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Abstract

Graph learning is widely encountered in the
real-world applications. Existing approaches
typically combine graph neural networks with
NLP methods, recently with large language
models (LLMs), to encode node texts. How-
ever, this two-stage paradigm suffers from
a suboptimal alignment between textual and
structural features. Since LLMs are probabilis-
tic models excelling at next-word prediction,
not inherently designed for graphs, we propose
a new perspective that treats graphs as a new
language, enabling language models to predict
node sequences by learning from graph struc-
ture. Unlike natural language with existing
coherent and abundant corpora, graphs fail to
provide structured and meaningful node orders
inherently, making the corpus construction with
high-quality node sequences challenging. To
address this problem, we design PathGLM
(Path-based Graph Language Model), which
first builds the community-centric corpus that
constrains path selection within community
scope. Next, we extract structurally node-to-
center paths fed into LLMs to learn the graph
language grammar, also serving as prefixes in
fine-tuning. Experimental results illustrate that
PathGLM improves semantic-structure integra-
tion and achieves state-of-the-art performance.

1 Introduction

Text-attributed graphs (TAGs) are ubiquitous in
real-world applications (Chen et al., 2024b), where
nodes are associated with rich textual content and
edges encode relationships between entities. A
prominent example is the citation network, where
each node represents a paper and edges denote
citation links between papers.

A common solution pipeline for TAGs combines
language models with graph neural networks: node
texts are first encoded into embeddings, followed
by GNNs for neighbor aggregation of structural

information (He et al.; Pan et al.; Zhao et al., 2023).
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Figure 1: A Case Study about How Graph Structure
Mimics Natural Language for LLMs.

Despite their effectiveness, this two-stage design
remains suboptimal, since this decouples textual
understanding from structural reasoning and fails to
jointly capture the complex interplay between node
attributes and graph topology. Fundamentally, this
limitation arises because large language models
are not naturally adapted to graph structures (Guo
et al.). Recent works have attempted to utilize
LLMs for graph learning by representing graphs
as text descriptions in prompts (Tang et al., a; Luo
et al.; Li et al.). However, due to the input token
limitations of language models, it is infeasible to
represent entire graphs within a single paragraph or
complete text (Huang et al.), particularly in large-
scale graphs with numerous nodes and edges.
Nevertheless, language models excelling at word
prediction in natural languages offer a promising
inspiration. Since LLMs (Li et al., 2024) are highly
effective at modeling word sequences, a natural
idea is to treat the graph as a collection of node
paths, which could be regarded as meaningful node
sequences similar to sentences in natural language.
This perspective enables the potential of utilizing
LLMs to estimate the probability of the subsequent
connected node in the context of graph structure
learning, as shown in Figure 1. Compared with
natural language, where words inherently form sen-
tences, graphs do not naturally offer meaningful
node sequences as a trainable corpus. As a re-
sult, constructing a high-quality training corpus
that jointly encodes nodes and relations becomes
crucial for efficient graph language learning.



Creating a powerful strategy to select coherent
and informative node sequences from the graph is
critical, as they can form a training corpus that em-
powers the model to generalize and represent graph
structures accurately. However, constructing such
a corpus presents two key challenges. First, while
a graph contains countless possible node sequences
interconnected by edges, only a small portion truly
carries structurally valuable signals. Unstructured
paths may fail to encode meaningful topological
cues, resulting in misleading the model to learn
structures. Furthermore, paths without meticulous
selection, such as random sampling, may introduce
redundant or noisy information, which restrains
the graph learning from capturing significant and
coherent dependencies. The second challenge in
graph language modeling is that nodes play distinct
roles across various structural contexts. Relying
on limited subgraphs to interpret paths can result
in incomplete utilization of topology. Thus, this
limitation resembles interpreting a word based on a
single scenario, ignoring context-sensitivity, which
restricts the model’s ability to capture multi-hop,
even complex relational patterns.

Therefore, we propose the Path-based Graph
Language Model (PathGLM), including a
community-centric corpus that contains structurally
meaningful node-to-center paths generated within
communities. Similar to the standard training
paradigm of large language models, we perform
pre-training on the well-designed node sequences
to facilitate the large language model to develop
a global understanding of graph structure. This
stage teaches LLMs to understand the "grammar"
of graph language, denoting generalizable struc-
ture patterns. In task-specific tuning, we further
enhance node representations by incorporating path
tokens obtained from the graph language learning
step, allowing the model to better adapt to down-
stream graph tasks such as node classification. The
main contributions of PathGLM are as follows:
(1) We follow the Graph-as-Language paradigm
to leverage the nature of language models, as well
as sequence prediction, to understand topological
patterns on graphs. (2) We organize the graph topol-
ogy as language-interpretable node-to-center paths,
allowing LLMs to internalize structural patterns
in the form of node sequences. (3) We design
a task-specific tuning mechanism that integrates
structural hints into node texts encoding for effec-
tive optimization. (4) Experiments demonstrate the
effectiveness of PathGLM with community-centric

corpus construction and paths as sequence input
for graph language learning and downstream tasks.

2 Preliminaries

Given a text-attributed graph G = (V, &, T), where
each node v; € V is associated with a textual at-
tribute ¢; € T, our objective is to learn node-level
embeddings that effectively capture both the seman-
tic content ¢; and structural property &; of node v;.
In contrast to conventional approaches that lever-
age message passing on graphs, we inject structural
cues directly into the input space of large language
models. These path tokens are concatenated with
the node’s textual content to form the final input:

fim : [ ti] — Emb,, €))

where fi M represents a large language model that
takes the structural prompt &; (e.g., path-based con-
text) as a prefix concatenated with the node text
t;. The output Emb; is a joint representation cap-
turing both semantic and structural features and
transferred to graph learning tasks such as node
classification and link prediction.

3 Methodology

We propose a novel LLM-based framework that
considers graph structure as a new format language
to enable language models to process structural
information. To avoid understanding nodes from
a single point, we partition nodes into different
communities to capture context-sensitive interpre-
tations. Moreover, we design the coherent corpus
including node sequences connected with complex
relational patterns, i.e., node-to-center paths, to pre-
train LLMs to learn graph grammar by sequence
prediction. This design addresses the challenge of
limited structural information input for language
models and enables the model to better align nodes
in communities with diverse structural contexts by
well-structured paths. Our model includes three
key components, including Community-Centric
Corpus Design, Graph Grammar Acquisition,
Topology-Aware Task Tuning in Figure 2. The
rationale of these modules is detailed as follows.

3.1 Community-Centric Corpus Design

To transform a graph into a language-like format,
we conceptualize graphs as linguistic systems by
defining nodes as "words" and multi-hop relations
as "sentences”. One challenge is that nodes usually
exhibit different roles depending on contexts in the
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Figure 2: The illustration of PathGLM, graph language modeling on a toy text-attributed graph. This framework
groups nodes with long semantic texts into communities, representing distinct topological contexts, and then
node-to-center paths are sampled to construct the structurally coherent corpus. Next, these texts of nodes in paths
are concatenated as input sequences, which are encoded to learn the graph language grammar. The path sequences,
also serving as prefixes, guide LLMs to learn text-structure representations for graph tasks.

graph topology. Similar to how words have diverse
meanings in diverse communication scenarios, the
context-dependent contributions of nodes mainly
arise from the fact that relations exhibit many-to-
many mappings and intricate combinations, and
long-range dependencies. Therefore, the contexts
not only capture their roles in the topology broadly
but also assist in designing high-quality sentences
composed of the training corpus.

Next, we group nodes based on their semantic
similarity into concept-related communities based
on shallow embeddings. Furthermore, we employ
three clustering algorithms rather than relying on
only one single approach to avoid a narrow under-
standing of graph language paradigm: k-means,
spectral, and hierarchical clustering. Each method
focuses on distinct aspects such as node semantic
similarity and structural properties, enabling us to
assemble various and multifaceted communities.

3.1.1 K-means Clustering

Specifically, the k-means algorithm partitions
nodes based on their feature vectors by minimiz-
ing intra-cluster variance. Formally, given node
embeddings of V, {x1,...,x,} with x; € R, the
objective is to find K clusters {Cy,...,Cx} that
minimize the within-cluster sum of squares:
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where p;, denotes the centroid of cluster Cx. By
grouping nodes that share similar semantic em-
beddings, this method constructs compact seman-

tic communities for our graph-as-language frame-
work, which reflect the nuanced understanding of
nodes. These communities are formed based on
embedding proximity in a joint semantic-structural
feature space. Consequently, the communities
{Cy,...,Cxk} exhibit high textual and topological
affinity, enabling the identification of nodes with
closely aligned meanings and structural roles.

3.1.2 Hierarchical Clustering

We employ hierarchical clustering in a bottom-up
manner by starting from singleton clusters where
each node forms an individual community. Pairs
of clusters are merged according to the Ward link-
age criterion, which minimizes the increase in total
within-cluster variance. This method adaptively
uncovers structurally cohesive groups based on
the distinct granularity of nodes. Formally, given
clusters {C1, ...,Cp,, m > K} and their centroids
{p1,..., 1m}, the distance between two clusters
C; and C; is defined as:

= m”#i —uil3 3
i j

where |C;|, |C;| denote community cardinalities and
I, it represent centroids. Optimizing the above
geometrical criterion and penalizing intra-cluster
variance growth promotes compact communities.
This optimization seeks the optimal K clusters
based on shallow embeddings, without incorpo-
rating structural features like the adjacency matrix.
Consequently, X communities reflect semantic fea-
tures, representing topic-related similarity.
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3.1.3 Spectral Clustering

This algorithm extracts communities by analyzing
the graph’s global structure in a low-dimensional
hidden space. The key target is to approximate the
graph minimum cut problem by employing spectral
decomposition and continuous relaxation technique
to effectively obtain balanced graph partitions:
cut(Ci, Cj) cut(CZ-, CJ)

New(Ci, C5) = vol(C;) + vol(Cj) “)

where cut(C;,C;) measures inter-cluster edge
weights, and vol(x) represents cluster density com-
putation. Formally, we compute the normalized
graph Laplacian Lgyy = I — D=124AD~1/2 from
adjacency matrix A and degree matrix D, and ex-
tract the first ¢ eigenvectors, U € R™*4, to form a
structural node embeddings. Applying k-means
clustering on U yields clusters {Ci,...,Cx},
which correspond to the spectral communities as in
Eq.2. Consequently, the identified K structurally
cohesive groups reflect globally structural co-usage,
emphasizing intrinsic connectivity to capture the
latent topological "grammar" of graph language.

3.1.4 Node-to-Center Paths

After graph partition, we obtain communities that
provide expressive and abundant interpretations
of nodes from different perspectives. Moreover,
considering structural and sequential connections
in graphs for node roles is crucial because nodes
exhibit extensive links, even within communities.
Considering graphs as language-like formats, we
have a "vocabulary" with contextual groups, but we
lack the notion of "sentences" of graph language,
as well as structured compositions encompassing
informative dependencies and avoiding redundant
or distracting information for language learning.

To encode multi-relational structure into
language-like sequences, we build structural paths
upon the previous communities since they narrow
the graph scope for formulating the complicated
relations. However, LLMs are inherently designed
for sequence prediction, not for graph structure.
Drawing inspiration from how dictionaries often
include exemplary sentences to illustrate the use of
words, we aim to generate high-quality structural
sequences that demonstrate both semantic roles and
topological dependencies. Further, they serve as
expressive and representative "sentences” in our
graph language, enabling the model to learn gram-
mar rules within and across communities.

Therefore, we construct node-to-center paths for
each node as communities offer a valuable anchor,
i.e., centroids. This design reduces noise from other
irrelevant nodes and organizes the graph structure
into concise and interpretable paths. The links
among nodes in paths reflect meaningful topology,
such as adjacency frequency and distance, which
carry on both local and global structure, ensuring
a high-quality training corpus. Formally, for each
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over the graph G. This can

Pi—)cg) = arg %nglg Length(P) ®)

s.t. P connects v; and c,gl), (6)

where PHc,(j) = [v,... ,c,(cl)] denotes the specific
expression of node-to-center paths. This shortest
path guarantees efficient sequences from individual
nodes to their community centers.

3.2 Graph Grammar Acquisition

To address LLMs’ input length limits and the need
for topology-aware semantic understanding, we
have obtained nodes as topic-related “vocabulary’
and paths as “grammar.”” Our community-based
node-to-center paths capture both semantic roles
and structural dependencies more effectively than
random walks or neighborhood sampling. These
paths, centered on community hubs that represent
key concepts, provide coherent and representative
sequences for learning graph grammars. Unlike
prior methods that focus mainly on text relevance
and overlook explicit structure (Huang et al.), our
approach better integrates topology. However, how
to leverage these structured paths as training data
for LLMs to learn and generalize graph grammar
remains a significant challenge. Furthermore, we
provide experimental evidence and theoretical jus-
tification in Appendix A to illustrate long-range
dependencies preservation.

By representing node-to-center paths as
sentence-like sequences, we train large language
models to learn graph topology rules. Following
the standard LLLM paradigm, we usually pre-train
the model on a high-quality corpus to learn
linguistic patterns. Therefore, we model the graph
structure by treating each path as a sequence to

>



mimic word sequence prediction. However, to
improve efficiency and holistic understanding,
we constrain predictions to only the terminal
node label rather than every next node to improve
efficiency and promote topological learning.
Directly exploiting truth labels for pre-training
supervision risks data leakage since test data are
included in paths. Instead, we leverage the model
to predict the terminal node (i.e., the community
center) based on unsupervised clustering, which
prevents data leakage and encourages the model
to learn structural patterns shared across diverse
path constructions from communities. Specifically,
we encode the node-to-center path of node v; in

@
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community C,(€ ), Pvi—w(l) = [vi,...,¢,’], into se-
k

quence by concatenating texts along paths:

X; = Concat(Text(v) v € P 7

—>c](€l> )’
where Text(v) denotes textual content. To explic-
itly incorporate structural information, the prompt
prepends node IDs to their corresponding texts, re-
flecting the traversal order. An illustrative prompt
example is provided in Appendix D.

By training the model based on node-to-center
paths during pre-training, it gains a deeper under-
standing of the graph structure. Given the complete
path sequence composed of node texts along the
path X;, the LLM is trained to predict center node

y; = k of the community C g)

terminal node c,(f). Consequently, the model can
interpret these paths not as plain texts but as signals
containing graph structural information in multiple
clustering methods. The pre-training objective is

defined as:

associated with the

Epre == IOgP(yi =k | Xi; Hpt)s (8)

where 0,,; denotes LLM parameters. This objective
encourages the model to align semantic representa-
tions with the topological information embedded
in node-to-center paths, effectively learning the
structured graph language.

3.3 Topology-Aware Task Tuning

While pre-training on node-to-center paths allows
the LLM to acquire a structural understanding of
graph connections, downstream tasks such as node
classification demand that the model apply these
structural patterns to specific tasks. Leveraging the
pre-trained topological grammar to complement
semantic information could perform more accurate

node classification. Fine-tuning aims to ensure
that the LLM fully leverages acquired structural
knowledge by integrating path-aware cues into the
task-specific learning process.

Therefore, we reuse node-to-center paths as soft
prompts during fine-tuning. Preserving consistent
paths ensures alignment between pre-trained struc-
tural patterns and task-specific tuning. This prefix-
based method integrates graph topology directly
into the LLM’s language modeling, allowing joint
utilization of structural and textual information.
Specifically, we construct prefixes for all nodes by
tokenizing the corresponding node-to-center paths.
This design not only reduces the dimensionality of
path embeddings but also reinforces the activation
of structural grammar learned during pre-training.
For each node v;, we define the prefix:

o _
P’ = Concat (tv |ve Pviﬁcg)). )
We form the fine-tuning input by concatenation:

X% = Concat (P Text(v;)),  (10)
where includes a hyperparameter, the length of Pi(l).
The model is fine-tuned with LoRA adapters with
input of X ift and outputs class probabilities 7;. We
formulate the standard cross-entropy loss over the
ground true labels y; as follows:

N |V
1 : .
Ly = —NZZZ/? logp(yi = j | X' O, Ort),

i=1 j=1
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where only 6y is updated during fine-tuning while
0t remains fixed in this step.

4 Experiments

In this section, we conducted extensive experiments
to evaluate the effectiveness of PathGLM, which
leverages LLaMA3 as the backbone. We compared
our model against state-of-the-art baselines under
the same settings of LLaMA3. Moreover, they
are designed to answer the following key research
questions (RQs): RQ1: Does our PathGLM con-
sistently outperform competitive baselines on node
classification? RQ2: How do different strategies
for constructing the structural communities affect
path informativeness in the training corpus? RQ3:
How do node-to-center paths contribute to learning
graph language grammar by pre-training LLMs?
Then, we assessed the efficiency of pre-training
and task tuning and analyzed hyperparameters.



Table 1: Comparison of classification Accuracy and Macro-F1 score among baselines and the PathGLM on three

benchmark datasets (averaged over 3 runs).

NLP Models  Graph Models ACM Wikipedia Amazon
Test-Acc. Macro-F1.  Test-Acc. Macro-F1.  Test-Acc. Macro-F1.
Fine-tuned Language Models +/- GNNs
- 73.2 69.0 68.8 58.4 90.5 86.9
BERT GCN 77.1 74.6 68.4 58.7 93.3 90.1
GAT 78.0 74.1 69.8 60.8 93.6 90.6
GraphSAGE 76.8 74.1 72.7 59.5 92.9 90.0
- 76.6 70.7 68.1 57.6 85.9 83.9
GCN 79.4 74.1 68.0 56.1 92.5 90.7
ROBERTa Gt 78.9 74.2 71.0 612 92.4 90.5
GraphSAGE 78.3 74.1 72.1 57.5 92.1 90.4
Fine-tuned Large Language Models +/- GNNs
Llama3_8b - 80.6 73.8 71.2 59.0 91.6 88.3
Llama3_8b GraphSAGE 81.3 76.4 73.0 60.6 92.8 89.6
Pre-trained Large Language Models
GPT-3.5 54.3 51.8 61.8 59.1 49.1 46.5
GPT-4 67.5 64.7 60.9 58.3 40.3 38.6
Deepseek_v2 64.8 62.3 15.4 10.5 234 26.0
Tailored Frameworks

MPAD 78.9 71.6 68.0 53.9 92.8 88.6
GLEM 79.8 73.9 71.2 58.3 94.3 90.9
LLAGA 77.5 72.1 72.0 60.5 90.8 88.6
GraphFormers 75.1 65.4 67.5 51.2 86.4 82.2
InstructGLM 74.5 68.9 70.6 58.1 94.2 89.6
PathGLM 85.1 79.2 74.8 63.1 93.6 91.7

4.1 Experimental Setup

4.1.1 Datasets

We evaluate the performance of PathGLM on three
datasets: ACM, Wikipedia, and Amazon, which
are manually constructed from raw corpora with
associated textual descriptions and categorical la-
bels. All datasets are split into training, validation,
and test sets with a ratio of 8:1:1. Detailed dataset
statistics are provided in Appendix B.

4.1.2 Baselines

We evaluate PathGLM performance against base-
lines in four categories: (1) pretrained language
models (e.g., BERT, RoBERTa) combined with
GNNs like GCN; (2) large language models
combined with neural networks, where we use
LLaMA3 and GraphSAGE for strong performance;
(3) pretrained large language models used directly
via APIs; and (4) tailored frameworks integrat-
ing structure and text through prompt design or
co-training, including MPAD (Nikolentzos et al.,
2020), GLEM (Zhao et al., 2023), LLAGA (Chen
et al., 2024a), GraphFormers (Yang et al.), and
InstructGLM (Ye et al.), referring to Appendix C.

4.1.3 Implementation Details

Many details and parameter settings of experiment
design, including hyperparameters, are provided
in the appendix E. To assess classification perfor-
mance, we adopt two metrics: Accuracy measures
the proportion of correctly predicted node labels
over all test instances. Macro-F1 computes the
averaged F1-score independently for each class.

4.2 Opverall Performance (RQ1)

We evaluate the performance of PathGLM with
four categories of baselines across multiple TAG
benchmarks. As shown in Table 1, our model
consistently achieves state-of-the-art performance,
highlighting the advantages of graph language
modeling. PathGLM outperforms both LM-GNN
pipelines and strong baselines such as LLaMA3
combined with GraphSAGE, despite their ability to
handle longer inputs with more parameters. Unlike
sequential pipelines that struggle with semantic-
structural learning, our model leverages node-to-
center paths and graph language modeling for more
effective structural understanding. While larger
pretrained models exist, their lack of task-specific
adaptation limits effectiveness. Hybrid methods



by joint training or concatenating neighborhood
embeddings, still underutilize graph relations.

4.3 Effect of Communities on Path
Informativeness (RQ2)

To investigate how multiple communities influence
the informativeness of generated node-to-center
paths, we select several paths by random walks and
compare their semantic and structural information
with that of node-to-center paths. We hypothesize
that paths derived from unsupervised clustering ap-
proaches contain more semantic and structural in-
formation. To verify this, we conduct experiments
comparing the path informativeness generated by
clustering with that of the random walk algorithm.
Specifically, we evaluate these sequences using two
metrics: (1) average semantic similarity between
the beginning and remaining nodes along paths
(measured by BERT-based embeddings), and (2)
average closeness centrality of all nodes in paths.

Table 2: Semantic and Structural Evaluation of Paths
Rooted at Many Randomly Selected Anchors.

Path Sequences | Similarity | Centrality

Random walks 0.1324 0.1454
K-means 0.2576 0.1467
Spectral 0.3565 0.1527
Hierarchical 0.2138 0.1359

As shown in Table 2, we compare path sequences
generated by random walk and three clustering
methods (k-means, spectral, and hierarchical). The
results demonstrate that clustering-based sequences
can achieve higher semantic similarity than random
walks, indicating more coherent topic-centric in-
formation. Although structural centrality varies in
three types of paths, node-to-center paths generally
preserve meaningful topological context, which
supports the necessity of leveraging different algo-
rithms to construct "sentences" for the corpus.

4.4 Analysis of Node-to-Center Paths (RQ3)

Our method employs node-to-center paths from
different clustering techniques for graph language
acquisition. Unlike random walks, which sample
neighbors in an unordered, purely structural way,
these paths reflect semantic categories and topo-
logical roles. To clearly visualize their impacts on
PathGLM, we evaluate paths from these clustering
methods separately, with random walks as a base-
line. This comparison shows that our paths provide

higher-quality topological context than paths from
random combinations.

As shown in Table 3, even a single node-to-
center path consistently outperforms the path from
random walks, demonstrating their effectiveness
in capturing meaningful graph language patterns.
While individual clustering may not yield node-to-
center paths for every node, the combination of
structured paths mitigates that by compensating for
missing paths, contributing to robust performance.
Moreover, combining paths from three clustering
strategies achieves the highest accuracy overall,
suggesting that different clustering methods encode
complementary semantic and topological informa-
tion. Notably, when combined paths are used only
during pretraining, performance significantly drops,
and this highlights the importance of fine-tuning
in fully exploiting structural cues. These findings
confirm that community-centric constructed paths
offer richer and more informative supervision than
randomly sampled neighbors.

4.5 Hyperparameter and Efficiency Analysis

We analyze the impact of a key hyperparameter, the
prefix length of node-to-center paths concatenated
to node texts in the task tuning stage, on different
datasets. The chosen lengths were based on the
average path lengths: for ACM, we tested {3, 6, 12,
18}, while for Amazon and Wiki, the lengths were
{5, 11, 16, 22}. Results show that prefix lengths
close to the average path length sufficiently carry
the informative content, as shown in Figure 3.
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Figure 3: Performance Impacts of Prefix Length.

Our framework demonstrates practical training
efficiency except for outperformance in experi-
ments, with pre-training and fine-tuning completed
within an acceptable implementation time span
(about 40h and 20h per dataset, respectively).



Table 3: Performance Comparison on Three Datasets Using Different Path Sampling Strategies.

Path Strate ACM Wiki Amazon
gy Accuracy Macro-F1 | Accuracy Macro-F1 | Accuracy Macro-F1

No path 80.6 73.8 71.2 59.0 91.6 88.3

Random walks 83.2 78.5 72.7 60.5 92.9 89.8

K-means 84.5 79.1 73.2 61.4 93.5 90.9

Spectral 83.6 78.9 73.9 61.7 93.3 90.6

Hierarchical 83.7 78.5 73.0 61.0 92.8 90.1

Pre-train only 82.7 77.1 71.7 59.9 92.7 88.5

Multi-paths | 851 79.2 74.8 63.1 93.6 91.2
play between graph topology and textual content.
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Figure 4: Time Cost Analysis.

5 Related Work
5.1 Graph Descriptions for LLMs

Text-attributed graph learning relies on extracting
rich features via language models like BERT (De-
vlin et al.) and RoBERTa (Liu et al., b), but the
rise of large language models (LLMs) has greatly
boosted performance and efficiency compared to
LM and GNN combos with fine-tuning techniques
like LoRA (Hu et al., a). However, topology in the
graph remains underexploited. Recent work adapts
LLMs for graphs by encoding structural signals
as natural language prompts, with methods like
OFA (Liu et al., a) and SimCSE (Li et al.). In ad-
dition, WalkLLM (Tan et al.) and InstructGLM (Ye
et al.) augment node texts through neighborhood
texts or relation summaries. However, these face
information loss and input length limits. Therefore,
approaches such as GraphGPT (Tang et al., a) and
LLAGA (Chen et al., 2024a) encode structure as
graph embeddings aligned with text embeddings,
reducing redundant texts in subgraphs but relying
on local neighborhoods, with limited compatibility.

5.2 Integration of GNN and LLM

Integrating GNN and LLM directly can leverage
both graph structure and text semantics, two modal-
ities, and offer complementary interaction. How-
ever, simple cascaded pipelines suffer from em-
bedding space mismatch and limitations of inter-

models. More deeply integrated architectures such
as TAPE (He et al.) and Dr.E (Liu et al., c¢) stack
GNN and LLM layers to inject aggregated node
embeddings into language models or describe struc-
tural information for subsequent graph aggregation.
Despite the above improvements, some important
challenges, including optimization difficulties and
high computational cost, remain at the same time.
Besides, GraphFormers (Yang et al.) and HASH-
CODE (Zhang et al.) tackle these issues by de-
signing graph neural network layers specifically
compatible with language models and adopting
coordinated training. These approaches generally
rely on intermediate embedding exchanges but lack
deep semantic-structural fusion.

6 Conclusion

In this paper, we propose PathGLM, a novel model
that encodes graphs as a new language to en-
able LLMs learning on text-attributed graphs. By
clustering nodes into contextual communities, our
model constructs node-to-center paths as high-
quality sequences, employed for pre-training large
language models to understand graph language
grammar. Topology-aware task tuning leverages
acquired structure patterns by concatenating paths
as prefixes instead of relying on graph neural net-
works for node classification. We present a Graph-
as-Language framework that integrates structure
and semantic modeling, yielding outperformance
across benchmarks. Future work will explore ex-
tensions to large-scale and heterogeneous graphs.



7 Limitations

Our method offers a new perspective by modeling
graphs as a new language for semantic and struc-
tural fusion, but that presents limitations. Though
effective on moderate-sized graphs, our method
faces computational challenges on large graphs
with millions or billions of nodes, where commu-
nity detection and path design become significantly
more expensive. Scaling to such settings remains
an open direction for future exploration.

Further, our current framework is designed and
evaluated primarily on text-attributed graphs with
node classification as the main downstream task. Its
applicability to alternative tasks like link prediction
remains unexplored and open a promising direction.
Additionally, experiments focuses on widely-used
benchmarks composed of homogeneous graphs,
but could be extended to complex settings such as
heterogeneous graphs and dynamic graphs.

While this model relies on LLaMA3 as the back-
bone within the limitation of computation cost,
large language models with more parameters such
as 13B could perform better in graph learning.

Ethics Statement

We all comply with the ACL Ethics Policy! during
our study. All datasets used contain anonymized
consumer data, ensuring strict privacy protections.
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A Theoretical Foundation

We provide an information-theoretic perspective
to justify the effectiveness of node-to-center paths.
In graphs, closer nodes (e.g., one-hop or two-hop
neighbors) typically share stronger semantic or
structural similarities, while long-range dependen-
cies may introduce noise or diluted signals. Our
goal is to sample high-quality sequences that maxi-
mize the structural and semantic information avail-
able to language models. We quantify the infor-
mational value of a k-hop neighborhood by the
mutual information between a target node v and its
neighbors N:

IG(v,Ng) = I(v; Ny) = H(v) — H(v | Ni),
(12)

where H (v) is the entropy of node v, and H (v |
Ny) is the conditional entropy given its k-hop
neighbors. A lower conditional entropy implies
that the neighborhood contains more relevant infor-
mation about the node.

We compare the information gain from two
neighborhoods with hop distances ¢ < j:

IG(v,N;) > IG(v,N;) < H(v | N;) < H(v | Nj),

(13)
where we assume that closer neighbors are more
predictive of the node itself. To express this re-
lationship, we model the conditional entropy as
proportional to that of the 1-hop neighborhood:

H(v | Nj) =~H(v | N),

14)
15)

with constants 0 < A < « < 1 reflecting the
diminishing predictability as neighborhood radius
increases. Thus, the difference in entropy becomes:

H(v | Nj)=H(v | Ni) = (y=AH(v | N1) >0,
(16)
leading to:
IG(v,N;) > IG(v, Nj). a7
This theoretical insight supports our node-to-center
path design: by prioritizing paths through semanti-
cally central nodes within a cluster (i.e., a lexicon),
we form sequences that carry more informative
and coherent structural language content than those
relying solely on local neighborhoods.
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B Datasets

The statistics of datasets are shown in Table 4, and
details are described below:

Wikipedia. This dataset is constructed from
Wikipedia articles, where each node represents an
article and edges are formed by hyperlink refer-
ences 2. The category labels are assigned based on
the taxonomy provided in Wikipedia’s reference
lists.

ACM. We collect papers from the ACM digital
library (Tang et al., b), where each node corre-
sponds to a paper and citation links form directed
edges. Each paper is labeled according to its re-
search field, covering areas such as Artificial Intel-
ligence, Data Mining, and Machine Learning.

Amazon. This dataset is built from Amazon
product metadata (He and McAuley), where nodes
represent products and edges are formed by co-
view relationships in user browsing history. Each
product is categorized into a department-level class
as its label.

Table 4: Statistics of datasets in our experiment.

Datasets  #nodes #edges #classes
ACM 48,579 193,034 9
Wiki 36,501 1,190,369 10

Amazon 50,000 632,802 7

C Baselines

To comprehensively evaluate our model, we com-
pared PathGLM with current representative base-
lines, which can be broadly categorized into four
groups:

Language models combined with graph neu-
ral networks: These models adopt a cascaded ap-
proach where they train LM-based encoders like
BERT and RoBERTa and feed embeddings into
common GNNE, i.e., GCN, GAT, and GraphSAGE.

Large language models combined with graph
neural networks: We select LLaMA3, serving as
the backbone of PathGLM. And GraphSAGE is
integrated to aggregate neighborhood features due
to its best performance.

Pretrained LLMs only: These approaches di-
rectly utilize APIs of large language models for the
inference stage.

Tailored frameworks: These models integrate
structural and textual information by proposing ei-

Zhttp://www.mattmahoney.net/dc/textdata
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ther prompt design or co-training: MPAD (Niko-
lentzos et al., 2020) constructs word co-occurrence
graphs from the corpus and applies a message-
passing framework to propagate information across
the graph. GLEM (Zhao et al., 2023) iteratively
updates a pretrained language model and a GNN us-
ing co-training loops, aligning semantic and struc-
tural signals. LLAGA (Chen et al., 2024a) bridges
LLMs and GNNs via adaptive graph construction
and task-specific LLM prompting, enabling multi-
modal interaction across structure and text. Graph-
Formers (Yang et al.) unifies transformers and
GNNs in a joint encoder, leveraging graph-aware
self-attention. InstructGLM (Ye et al.) encodes
structural features into natural language prompts
and fine-tunes a large language model to perform
graph-specific tasks.

D Pre-training Prompt

We have designed a detailed path prompt for pre-
training to help the LLM better understand our
training objectives. This template includes gen-
eral ID information for each node in the path and
concatenates the text of each node. The task is to
perform label prediction for the last node in the
path.

E Detailed Settings

Our model first employs three clustering methods:
K-means, spectral clustering, and hierarchical clus-
tering. Based on the identified communities, short-
est paths from each node to its community cen-
ter are computed using Dijkstra’s algorithm. The
model utilizes LLaMA3 as the backbone, taking
node-to-center paths as input for language acquisi-
tion, followed by fine-tuning with pretrained param-
eters for node classification. All experiments are
conducted on a server equipped with three NVIDIA
RTX 3090 GPUs (24GB memory each).
Clustering is implemented primarily using the
fassi and scipy packages. For all three methods,
the number of communities is predetermined by
jointly considering the elbow criterion and silhou-
ette scores. The candidate community number
ranges for all three datasets is set between 2 and
20, as shown in Figure 6. In the pre-training stage,
we use the Adam optimizer with a learning rate in
[4e — 5, 1e — 4]. Tokenization uses a maximum
sequence length of 2048. The number of training
epochs is set to 2, in which the LLM achieves rapid
convergence and delivers highly stable results. We



Pre-training Prompt Template:

System: You are a good assistant in analyzing texts. Please make a prediction for the
paths below and the corresponding texts.

User: Classify the last academic paper into 9 categories. The Path (Node ID): 36660 ->
3577 -> 35782 -> 42722 -> 21232 -> 37688 -> 11229. The texts of this path are as
follows.

Abstract of Node ID 36660: In practical images, ideal step edges are actually
transformed into ramp edges, due to the general low pass filtering nature of imaging
systems. This paper discusses the application of the recently developed Expansion
Matching (EXM) method ...

Abstract of Node ID 3577: This paper presents a novel interactive system for guiding
artists to paint using traditional media and tools. The enabling technology is a
multi-projector display capable of controlling the appearance of an artist’s canvas.
This display-on-canvas ...

Abstract of Node ID 35782: Boundary detection is essential for a variety of computer
vision tasks such as segmentation and recognition. We propose a unified formulation
for boundary detection, with closed-form solution, which is applicable to the
localization ...

Abstract of Node ID 42722: We propose a novel approach for solving the perceptual
grouping problem in vision. Rather than focusing on local features and their
consistencies in the image data, our approach aims at extracting the global impression
of an image. We treat image segmentation ...

Abstract of Node ID 21232: Constrained clustering has been well-studied for algorithms
like K-means and hierarchical agglomerative clustering. However, how to encode
constraints into spectral clustering remains a developing area. In this paper, we
propose a flexible and generalized framework ...

Abstract of Node ID 37688: We pose the problem of network discovery which involves
simplifying spatio-temporal data into cohesive regions (nodes) and relationships
between those regions (edges). Such problems naturally exist in fMRI scans of human
subjects ...

Abstract of Node ID 11229: Effective diagnosis of Alzheimer’s disease (AD), the most
common type of dementia in elderly patients, is of primary importance in biomedical
research. Recent studies have demonstrated that AD is closely related to the structure
change of the brain network ...

Figure 5: Prompt used for type prediction in PathGLM.

adopt LoRA layers to flexibly and efficiently in-
corporate pretrained parameters. The configuration
of this layer follows standard settings: rank = 8,
o = 32, and dropout = 0.05, also applied to the
task tuning. During fine-tuning, the path embed-
dings are concatenated with text embeddings using
the same hidden dimension as the LLaMA3 (4096).
The best path sequence length is aligned with the
average node-to-center path length of each dataset:
6 (Wikipedia), 6 (ACM), and 11 (Amazon). Unless
otherwise specified, all baseline models are repro-
duced according to the official settings reported in
their original papers to ensure fair comparison.
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