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Abstract001

Graph learning is widely encountered in the002
real-world applications. Existing approaches003
typically combine graph neural networks with004
NLP methods, recently with large language005
models (LLMs), to encode node texts. How-006
ever, this two-stage paradigm suffers from007
a suboptimal alignment between textual and008
structural features. Since LLMs are probabilis-009
tic models excelling at next-word prediction,010
not inherently designed for graphs, we propose011
a new perspective that treats graphs as a new012
language, enabling language models to predict013
node sequences by learning from graph struc-014
ture. Unlike natural language with existing015
coherent and abundant corpora, graphs fail to016
provide structured and meaningful node orders017
inherently, making the corpus construction with018
high-quality node sequences challenging. To019
address this problem, we design PathGLM020
(Path-based Graph Language Model), which021
first builds the community-centric corpus that022
constrains path selection within community023
scope. Next, we extract structurally node-to-024
center paths fed into LLMs to learn the graph025
language grammar, also serving as prefixes in026
fine-tuning. Experimental results illustrate that027
PathGLM improves semantic-structure integra-028
tion and achieves state-of-the-art performance.029

1 Introduction030

Text-attributed graphs (TAGs) are ubiquitous in031

real-world applications (Chen et al., 2024b), where032

nodes are associated with rich textual content and033

edges encode relationships between entities. A034

prominent example is the citation network, where035

each node represents a paper and edges denote036

citation links between papers.037

A common solution pipeline for TAGs combines038

language models with graph neural networks: node039

texts are first encoded into embeddings, followed040

by GNNs for neighbor aggregation of structural041

information (He et al.; Pan et al.; Zhao et al., 2023).042
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Figure 1: A Case Study about How Graph Structure
Mimics Natural Language for LLMs.

Despite their effectiveness, this two-stage design 043

remains suboptimal, since this decouples textual 044

understanding from structural reasoning and fails to 045

jointly capture the complex interplay between node 046

attributes and graph topology. Fundamentally, this 047

limitation arises because large language models 048

are not naturally adapted to graph structures (Guo 049

et al.). Recent works have attempted to utilize 050

LLMs for graph learning by representing graphs 051

as text descriptions in prompts (Tang et al., a; Luo 052

et al.; Li et al.). However, due to the input token 053

limitations of language models, it is infeasible to 054

represent entire graphs within a single paragraph or 055

complete text (Huang et al.), particularly in large- 056

scale graphs with numerous nodes and edges. 057

Nevertheless, language models excelling at word 058

prediction in natural languages offer a promising 059

inspiration. Since LLMs (Li et al., 2024) are highly 060

effective at modeling word sequences, a natural 061

idea is to treat the graph as a collection of node 062

paths, which could be regarded as meaningful node 063

sequences similar to sentences in natural language. 064

This perspective enables the potential of utilizing 065

LLMs to estimate the probability of the subsequent 066

connected node in the context of graph structure 067

learning, as shown in Figure 1. Compared with 068

natural language, where words inherently form sen- 069

tences, graphs do not naturally offer meaningful 070

node sequences as a trainable corpus. As a re- 071

sult, constructing a high-quality training corpus 072

that jointly encodes nodes and relations becomes 073

crucial for efficient graph language learning. 074
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Creating a powerful strategy to select coherent075

and informative node sequences from the graph is076

critical, as they can form a training corpus that em-077

powers the model to generalize and represent graph078

structures accurately. However, constructing such079

a corpus presents two key challenges. First, while080

a graph contains countless possible node sequences081

interconnected by edges, only a small portion truly082

carries structurally valuable signals. Unstructured083

paths may fail to encode meaningful topological084

cues, resulting in misleading the model to learn085

structures. Furthermore, paths without meticulous086

selection, such as random sampling, may introduce087

redundant or noisy information, which restrains088

the graph learning from capturing significant and089

coherent dependencies. The second challenge in090

graph language modeling is that nodes play distinct091

roles across various structural contexts. Relying092

on limited subgraphs to interpret paths can result093

in incomplete utilization of topology. Thus, this094

limitation resembles interpreting a word based on a095

single scenario, ignoring context-sensitivity, which096

restricts the model’s ability to capture multi-hop,097

even complex relational patterns.098

Therefore, we propose the Path-based Graph099

Language Model (PathGLM), including a100

community-centric corpus that contains structurally101

meaningful node-to-center paths generated within102

communities. Similar to the standard training103

paradigm of large language models, we perform104

pre-training on the well-designed node sequences105

to facilitate the large language model to develop106

a global understanding of graph structure. This107

stage teaches LLMs to understand the "grammar"108

of graph language, denoting generalizable struc-109

ture patterns. In task-specific tuning, we further110

enhance node representations by incorporating path111

tokens obtained from the graph language learning112

step, allowing the model to better adapt to down-113

stream graph tasks such as node classification. The114

main contributions of PathGLM are as follows:115

(1) We follow the Graph-as-Language paradigm116

to leverage the nature of language models, as well117

as sequence prediction, to understand topological118

patterns on graphs. (2) We organize the graph topol-119

ogy as language-interpretable node-to-center paths,120

allowing LLMs to internalize structural patterns121

in the form of node sequences. (3) We design122

a task-specific tuning mechanism that integrates123

structural hints into node texts encoding for effec-124

tive optimization. (4) Experiments demonstrate the125

effectiveness of PathGLM with community-centric126

corpus construction and paths as sequence input 127

for graph language learning and downstream tasks. 128

2 Preliminaries 129

Given a text-attributed graph G = (V, E , T ), where 130

each node vi ∈ V is associated with a textual at- 131

tribute ti ∈ T , our objective is to learn node-level 132

embeddings that effectively capture both the seman- 133

tic content ti and structural property Ei of node vi. 134

In contrast to conventional approaches that lever- 135

age message passing on graphs, we inject structural 136

cues directly into the input space of large language 137

models. These path tokens are concatenated with 138

the node’s textual content to form the final input: 139

fLLM : [Ei; ti] −→ Embi, (1) 140

where fLLM represents a large language model that 141

takes the structural prompt Ei (e.g., path-based con- 142

text) as a prefix concatenated with the node text 143

ti. The output Embi is a joint representation cap- 144

turing both semantic and structural features and 145

transferred to graph learning tasks such as node 146

classification and link prediction. 147

3 Methodology 148

We propose a novel LLM-based framework that 149

considers graph structure as a new format language 150

to enable language models to process structural 151

information. To avoid understanding nodes from 152

a single point, we partition nodes into different 153

communities to capture context-sensitive interpre- 154

tations. Moreover, we design the coherent corpus 155

including node sequences connected with complex 156

relational patterns, i.e., node-to-center paths, to pre- 157

train LLMs to learn graph grammar by sequence 158

prediction. This design addresses the challenge of 159

limited structural information input for language 160

models and enables the model to better align nodes 161

in communities with diverse structural contexts by 162

well-structured paths. Our model includes three 163

key components, including Community-Centric 164

Corpus Design, Graph Grammar Acquisition, 165

Topology-Aware Task Tuning in Figure 2. The 166

rationale of these modules is detailed as follows. 167

3.1 Community-Centric Corpus Design 168

To transform a graph into a language-like format, 169

we conceptualize graphs as linguistic systems by 170

defining nodes as "words" and multi-hop relations 171

as "sentences". One challenge is that nodes usually 172

exhibit different roles depending on contexts in the 173
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Text-Attributed Graph Node ID: 36660
Abstract: In practical images, 
ideal step edges are actually 
transformed into ramp edges, 
due to the general low pass
filtering nature of imaging 
systems. This paper discusses 
the application of the recently 
developed Expansion 
Matching
(EXM)method for optimal 
ramp edge detection.
......
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.
Prompt Input:  
System Message: You are a good assistant of analyzing texts. 
Please make a prediction for the below paths and 
corresponding texts.
User:
This Path (Node ID): 36660->44267->42897->30707->… 
Texts for Paths:
Abstract of Node 36660: In practical images, ideal step edges 
are actually transformed..
Abstract of Node 44267: In this paper, we develop a novel 
method for view-based recognition of videos …

Graph Language Acquisition

Anchor Node: 
In practical 
images, ideal step 
edges are actually 
transformed into 
ramp edges,  due  
to the genera l low 
pass …
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Figure 2: The illustration of PathGLM, graph language modeling on a toy text-attributed graph. This framework
groups nodes with long semantic texts into communities, representing distinct topological contexts, and then
node-to-center paths are sampled to construct the structurally coherent corpus. Next, these texts of nodes in paths
are concatenated as input sequences, which are encoded to learn the graph language grammar. The path sequences,
also serving as prefixes, guide LLMs to learn text-structure representations for graph tasks.

graph topology. Similar to how words have diverse174

meanings in diverse communication scenarios, the175

context-dependent contributions of nodes mainly176

arise from the fact that relations exhibit many-to-177

many mappings and intricate combinations, and178

long-range dependencies. Therefore, the contexts179

not only capture their roles in the topology broadly180

but also assist in designing high-quality sentences181

composed of the training corpus.182

Next, we group nodes based on their semantic183

similarity into concept-related communities based184

on shallow embeddings. Furthermore, we employ185

three clustering algorithms rather than relying on186

only one single approach to avoid a narrow under-187

standing of graph language paradigm: k-means,188

spectral, and hierarchical clustering. Each method189

focuses on distinct aspects such as node semantic190

similarity and structural properties, enabling us to191

assemble various and multifaceted communities.192

3.1.1 K-means Clustering193

Specifically, the k-means algorithm partitions194

nodes based on their feature vectors by minimiz-195

ing intra-cluster variance. Formally, given node196

embeddings of V , {x1, . . . ,xn} with xi ∈ Rd, the197

objective is to find K clusters {C1, . . . , CK} that198

minimize the within-cluster sum of squares:199

min
{C1,...,CK}

K∑
k=1

∑
xi∈Ck

∥xi − µk∥2, (2)200

where µk denotes the centroid of cluster Ck. By201

grouping nodes that share similar semantic em-202

beddings, this method constructs compact seman-203

tic communities for our graph-as-language frame- 204

work, which reflect the nuanced understanding of 205

nodes. These communities are formed based on 206

embedding proximity in a joint semantic-structural 207

feature space. Consequently, the communities 208

{C1, . . . , CK} exhibit high textual and topological 209

affinity, enabling the identification of nodes with 210

closely aligned meanings and structural roles. 211

3.1.2 Hierarchical Clustering 212

We employ hierarchical clustering in a bottom-up 213

manner by starting from singleton clusters where 214

each node forms an individual community. Pairs 215

of clusters are merged according to the Ward link- 216

age criterion, which minimizes the increase in total 217

within-cluster variance. This method adaptively 218

uncovers structurally cohesive groups based on 219

the distinct granularity of nodes. Formally, given 220

clusters {C1, . . . , Cm,m > K} and their centroids 221

{µ1, . . . , µm}, the distance between two clusters 222

Ci and Cj is defined as: 223

d(Ci, Cj) =
|Ci||Cj |

|Ci|+ |Cj |
∥µi − µj∥22, (3) 224

where |Ci|, |Cj | denote community cardinalities and 225

µi, µj represent centroids. Optimizing the above 226

geometrical criterion and penalizing intra-cluster 227

variance growth promotes compact communities. 228

This optimization seeks the optimal K clusters 229

based on shallow embeddings, without incorpo- 230

rating structural features like the adjacency matrix. 231

Consequently, K communities reflect semantic fea- 232

tures, representing topic-related similarity. 233
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3.1.3 Spectral Clustering234

This algorithm extracts communities by analyzing235

the graph’s global structure in a low-dimensional236

hidden space. The key target is to approximate the237

graph minimum cut problem by employing spectral238

decomposition and continuous relaxation technique239

to effectively obtain balanced graph partitions:240

Ncut(Ci, Cj) =
cut(Ci, Cj)

vol(Ci)
+

cut(Ci, Cj)
vol(Cj)

, (4)241

where cut(Ci, Cj) measures inter-cluster edge242

weights, and vol(∗) represents cluster density com-243

putation. Formally, we compute the normalized244

graph Laplacian Lsym = I −D−1/2AD−1/2 from245

adjacency matrix A and degree matrix D, and ex-246

tract the first q eigenvectors, U ∈ Rn×q, to form a247

structural node embeddings. Applying k-means248

clustering on U yields clusters {C1, . . . , CK},249

which correspond to the spectral communities as in250

Eq.2. Consequently, the identified K structurally251

cohesive groups reflect globally structural co-usage,252

emphasizing intrinsic connectivity to capture the253

latent topological "grammar" of graph language.254

3.1.4 Node-to-Center Paths255

After graph partition, we obtain communities that256

provide expressive and abundant interpretations257

of nodes from different perspectives. Moreover,258

considering structural and sequential connections259

in graphs for node roles is crucial because nodes260

exhibit extensive links, even within communities.261

Considering graphs as language-like formats, we262

have a "vocabulary" with contextual groups, but we263

lack the notion of "sentences" of graph language,264

as well as structured compositions encompassing265

informative dependencies and avoiding redundant266

or distracting information for language learning.267

To encode multi-relational structure into268

language-like sequences, we build structural paths269

upon the previous communities since they narrow270

the graph scope for formulating the complicated271

relations. However, LLMs are inherently designed272

for sequence prediction, not for graph structure.273

Drawing inspiration from how dictionaries often274

include exemplary sentences to illustrate the use of275

words, we aim to generate high-quality structural276

sequences that demonstrate both semantic roles and277

topological dependencies. Further, they serve as278

expressive and representative "sentences" in our279

graph language, enabling the model to learn gram-280

mar rules within and across communities.281

Therefore, we construct node-to-center paths for 282

each node as communities offer a valuable anchor, 283

i.e., centroids. This design reduces noise from other 284

irrelevant nodes and organizes the graph structure 285

into concise and interpretable paths. The links 286

among nodes in paths reflect meaningful topology, 287

such as adjacency frequency and distance, which 288

carry on both local and global structure, ensuring 289

a high-quality training corpus. Formally, for each 290

community C(l)
k from the l methods, we define the 291

centroid node c
(l)
k . For any node vi ∈ C(l)

k , we 292

compute the shortest path P
i→c

(l)
k

from vi to the 293

community center c(l)k over the graph G. This can 294

be expressed as: 295

P
i→c

(l)
k

= arg min
P⊆G

Length(P) (5) 296

s.t. P connects vi and c
(l)
k , (6) 297

where P
i→c

(l)
k

= [vi, . . . , c
(l)
k ] denotes the specific 298

expression of node-to-center paths. This shortest 299

path guarantees efficient sequences from individual 300

nodes to their community centers. 301

3.2 Graph Grammar Acquisition 302

To address LLMs’ input length limits and the need 303

for topology-aware semantic understanding, we 304

have obtained nodes as topic-related “vocabulary” 305

and paths as “grammar.” Our community-based 306

node-to-center paths capture both semantic roles 307

and structural dependencies more effectively than 308

random walks or neighborhood sampling. These 309

paths, centered on community hubs that represent 310

key concepts, provide coherent and representative 311

sequences for learning graph grammars. Unlike 312

prior methods that focus mainly on text relevance 313

and overlook explicit structure (Huang et al.), our 314

approach better integrates topology. However, how 315

to leverage these structured paths as training data 316

for LLMs to learn and generalize graph grammar 317

remains a significant challenge. Furthermore, we 318

provide experimental evidence and theoretical jus- 319

tification in Appendix A to illustrate long-range 320

dependencies preservation. 321

By representing node-to-center paths as 322

sentence-like sequences, we train large language 323

models to learn graph topology rules. Following 324

the standard LLM paradigm, we usually pre-train 325

the model on a high-quality corpus to learn 326

linguistic patterns. Therefore, we model the graph 327

structure by treating each path as a sequence to 328
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mimic word sequence prediction. However, to329

improve efficiency and holistic understanding,330

we constrain predictions to only the terminal331

node label rather than every next node to improve332

efficiency and promote topological learning.333

Directly exploiting truth labels for pre-training334

supervision risks data leakage since test data are335

included in paths. Instead, we leverage the model336

to predict the terminal node (i.e., the community337

center) based on unsupervised clustering, which338

prevents data leakage and encourages the model339

to learn structural patterns shared across diverse340

path constructions from communities. Specifically,341

we encode the node-to-center path of node vi in342

community C(l)
k , P

vi→c
(l)
k

= [vi, . . . , c
(l)
k ], into se-343

quence by concatenating texts along paths:344

Xi = Concat(Text(v) | v ∈ P
vi→c

(l)
k

), (7)345

where Text(v) denotes textual content. To explic-346

itly incorporate structural information, the prompt347

prepends node IDs to their corresponding texts, re-348

flecting the traversal order. An illustrative prompt349

example is provided in Appendix D.350

By training the model based on node-to-center351

paths during pre-training, it gains a deeper under-352

standing of the graph structure. Given the complete353

path sequence composed of node texts along the354

path Xi, the LLM is trained to predict center node355

yi = k of the community C(l)
k associated with the356

terminal node c
(l)
k . Consequently, the model can357

interpret these paths not as plain texts but as signals358

containing graph structural information in multiple359

clustering methods. The pre-training objective is360

defined as:361

Lpre = − logP(yi = k | Xi; θpt), (8)362

where θpt denotes LLM parameters. This objective363

encourages the model to align semantic representa-364

tions with the topological information embedded365

in node-to-center paths, effectively learning the366

structured graph language.367

3.3 Topology-Aware Task Tuning368

While pre-training on node-to-center paths allows369

the LLM to acquire a structural understanding of370

graph connections, downstream tasks such as node371

classification demand that the model apply these372

structural patterns to specific tasks. Leveraging the373

pre-trained topological grammar to complement374

semantic information could perform more accurate375

node classification. Fine-tuning aims to ensure 376

that the LLM fully leverages acquired structural 377

knowledge by integrating path-aware cues into the 378

task-specific learning process. 379

Therefore, we reuse node-to-center paths as soft 380

prompts during fine-tuning. Preserving consistent 381

paths ensures alignment between pre-trained struc- 382

tural patterns and task-specific tuning. This prefix- 383

based method integrates graph topology directly 384

into the LLM’s language modeling, allowing joint 385

utilization of structural and textual information. 386

Specifically, we construct prefixes for all nodes by 387

tokenizing the corresponding node-to-center paths. 388

This design not only reduces the dimensionality of 389

path embeddings but also reinforces the activation 390

of structural grammar learned during pre-training. 391

For each node vi, we define the prefix: 392

P
(l)
i = Concat

(
tv | v ∈ P

vi→c
(l)
k

)
. (9) 393

We form the fine-tuning input by concatenation: 394

X ft
i = Concat

(
P

(l)
i || Text(vi)

)
, (10) 395

where includes a hyperparameter, the length of P (l)
i . 396

The model is fine-tuned with LoRA adapters with 397

input of X ft
i and outputs class probabilities ŷi. We 398

formulate the standard cross-entropy loss over the 399

ground true labels yi as follows: 400

Lft = − 1

N

N∑
i=1

|Y|∑
j=1

yji log p
(
yi = j | X ft

i ; θpt, θft
)
,

(11) 401

where only θft is updated during fine-tuning while 402

θpt remains fixed in this step. 403

4 Experiments 404

In this section, we conducted extensive experiments 405

to evaluate the effectiveness of PathGLM, which 406

leverages LLaMA3 as the backbone. We compared 407

our model against state-of-the-art baselines under 408

the same settings of LLaMA3. Moreover, they 409

are designed to answer the following key research 410

questions (RQs): RQ1: Does our PathGLM con- 411

sistently outperform competitive baselines on node 412

classification? RQ2: How do different strategies 413

for constructing the structural communities affect 414

path informativeness in the training corpus? RQ3: 415

How do node-to-center paths contribute to learning 416

graph language grammar by pre-training LLMs? 417

Then, we assessed the efficiency of pre-training 418

and task tuning and analyzed hyperparameters. 419
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Table 1: Comparison of classification Accuracy and Macro-F1 score among baselines and the PathGLM on three
benchmark datasets (averaged over 3 runs).

NLP Models Graph Models ACM Wikipedia Amazon

Test-Acc. Macro-F1. Test-Acc. Macro-F1. Test-Acc. Macro-F1.

Fine-tuned Language Models +/- GNNs

BERT

- 73.2 69.0 68.8 58.4 90.5 86.9
GCN 77.1 74.6 68.4 58.7 93.3 90.1
GAT 78.0 74.1 69.8 60.8 93.6 90.6
GraphSAGE 76.8 74.1 72.7 59.5 92.9 90.0

RoBERTa

- 76.6 70.7 68.1 57.6 85.9 83.9
GCN 79.4 74.1 68.0 56.1 92.5 90.7
GAT 78.9 74.2 71.0 61.2 92.4 90.5
GraphSAGE 78.3 74.1 72.1 57.5 92.1 90.4

Fine-tuned Large Language Models +/- GNNs

Llama3_8b - 80.6 73.8 71.2 59.0 91.6 88.3
Llama3_8b GraphSAGE 81.3 76.4 73.0 60.6 92.8 89.6

Pre-trained Large Language Models

GPT-3.5 54.3 51.8 61.8 59.1 49.1 46.5
GPT-4 67.5 64.7 60.9 58.3 40.3 38.6

Deepseek_v2 64.8 62.3 15.4 10.5 23.4 26.0

Tailored Frameworks

MPAD 78.9 71.6 68.0 53.9 92.8 88.6
GLEM 79.8 73.9 71.2 58.3 94.3 90.9

LLAGA 77.5 72.1 72.0 60.5 90.8 88.6
GraphFormers 75.1 65.4 67.5 51.2 86.4 82.2
InstructGLM 74.5 68.9 70.6 58.1 94.2 89.6

PathGLM 85.1 79.2 74.8 63.1 93.6 91.7

4.1 Experimental Setup420

4.1.1 Datasets421

We evaluate the performance of PathGLM on three422

datasets: ACM, Wikipedia, and Amazon, which423

are manually constructed from raw corpora with424

associated textual descriptions and categorical la-425

bels. All datasets are split into training, validation,426

and test sets with a ratio of 8:1:1. Detailed dataset427

statistics are provided in Appendix B.428

4.1.2 Baselines429

We evaluate PathGLM performance against base-430

lines in four categories: (1) pretrained language431

models (e.g., BERT, RoBERTa) combined with432

GNNs like GCN; (2) large language models433

combined with neural networks, where we use434

LLaMA3 and GraphSAGE for strong performance;435

(3) pretrained large language models used directly436

via APIs; and (4) tailored frameworks integrat-437

ing structure and text through prompt design or438

co-training, including MPAD (Nikolentzos et al.,439

2020), GLEM (Zhao et al., 2023), LLAGA (Chen440

et al., 2024a), GraphFormers (Yang et al.), and441

InstructGLM (Ye et al.), referring to Appendix C.442

4.1.3 Implementation Details 443

Many details and parameter settings of experiment 444

design, including hyperparameters, are provided 445

in the appendix E. To assess classification perfor- 446

mance, we adopt two metrics: Accuracy measures 447

the proportion of correctly predicted node labels 448

over all test instances. Macro-F1 computes the 449

averaged F1-score independently for each class. 450

4.2 Overall Performance (RQ1) 451

We evaluate the performance of PathGLM with 452

four categories of baselines across multiple TAG 453

benchmarks. As shown in Table 1, our model 454

consistently achieves state-of-the-art performance, 455

highlighting the advantages of graph language 456

modeling. PathGLM outperforms both LM-GNN 457

pipelines and strong baselines such as LLaMA3 458

combined with GraphSAGE, despite their ability to 459

handle longer inputs with more parameters. Unlike 460

sequential pipelines that struggle with semantic- 461

structural learning, our model leverages node-to- 462

center paths and graph language modeling for more 463

effective structural understanding. While larger 464

pretrained models exist, their lack of task-specific 465

adaptation limits effectiveness. Hybrid methods 466
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by joint training or concatenating neighborhood467

embeddings, still underutilize graph relations.468

4.3 Effect of Communities on Path469

Informativeness (RQ2)470

To investigate how multiple communities influence471

the informativeness of generated node-to-center472

paths, we select several paths by random walks and473

compare their semantic and structural information474

with that of node-to-center paths. We hypothesize475

that paths derived from unsupervised clustering ap-476

proaches contain more semantic and structural in-477

formation. To verify this, we conduct experiments478

comparing the path informativeness generated by479

clustering with that of the random walk algorithm.480

Specifically, we evaluate these sequences using two481

metrics: (1) average semantic similarity between482

the beginning and remaining nodes along paths483

(measured by BERT-based embeddings), and (2)484

average closeness centrality of all nodes in paths.

Table 2: Semantic and Structural Evaluation of Paths
Rooted at Many Randomly Selected Anchors.

Path Sequences Similarity Centrality

Random walks 0.1324 0.1454
K-means 0.2576 0.1467
Spectral 0.3565 0.1527
Hierarchical 0.2138 0.1359

485
As shown in Table 2, we compare path sequences486

generated by random walk and three clustering487

methods (k-means, spectral, and hierarchical). The488

results demonstrate that clustering-based sequences489

can achieve higher semantic similarity than random490

walks, indicating more coherent topic-centric in-491

formation. Although structural centrality varies in492

three types of paths, node-to-center paths generally493

preserve meaningful topological context, which494

supports the necessity of leveraging different algo-495

rithms to construct "sentences" for the corpus.496

4.4 Analysis of Node-to-Center Paths (RQ3)497

Our method employs node-to-center paths from498

different clustering techniques for graph language499

acquisition. Unlike random walks, which sample500

neighbors in an unordered, purely structural way,501

these paths reflect semantic categories and topo-502

logical roles. To clearly visualize their impacts on503

PathGLM, we evaluate paths from these clustering504

methods separately, with random walks as a base-505

line. This comparison shows that our paths provide506

higher-quality topological context than paths from 507

random combinations. 508

As shown in Table 3, even a single node-to- 509

center path consistently outperforms the path from 510

random walks, demonstrating their effectiveness 511

in capturing meaningful graph language patterns. 512

While individual clustering may not yield node-to- 513

center paths for every node, the combination of 514

structured paths mitigates that by compensating for 515

missing paths, contributing to robust performance. 516

Moreover, combining paths from three clustering 517

strategies achieves the highest accuracy overall, 518

suggesting that different clustering methods encode 519

complementary semantic and topological informa- 520

tion. Notably, when combined paths are used only 521

during pretraining, performance significantly drops, 522

and this highlights the importance of fine-tuning 523

in fully exploiting structural cues. These findings 524

confirm that community-centric constructed paths 525

offer richer and more informative supervision than 526

randomly sampled neighbors. 527

4.5 Hyperparameter and Efficiency Analysis 528

We analyze the impact of a key hyperparameter, the 529

prefix length of node-to-center paths concatenated 530

to node texts in the task tuning stage, on different 531

datasets. The chosen lengths were based on the 532

average path lengths: for ACM, we tested {3, 6, 12, 533

18}, while for Amazon and Wiki, the lengths were 534

{5, 11, 16, 22}. Results show that prefix lengths 535

close to the average path length sufficiently carry 536

the informative content, as shown in Figure 3.

Figure 3: Performance Impacts of Prefix Length.

537
Our framework demonstrates practical training 538

efficiency except for outperformance in experi- 539

ments, with pre-training and fine-tuning completed 540

within an acceptable implementation time span 541

(about 40h and 20h per dataset, respectively). 542
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Table 3: Performance Comparison on Three Datasets Using Different Path Sampling Strategies.

Path Strategy ACM Wiki Amazon
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

No path 80.6 73.8 71.2 59.0 91.6 88.3
Random walks 83.2 78.5 72.7 60.5 92.9 89.8
K-means 84.5 79.1 73.2 61.4 93.5 90.9
Spectral 83.6 78.9 73.9 61.7 93.3 90.6
Hierarchical 83.7 78.5 73.0 61.0 92.8 90.1
Pre-train only 82.7 77.1 71.7 59.9 92.7 88.5

Multi-paths 85.1 79.2 74.8 63.1 93.6 91.2

Figure 4: Time Cost Analysis.

5 Related Work543

5.1 Graph Descriptions for LLMs544

Text-attributed graph learning relies on extracting545

rich features via language models like BERT (De-546

vlin et al.) and RoBERTa (Liu et al., b), but the547

rise of large language models (LLMs) has greatly548

boosted performance and efficiency compared to549

LM and GNN combos with fine-tuning techniques550

like LoRA (Hu et al., a). However, topology in the551

graph remains underexploited. Recent work adapts552

LLMs for graphs by encoding structural signals553

as natural language prompts, with methods like554

OFA (Liu et al., a) and SimCSE (Li et al.). In ad-555

dition, WalkLM (Tan et al.) and InstructGLM (Ye556

et al.) augment node texts through neighborhood557

texts or relation summaries. However, these face558

information loss and input length limits. Therefore,559

approaches such as GraphGPT (Tang et al., a) and560

LLAGA (Chen et al., 2024a) encode structure as561

graph embeddings aligned with text embeddings,562

reducing redundant texts in subgraphs but relying563

on local neighborhoods, with limited compatibility.564

5.2 Integration of GNN and LLM565

Integrating GNN and LLM directly can leverage566

both graph structure and text semantics, two modal-567

ities, and offer complementary interaction. How-568

ever, simple cascaded pipelines suffer from em-569

bedding space mismatch and limitations of inter-570

play between graph topology and textual content. 571

Modality alignment-based approaches such as Con- 572

GraT (Brannon et al.), LinguGKD (Hu et al., b), 573

and TEAGLM (Wang et al.) align embeddings 574

from networks and language models by contrastive 575

learning or projection modules. Distillation of 576

structural knowledge (Pan et al.) has been used 577

to transfer rich structure-text patterns from teacher 578

models. More deeply integrated architectures such 579

as TAPE (He et al.) and Dr.E (Liu et al., c) stack 580

GNN and LLM layers to inject aggregated node 581

embeddings into language models or describe struc- 582

tural information for subsequent graph aggregation. 583

Despite the above improvements, some important 584

challenges, including optimization difficulties and 585

high computational cost, remain at the same time. 586

Besides, GraphFormers (Yang et al.) and HASH- 587

CODE (Zhang et al.) tackle these issues by de- 588

signing graph neural network layers specifically 589

compatible with language models and adopting 590

coordinated training. These approaches generally 591

rely on intermediate embedding exchanges but lack 592

deep semantic-structural fusion. 593

6 Conclusion 594

In this paper, we propose PathGLM, a novel model 595

that encodes graphs as a new language to en- 596

able LLMs learning on text-attributed graphs. By 597

clustering nodes into contextual communities, our 598

model constructs node-to-center paths as high- 599

quality sequences, employed for pre-training large 600

language models to understand graph language 601

grammar. Topology-aware task tuning leverages 602

acquired structure patterns by concatenating paths 603

as prefixes instead of relying on graph neural net- 604

works for node classification. We present a Graph- 605

as-Language framework that integrates structure 606

and semantic modeling, yielding outperformance 607

across benchmarks. Future work will explore ex- 608

tensions to large-scale and heterogeneous graphs. 609
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7 Limitations610

Our method offers a new perspective by modeling611

graphs as a new language for semantic and struc-612

tural fusion, but that presents limitations. Though613

effective on moderate-sized graphs, our method614

faces computational challenges on large graphs615

with millions or billions of nodes, where commu-616

nity detection and path design become significantly617

more expensive. Scaling to such settings remains618

an open direction for future exploration.619

Further, our current framework is designed and620

evaluated primarily on text-attributed graphs with621

node classification as the main downstream task. Its622

applicability to alternative tasks like link prediction623

remains unexplored and open a promising direction.624

Additionally, experiments focuses on widely-used625

benchmarks composed of homogeneous graphs,626

but could be extended to complex settings such as627

heterogeneous graphs and dynamic graphs.628

While this model relies on LLaMA3 as the back-629

bone within the limitation of computation cost,630

large language models with more parameters such631

as 13B could perform better in graph learning.632

Ethics Statement633

We all comply with the ACL Ethics Policy1 during634

our study. All datasets used contain anonymized635

consumer data, ensuring strict privacy protections.636
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A Theoretical Foundation 753

We provide an information-theoretic perspective 754

to justify the effectiveness of node-to-center paths. 755

In graphs, closer nodes (e.g., one-hop or two-hop 756

neighbors) typically share stronger semantic or 757

structural similarities, while long-range dependen- 758

cies may introduce noise or diluted signals. Our 759

goal is to sample high-quality sequences that maxi- 760

mize the structural and semantic information avail- 761

able to language models. We quantify the infor- 762

mational value of a k-hop neighborhood by the 763

mutual information between a target node v and its 764

neighbors Nk: 765

IG(v,Nk) = I(v;Nk) = H(v)−H(v | Nk),
(12) 766

where H(v) is the entropy of node v, and H(v | 767

Nk) is the conditional entropy given its k-hop 768

neighbors. A lower conditional entropy implies 769

that the neighborhood contains more relevant infor- 770

mation about the node. 771

We compare the information gain from two 772

neighborhoods with hop distances i < j: 773

IG(v,Ni) > IG(v,Nj) ⇔ H(v | Ni) < H(v | Nj),
(13) 774

where we assume that closer neighbors are more 775

predictive of the node itself. To express this re- 776

lationship, we model the conditional entropy as 777

proportional to that of the 1-hop neighborhood: 778

H(v | Ni) = λH(v | N1) (14) 779

H(v | Nj) = γH(v | N1), (15) 780

with constants 0 < λ < γ < 1 reflecting the 781

diminishing predictability as neighborhood radius 782

increases. Thus, the difference in entropy becomes: 783

784

H(v | Nj)−H(v | Ni) = (γ−λ)H(v | N1) > 0,
(16) 785

leading to: 786

IG(v,Ni) > IG(v,Nj). (17) 787

This theoretical insight supports our node-to-center 788

path design: by prioritizing paths through semanti- 789

cally central nodes within a cluster (i.e., a lexicon), 790

we form sequences that carry more informative 791

and coherent structural language content than those 792

relying solely on local neighborhoods. 793
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B Datasets794

The statistics of datasets are shown in Table 4, and795

details are described below:796

Wikipedia. This dataset is constructed from797

Wikipedia articles, where each node represents an798

article and edges are formed by hyperlink refer-799

ences 2. The category labels are assigned based on800

the taxonomy provided in Wikipedia’s reference801

lists.802

ACM. We collect papers from the ACM digital803

library (Tang et al., b), where each node corre-804

sponds to a paper and citation links form directed805

edges. Each paper is labeled according to its re-806

search field, covering areas such as Artificial Intel-807

ligence, Data Mining, and Machine Learning.808

Amazon. This dataset is built from Amazon809

product metadata (He and McAuley), where nodes810

represent products and edges are formed by co-811

view relationships in user browsing history. Each812

product is categorized into a department-level class813

as its label.814

Table 4: Statistics of datasets in our experiment.

Datasets #nodes #edges #classes

ACM 48,579 193,034 9
Wiki 36,501 1,190,369 10

Amazon 50,000 632,802 7

C Baselines815

To comprehensively evaluate our model, we com-816

pared PathGLM with current representative base-817

lines, which can be broadly categorized into four818

groups:819

Language models combined with graph neu-820

ral networks: These models adopt a cascaded ap-821

proach where they train LM-based encoders like822

BERT and RoBERTa and feed embeddings into823

common GNNs, i.e., GCN, GAT, and GraphSAGE.824

Large language models combined with graph825

neural networks: We select LLaMA3, serving as826

the backbone of PathGLM. And GraphSAGE is827

integrated to aggregate neighborhood features due828

to its best performance.829

Pretrained LLMs only: These approaches di-830

rectly utilize APIs of large language models for the831

inference stage.832

Tailored frameworks: These models integrate833

structural and textual information by proposing ei-834

2http://www.mattmahoney.net/dc/textdata

ther prompt design or co-training: MPAD (Niko- 835

lentzos et al., 2020) constructs word co-occurrence 836

graphs from the corpus and applies a message- 837

passing framework to propagate information across 838

the graph. GLEM (Zhao et al., 2023) iteratively 839

updates a pretrained language model and a GNN us- 840

ing co-training loops, aligning semantic and struc- 841

tural signals. LLAGA (Chen et al., 2024a) bridges 842

LLMs and GNNs via adaptive graph construction 843

and task-specific LLM prompting, enabling multi- 844

modal interaction across structure and text. Graph- 845

Formers (Yang et al.) unifies transformers and 846

GNNs in a joint encoder, leveraging graph-aware 847

self-attention. InstructGLM (Ye et al.) encodes 848

structural features into natural language prompts 849

and fine-tunes a large language model to perform 850

graph-specific tasks. 851

D Pre-training Prompt 852

We have designed a detailed path prompt for pre- 853

training to help the LLM better understand our 854

training objectives. This template includes gen- 855

eral ID information for each node in the path and 856

concatenates the text of each node. The task is to 857

perform label prediction for the last node in the 858

path. 859

E Detailed Settings 860

Our model first employs three clustering methods: 861

K-means, spectral clustering, and hierarchical clus- 862

tering. Based on the identified communities, short- 863

est paths from each node to its community cen- 864

ter are computed using Dijkstra’s algorithm. The 865

model utilizes LLaMA3 as the backbone, taking 866

node-to-center paths as input for language acquisi- 867

tion, followed by fine-tuning with pretrained param- 868

eters for node classification. All experiments are 869

conducted on a server equipped with three NVIDIA 870

RTX 3090 GPUs (24GB memory each). 871

Clustering is implemented primarily using the 872

fassi and scipy packages. For all three methods, 873

the number of communities is predetermined by 874

jointly considering the elbow criterion and silhou- 875

ette scores. The candidate community number 876

ranges for all three datasets is set between 2 and 877

20, as shown in Figure 6. In the pre-training stage, 878

we use the Adam optimizer with a learning rate in 879

[4e − 5, 1e − 4]. Tokenization uses a maximum 880

sequence length of 2048. The number of training 881

epochs is set to 2, in which the LLM achieves rapid 882

convergence and delivers highly stable results. We 883
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Pre-training Prompt Template:
System: You are a good assistant in analyzing texts. Please make a prediction for the
paths below and the corresponding texts.
User: Classify the last academic paper into 9 categories. The Path (Node ID): 36660 ->
3577 -> 35782 -> 42722 -> 21232 -> 37688 -> 11229. The texts of this path are as
follows.
Abstract of Node ID 36660: In practical images, ideal step edges are actually
transformed into ramp edges, due to the general low pass filtering nature of imaging
systems. This paper discusses the application of the recently developed Expansion
Matching (EXM) method ...
Abstract of Node ID 3577: This paper presents a novel interactive system for guiding
artists to paint using traditional media and tools. The enabling technology is a
multi-projector display capable of controlling the appearance of an artist’s canvas.
This display-on-canvas ...
Abstract of Node ID 35782: Boundary detection is essential for a variety of computer
vision tasks such as segmentation and recognition. We propose a unified formulation
for boundary detection, with closed-form solution, which is applicable to the
localization ...
Abstract of Node ID 42722: We propose a novel approach for solving the perceptual
grouping problem in vision. Rather than focusing on local features and their
consistencies in the image data, our approach aims at extracting the global impression
of an image. We treat image segmentation ...
Abstract of Node ID 21232: Constrained clustering has been well-studied for algorithms
like K-means and hierarchical agglomerative clustering. However, how to encode
constraints into spectral clustering remains a developing area. In this paper, we
propose a flexible and generalized framework ...
Abstract of Node ID 37688: We pose the problem of network discovery which involves
simplifying spatio-temporal data into cohesive regions (nodes) and relationships
between those regions (edges). Such problems naturally exist in fMRI scans of human
subjects ...
Abstract of Node ID 11229: Effective diagnosis of Alzheimer’s disease (AD), the most
common type of dementia in elderly patients, is of primary importance in biomedical
research. Recent studies have demonstrated that AD is closely related to the structure
change of the brain network ...

Figure 5: Prompt used for type prediction in PathGLM.

adopt LoRA layers to flexibly and efficiently in-884

corporate pretrained parameters. The configuration885

of this layer follows standard settings: rank = 8,886

α = 32, and dropout = 0.05, also applied to the887

task tuning. During fine-tuning, the path embed-888

dings are concatenated with text embeddings using889

the same hidden dimension as the LLaMA3 (4096).890

The best path sequence length is aligned with the891

average node-to-center path length of each dataset:892

6 (Wikipedia), 6 (ACM), and 11 (Amazon). Unless893

otherwise specified, all baseline models are repro-894

duced according to the official settings reported in895

their original papers to ensure fair comparison.896
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(1)ACM (3)Amazon (5)Wiki

(2)ACM (4)Amazon (6)Wiki

Figure 6: Elbow Criterion and Silhouette Scores Analysis for Three Datasets.
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