the environment, and adds
them to the online buffer Donline to fine-tune the pre-trained policy π. However, a direct fine-
tuning with these samples may incur slow performance improvement or even performance drop
due to distribution shift (as illustrated in the motivating example). Specifically, we argue that the
data distribution or the empirical MDP (as defined in Definition 3.1) in the replay buffer between
two consecutive online steps should be similar to ensure smooth policy transfer, guaranteed by
theorem 3.1.
Definition 3.1 (empirical MDP). The empirical MDP of the replay buffer is defined by the tuple
(S,A, r, p̂, ρ̂, γ), where S, A, r and γ are the same as the original MDP. ρ̂ is the state distribution
of the buffer. The buffer transition dynamics p̂ is defined as:

p̂(s′|s, a) =


∑

D∪Donline
1(s,a,s′)∑

D∪Donline
1(s,a) , if (s, a, s′) ∈ D ∪ Donline,

0, otherwise,
(1)

where 1(·) is the indicator function.

Remark: Intuitively, p̂ only accounts for transitions in the replay buffer; we set the probability for
transitions not in the buffer to be zero.
Theorem 3.1. Let M be the true MDP, M̂t and M̂t+1 be the two empirical finite-horizon MDPs
between two consecutive steps t and t+ 1, then the performance discrepancy between their optimal
policy in the true MDP ηM (π⋆

M̂t
) and ηM (π⋆

M̂t+1
) can be bounded by:∣∣∣ηM (π⋆

M̂t
)− ηM (π⋆

M̂t+1
)
∣∣∣ ≤ 2(rmax + γVmax)(1− γH)

1− γ
DTV

(
p
M̂t

, p
M̂t+1

)
+

rmax

1− γ

(
DTV (pM , p

M̂t
) +DTV (pM , p

M̂t+1
)
)
.

where DTV is the total variance distance, rmax and Vmax represent the maximum value of the
reward function and value function, and H is the maximum MDP horizon.

The proof is deferred to Appendix A. Theorem 3.1 suggests that if the data distribution in the replay
buffer between two consecutive steps can evolve smoothly, such that the difference between the two
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Figure 2: Left: Framework of offline-to-online RL. Right: Learning process of PES. The key
difference is that PES uses the priority queue for online experience selection (highlighted in red).

estimated MDPs is small, then the learned policy can avoid the abrupt performance drop, facilitating
a smooth policy transfer. Motivated by this theoretical insight, one can simply add online samples
that are similar to D ∪Donline to Donline. However, we argue that such an approach is not ideal. On
one hand, the replay buffer may contain sub-optimal trajectories with low returns. It is possible that
online samples with low-quality would be admitted and used for fine-tuning, resulting in slow policy
evolution. On the other hand, since the size of the replay buffer can often be large (containing more
than 1M transitions), assessing the similarity between the online samples and the buffer transitions
can be a heavy computational overhead. To avoid these drawbacks, we propose prioritized experi-
ence selection (PES), which maintains a priority queue that contains visited high-return trajectories
and only favours online samples that are similar to samples in the queue. In this way, the distri-
bution shift is alleviated and the sample efficiency can be boosted (since only high-quality samples
are selected), the computational load is also significantly reduced as the priority queue holds much
fewer samples compared to the entire replay buffer. Meanwhile, the queue is dynamically updated
such that we can consistently include high-quality samples for higher sample efficiency. Note that
the agent’s exploration ability may be reduced since PES filters out proportion of online samples.
To tackle this issue, we gradually loose the selection threshold throughout the fine-tuning process
to ensure data diversity. This is rational since the “unlearning” phenomenon primarily occurs in the
beginning of the fine-tuning phase, and we should admit more diverse online samples in the later
fine-tuning stage to encourage exploration.

The core idea of PES is demonstrated in Figure 2. Compared with the previous offline-to-online RL
pipeline, the main difference is that PES maintains an additional priority queue for online transition
selection. The overall procedure of PES can be divided into the following steps:

Step 1: Offline Pre-Training. Given an offline dataset D, we first learn a policy π via offline RL
algorithms. Since PES is orthogonal to algorithmic designs, we can adopt a variety of offline RL
algorithms, such as CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022), etc.

Step2: Constructing the Priority Queue. After offline pre-training, we first construct a void
priority queue Q with capacity N (i.e., how many trajectories can the queue Q hold) to store high-
quality trajectories. We sort the trajectories in D by their returns and push the top N trajectories
with the highest returns into Q. Note that this step only aims to initialize the priority queue.

Step 3: Prioritized Experience Selection. This step is the core contribution of PES. For an online
sample, PES evaluates its similarity to the experiences in the priority queue Q and adds those with
high similarities toDonline. By doing so, PES ensures that the samples inDonline are of high-quality,
which in principle should benefit policy improvement. Moreover, to prevent the policy being overly
conservative, we also continuously updateQ during the fine-tuning process, as demonstrated in Step
5. The remaining issue is how to measure the similarity between online samples and those inQ. One
can train neural networks to fulfill that (e.g., train a classifier to determine whether the online sample
belongs to the queue). But it brings heavy training costs and may suffer from training instability. We
resort to the k-nearest neighbor distance in the state-action space as the similarity metric. Given an
online sample (s, a), we measure the distance between (s, a) and its k-nearest neighbors in Q:

d(s, a) =
1

k

k∑
i=1

∥∥(s⊕ a)− (s⊕ a)i,Q
∥∥
2

(2)

where ⊕ is the vector concatenation operator, and (s ⊕ a)i,Q is the i-th nearest neighbor of (s, a)
in the priority queue Q, i ∈ {1, . . . , k}. We then specify a selection threshold ϵ. If d(s, a) is
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smaller than ϵ, then we admit the sample (s, a) and add it to Donline. It is vital to decide the
threshold ϵ. Simply setting ϵ as a constant is not preferred since the scale of states and actions can
significantly differ among different datasets. For flexibility and scalability, we set the threshold ϵ
as the maximum k-nearest neighbor distance of any (s, a) ∈ D against other samples in the
offline dataset D (i.e., D\{(s, a)}) and gradually loose ϵ to encourage exploration:

ϵ = (1 + α · t
T
) · max

(s,a)∈D

(
1

k

k∑
i=1

∥∥∥(s⊕ a)− (s⊕ a)i,D\{(s,a)}
∥∥∥
2

)
(3)

where t is the current fine-tuning steps, T is the total steps, and α is a tunable hyperparameter. A
larger α means more online samples will be added to Donline in the later online stage. We employ
KD Tree (Bentley, 1975) for efficiently calculating the k-nearest neighbor distance. Consequently,
PES only consumes a minor extra computation burden over the base algorithm.

Step 4: Online Fine-Tuning. During online fine-tuning, we set a sampling coefficient η ∈ [0, 1],
and draw a proportion of ηB samples from offline dataset D, and (1− η)B samples from the online
buffer Donline, given a batch size B. We then use these samples to fine-tune the algorithm.

Step 5: Updating the Priority Queue. The priority queue Q always stores the top N trajectories
with the highest returns. Since it is possible to gather high-return trajectories during online interac-
tions, we need to maintain Q to reflect any new, higher-return trajectory. If the return of an online
trajectory is higher than that of the trajectory with the lowest return in Q, we pop the lowest-return
trajectory and add the new trajectory to Q. Then, the queue is sorted based on the return.

The full pseudo-code of PES is deferred to Appendix C. Furthermore, we also present some theo-
retical backups for PES’s ability to select high-quality online samples in Appendix B.

We note that PES enjoys the following advantages: (a) Compatibility with existing algorithms:
Since PES only involves online sample selection and is independent of the specific algorithmic
design, PES can be seamlessly integrated into a variety of offline RL and offline-to-online RL al-
gorithms. This flexibility allows for the enhancement of existing methods without the need to alter
their core designs; (b) Slight additional training costs: PES leverages an unsupervised learning
method, KD tree, to measure the distance between the online sample and the transitions in the prior-
ity queue, which is quite efficient and it does not introduce much additional training costs, as shown
in Appendix G.

4 EXPERIMENT

In this section, we evaluate the effectiveness of PES by conducting experiments on various D4RL
datasets. We first integrate PES into IQL (Kostrikov et al., 2022) in Section 4.1 and compare it
with some recent baselines. In Section 4.2, we combine PES with more offline and O2O RL algo-
rithms to examine its versatility. We further show that PES can mitigate distribution shift to benefit
Q-value estimate in Section 4.3, and conduct ablation studies in Section 4.4. Lastly, we test the
hyperparameter sensitivity of PES in Section 4.5.

4.1 MAIN RESULTS

In this part, we compare PES with other online fine-tuning methods. We adopt IQL (Kostrikov et al.,
2022), a widely used offline RL algorithm as our base algorithm for PES, giving rise to IQL-PES. We
choose the popular D4RL (Fu et al., 2020) benchmark for experimental evaluations. We consider 3
tasks (halfcheetah, hopper, walker2d), with 3 types of datasets (random, medium,
medium-replay) for each of the task, from the MuJoCo “-v2” datasets in D4RL benchmark.
We additionally choose 6 “-v0” datasets from Antmaze domain with different map sizes (umaze,
medium, large), resulting in a total of 15 datasets for experiments. In the offline pre-training
stage, we run IQL for 1M gradient steps on each dataset1. In the online fine-tuning stage, we
transfer parameters trained offline to online stage and apply PES to IQL. All experiments run for
1M environmental steps.

1Except AWAC (Nair et al., 2020) where we follow its original training process.
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Figure 3: Online stage learning curves of IQL-PES and other baselines on D4RL datasets. The solid
line is the average normalized score, and the shaded area represents 95% confidence interval. The
dashed lines show the final performance of AWAC after 1M steps of fine-tuning.

Baselines. We consider the following baselines: (i) AWAC (Nair et al., 2020): an approach combin-
ing dynamic programming with maximum likelihood policy updates via advantage-weighted actor-
critic for offline-to-online learning. (ii) IQL (Kostrikov et al., 2022), an offline RL algorithm that
also trains the policy via advantage weighting. (iii) BR (Balanced Replay (Lee et al., 2022)), which
selects relevant, near-on-policy offline samples for fine-tuning. The difference between PES and BR
lies in that PES selects online samples. (iv) JSRL (Jump Start RL (Uchendu et al., 2023)), which
utilizes a guide-policy for the rollout of the first part of the trajectory, and an exploration-policy for
the rest part of the trajectory. (v) O3F (Mark et al., 2022): an optimistic action selection mechanism
which encourages exploration by taking actions with higher expected Q-value. For a fair compar-
ison, we employ IQL as the base algorithm for BR and O3F (i.e., no Q-ensemble is adopted as in
their original papers). All algorithms are run across 5 varied random seeds.

Experimental Results. We summarize in Figure 3 the learning curves of IQL-PES and the above
baselines in the online stage, where we report the normalized score for both MuJoCo tasks and
Antmaze tasks. It can be found that PES significantly boosts the fine-tuning performance of IQL,
and IQL-PES achieves the highest final performance in 10 out of the 15 datasets among all meth-
ods. Moreover, thanks to the online sample selection mechanism, the “unlearning” phenomenon
at the beginning of online stage is mitigated (i.e., no abrupt performance degradation occurs in
PES). These clearly show the effectiveness of our method. We observe that on random datasets like
hopper-random-v2, the performance of IQL-PES is slightly inferior than the vanilla IQL. We
believe this is because the data distribution of the random datasets is diverse, making the policy less
affected by the distribution shift issue. Meanwhile, the offline samples in random datasets are of
poor quality, and filter out online samples may potentially decrease sample efficiency. However, on
datasets with a narrow data distribution, such as the medium datasets (e.g., hopper-medium-v2),
PES can bring significant performance improvement. Notably, PES consistently beats the balanced
replay approach on almost all the tasks, emphasizing the greater significance of online sample se-
lection over offline sample selection. It can be observed that some fine-tuning methods, such as
balanced replay and O3F, could result in a slow performance improvement, which seems to be con-
tradictory to their original papers. We argue that the reasons are that these methods are optimistic in
their action selection strategy and sampling mechanism. Such optimism could lead to more severe
distribution shift, and they employ the Q-ensemble trick to enhance the robustness of Q-networks
and the policy. They fail here due to the lack of ensemble Q-networks. In contrast, PES is general
and does not rely on the Q-ensemble to achieve a good performance.
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Table 1: Performance comparison for base algorithms w/ (denoted as “Ours”) and w/o (denoted
as “Base”) PES on D4RL benchmark. We abbreviate “halfcheetah” as “half”, “random” as “r”,
“medium” as “m”, “medium-replay” as “m-r”. We use D4RL MuJoCo “-v2” datasets and Antmaze
“-v0” datasets. We report the normalized score for each dataset. All the experiments are run with 5
random seeds, and the superior normalized scores are in bold and highlighted in green.

Task Name AWAC PEX Cal-QL TD3-BC CQL
Base Ours Base Ours Base Ours Base Ours Base Ours

half-r 52.4 61.1 64.2 69.6 3.2 18.2 44.3 45.1 0.0 30.0
half-m 67.2 73.5 79.0 72.1 73.1 90.5 61.5 63.4 52.5 64.7
half-m-r 59.2 62.3 62.5 68.3 54.7 52.2 52.3 58.7 53.6 52.1
hopper-r 13.2 14.8 41.2 58.4 9.6 14.4 7.7 12.2 11.7 10.0
hopper-m 101.0 101.0 83.1 91.2 100.0 100.0 62.1 79.3 72.1 81.4
hopper-m-r 101.3 104.5 77.2 90.0 100.0 100.0 93.1 87.6 102.4 99.1
walker2d-r 2.4 18.6 24.1 14.7 6.4 11.3 5.4 5.4 6.6 8.4
walker2d-m 90.1 88.9 86.4 77.3 83.5 88.2 87.5 92.1 83.2 89.6
walker2d-m-r 98.5 101.3 94.3 98.1 95.1 91.9 88.3 90.2 97.6 99.8

MuJoCo total 585.3 626 612 639.7 527.7 566.7 502.2 534.0 479.7 535.1

umaze 97.3 99.7 100.0 100.0 95.9 99.8 17.4 33.4 90.8 99.5
umaze-diverse 0.0 42.6 79.6 91.7 64.2 72.3 0.0 23.7 77.2 100.0
medium-diverse 0.0 13.8 83.0 75.1 16.8 24.3 0.0 12.1 87.6 93.2
medium-play 0.0 15.6 88.1 95.3 17.2 19.0 0.0 7.4 93.1 88.1
large-diverse 0.0 0.0 63.4 61.0 1.5 0.0 0.0 0.0 76.1 66.3
large-play 0.0 0.0 67.2 80.1 1.1 0.0 0.0 0.0 63.3 69.2

Antmaze total 97.3 171.7 481.3 503.2 196.7 215.4 17.4 68.6 488.1 516.3

Total score 682.6 797.7 1093.3 1142.9 724.4 782.1 519.6 617.7 967.8 1051.4

4.2 COMBINING WITH WIDER OFFLINE AND OFFLINE-TO-ONLINE RL ALGORITHMS

In Section 4.1, we integrate PES into IQL and demonstrate the advantages of PES. As we emphasize
earlier, PES is general and can be combined with various algorithms. In this section, we aim to
explore whether PES can also benefit wider off-the-shelf offline and offline-to-online RL algorithms.

Experimental Setup. Our goal is to show that PES is compatible to different algorithms. To that
end, we integrate PES with some popular offline and offline-to-online RL algorithms, and con-
duct extensive experiments on D4RL benchmark. For base offline RL algorithms, we choose TD3-
BC (Fujimoto & Gu, 2021) and CQL (Kumar et al., 2020) where CQL is a typical value-based offline
RL algorithm that learns pessimistic value functions, and TD3-BC incorporates the behavior cloning
term in the policy objective besides maximizing the Q-value. We do not make any modification to
the underlying offline RL algorithms during the online fine-tuning phase, except that we adds an
online sample selection process using PES. For the base offline-to-online RL algorithms, we choose
AWAC (Nair et al., 2020), PEX (Zhang et al., 2023a) and Cal-QL (Nakamoto et al., 2024). For
AWAC and Cal-QL, PES can be directly integrated in the online stage. As for PEX, which utilizes
a fixed offline policy and a learnable online policy for policy expansion, we extend its policy set by
adding another online policy. During the fine-tuning process of this new online policy, we employ
PES for sample selection. We then combine these three policies to create a composite policy. We
use 15 D4RL datasets for offline pre-training (1M steps) and online fine-tuning (1M steps).

Experimental Results. We summarize the experimental results in Table 1, which shows the final
average normalized score of the base algorithms after online fine-tuning w/ and w/o PES. It can be
found that for all 5 base algorithms, PES incurs significant performance boosts on both MuJoCo and
Antmaze tasks, which we believe clearly verifies the effectiveness and versatility of PES. Especially,
we observe that for AWAC and TD3-BC, Antmaze domain is particularly challenging, i.e., both of
them can only achieve meaningful performance on the umaze dataset, and generally fail on other
datasets. However, after applying PES, they can both learn a useful policy on challenging datasets
such as umaze-diverse and medium-diverse. Notably, PES achieves a significant perfor-
mance improvement for AWAC and TD3-BC in Antmaze tasks by 76.4% (97.3→171.7) and 294%
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Figure 4: Left: Normalized difference comparison for TD3-BC and TD3-BC-PES on D4RL
datasets. We abbreviate “Halfcheetah” as “HC”, “Hopper” as “H”, “Walker2d” as “W”. Middle:
Normalized difference comparison for CQL and CQL-PES on D4RL datasets. Right: Kendall’s τ
coefficient comparison for TD3-BC and CQL w/ and w/o PES on D4RL tasks.

(17.4→68.6), respectively. Full learning curves of these algorithms are presented in Appendix H.2.
We defer the full comparison results with standard deviations to Appendix H.7.

4.3 ENHANCEMENT OF Q-VALUE ESTIMATE

PES alleviates distribution shift by selecting online samples similar to those in the priority queue for
fine-tuning, thereby yielding a more accurate Q-value estimate. In this section, we aim to empirically
verify that PES can mitigate distribution shift and enhance the Q-value estimate.

Evaluation Metrics. Similar to (Zhang et al., 2023c), we choose the following metrics to evaluate
the accuracy of the Q-value estimate: (i) Normalized Difference of Q-value: A widely used met-
ric (Zhang et al., 2023c; Fujimoto & Gu, 2021; Chen et al., 2021; Lyu et al., 2024; Feng et al., 2024)
for measuring the difference between the estimated Q-value and the true Q-value. It is computed as:
Qestimated−Qtrue

Qtrue , where Qestimated is the Q-value output by the Q-network and Qtrue is computed by
Monte Carlo estimation (Sutton & Barto, 1999). A positive normalized difference indicates that Q-
value is overestimated, and vice versa. (ii) Kendall’s τ coefficient (Kendall, 1938) over Q-value:
A metric measuring the rank correlation between two sets of variables. Given n pairs of Qestimated

and Qtrue: {(Qestimated
i , Qtrue

i )}ni=1, Kendall τ coefficient is computed as: τ = nc−nd

n0
, where nc

is the number of concordant pairs, nd is the number of discordant pairs and n0 = n(n−1)
2 . τ being

closer to 1 indicates a greater positive correlation between Qestimated and Qtrue.

Experimental Setup. We choose TD3-BC and CQL as the base algorithms, and evaluate the two
metrics for TD3-BC, TD3-BC-PES, CQL and CQL-PES on 9 D4RL MuJoCo datasets. We calculate
the normalized difference and Kendall’s τ coefficient of Q-value after 1M steps of fine-tuning.

Experimental Results. We report the experimental results in Figure 4, where the left and middle
plots show the normalized difference of Q-value for TD3-BC and CQL on 9 datasets, respectively,
and the right figure displays the Kendall’s τ coefficient for each task and the average Kendall’s τ
coefficient. It is clear that after incorporating PES, the normalized Q-value difference is reduced, and
the Kendall’s τ coefficient has increased by a large margin. It reveals that with the sample selection
mechanism of PES, the distribution shift is alleviated and the Q-value estimate is more accurate.

4.4 ABLATION STUDY

In this section, we test whether varying some design choices of PES benefits or harms the perfor-
mance. We mainly examine two design choices here: Return-Prioritized Selection and
Priority Queue Update. For more ablation study results, we defer to Appendix H.4.

Return-Prioritized Selection. PES leverages a priority queue to select online samples similar to
high-return trajectories. We examine the significance of this return-prioritized sample selection
mechanism. In specific, we replace the priority queue with the evolving replay buffer, and select the
online samples by measuring their similarity with the samples in the buffer. We conduct extensive
experiments on D4RL datasets and show the results in Table 2. The results indicate that maintaining
a return-prioritized queue and using it to select online samples can incur a superior performance.
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Table 2: Performance comparison for IQL-PES
with a priority queue or a replay buffer on vari-
ous D4RL datasets.

Task Name Queue Buffer

half-m 68.8±3.3 65.2±2.9
hopper-m 100.0±1.1 92.6±1.7

walker2d-m 93.6±1.3 96.1±1.2
umaze-diverse 81.0±17.2 75.9±14.4

medium-diverse 88.4±5.6 80.6±3.2
large-diverse 66.8±6.1 63.9±8.1

Table 3: Performance comparison for IQL-PES
with different updating rules (dynamically up-
dating or fixed) on D4RL datasets.

Task Name Update Fixed

half-m 68.8±3.3 60.1±2.6
hopper-m 100.0±1.1 87.3±1.2

walker2d-m 93.6±1.3 86.1±2.6
umaze-diverse 81.0±17.2 84.5±11.4

medium-diverse 88.4±5.6 82.1±3.5
large-diverse 66.8±6.1 61.9±5.4

Priority Queue Update. We also examine the necessity of Step 5, i.e., always maintaining the
highest-return trajectories in the priority queue. As a comparison, we fix the priority queue after
initializing it as in Step 2. In this way, the priority queue only holds offline trajectories and ignores
high-return online trajectories. We conduct experiments on D4RL datasets and present the results in
Table 3. It is evident that keeping the priority queue fixed is an inferior choice, since it may incur
conservatism and a lack of exploration.

4.5 PARAMETER STUDY

In this section, we examine how sensitive PES is to the introduced hyperparameters. We choose IQL
as the base algorithm and conduct experiments on some Antmaze datasets. Due to space limit, we are
only able to report part of our results here, and full empirical results are deferred to Appendix H.3.
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Figure 5: Parameter study of the introduced hyperparameters N , α, k, η in PES. The solid lines
denote the average normalized scores and the shaded region captures the standard deviation.

Capacity of the queue N . N represents the number of trajectories maintained in the priority queue.
To check its influence, we conduct experiments by sweeping N across {1, 10, 100}. The results from
Figure 5(a) indicates that too small or too large N is not the best choice, which is understandable
since a small N may reject too many online samples and a large N may reject too few online
samples. Fortunately, we can find a trade-off with N = 10. We use N = 10 by default in PES.

Threshold coefficient α. α determines the threshold for sample selection and can influence the
agent’s exploration ability. Intuitively, PES admits more online samples in the later online stage
with a large α and vice versa. In Figure 5(b), we vary α across {0.1, 1, 10}, and it turns out that
α = 1 can be a good choice.
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Number of neighbors k. k decides how many samples in the priority queue are used for measuring
the deviation from the online sample. To see whether k influences the performance of PES, we vary
k across {1, 5, 10}, and the results in Figure 5(c) show that PES is robust to k.

Sampling coefficient η. η determines the proportion of samples drawn from the offline dataset D.
We vary η across {0.1, 0.5, 0.9}, and Figure 5(d) shows that too small or too large η will lead to
performance drop, and η = 0.5 can achieve a good trade-off.

5 RELATED WORK

Offline RL. Offline RL aims to learn a constrained optimal policy with access to a static dataset.
Due to the distribution shift and inability to explore (Ladosz et al., 2022; Amin et al., 2021; Liu
et al., 2021; Jin et al., 2020; Lambert et al., 2022), offline RL often exhibits severe extrapolation error
(Fujimoto et al., 2019). To address this issue, common strategies adopt importance sampling (Gelada
& Bellemare, 2019; Liu et al., 2019a; Nachum et al., 2019; Precup et al., 2001; Sutton et al., 2016),
policy constraints (Fakoor et al., 2021; Fujimoto & Gu, 2021; Ghasemipour et al., 2021; Kumar
et al., 2019; Wu et al., 2019), conservative value estimation (Kumar et al., 2020; Lyu et al., 2022b;
Kostrikov et al., 2021; Ma et al., 2021), uncertainty quantification (Bai et al., 2022; Wu et al., 2021;
Zanette et al., 2021), and learning without querying OOD actions (Kostrikov et al., 2022; Chen et al.,
2020; Wang et al., 2018; Xu et al., 2023). There are also some valuable attempts in model-based
offline RL (Kidambi et al., 2020; Yu et al., 2020; Lyu et al., 2022a; Zhang et al., 2023b).

Offline-to-Online RL. Several studies has explored how to benefit online learning with offline
data (Vecerik et al., 2017; Hester et al., 2018; Nair et al., 2018; Rajeswaran et al., 2017), which as-
sume the datasets contain near-optimal demonstrations. However, most offline datasets are sourced
from sub-optimal behavior policies and do not satisfy this assumption. A more practical manner
for bridging offline and online learning phase is Offline-to-Online (O2O) RL (Lee et al., 2022; Nair
et al., 2020; Wang et al., 2024; Guo et al., 2023; Lei et al., 2023), which pre-trains an offline policy
and then fine-tunes it in the real environment. O2O RL also exhibits an issue of distribution shift be-
tween offline datasets and online samples. Some efforts handle this issue by selecting near-on-policy
online samples (Lee et al., 2022), parameter transferring (Xie et al., 2021), policy expansion (Zhang
et al., 2023a), guided exploration (Campos et al., 2021; Uchendu et al., 2023), adjusting update fre-
quency (Zhang et al., 2023c; Feng et al., 2024), etc. There are also some researches that directly
fine-tune the offline pre-trained policy without introducing additional components (Kostrikov et al.,
2022; Lyu et al., 2022b; Tarasov et al., 2024a; Yang et al., 2024), but their fine-tuning performance is
often limited and some of them rely on a careful hyperparameter tuning. Our work is closest to (Lee
et al., 2022), but the difference lies in that PES selects online samples for fine-tuning by constructing
a priority queue while (Lee et al., 2022) selects offline samples by training a density ratio estimator.

Prioritized Experience Replay. Our work is also related to the prioritized experience replay in
RL, which prefers more essential samples in the replay buffer to benefit off-policy RL algorithms.
PER (Schaul et al., 2015) prioritizes samples with larger TD-error to accelerate training, and many
studies prioritize samples from different perspectives (Horgan et al., 2018; Saglam et al., 2023; Li
et al., 2021; Oh et al., 2021; Pan et al., 2022). There are also studies focusing on online RL with
offline demonstrations leveraging the idea of prioritized experience replay (Song et al., 2022; Vecerik
et al., 2017). Our work is different from these studies in that we focus on the offline-to-online setting
and we construct the priority queue for data filtering.

6 CONCLUSION

In this paper, we propose PES, a simple yet effective online experience selection method to handle
distribution shift for offline-to-online RL. PES maintains a priority queue containing top N highest-
return trajectories and only selects online samples close to those in the queue for online fine-tuning.
Our method is compatible with different algorithmic forms, and can incur more accurate Q-value es-
timate. One limitation of our work is the underlying heavy computational overhead for KNN search
in high-dimensional data spaces, such as image inputs, which may harm the training efficiency. One
possible solution can be using image encoders to map the original space to a hidden one, where we
conduct KNN search, and we leave that for future work.
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A MISSING PROOFS

In this section, we supply the missing proof for Theorem 3.1. We restate Theorem 3.1 below.

Theorem A.1. Let M be the true MDP, M̂t and M̂t+1 be the two empirical finite-horizon MDPs
between two consecutive steps t and t+ 1, then the performance discrepancy between their optimal
policy in the true MDP ηM (π⋆

M̂t
) and ηM (π⋆

M̂t+1
) can be bounded by:

∣∣∣ηM (π⋆
M̂t

)− ηM (π⋆
M̂t+1

)
∣∣∣ ≤ 2(rmax + γVmax)(1− γH)

1− γ
DTV

(
p
M̂t

, p
M̂t+1

)
+

rmax

1− γ

(
DTV (pM , p

M̂t
) +DTV (pM , p

M̂t+1
)
)
.

where DTV is the total variance distance, rmax and Vmax represent the maximum value of the
reward function and value function, and H is the maximum MDP horizon.

Proof.∣∣∣ηM (π⋆
M̂t

)− ηM (π⋆
M̂t+1

)
∣∣∣

=
∣∣∣(ηM (π⋆

M̂t
)− η

M̂t
(π⋆

M̂t
)
)
+
(
η
M̂t+1

(π⋆
M̂t+1

)− ηM (π⋆
M̂t+1

)
)
+
(
η
M̂t

(π⋆
M̂t

)− η
M̂t+1

(π⋆
M̂t+1

)
)∣∣∣

≤
∣∣∣ηM (π⋆

M̂t
)− η

M̂t
(π⋆

M̂t
)
∣∣∣︸ ︷︷ ︸

L1

+
∣∣∣ηM̂t+1

(π⋆
M̂t+1

)− ηM (π⋆
M̂t+1

)
∣∣∣︸ ︷︷ ︸

L2

+
∣∣∣ηM̂t

(π⋆
M̂t

)− η
M̂t+1

(π⋆
M̂t+1

)
∣∣∣︸ ︷︷ ︸

L3

For L1, we have:

L1 =
∣∣∣ηM (π⋆

M̂t
)− η

M̂t
(π⋆

M̂t
)
∣∣∣

=

∣∣∣∣∣Eπ⋆EPM

[ ∞∑
t=0

γtr(st, at)

]
− Eπ⋆EP

M̂t

[ ∞∑
t=0

γtr(st, at)

]∣∣∣∣∣
=

∣∣∣∣∣∑
t

∑
at

π(at|st)
(
pM (·|st, at)− p

M̂t
(·|st, at)

)
γtr(st, at)

∣∣∣∣∣
≤ rmax ·

∣∣∣∣∣∑
t

∑
at

π(at|st)
∣∣∣pM (·|st, at)− p

M̂t
(·|st, at)

∣∣∣ γt

∣∣∣∣∣
≤ rmax ·

∣∣∣∣∣∑
t

∑
at

π(at|st)DTV

(
pM (·|st, at), pM̂t

(·|st, at)
)
γt

∣∣∣∣∣
≤ rmax

1− γ
DTV (pM , p

M̂t
)

Similarly, we can get L2:

L2 ≤
rmax

1− γ
DTV (pM , p

M̂t+1
)

For L3, according to the definition of ηM (π), we have ηM (π) = V π
M,h=0(s) := Es∼ρM

[V π
M (s)]. To

get the performance bound, we can turn to calculate the value difference at horizon 0:∣∣∣V ⋆
M̂t,h=0

(s)− V ⋆
M̂t+1,h=0

∣∣∣ .
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We first consider the case at horizon h− 1:
V ⋆
M̂t,h−1

(s)− V ⋆
M̂t+1,h−1

(s)

= max
a∈A

{∑
s′∈S

p
M̂t

(s′|s, a)(r(s, a) + γV ⋆
M̂t,h

(s′))

}
−max

a∈A

{∑
s′∈S

p
M̂t+1

(s′|s, a)(r(s, a) + γV ⋆
M̂t+1,h

(s′))

}

= max
a∈A

{∑
s′∈S

p
M̂t+1

(s′|s, a)(r(s, a) + γV ⋆
M̂t+1,h

(s′))

}
+max

a∈A

{∑
s′∈S

(
p
M̂t

(s′|s, a)− p
M̂t+1

(s′|s, a)
)
r(s, a)

}

+max
a∈A

{
γ
∑
s′∈S

(
p
M̂t

(s′|s, a)V ⋆
M̂t,h

(s′)− p
M̂t+1

(s′|s, a)V ⋆
M̂t+1,h

(s′)
)}

−max
a∈A

{∑
s′∈S

p
M̂t+1

(s′|s, a)(r(s, a) + γV ⋆
M̂t+1,h

(s′))

}

= max
a∈A

{∑
s′∈S

(
p
M̂t

(s′|s, a)− p
M̂t+1

(s′|s, a)
)
r(s, a)

}

+max
a∈A

{
γ
∑
s′∈S

(
p
M̂t

(s′|s, a)V ⋆
M̂t,h

(s′)− p
M̂t+1

(s′|s, a)V ⋆
M̂t+1,h

(s′)
)}

≤ max
a∈A

{∑
s′∈S

∣∣∣pM̂t
(s′|s, a)− p

M̂t+1
(s′|s, a)

∣∣∣ rmax

}
+ γmax

a∈A

{
p
M̂t+1

(s′|s, a)
(
V ⋆
M̂t,h

− V ⋆
M̂t+1,h

)}
+ γmax

a∈A

{∑
s′∈S

∣∣∣pM̂t
(s′|s, a)− p

M̂t+1
(s′|s, a)

∣∣∣V ⋆
M̂t,h

(s′)

}
≤ 2DTV

(
p
M̂t

, p
M̂t+1

)
(rmax + γVmax) + γ

(
V ⋆
M̂t,h

(s)− V ⋆
M̂t+1,h

(s)
)

We denote
(
V ⋆
M̂t,h

− V ⋆
M̂t+1,h

)
as ah, 2DTV

(
p
M̂t

, p
M̂t+1

)
(rmax + γVmax) as C. Then we have:

ah−1 ≤ C + γah

⇒ ah−1 −
C

1− γ
≤ γ ·

(
ah −

C

1− γ

)
Then it is easy to have:

a0 −
C

1− γ
≤ γH

(
aH −

C

1− γ

)
According to the definition of value function VM , aH = V ⋆

M̂t,H
−V ⋆

M̂t+1,H
= 0− 0 = 0. So we can

get the upper bound:

η
M̂t

(π⋆
M̂t

)− η
M̂t+1

(π⋆
M̂t+1

) = V ⋆
M̂t,0

− V ⋆
M̂t+1,0

≤ (1− γH) ·
2DTV (pM̂t

, p
M̂t+1

)(rmax + γVmax)

1− γ

Similarly, to get the lower bound, we can replace M̂t with M̂t+1 and M̂t+1 with M̂t in the above
derivation procedure. Ultimately, we can have the performance bound:∣∣∣ηM̂t

(π⋆
M̂t

)− η
M̂t+1

(π⋆
M̂t+1

)
∣∣∣ ≤ 2(rmax + γVmax)(1− γH)

1− γ
DTV

(
p
M̂t

, p
M̂t+1

)
.

Then we can get the objective:∣∣∣ηM (π⋆
M̂t

)− ηM (π⋆
M̂t+1

)
∣∣∣ ≤ 2(rmax + γVmax)(1− γH)

1− γ
DTV

(
p
M̂t

, p
M̂t+1

)
+

rmax

1− γ

(
DTV (pM , p

M̂t
) +DTV (pM , p

M̂t+1
)
)
.
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That concludes the proof.

B THEORETICAL BACKUP FOR PES

In this part, we give some theoretical backups for PES’s ability to select high-quality samples. We
have the static offline dataset D, the online buffer Donline, and the priority queue Q in PES. We
assume that the behavior policy in D gives µ, the behavior policy in Donline is µb, and the behavior
policy in Q is µq .

Firstly, we define the Lipschitz function as follows:

Definition B.1 (Lipschitz function). A function f : Rm → Rn is called a Lipschitz function if there
exists a constant K ≥ 0 such that:

∥f(x)− f(y)∥ ≤ K∥x− y∥ (4)

for any x, y ∈ Rm. ∥ · ∥ represents the norm, and K is called Lipschitz constant.

We assume that the reward signals, as well as the state space and action space, are bounded. To be
specific, we have the following assumption:

Assumption B.1. The rewards are bounded, i.e., |r(s, a)| ≤ rmax,∀ s, a. Furthermore, the state
space and the action space are also bounded, i.e., ∥s∥2 ≤ Cs <∞, ∥a∥2 ≤ Ca <∞,∀ s ∈ S, a ∈
A, where Cs, Ca are constants.

The above assumption can be usually satisfied in practice, because it is less likely that we encounter
boundless states or actions. The reward function is often manually written and is usually bounded.
Given the above assumption, it is not difficult to derive that the Q function satisfies: |Q(s, a)| ≤
rmax

1−γ , i.e., the Q function is also bounded.

Denote the learned current policy as π and the corresponding Q function as Q(s, a). We then further
make the following assumptions about the behavior policy in the priority queue, µq , and Q(s, a).

Assumption B.2. The behavior policy in the priority queueQ, µq , is deterministic and satisfies the
Lipschitz condition with a Lipschitz constant Kµ, i.e.,

∥µq(·|s1)− µq(·|s2)∥ ≤ Kµ∥s1 − s2∥ (5)

for all s1, s2 ∈ S.

Assumption B.3. The Q-function Q(s, a) is a Lipschitz function with KQ the Lipschitz constant,
i.e.,

∥Q(s1, a1)−Q(s2, a2)∥ ≤ KQ∥s1 ⊕ a1 − s2 ⊕ a2∥ (6)

for all (s1, a1), (s2, a2) ∈ S ×A.

The Lipschitz assumptions are popular and have been used in many previous RL papers (Asadi
et al., 2018; Ran et al., 2023). The assumption on the Q function is valid since it is bounded, and
this assumption can be satisfied by properly choosing KQ.

For any given online sample (s, a), we follow PES and query its k-nearest neighbors in the priority
queue Q, and measure the distance d. We denote the nearest neighbors as {(ŝ1, â1), . . . , (ŝk, âk)}.
If the sample resembles the samples inQ, it is guaranteed that d(s, a) ≤ ϵ in PES. We then have the
following lemma.

Lemma B.1. If the online sample (s, a) can be admitted into the online buffer, i.e., it satisfies that
its measured distance d(s, a) ≤ ϵ. We suppose that (s, a)i,Q = (ŝi, âi) are nearest neighbors of the
query sample, where i ∈ {1, . . . , k}. Then, we have

d̂(s, a) := ∥(s⊕ a)− (ŝ1 ⊕ â1)∥ ≤
1

k

k∑
i=1

∥(s⊕ a)− (s⊕ a)i,Q∥ = d(s, a) ≤ ϵ. (7)
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Proof. It is easy to find that

d(s, a) =
1

k

k∑
i=1

∥(s⊕ a)− (s⊕ a)i,Q∥

≥ 1

k

k∑
i=1

∥(s⊕ a)− (ŝ1 ⊕ â1)∥ = ∥(s⊕ a)− (ŝ1 ⊕ â1)∥ = d̂(s, a),

where the inequality is due to the fact that (ŝ1, â1) are the nearest neighbor of (s, a). Suppose
(ŝ2, â2) are the 2-th nearest neighbor, then we have ∥(s⊕ a)− (ŝ2⊕ â2)∥ ≥ ∥(s⊕ a)− (ŝ1⊕ â1)∥
(otherwise, (ŝ2, â2) would become the nearest neighbor). Extending the above conclusion to other
neighbors and we have the conclusion naturally. By using the fact that d(s, a) ≤ ϵ, we then also
have d̂(s, a) ≤ d(s, a) ≤ ϵ. That completes the proof.

We now theoretically investigate whether PES is able to select high-quality samples.
Proposition B.1. Suppose that Assumption B.2 and Assumption B.3 hold. For any online sample
(s, a), we denote its nearest neighbor in Q gives (ŝ1, â1), then by using PES we have

∥Q(s, a)−Q(s, µq)∥ ≤ KQ∥(s⊕ a)− (ŝ1 ⊕ â1)∥+ (1 +Kµ)KQ∥s− ŝ1∥, (8)

and furthermore,

(a) if (s, a) can be admitted, we have

Q(s, a) ≥ Q(s, µq)−KQ(2 +Kµ)ϵ. (9)

(b) if (s, a) is rejected, then we have

Q(s, a) ≥ Q(s, µq)− 2KQCa. (10)

Proof. By using Assumption B.3, we have

∥Q(s, a)−Q(s, µq)∥ ≤ KQ∥(s⊕ a)− (s⊕ µq)∥
≤ KQ∥(s⊕ a)− (ŝ1 ⊕ â1)∥+KQ∥(ŝ1 ⊕ â1)− (s⊕ µq)∥
≤ KQ∥(s⊕ a)− (ŝ1 ⊕ â1)∥+KQ (∥s− ŝ1∥+ ∥µq − â1∥)
≤ KQ∥(s⊕ a)− (ŝ1 ⊕ â1)∥+KQ (∥s− ŝ1∥+Kµ∥s− ŝ1∥)
= KQ∥(s⊕ a)− (ŝ1 ⊕ â1)∥+ (1 +Kµ)KQ∥s− ŝ1∥.

(a) If the sample (s, a) can be admitted, by using Lemma B.1, we have

d̂(s, a) = ∥(s⊕ a)− (ŝ1 ⊕ â1)∥ ≤ ϵ.

Meanwhile, we have
∥s− ŝ1∥ ≤ ∥(s⊕ a)− (ŝ1 ⊕ â1)∥ ≤ ϵ.

By combining these results, we have

Q(s, a) ≥ Q(s, µq)−KQ(2 +Kµ)ϵ. (11)

(b) If the sample (s, a) is rejected, then we have

∥Q(s, a)−Q(s, µq)∥ ≤ KQ∥(s⊕ a)− (s⊕µq)∥ = KQ∥a−µq∥ ≤ KQ(∥a∥+ ∥µq∥) = 2KQCa.

That completes the proof.

Remark: Proposition B.1 presents the Q-value deviation given the online sample (s, a) and the
behavior policy in the priority queue µq . If the online sample is accepted by the PES, then we find
that the expected return starting from (s, a) is lower bounded by KQ(2 +Kµ)ϵ. We can guarantee
that the selected sample can be at least as good as (s, µq(s)), i.e., at least as good as the behavior
policy inQ, as long as we choose a proper ϵ. Moreover, if the sample is rejected, we observe that the
lower bound involves KQCa, which is a constant and Ca can not be controlled. That being said, Ca

can be quite large. Then, it is hard to tell whether training upon (s, a) can incur a good performance,
and (s, a) can be a quite bad sample. Therefore, we conclude that PES can theoretically guarantee
that the admitted samples are of high quality.
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C PSEUDO-CODE FOR PES

We provide the full pseudo-code for PES in Algorithm 1 to demonstrate its process. Note that one
can choose the same or different RL algorithms for offline and online phases.

Algorithm 1 PES: Prioritized Experience Selection for Offline-to-Online RL

1: Require: Initial Q-network Qϕ, initial policy πθ, offline RL algorithm {LQϕ

offline, L
πθ

offline}, online
RL algorithm {LQϕ

online, L
πθ

online}, offline dataset D, online dataset Donline ← ∅, priority queue
Q ← ∅, total offline steps N , total online episodes E, online horizon H

2: for offline step in 1 to N do
3: ϕ← ϕ− λ∇ϕL

Q
offline(ϕ), θ ← θ − λ∇θL

π
offline(θ) ◁ Step 1

4: end for
5: Initialize priority queue Q using D ◁ Step 2
6: Obtain the minimum return Rmin among trajectories stored in Q
7: Calculate the selection threshold ϵ using Equation (3).
8: for epoch from 1 to E do
9: Sample an initial state s0 from state space

10: for h in 0 to H − 1 do
11: Take an action ah ∼ πθ(·|S), observe sh+1, rh+1

12: Calculate the k-nearest neighbor distance d(S, ah) using Equation (2)
13: if d(S, ah) < ϵ then
14: Add (S, ah, rh, sh+1) to Donline ◁ Step 3
15: end if
16: Sample a batch of transitions from D ∪Donline and optimize Qϕ and πθ

17: ϕ← ϕ− λ∇ϕL
Q
online(ϕ), θ ← θ − λ∇θL

π
online(θ) ◁ Step 4

18: end for
19: if

∑H−1
h=0 rh > Rmin then

20: Update priority queue Q and Rmin ◁ Step 5
21: end if
22: end for

D DATASETS AND EVALUATION METRIC ON D4RL BENCHMARK

In this part, we provide a detailed description on the datasets we use in this paper. The offline
datasets are taken directly from the D4RL (Fu et al., 2020) benchmark, which is a popular benchmark
designed for evaluating offline RL algorithms.

D.1 MUJOCO DATASETS

MuJoCo datasets are collected through interactions with continuous control tasks in Gym simu-
lated by MuJoCo (Todorov et al., 2012). The tasks we use are halfcheetah, hopper and
walker2d, as illustrated in Figure 6. For each task, we use the three types of datasets: (i) Ran-
dom: data collected with a random policy. (ii) Medium: 1M samples collected by an early-stopped
SAC policy. (iii) Medium-Replay: 1M samples from the replay buffer of the agent trained up to the
performance of a medium level agent. The dataset version we use in our work is “-v2”.

D.2 ANTMAZE DATASETS

In Antmaze tasks, an 8-DOF “Ant” quadraped robot is required to reach a goal loca-
tion. Antmaze tasks is more challenging than MuJoCo tasks for RL algorithms due to its
sparse reward setting. There are three maze layouts contained in Antmaze tasks: umaze,
medium, large, as shown in Figure 7. The datasets are collected in three flavors: (i)
the robot needs to reach a specified goal from a fixed start point (antmaze-umaze-v0).
(ii) the robot is required to reach a random goal from a random start point (the diverse
datasets). (iii) the robot is commanded to reach specific locations from a different set of
specific start locations (the play datasets). In our work, we use the six Antmaze datasets:
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Figure 6: D4RL MuJoCo tasks. Left: halfcheetah, Middle: hopper, Right: walker2d.

Figure 7: D4RL Antmaze tasks. Left: umaze, Middle: medium, Right: large.

antmaze-umaze, antmaze-umaze-diverse, antmaze-medium-diverse,
antmaze-medium-play, antmaze-large-diverse, antmaze-large-play.
The dataset version we use is “-v0”.

D.3 ADROIT DATASETS

In Adroit domain, there is a 24-DoF Shadow Hand robot required to perform several manipulation
tasks. Adroit domain is quite challenging for most RL algorithms due to its sparse reward setting
and insufficiency of expert demonstrations. In this work, we use the four tasks: pen, hammer,
door, relocate. Each task contains three types of datasets: (i) human: several demonstrations
operated by a human. (ii) expert: expert data from a fine-tuned RL policy. (iii) cloned: a 50-50
mixure of human demonstrations and rollout data from a cloned policy trained via imitation learning.
The dataset version we use is “-v0”.

D.4 EVALUATION METRIC

For MuJoCo, Antmaze and Adroit tasks, we use the Normalized Score (NS) suggested by D4RL
to evaluate the performance of RL algorithms. NS is computed as in Equation (12), where Jπ is
the performance of the policy for evaluation, Jrandom is the performance of a random policy, and
Jexpert is the performance of an expert policy.

Figure 8: D4RL Adroit tasks. From left to right, pen, hammer, door, relocate.
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NS =
Jπ − Jrandom

Jexpert − Jrandom
× 100. (12)

E IMPLEMENTATION DETAILS

In this part, we present the details of baseline implementations, PES implementations, and hyperpa-
rameter setup.

E.1 BASELINE IMPLEMENTATION

Our baselines include IQL (Kostrikov et al., 2022), CQL (Kumar et al., 2020), TD3-BC (Fujimoto &
Gu, 2021), AWAC (Nair et al., 2020), PEX (Zhang et al., 2023a), Cal-QL (Nakamoto et al., 2024),
Balanced Replay (Lee et al., 2022), JSRL (Uchendu et al., 2023), and O3F (Mark et al., 2022).
For the offline pre-training process and online fine-tuning process of IQL, CQL, AWAC and Cal-
QL, we use the code from CORL2 (Tarasov et al., 2024b), which provides reliable implementations
for different offline and offline-to-online RL algorithms. For TD3-BC, since CORL only provides
offline training code, we additionally implement our own online fine-tuning code. For PEX, we use
the official code3 to replicate the results in MuJoCo and Antmaze domain. For Balanced Replay,
we do not follow the official code4 that adopts the CQL-based pessimistic Q-ensemble technique.
Instead, we use IQL as the base algorithm. For JSRL, the core idea is to divide the full trajectory into
two parts, and utilize a guide-policy for the rollout of the first part of the trajectory, and a exploration-
policy for the rest part of the trajectory. We use the offline trained policy πoff as the guide-policy,
and current policy πθ as the exploration-policy, and use a linear scheduler that anneals from the max
trajectory length to 0 for decreasing the first part of rollout by πoff . For the implementation of O3F,
we add 10 random noise samples to each action and select the perturbed action with the highest
Q-value for execution, without the use of Q-ensemble. Regarding training steps of these baselines,
we set them uniformly to 1M gradient steps for offline pre-training, and 1M environmental steps for
online fine-tuning.

E.2 IMPLEMENTATION OF PES

We then provide the implementation details of PES. We implement PES upon baselines discussed
above. Our major modifications are (i) we construct a priority queue where the trajectories are
sorted based on their cumulative return. (ii) we select online samples based on their distances to
samples in the priority queue. We do not make any other change to the base algorithms. For the
implementation of (i), we utilize a three-dimensional array to store trajectory samples, with a shape
of (number of trajectories, trajectory length, sample dimension). To
implement prioritized selection, we use the numpy library, i.e., numpy.argsort() function for
sorting returns of the trajectories. For the implementation of (ii), we measure the k-nearest neighbor
distances of online samples against samples in the queue in state-action spaces. In specific, we
concatenate the state and action dimensions of samples in the queue and construct a KD Tree for
efficient k-nearest neighbor search. We use the implementation of KD tree from sklearn library,
i.e., sklearn.neighbors.KDTree. Note that we can directly get the distances when querying
KD Tree.

E.3 HYPERPARAMETER SETUP

In the main text, we conduct experiments on 9 MuJoCo datasets, 6 Antmaze datasets. We addition-
ally include experiments on 12 Adroit datasets, yielding a total of 27 datasets. Table 4, Table 5,
Table 6 present the detailed hyperparameter setup for baseline algorithms and PES on MuJoCo,
Antmaze, Adroit datasets, respectively. It is worth noting that we adopt one set of hyperparameters
for PES on a specific domain and keep them fixed across all runs.

2https://github.com/tinkoff-ai/CORL.git
3https://github.com/Haichao-Zhang/PEX.git
4https://github.com/shlee94/Off2OnRL.git
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Table 4: Hyperparameter setup for baseline algorithms and PES on D4RL MuJoCo datasets.
Hyperparameter Value

Shared Configurations Hidden layer (256,256)
Discounted factor 0.99
Batch size 256
Critic learning rate 3× 10−4

Actor learning rate 3× 10−4

Optimizer Adam (Kingma & Ba, 2014)
Activation function ReLU (Agarap, 2018)

IQL Value learning rate 3× 10−4

Inverse temperature β 3.0
Expectile τ 0.7

CQL Regularization coefficient α 10.0
Temperature 1.0

TD3-BC Policy noise 0.2
Delay frequency 2
Normalization weight 2.5

Cal-QL Regularization coefficient α 10.0
Temperature 1.0

AWAC Lagrange coefficient λ 1.0

PES Search vector s⊕ a
Distance measure Euclidean distance
Capacity of the queue N 10
Threshold coefficient α 1
Number of neighbors k 1
Sampling coefficient η 0.5
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Table 5: Hyperparameter setup for base methods and PES on D4RL Antmaze datasets. The shared
configuration is aligned with Table 4.

Hyperparameter Value

IQL Value learning rate 3× 10−4

Inverse temperature β 10.0
Expectile τ 0.9

CQL Regularization coefficient α 5.0
Temperature 1.0
Reward scale 10.0
Reward bias -5.0

TD3-BC Policy noise 0.2
Delay frequency 2
Normalization weight 2.5

Cal-QL Regularization coefficient α 10.0
Temperature 1.0
Reward scale 5.0
Reward bias -1.0

AWAC Lagrange coefficient λ 1.0

PES Search vector s⊕ a
Distance measure Euclidean distance
Capacity of the queue N 10
Threshold coefficient α 1
Number of neighbors k 1
Sampling coefficient η 0.5

Table 6: Hyperparameter setup for IQL, AWAC, and PES on D4RL Adroit datasets. The shared
configuration is aligned with Table 4.

Hyperparameter Value

IQL Value learning rate 3× 10−4

Inverse temperature β 3.0
Expectile τ 0.8

AWAC Lagrange coefficient λ 1.0

PES Search vector s⊕ a
Distance measure Euclidean distance
Capacity of the queue N 10
Threshold coefficient α 1
Number of neighbors k 1
Sampling coefficient η 0.5
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Table 7: Average fine-tuning time cost of base algorithms w/ and w/o PES on 9 D4RL MuJoCo
datasets (1M steps). “h” stands for “hour(s)” and “m” represents “minute(s)”.

IQL CQL TD3-BC

Base 5h 51m 13h 21m 6h 06m
+PES 6h 24m 14h 08m 6h 35m

F COMPUTE INFRASTRUCTURE

We list our hardware specifications as follows:

• GPU: NVIDIA RTX 4090 (×8)

• CPU: AMD EPYC 9554

We also list our software specifications as follows:

• Python: 3.8.18

• Pytorch: 1.12.1+cu113

• Numpy: 1.22.4

• Gym: 0.22.0

• MuJoCo: 2.0

• D4RL: 1.1

G FINE-TUNING TIME COST OF PES

We demonstrate the efficiency of PES by comparing the average online fine-tuning time cost of the
base algorithms including IQL, CQL, TD3-BC w/ and w/o PES on 9 D4RL MuJoCo datasets. The
result is presented in Table 7. We can see that after applying PES, the time cost of base algorithms
does not increase significantly, which indicates the computational efficiency of PES.

H MORE EXPERIMENTAL RESULTS

In this part, we provide more experimental results missing from the main text. In Section H.2, we
provide the learning curves for base algorithms w/ and w/o PES on MuJoCo and Antmaze datasets.
In Section H.3, we present the parameter study results of PES on wider D4RL datasets. In Sec-
tion H.4, we vary the design choice for PES, conducting extensive ablation studies on several D4RL
datasets. In Section H.5, we use IQL and AWAC as our base algorithms and conduct experiments on
challenging Adroit datasets. In Section H.6, we verify the effectiveness of PES to the heterogeneous
case where different RL algorithms are applied for offline and online phases. In Section H.7, we
provide the full experimental results in previous sections with standard deviations.

H.1 EVALUATION OF DATA DIVERSITY

To assess the impact of dynamically adjusting the selection threshold ϵ on data diversity, we perform
a comparative experiment on hopper-medium-v2 dataset. In the control group, we maintain the
threshold coefficient α at its default value of 1, allowing the threshold to be adjusted. Conversely,
for the experimental group, we set α to 0, thereby fixing the selection threshold ϵ throughout the
online phase. Figure 9 shows the data distribution within the replay buffer for both groups at the
end of the online phase, utilizing t-SNE for visualization. It is evident that the group with dynamic
threshold adjustment exhibits a more diversed data distribution, suggesting that such adjustments
during the online phase enhance data diversity by incorporating a broader range of data qualities.
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Figure 9: Data distribution comparison within the replay buffer between dynamic threshold and
fixed threshold experiment.

H.2 LEARNING CURVES

We provide the detailed learning curves missing from Section 4.2. Specifically, we supplement the
performance comparison between base algorithms (CQL, TD3-BC, Cal-QL, PEX, AWAC) w/ and
w/o PES on D4RL MuJoCo and Antmaze datasets. Figure 10, Figure 11, Figure 12, Figure 13,
Figure 14 show the experimental results of CQL, TD3-BC, Cal-QL, PEX, and AWAC, respectively.

0.0 0.5 1.0
Step 1e6

10

20

30

N
or

m
al

iz
ed

 S
co

re

halfcheetah-random

0.0 0.5 1.0
Step 1e6

50

60

halfcheetah-medium

0.0 0.5 1.0
Step 1e6

45

50

halfcheetah-medium-replay

0.0 0.5 1.0
Step 1e6

5

10

hopper-random

0.0 0.5 1.0
Step 1e6

60

80

hopper-medium

0.0 0.5 1.0
Step 1e6

97.5

100.0

102.5

N
or

m
al

iz
ed

 S
co

re

hopper-medium-replay

0.0 0.5 1.0
Step 1e6

0

5

10

walker2d-random

0.0 0.5 1.0
Step 1e6

85

90

walker2d-medium

0.0 0.5 1.0
Step 1e6

80

100
walker2d-medium-replay

0.0 0.5 1.0
Step 1e6

50

100
antmaze-umaze

0.0 0.5 1.0
Step 1e6

0

50

100

N
or

m
al

iz
ed

 S
co

re

antmaze-umaze-diverse

0.0 0.5 1.0
Step 1e6

50

75

antmaze-medium-play

0.0 0.5 1.0
Step 1e6

60

80

antmaze-medium-diverse

0.0 0.5 1.0
Step 1e6

25

50

75
antmaze-large-play

0.0 0.5 1.0
Step 1e6

40

60

antmaze-large-diverse

CQL-PES CQL

Figure 10: Normalized score comparison for CQL and CQL-PES on 15 datasets of D4RL bench-
mark. The solid line is the average return, and the shaded area is the 95% confidence interval. The
experiments are run with 5 random seeds.

H.3 WIDER PARAMETER STUDY

In this part, we include additional experimental results of hyperparameter sensitivity in terms of the
capacity of the queue N , threshold coefficient α, number of neighbors k, and sampling coefficient
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Figure 11: Normalized score comparison for TD3-BC and TD3-BC-PES on 15 datasets of D4RL
benchmark. The solid line is the average return, and the shaded area is the 95% confidence interval.
The experiments are run with 5 random seeds.
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Figure 12: Normalized score comparison for Cal-QL and Cal-QL-PES on 15 datasets of D4RL
benchmark. The solid line is the average return, and the shaded area is the 95% confidence interval.
The experiments are run with 5 random seeds.

η, which are missing from the main text due to the space limit. Note that we use IQL as the base
algorithm for PES, and the other hyperparameter setting is aligned with Section E.3.

Capacity of the queue N . N represents the number of trajectories maintained in the priority queue.
Too small N can impede the fine-tuning performance as most of the samples may get rejected,
while too large N may result in a decrease in trajectory quality (since numerous samples are ad-
mitted) and introduce more computational burden (since the search dataset becomes larger). In
the main text, we conduct experiments on Antmaze domain and find that N = 10 is a proper
value. We conduct additional two experiments on MuJoCo datasets, hopper-medium-v2 and
walker2d-medium-v2. We vary N across {1, 10, 100} and present the results in Figure 15(a).
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Figure 13: Normalized score comparison for PEX and PEX-PES on 15 datasets of D4RL bench-
mark. The solid line is the average return, and the shaded area is the 95% confidence interval. The
experiments are run with 5 random seeds.
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Figure 14: Normalized score comparison for AWAC and AWAC-PES on 15 datasets of D4RL bench-
mark. The solid line is the average return, and the shaded area is the 95% confidence interval. The
experiments are run with 5 random seeds.

The results show that a small N , i.e., N = 1 or a large N , i.e, N = 100, can not lead to a perfor-
mance improvement as significant as N = 10. Therefore, we simply set N = 10 in our experiments.

Threshold coefficient α. α controls the threshold of sample selection. A too small α can lead
to an overly strict sample selection, e.g., filtering out most of the samples, while a too large
α can render the sample selection ineffective, e.g., admitting too many online samples. We
vary α across {0.1, 1, 10} and conduct additional experiments on hopper-medium-v2 and
walker2d-medium-v2 datasets. The experimental results are presented in Figure 15(b). We
find that the impact of α depends on specific datasets. For walker2d-medium-v2, three dif-
ferent values of α do not introduce significant differences in final performance. However, we can
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Figure 15: Parameter study results of N , α, k, η on wider datasets.

observe that setting α = 1 can achieve good performance on these datasets. So we can simply set
α = 1.

Number of neighbors k. k is the hyperparameter introduced in k-nearest neighbor algorithms.
We observe PES is robust to the value of k in Section 4.5. To investigate whether this conclusion
holds for wider range of datasets, we conduct additional experiments on hopper-medium-v2
and walker2d-medium-v2 datasets, and the results in Figure 15(c) show that the value of k has
minor influence on the performance. We simple set k = 1 for all of our experiments.

Sampling coefficient η. η controls the proportion of offline and online samples used for fine-
tuning. A larger η implies using a greater proportion of offline samples. If η is too small, training
instability may occur due to distribution shift. If η is too large, the performance improvement may
be slow. We vary η across {0.1, 0.5, 0.9} and conduct experiments on hopper-medium-v2 and
walker2d-medium-v2 datasets. The experimental results are shown in Figure 5(d). We observe
that η = 0.5 can achieve relatively good performance, while too small or too large η both result in
decreased sample efficiency.

H.4 ABLATION STUDY

In the main text, we examine the significance of Return-Prioritized Selection and
Priority Queue Update. In this part, we mainly examine two other design choices in PES:
Search Vector and Distance Measure.

Search Vector. This determines the search space of k-nearest neighbor search for PES. For
the default setting in our experiments, we search in the state-action space, yielding the search
vector of (s ⊕ a). In addition to (s ⊕ a), one can also choose other search vectors, such
as (s ⊕ a ⊕ s′) and (s ⊕ s′). To examine whether different search vectors matter for PES,
we change the choice of search vector and conduct extensive experiments on several D4RL
datasets. We present the results in Table 8, and the results show that the impact of different
search vector seems to depend on specific datasets. Some datasets (e.g., hopper-medium-v2,
antmaze-umaze-diverse-v0) prefer the choice of (s⊕a), while it is better to use (s⊕a⊕s′)
as the search vector for tasks like halfcheetah-medium-v2, walker2d-medium-v2, and
antmaze-large-diverse-v0. However, considering both performance and computational
burden, we simply use (s⊕ a) for all the experiments.

Distance Measure. The default distance measure used in PES is Euclidean distance. One
can certainly utilize other common distance measures like Manhattan distance, Chebyshev
distance, etc. To examine the impact of different distance measures on PES, we replace the
default Euclidean distance with Manhattan distance and Chebyshev distance,
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Table 8: Performance comparison for IQL-PES with different search vectors on various D4RL
datasets. All the experiments are run with 5 random seeds, and the superior scores are in bold
and highlighted in green.

Task Name s⊕ a s⊕ s′ s⊕ a⊕ s′

halfcheetah-medium-v2 68.8±3.3 70.7±1.6 71.2±1.1
hopper-medium-v2 100.0±1.1 94.2±2.4 91.0±1.9

walker2d-medium-v2 93.6±1.3 84.1±2.9 95.7±0.3
antmaze-umaze-diverse-v0 81.0±17.2 74.3±19.4 77.4±14.2

antmaze-medium-diverse-v0 88.4±5.6 79.6±3.3 84.2±7.1
antmaze-large-diverse-v0 66.8±6.1 62.1±4.4 73.2±7.0

Table 9: Performance comparison for IQL-PES with different distance measures on various D4RL
datasets. All the experiments are run with 5 random seeds, and the superior scores are in bold and
highlighted in green.

Task Name Euclidean Manhattan Chebyshev

halfcheetah-medium-v2 68.8±3.3 60.4±4.0 67.0±2.7
hopper-medium-v2 100.0±1.1 98.4±2.3 92.1±1.6

walker2d-medium-v2 93.6±1.3 95.2±2.1 88.1±2.4
antmaze-umaze-diverse-v0 81.0±17.2 77.1±21.3 73.2±13.2

antmaze-medium-diverse-v0 88.4±5.6 84.3±3.1 91.3±4.9
antmaze-large-diverse-v0 66.8±6.1 61.2±7.7 64.3±4.5

which is easily done by changing the metric parameter of KDTree. We conduct extensive exper-
iments on D4RL datasets and the experimental results are presented in Table 9. It is observed that
the default Euclidean distance can bring good performance, therefore we use Euclidean
distance for our experiments.

H.5 EXPERIMENTAL RESULTS ON ADROIT DATASETS

In this part, we present missing experimental results for PES on D4RL Adroit datasets.

Experimental Setup. The base algorithms we use are IQL and AWAC. We evaluate the base algo-
rithms w/ and w/o combined with PES on all 12 D4RL Adroit datasets introduced in Section D.3.
The offline gradient steps and online environmental steps are both set to be 1M. The other hyperpa-
rameter setup is listed in Table 6.

Experimental Results. We present the experimental results in Figure 16 and Figure 17. Figure 16
depicts the performance comparison between IQL and IQL-PES, and Figure 17 illustrates the per-
formance comparison between AWAC and AWAC-PES. We can find that PES can benefit IQL and
AWAC on most of 12 Adroit datasets, clearly verifying the effectiveness and advantages of PES on
challenging Adroit datasets.

H.6 HETEROGENEOUS OFFLINE-TO-ONLINE EXPERIMENTS WITH PES

We have shown the effectiveness of PES to the case where offline and online algorithms are the
same in Section 4.1 and Section 4.2. In this part, we further investigate whether PES can benefit het-
erogeneous RL algorithms, i.e., different RL algorithms are used for offline and online phases. For
example, we can remove the behavior cloning term from TD3-BC or remove the conservatism term
from CQL during the online phase, giving rise to H-TD3-BC and H-CQL. Then, we can integrate
PES into H-TD3-BC and H-CQL to examine the effectiveness of PES to this heterogeneous case.

Experimental Setup. We use H-TD3-BC and H-CQL as the base algorithms and evaluate them w/
and w/o combined with PES on 9 D4RL MuJoCo datasets. We keep the original hyperparameters
unchanged and the only difference is the removal of the behavior cloning term and conservatism
term during the online phase.
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Figure 16: Normalized score comparison for IQL and IQL-PES on 12 D4RL Adroit datasets. The
solid line is the average return, and the shaded area is the 95% confidence interval. The experiments
are run with 5 random seeds.
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Figure 17: Normalized score comparison for AWAC and AWAC-PES on 12 D4RL Adroit datasets.
The solid line is the average return, and the shaded area is the 95% confidence interval. The experi-
ments are run with 5 random seeds.

Experimental Results. We present the experimental results in Figure 18 and Figure 19. We
can see that due to the heterogeneity of the algorithm form during online phase, the perfor-
mance of the original algorithm may collapse. This happens to both H-CQL and H-TD3-BC on
hopper-medium-v2 dataset. After incorporating PES, the performance collapse is mitigated,
and more significant performance improvements are observed in most of 9 MuJoCo datasets. This
indicates PES is also effective in case where different RL algorithms are employed in offline and
online stages.
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H.7 FULL EXPERIMENTAL RESULTS WITH STANDARD DEVIATION

In this part, we supplement the full experimental results with standard deviation from Section 4.1,
Section 4.2 and Section H.5. The results are presented in Table 10.
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Figure 18: Normalized score comparison for H-CQL and H-CQL-PES on 9 D4RL MuJoCo datasets.
The solid line is the average return, and the shaded area is the 95% confidence interval. The experi-
ments are run with 5 random seeds.
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Figure 19: Normalized score comparison for H-TD3-BC and H-TD3-BC-PES on 9 D4RL MuJoCo
datasets. The solid line is the average return, and the shaded area is the 95% confidence interval.
The experiments are run with 5 random seeds.
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