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Abstract

Continual learning for large language models (LLMs) demands a precise balance
between plasticity - the ability to absorb new tasks - and stability - the preservation
of previously learned knowledge. Conventional rehearsal methods, which replay
stored examples, are limited by long-term data inaccessibility; earlier pseudo-
rehearsal methods require additional generation modules, while self-synthesis
approaches often generate samples that poorly align with real tasks, suffer from
unstable outputs, and ignore task relationships. We present Self-Evolving Pseudo-
Rehearsal for Catastrophic Forgetting with Task Similarity (SERS), a lightweight
framework that 1) decouples pseudo-input synthesis from label creation, using
semantic masking and template guidance to produce diverse, task-relevant prompts
without extra modules; 2) applies label self-evolution, blending base-model pri-
ors with fine-tuned outputs to prevent over-specialization; and 3) introduces a
dynamic regularizer driven by the Wasserstein distance between task distributions,
automatically relaxing or strengthening constraints in proportion to task similarity.
Experiments across diverse tasks on different LLMs show that our SERS reduces
forgetting by over 2% points against strong pseudo-rehearsal baselines, by ensuring
efficient data utilization and wisely transferring knowledge. The code will be
released at https://github.com/JerryWangJun/LLM_CL_SERS/.

1 Introduction

Enabling large language models (LLMs) to acquire new knowledge continuously (Wu et al., 2024;
Zheng et al., 2025b) holds significant importance for developing artificial intelligence systems with
lifelong learning abilities. While practical applications demand LLMs continually adapt to evolving
downstream tasks, conventional learning methods (Hu et al., 2022; Han et al., 2024) often struggle to
preserve existing capabilities during such situations. Continual learning enables LLMs to flexibly
integrate new and existing knowledge as tasks increase, addressing the limitations of static training
in preserving prior performance while incorporating new information. The core challenge lies in
achieving an optimal balance between plasticity and stability (Mermillod et al., 2013). Excessive
plasticity will result in catastrophic forgetting, whereas overly strong stability may prevent efficient
and effective knowledge transfer.

∗Equal contribution
†Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/JerryWangJun/LLM_CL_SERS/


60 40 20 0 20 40 60
60

40

20

0

20

40

60 Real Samples
Self-Synthesis
Our Method

QA
QG
SA
SUM
TRANS

Figure 1: Clustering analysis of pseudo samples generated by our method (SERS) and Self-
Synthesized Rehearsal (SSR) approaches across five tasks, alongside real samples. It can be observed
that the pseudo samples generated by our method are closer to the real samples than SSR, indicating
that SERS produces more similar pseudo samples that better reflect knowledge from previous tasks.

A series of works (Zhao et al., 2024; Zheng et al., 2025a; Wang et al., 2024a; Sun and Gao, 2024)
have been proposed to mitigate this balancing challenge. Rehearsal-based methods (Yin et al., 2022;
de Masson D’Autume et al., 2019; Rolnick et al., 2019) preserve model capabilities on previous tasks
by utilizing real samples from prior training processes, which are not always consistently available in
practice. To tackle the challenge of limited access to get historical data, existing solutions (Sun et al.,
2020; Zhao et al., 2024) apply pseudo-sample generation, yet the additional generation modules
increase the number of trainable parameters. Huang et al. (2024) leverage in-context learning capacity
of LLMs for self-synthesis rehearsal, effectively alleviating parameter burdens. We unexpectedly
found that self-synthesized samples often exhibit low similarity to real data, failing to adequately
reflect the knowledge structure and thus undermining the effectiveness of rehearsals, as shown
by the clustering analysis in Figure 1. Regularization-based approaches (Guo et al., 2024; Wang
et al., 2023) impose constraints on loss functions to penalize parameter updates that affect prior
task knowledge. However, traditional static constraint methods, with their fixed trade-off between
facilitating knowledge transfer and preventing forgetting, lack consideration for task diversity.

To generate pseudo samples that better support knowledge consolidation during rehearsal, while
flexibly balancing knowledge transfer and forgetting prevention across tasks, we propose Self-
Evolving Pseudo-Rehearsal with Task Similarity (SERS). Specifically, we generate pseudo inputs
using template guidance and semantic masking, eliminating task-specific instructions, where dynamic
guidance and mask ratios ensure the diversity. After generating the pseudo inputs, to supplement
pseudo labels, over-specialized samples are selected via label self-questioning and ease the demand
for task-specific knowledge through label self-evolution. In the rehearsal stage, to fully promote
permissible knowledge transfer, we design a regularization loss function based on task similarity.
When tasks are similar, the regularization is relaxed to encourage the integration of new and old
knowledge; otherwise, constraints are strengthened to alleviate the forgetting of previous knowledge.

We conducted extensive experiments on the SuperNI dataset (Wang et al., 2022) using
LLaMA2-7B (Touvron et al., 2023) and ChatGLM-6B (GLM et al., 2024) to evaluate the per-
formance of SERS across varying task chains. Results show that SERS consistently outperforms
existing methods and is more stable across a variety of task orders. On LLaMA2-7B, it achieved a
2.16% relative improvement over advanced pseudo-sample rehearsal approaches, closely matching
Multi-Task Learning (MTL) performance; on ChatGLM-6B, it even surpassed MTL.

The main contributions of our work are as follows:

• We propose SERS, a continual learning framework for LLMs that decouples input and label
synthesis. SERS generates pseudo inputs via template guidance and semantic masking and uses a
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label self-evolution module to prevent over-specialization in pseudo labels, brings human learning
strategies into machine learning.

• We introduce a task similarity-based dynamic regularization to effectively balance stability and
plasticity, reducing the sensitivity of knowledge transfer to task order.

• Experiments show that SERS significantly improves learning accuracy under task-incremental
conditions, alleviates catastrophic forgetting, and even facilitates additional knowledge transfer.

2 Related Work

2.1 Self-Evolution Learning

Self-evolution (Zhong et al., 2022; Peng et al., 2023; Zhong et al., 2023; Zheng et al., 2023; Tao
et al., 2024; Song et al., 2025) is a paradigm that enables models to learn and improve through
self-generated knowledge, inspired by human learning from experience. In this process, LLMs create
new tasks and solutions based on predefined goals, collect feedback from the environment, refine the
acquired experience to eliminate errors, and update their parameters or context accordingly.

Zhong et al. (2022) improve pretraining efficiency through a two-stage process of self-questioning and
self-evolution. In the first stage, the model uses masking to detect tokens it struggles to understand;
in the second, it generates soft labels with richer knowledge patterns to enhance training. Similarly,
Singh et al. (2023) apply reinforcement learning to actively generate new samples, evaluate them
using a binary reward function, and select high-quality data for model updates.

Motivated by these strategies and aiming to address the instability of pseudo-sample generation
in LLMs, we propose a label-level self-evolution method. By imitating self-questioning and
self-evolution structure, our approach detects over-specialized pseudo labels and smooths them
with general knowledge, mitigating the local overfitting to a specific task caused by rehearsal.

2.2 Continual Instruction Tuning for LLMs

Continual instruction tuning for LLMs extends traditional LLMs tuning by enabling LLMs to
incrementally absorb new tasks and feedback without forgetting prior knowledge. Compared to
standard continual learning, it introduces unique challenges due to generative outputs, global semantic
relationships, and model scale. Existing methods can be broadly categorized into:

(1) Architecture-based (Ren et al., 2024; Zhao et al., 2024; Ke et al., 2023): These methods adjust
model architecture or parameter distribution to separate the knowledge of new and old tasks, thus
mitigating forgetting caused by parameter interference. For example, Ren et al. (2024) use fast and
slow learners to balance stability and plasticity. Zhao et al. (2024) introduce an Attentive Learning &
Selection module by combining multiple PET blocks in different ways to fit different tasks. However,
as task numbers increase, adding new modules raises computational costs, and separate architecture
adjustments limit flexibility and universality.

(2) Rehearsal-based methods (Wang et al., 2024b; Huang et al., 2024; Maekawa et al., 2023): These
methods involve real or pseudo-sample rehearsal. Real sample rehearsal, as in Wang et al. (2024b),
helps recall past knowledge but relies on access to original data during each training stage, which
is often impractical. Pseudo-sample rehearsal typically necessitates an extra generation module,
increasing trainable parameters. To our knowledge, Huang et al. (2024) are the first to use self-
synthesis to generate pseudo samples from a few real samples, solving storage issues, but still facing
challenges with pseudo samples instability and task comprehension.

(3) Regularization-based methods (Wang et al., 2023; Jin et al., 2021; Li et al., 2024; Guo et al.,
2024): These methods constrain excessive parameter updates with regularization. For example, Wang
et al. (2023) learn tasks in different low-rank vector subspaces and keep these subspaces orthogonal
to minimize interference. However, orthogonal subspaces limit the knowledge transfer between tasks.

Our method combines pseudo-sample rehearsal and regularization. For pseudo-sample generation,
we leverage template guidance and semantic masking to ensure the stability and real-sample similarity
of synthesized pseudo samples, while varying templates and masking ratios promote diversity. For
regularization, we dynamically adjust the regularization strength based on task similarity and account
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Figure 2: The overall framework of our SERS method. In the Semantic-Guided Pseudo-Input
Generation stage, a small set of real samples produces pseudo inputs Xi

p. Then, the Label Self-
Evolution module refines these inputs by integrating knowledge from LLM0 and LLM i, yielding
rehearsal pseudo samples Di

p(X
i
p, Y

i
p ). Finally, in the Rehearsal with Similarity Regularization

stage, the rehearsal samples and the new training data Di+1 are combined for fine-tuning, with
regularization applied based on task similarity.

for the impact of task order on parameter updates, effectively balancing knowledge transfer and
resistance to catastrophic forgetting.

3 Methodology

3.1 Problem Definition

We consider the problem of Task-Incremental Continual Instruction Tuning. Given a sequence of N
instruction-following tasks T1, T2, . . . , TN , each associated with a dataset Di = (Xi, Y i), the goal is
to continually fine-tune a pre-trained language model LLM0 on these tasks in sequence. At each step
i, the model receives only the current task dataset Di and fine-tunes the model LLM i−1 to obtain
LLM i. The objective is to learn each new task while maintaining performance on all previous tasks,
without requiring large-scale retraining.

3.2 Framework Overview

In this paper, we propose a continual learning framework for LLMs that combines pseudo-sample
rehearsal with regularization. As shown in Figure 2, our approach consists of three main compo-
nents: semantic-guided pseudo-input generation, label self-evolution, and rehearsal with similarity
regularization. In the following sections, we provide a detailed explanation of each module.

3.3 Semantic-Guided Pseudo-Input Generation

The self-synthesis approach proposed by Huang et al. (2024) effectively addresses the limitations
discussed above, but still faces key challenges: the generated pseudo samples cannot well reflect the
original knowledge structure and thus provide limited support for rehearsal. Additionally, appending
task instructions and labels increases the model’s comprehension burden, while the generated labels
lose meaning after further refinement. To address these problems, we propose a Semantic-Guided
Pseudo-Input Generation module. As shown in Figure 3, real examples are masked in two roles:
as Example Template that providing structure guidance, and as Semantic Guidance that offering
semantic context. Experiments in Wang et al. (2024c) indicate that models not fine-tuned on a specific
task have stronger contextual understanding, so that we use LLM0 to fill in the masks to get pseudo
inputs Xi

p without extra generating block. Varying mask ratios and example templates enhance
diversity, while removing task instructions and labels reduces cognitive load. Figure 1 shows the
clustering of pseudo samples from our method, the self-synthesis approach, and real data. Our pseudo
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Figure 3: Detailed illustration of the core modules. (a) Semantic-Guided Pseudo-Input Generation:
A real sample and its masked version serve as an example template, while an additional masked
sample provides semantic guidance. These are combined and passed through LLM0 to generate
pseudo inputs. Varying combinations and mask ratios promote diversity. (b) Label Self-Evolution:
(Top) In self-questioning stage, the top-k% pseudo inputs with high domain dependence are identified
as over-specialized samples. In self-evolution stage, these are relabeled by blending knowledge from
LLM0 and LLM i; others directly use the output of LLM i as labels. (Bottom) An example shows
that an over-specialized input leads to poor output from LLM0 and an overly detailed output from
LLM i. After label self-evolution, the final label becomes more acceptable, with reduced reliance on
domain-specific knowledge.

samples are more similar to real ones, preserving knowledge structure while maintaining diversity.
Examples in real-task settings are shown in Appendix A.

3.4 Label Self-Evolution

Considering that randomness in pseudo-input generation can lead to over-specialized instances
requiring excessive expertise, rehearsing with such samples may cause large parameter shifts and
disrupt existing knowledge. We therefore introduce a label self-evolution method inspired by human
review. As shown at the top of Figure 3, the process consists of two stages: self-questioning and
self-evolution. In self-questioning, both the base model LLM0 and fine-tuned model LLM i generate
labels. Samples with the top-k% output differences are treated as over-specialized. In the self-
evolution stage, regular samples adopt LLM i’s outputs as labels, while over-specialized samples are
relabeled by integrating the outputs from both models using a weighted combination. The coefficient
α adjusts the contributions of LLM0 and LLM i to balance general and task-specific knowledge.
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As shown in the lower part of Figure 3, over-specialized inputs produce vague outputs on LLM0 and
highly specific ones on LLM i. The label self-evolution module merges these to produce acceptable
labels, mitigating overfitting during rehearsal. Examples in Figure 8 illustrate the effectiveness and
reliability of this process on real tasks.

3.5 Rehearsal with Similarity Regularization

This section explores how task similarity, reflected through task order, influences training results.
After generating pseudo samples avoiding over-specialization, pseudo samples are used for rehearsal
training. At the training stage of T i+1, the model is updated using pseudo samples of old tasks
D1...i−1

p , Di
p and new task training data Di+1. Previous works (Huang et al., 2024; Zhao et al., 2024)

fine-tune using LoRA (Hu et al., 2022) without adapting to task characteristics, making the results
highly sensitive to task order. Since the model already contains knowledge from earlier tasks, similar
new tasks should allow more knowledge transfer, whereas dissimilar ones require stronger constraints
to maintain prior knowledge. To achieve this, we design a regularization loss based on task similarity,
which is incorporated into the original cross-entropy loss to adjust LoRA fine-tuning:

L = Lce + λ · Lreg, (1)

where Lce is the standard cross-entropy loss, λ controls regularization strength, and Lreg is the
regularization term, balancing knowledge sharing and parameter stability. Specifically, we impose
the regularization constraint on all training target parameters during optimization, as formulated in
Equation 2:

Lreg =
1

2

∑
i

E
[
∥θi∥2

]
. (2)

We modulate regularization strength λ based on task similarity W and rehearsal ratio rreplay . When
rreplay is low or W is large, indicating limited rehearsal or low task similarity, stronger constraints
are applied to stabilize knowledge retention. In contrast, higher rreplay or smaller W suggests task
alignment, allowing more relaxed regularization to facilitate knowledge transfer. This dynamic
adjustment enables SERS to maintain a balance between stability and plasticity, supporting more
robust continual learning. Accordingly, λ is formally defined in Equation 3:

λ = [λmin +
(
λmax − λmin

)(
1− e

− W
Wth

)
] ∗

(
1− rreplay

)
, (3)

where λmin and λmax control the range of regularization strength, and Wth adjusts the curvature of
the scaling function. The Wasserstein Distance (Chen et al., 2022; Liu et al., 2025), a representative
of the optimal transport framework (Alvarez-Melis and Fusi, 2020), provides a metric for assessing
the similarity between the distributions of two datasets, which is defined as in Equation 4:

W (P,Q) = inf
γ∈Π(P,Q)

E(X,Y )∼γ [∥X − Y ∥] . (4)

4 Experiment

4.1 Dataset and Metrics

Our experiments are conducted on the SuperNI (Wang et al., 2022) dataset, a large and comprehensive
benchmark for instruction tuning. For fair comparison, we adopt the same ten tasks as Huang et al.
(2024), divided into two groups: one with five tasks and the other with ten. Each group is evaluated
under three different task orders. Experiments were carried out on LLaMA2-7B(Touvron et al., 2023)
and ChatGLM-6B(GLM et al., 2024). For more details about the dataset, please refer to Appendix C.

We adopt the Rouge-L score (Lin, 2004) to assess generation quality, where Ri
j denotes the model’s

performance on task j at stage i. To evaluate overall performance, knowledge transfer ability, and
retention of prior knowledge, the following commonly used continual learning metrics are selected:

(1) Average Rouge-L (AR). After training on the final task, the average performance across all
tasks is computed as shown in Equation 5:

AR =
1

N

N∑
i=1

RN
i . (5)
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Table 1: Results on LLaMA2-7B and ChatGLM-6B under different task orders and settings.

Model Order 1 Order 2 Order 3 Avg.

AR ↑ BWT ↑ AR ↑ BWT ↑ AR ↑ BWT ↑ AR ↑ BWT ↑
LLaMA2-7B 5Tasks

MTL 53.07 – 53.07 – 53.07 – 53.07 –
KMeansSel(1%) 49.73 -5.22 50.14 -4.17 50.12 -3.61 50.00 -4.33
L2 28.62 -28.99 29.22 -28.45 28.33 -30.71 28.72 -29.38
SAPT 50.47 -3.75 51.04 -2.98 50.22 -4.37 50.58 -3.70
SSR 51.33 -1.97 52.41 -1.18 52.02 -1.01 51.92 -1.39
SERS 52.90 -0.55 53.01 -0.27 52.84 -0.63 52.92 -0.48

ChatGLM-6B 5Tasks

MTL 48.92 – 48.92 – 48.92 – 48.92 –
KMeansSel(1%) 43.72 -5.64 43.74 -5.07 45.13 -4.37 44.19 -5.02
L2 25.19 -35.32 26.46 -32.47 26.18 -34.92 25.94 -34.24
SAPT 49.01 -1.54 48.65 -2.11 49.23 -1.89 48.96 -1.84
SSR 48.95 -2.12 49.02 -1.94 49.38 -0.51 49.11 -1.52
SERS 49.97 -0.89 49.86 -1.17 50.04 -0.48 49.98 -0.85

LLaMA2-7B 10Tasks

MTL 64.72 – 64.72 – 64.72 – 64.72 –
KMeansSel(1%) 59.13 -5.88 60.71 -5.39 60.44 -7.17 60.09 -6.15
L2 33.13 -28.99 34.71 -25.12 37.02 -22.71 34.95 -25.42
SAPT 62.51 -2.06 61.90 -2.81 62.29 -2.30 62.23 -2.39
SSR 62.29 -1.84 62.64 -1.86 62.36 -3.95 62.43 -2.55
SERS 63.42 -1.72 63.45 -1.11 64.46 -2.27 63.78 -1.7

ChatGLM-6B 10Tasks

MTL 62.04 – 62.04 – 62.04 – 62.04 –
KMeansSel(1%) 60.84 -5.41 61.24 -4.77 61.04 -5.27 61.04 -5.15
L2 40.18 -29.71 41.37 -28.66 41.99 -26.12 41.18 -28.16
SAPT 61.30 -3.44 61.56 -2.73 60.87 -2.92 61.24 -3.03
SSR 62.68 -1.79 62.27 -2.42 61.80 -1.56 62.25 -1.92
SERS 63.30 -1.17 63.22 -1.52 63.16 -1.49 63.23 -1.39

(2) Backward Transfer (BWT). BWT measures the degree to which the learning of subsequent
tasks affects the performance of the learned tasks, which is defined as:

BWT =
1

N − 1

N−1∑
i=1

(RN
i −Ri

i). (6)

4.2 Experiment Details

All experiments were conducted on a single A100 GPU. For pseudo-sample generation, 1% of
real samples are used to create pseudo samples equivalent to 10% of the training data. In the self-
questioning stage, we set k = 20, α = 0.5 for LLaMA2-7B, and k = 10, α = 0.6 for ChatGLM-6B
to control the selection and evolution of over-specialized samples. LoRA is used for fine-tuning, and
Wasserstein distance based on model embeddings guides the regularization process.

4.3 Experiment Results

We compare our SERS method with several representative baselines, including the classic rehearsal-
based KMeansSel, which selects real samples via KMeans clustering; the advanced pesudo-sample
rehearsal approach SSR (Huang et al., 2024), which leverages self-synthesis to generate pseudo
samples for rehearsal; advanced structure-based method SAPT (Zhao et al., 2024), which employs
a Shared Attentive Learning & Selection module to align the PET learning and selection; and the
regularization-based L2 method. A multi-task learning (MTL) baseline, which jointly trains all tasks
without considering forgetting, is also included for reference. As shown in Table 1, SERS consistently
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Table 2: The ablation studies on each proposed module. SGG refers to our Semantic-Guided Pseudo-
Input Generation. LSE denotes Label Self-Evolution strategy. SR represents Similarity Regularization.
A “✓“ indicates that our module is applied, while a“–“ denotes the use of a corresponding strategy
from existing advanced pseudo-rehearsal approaches.

Ablation Setting LLaMA-7B AR (%) ↑ ChatGLM-6B AR (%) ↑

SGG LSE SR Order 1 Order 2 Order 3 Order 1 Orde r2 Order 3

– – – 51.33 52.41 52.02 48.95 49.02 49.38
✓ – – 52.37 52.63 52.54 49.87 49.58 49.35
– ✓ – 51.99 52.83 52.33 49.25 49.40 49.02
– – ✓ 52.40 52.42 52.61 49.68 49.62 49.50
✓ ✓ – 52.47 52.78 52.71 49.78 49.33 49.80
– ✓ ✓ 52.56 52.92 52.73 49.08 49.43 49.21
✓ – ✓ 52.59 52.95 52.56 49.70 49.80 49.62
✓ ✓ ✓ 52.90 53.01 52.84 49.97 49.86 50.04
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Figure 4: Ablation results detailing the performance variations of the LLaMA2-7B model across a
5tasks sequence under Order 1 (TRANS → SA → QA → SUM → QG). More details of ablation
results are shown in Figure 9

outperforms these baselines and maintains stable performance across task orders, demonstrating
the effectiveness of similarity regularization. On LLaMA2-7B, it achieves results close to MTL,
surpassing the next best method by 2.16% and exhibiting significantly lower BWT. Notably, in
ChatGLM-6B, where MTL suffers from task confusion due to global attention and 2D positional
encoding, SERS surpasses MTL by incrementally refining decision boundaries through rehearsal
with staged updates.

5 Ablation and Comparison Experiments

5.1 Module Ablation

In this section, we carry out ablation studies to verify the effectiveness of each module. All experi-
ments are on 5tasks, and we measure performance with the AR metric. The results appear in Table 2,
and detailed ablation results are provided in Figure 4. SERS introduces three core improvements:
Semantic-Guided Generation, Label Self-Evolution, and Similarity Regularization. We evaluate
the effectiveness of these components with different configuration settings. For settings that do not
include the SERS modules, we adopt corresponding strategies from Huang et al. (2024), where pseudo
samples are generated via in-context learning, pseudo labels are directly refined on the task-specific
model, and no regularization method is applied. The settings with semantic-guided generation
achieve higher overall performance compared to those using existing advanced method to generate
pseudo samples. The curves with task similarity are more likely to exhibit task-level performance
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improvement during training, and those incorporating label self-evolution tend to perform better on
new tasks, demonstrating the effectiveness of our proposed improvements.

5.2 Data Utilization Efficiency

In our experiments, we first employed 1% of real samples to synthesize 10% pseudo samples,
achieving strong performance with efficient data utilization. We then extended the analysis by
generating different amounts of pseudo samples for rehearsal using various proportions of real data
(1%, 0.75%, 0.5%, and 5%) to investigate the trade-off between data efficiency and pseudo-sample
redundancy. As shown in Figure 5, even a small number of real samples can produce pseudo
samples that are diverse and capable of capturing the underlying task knowledge. However, as the
pseudo-sample ratio increases, the improvement in AR gradually saturates. When generating 20%
pseudo samples from 1% real data, performance begins to decline due to excessive redundancy and
interference with learning new tasks.

When further reducing the number of real samples, we observe that using 0.75% or 0.5% of real data
yields slightly better performance than 1% real data when synthesizing a small proportion of pseudo
samples. Nevertheless, the performance degrades notably as the pseudo-sample ratio grows. This
suggests that with a small pseudo-sample ratio, fewer real samples can better capture the essential
task knowledge and improve synthesis quality. In contrast, when a larger number of pseudo samples
are generated, the limited diversity of real samples leads to higher redundancy, which hinders learning
effectiveness. Moreover, pseudo samples generated from a larger real dataset tend to form more
cluster centers. Under low pseudo-sample ratios, this results in less coherent knowledge structures
and slightly worse performance than using 1% real data. Yet, as the pseudo-sample ratio increases to
20%, the performance improves substantially and approaches that of multi-task learning (MTL).

We also compare pseudo-sample rehearsal with real-sample rehearsal, as presented in Table 5 of
the Appendix E. The results are consistent with findings from SSR, showing that even when 10%
of real samples are replayed, the performance remains inferior to that of pseudo-sample rehearsal.
This is because labels synthesized by the old model facilitate learning, improving the new model’s
task adaptation. In contrast, real-sample rehearsal is directly constrained by the limited proportion of
available real data, whereas pseudo-sample rehearsal can flexibly expand data diversity by synthesiz-
ing new samples from a fixed real set. Consequently, the 1% real-sample rehearsal fails to match
the performance achieved with 5% real samples, as the smaller rehearsal ratio restricts the model’s
ability to preserve prior knowledge.

5.3 Analysis of Parameters

We analyze the impact of two key parameters in label self-evolution. The proportion threshold k
determines the selection of over-specialized samples during self-questioning. As shown in Figure 6,
setting k too high omits valuable specialized knowledge, while a low k allows too many over-
specialized samples for rehearsal, causing bias in model parameters and affecting overall performance.
α controls the balance between general (LLM0) and task-specific (LLM i) knowledge when refining
labels. Figure 6 illustrates that a high α may tend to less accurate labels, whereas a low α reduces the
smoothing effect, weakening the integration of general and specialized knowledge.

Parameter adjustment should consider model capability. Stronger mask-filling models better preserve
prior knowledge in pseudo samples, allowing for a smaller k; weaker models require a larger k to
avoid excessive specialization. Similarly, models with stronger downstream abilities benefit from a
higher α to increase the general knowledge in over-specialized samples, while less capable models
require a lower α to avoid inaccurate labels.

6 Conclusion

In this work, we propose SERS for catastrophic forgetting mitigation in LLMs. SERS gen-
erates pseudo samples that better reflect the structural knowledge of previous tasks, prevents
over-specialization on rehearsal pseudo samples from harming overall performance and dynamically
adjusts regularization strength based on the similarity between previous and new tasks. Extensive
experiments demonstrate that, compared to various representative methods, SERS achieves more
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Figure 5: Rehearsal Analysis. We generate
various proportions of pseudo samples us-
ing different amounts of real samples rang-
ing from 0.5% to 5% on LLaMA2-7B to
evaluate data utilization efficiency.
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Figure 6: Parameter Analysis. We evaluate SERS
performance on LLaMA2-7B by varying k and α
while fixing the other parameter respectively.

effective forgetting mitigation and enhanced performance stability, underscoring SERS’s potential as
a general solution for continual learning in LLMs.

Limitations

Although ablations confirm each module’s contribution to AR and show score performance during
training, the complex relationships between tasks make it hard to pinpoint why some tasks improve
or decline. A deeper analysis of how new tasks affect previous tasks may unlock further gains in
continual accuracy. Moreover, while pseudo-sample rehearsal boosts review of past knowledge, it
remains unclear whether these synthetic examples can introduce knowledge beyond the original data.
Exploring the ability of pseudo samples to enrich the model with unseen knowledge could be key to
surpassing MTL in future continual learning work.
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A Comparative Case Study on Pseudo-Sample Generation

To illustrate the effectiveness of our proposed method, we present a comparison between the traditional
ICL approach and the Semantic-Guided Pseudo-Input Generation we introduced. Using two samples
from the same task, we generate pseudo data in two ways for two retries: the ICL method generates
both inputs and outputs with 2-shot prompting, while our method focuses on generating only pseudo
inputs. As shown in Figure 7, it is evident that the 2-shot ICL approach fails to capture the essence of
the “cosmosqa“ task. The generated questions resemble generic QA samples, lacking the implicit
cues that emphasize common-sense reasoning. In contrast, our method is able to produce samples that
closely resemble real ones under a low masking ratio. When the masking ratio is high, the generated
outputs are diverse but still retain the core features of the“cosmosqa“ task. This not only ensures the
diversity of pseudo samples, but also supports the model’s review of previous knowledge.

Real Sample:
Input:
Emmy isn’t feeling well. I woke up this morning with a little bit of vom on the bed near her mouth. Dog’s
puke all the time though, so no big deal. I let her out and she took a big old solid 2-point conversion. But
she didn’t run or scuff her feet afterwards, she just ambled back inside.
Question: What did I mean when I said she took a solid 2-point conversion?
Output: She pooped.

Input:
blaine was only able to stay for a little while since he had to work sunday and while i wanted to go home
with him to NOT face the party the rest of the evening, i stayed with nick and brenna. i had such a good
time though. there was making out involved among some of the party guests. oh, might i add that the party
took place on the rooftop of this lovely apartment building.
Question: Where might James have gone after leaving the party?
Output: He went home.

In-Context Learning Output:
Input:
The best thing about being single is you can eat
whatever you want whenever you feel like eating
it!
Question: When would Katie most likely be
thinking these thoughts?
Output: After having an argument over dinner at
someone else’s house.

Input:
Whenever we meet up at a cafe or something, he
always seems very keen to see me again, and wants
us to do things together all the time! But then when
I’m ready to leave, his eyes get all glassy and sad
looking and he says Ï don’t want you to think badly
about me.Ït makes me feel like maybe my presence
isn’t actually welcome - I can tell he doesn’t really
enjoy being around me, even though he tries hard
to hide it.
Question: What does the speaker most likely think
about herself?
Output: She thinks highly of herself.

Semantic-Guided Generation:
Input:
Blaine was reluctant to leave early because he had
to work Sunday and wanted to spend more time
with Nick and Brenna. He decided not to go home
with them but instead to return later tonight. I
was having such a good time at the party as were
many others who made it into the exclusive venue
located on top of this amazing apartment complex.
Oh, might I add that the party location was right
outside our living room window!
Question: Where else could James have gone after
leaving the party?

Input:
Blaine seemed like such a nice guy since it came
down to him being the last person standing at the
bar Sunday night. He wanted me to stay for just
a little longer; however, I didn’t want to face the
remainder of the evening alone. So I went home
with Nick and Brenna instead. They were very
kind and offered us plenty of space even if we
made our own drinks or snacks from what they
provided. Oh! And by the way, their roof-top patio
was absolutely gorgeous!
Question: What would you think about James
based upon his behavior

Figure 7: A case study for Pseudo-Sample Generation
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B Comparative Case Study on Output Refinement

This part demonstrates the value of self-evolution in label refinement through real examples. By
adjusting the balance between general knowledge from LLM0 and task-specific knowledge from
LLM i, the model can reduce overly specialization and produce more acceptable responses. In the
QA example shown in Figure 8, the output from LLM0 contains hallucinations and fails to provide a
correct answer. In contrast, the output from LLM i correctly identifies the key term "family". The
final response refined through self-evolution also delivers a precise and reasonable answer.

Input: A small part of her face lit up when she heard the news. Her eyes glistened but there
wasn’t any trace of joy on them or happiness even though this was great news. She simply
looked relieved because finally things were starting to go well for her family. And they had been
through hell lately so every little thing counted nowadays. So she couldn’t help feeling grateful.
Question: What made the person feel relief?

LLM0 Output: Things went wrong recently!
LLM i Output: They got good news for their family.
Output after Self-Evolution: The person was told that things was going to be okay.

Figure 8: A case study for output refinement

C Additional Experimental Details

All samples are selected from the SuperNI dataset. To ensure fair comparison, we follow the same
task settings as advanced pseudo-sample rehearsal methods (Huang et al., 2024). The selected tasks
are shown in Table 3. During pseudo-sample generation, we begin with 1% of the real samples
and apply the Semantic-Guided Pseudo-Input Generation method with three retries to create a large
number of pseudo samples. Then, we use the K-Means algorithm to select 10% of these for rehearsal.
During the training phase, we selected two numbers of tasks and two task sequences to form four
task chains, with the task chains as shown in Table 4.

Table 3: Details of task names and abbreviations
Abbreviation Task Name

QA task024_cosmosqa_answer_generation
QG task074_squad1.1_question_generation
SA task1312_amazonreview_polarity_classification

SUM task511_reddit_tifu_long_text_summarization
TRANS task1219_ted_translation_en_es

DSG task574_air_dialogue_sentence_generation
EXPL task192_hotpotqa_sentence_generation
PARA task177_para-nmt_paraphrasing
POS task346_hybridqa_classification
PE task064_all_elements_except_first_i

Table 4: Details of Task Chains under Different Task Numbers and Orders
Settings Task Chain

5Tasks Order 1 TRANS → SA → QA → SUM → QG
5Tasks Order 2 QA → QG → SA → SUM → TRANS
5Tasks Order 3 SUM → QG → TRANS → QA → SA

10Tasks Order 1 TRANS → SA → QA → SUM → QG → PE → PARA → POS → DSG → EXPL
10Tasks Order 2 QA → QG → SA → SUM → TRANS → DSG → EXPL → PARA → PE → POS
10Tasks Order 3 SUM → QG → TRANS → QA → SA → PARA → DSG → POS → EXPL → PE
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D Ablation Study Details

In this section, we present the detailed performance of each ablation setting across different task chains
and models. The results show that our generation strategy consistently leads to better outcomes, label
self-evolution generally benefits the learning of new tasks, and similarity regularization facilitates
knowledge transfer, increasing the likelihood of performance gains throughout training. Details are
shown in Figure 9.
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Figure 9: Ablation results detailing the performance variations of different models across different
task chains

E Real-Sample Rehearsal Details

This section presents additional results on real-sample rehearsal for comparison with pseudo-sample
rehearsal. As shown in Table E, even when 10% of real samples are used for rehearsal under the same
continual learning setup, the performance remains lower than that of pseudo-sample rehearsal. This
observation can be explained by the fact that labels synthesized by the old model facilitate learning,
improving the new model’s task adaptation. In contrast, real-sample rehearsal is constrained by the
limited number of available samples, resulting in reduced diversity and weaker knowledge coverage.
Consequently, its performance degrades more noticeably under low rehearsal ratios.

Table 5: Real-Sample Rehearsal Results on LLaMA2-7B
Data Rehearsal Order1 Order2 Order3 Avg

1% real samples 48.11 49.02 48.74 48.62
5% real samples 50.18 50.65 50.02 50.28
10% real samples 50.24 51.09 50.84 50.73
1% real samples synthesis 10% pseudo samples 52.90 53.01 52.84 52.92

F Comparison Study Details

In this section, we provide additional experimental details on the ChatGLM-6B model to demonstrate
the impact of the hyperparameters k and α on the SERS framework.
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Figure 10: Comparison study of k (α=0.6) on ChatGLM-6B
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Figure 11: Comparison study of α (k=0.1) on ChatGLM-6B
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Answer: [Yes] ,

Justification: In Section 6, we have thoroughly discussed the limitations of our article,
hoping to guide more future work.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In Section 3, we elaborated on the motivation and theoretical derivation of our
method, with a complete proof process in place.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: We have provided detailed descriptions of the experimental details in section
4.2 and methods in section 3 to ensure that our experiment can be reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our datasets are derived from publicly available datasets, and our code will
also be fully open-sourced.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 4.2, we presented the experimental setup and the selection of key
parameters. Additional details could refer to our code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to the computational cost of continual learning, we did not perform
multiple runs for each experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: In Section 4.2, we have provided sufficient information on the computer
resources needed to reproduce the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We guarantee that the research conducted in the paper complies with NeurIPS
Code of Ethics in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We outlined the societal benefits of continual learning research in Section 1,
and highlighted the limitations and challenges of existing techniques.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of the assets used in the paper, such as code,
data, and models, have been appropriately recognized, and the licenses and terms of use
have been clearly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: This study consistently adheres to relevant policies governing the use of LLMs
and provides a detailed description of their application.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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