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Abstract

Causal discovery for dynamical systems poses a major challenge in fields where
active interventions are infeasible. Most methods used to investigate these systems
and their associated benchmarks are tailored to deterministic, low-dimensional and
weakly nonlinear time-series data. To address these limitations, we present Causal-
Dynamics, a large-scale benchmark and extensible data generation framework to
advance the structural discovery of dynamical causal models. Our benchmark con-
sists of true causal graphs derived from thousands of both linearly and nonlinearly
coupled ordinary and stochastic differential equations as well as two idealized
climate models. We perform a comprehensive evaluation of state-of-the-art causal
discovery algorithms for graph reconstruction on systems with noisy, confounded,
and lagged dynamics. CausalDynamics consists of a plug-and-play, build-your-
own coupling workflow that enables the construction of a hierarchy of physical
systems. We anticipate that our framework will facilitate the development of ro-
bust causal discovery algorithms that are broadly applicable across domains while
addressing their unique challenges. We provide a user-friendly implementation and
documentation at https://kausable.github.io/CausalDynamics,

1 Introduction

Understanding causal mechanisms in nonlinear dynamical systems is crucial across many fields.
Often direct interventions are impossible. Thus, data-driven causal discovery frameworks (see
Appendix for more background) have emerged as a promising avenue to infer cause—effect
relationships directly from time series observations. Despite rapid methodological advances in this
field, there exists no standardized benchmark for evaluating causal discovery in highly nonlinear,
dynamical settings [[1H3]], which is critical to understand and predict the behavior of physical systems
[4H8]. Most benchmarks (see Appendix [A.2) are built on synthetic data generated by static causal
graphs (e.g., [9]) or auto-regressive models (e.g., [10, [11]]) for domain-specific applications [[12, [13].
Limited examples from the real-world are available but lack a fully resolved causal ground truth

*Equal contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: CauScien: Uncovering
Causality in Science.


https://kausable.github.io/CausalDynamics

Simple- Coupled- Climate-
3-dim. dynamical system Algorithm adaption to generate hierarchical graphs Coupl. atmos.-ocean model

O

/\O

=
e®
Se

A AN

Complexity

Figure 1: Illustration of the tiered framework in CausalDynamics consisting of a plug-and-play,
build-your-own coupling workflow that enables the construction of a hierarchy of physical systems
with common causal challenges, such as unobserved confounders, time-lags, and noisy time series.

[14H16]. As a result, most methods are validated on toy systems or on real-world data failing to
capture continuous state-space developments, complex feedback loops, stochasticity, and regime
shifts, making it impossible to isolate algorithmic limitations (e.g., varsortability [[17, [18]) from
dataset characteristics.

We posit that advancing the development of new causal discovery methods (see Appendix [A.3]for
an overview of methods) capable of capturing high dimensional, nonlinear, time-lagged, and noisy
structures with unobserved confounding, often found in real-world physical systems [19], requires a
novel benchmark. In this paper, we present CausalDynamics, a tiered benchmark and extensible data
generation framework, as shown in Figure[l} to advance the structural discovery of dynamical causal
models.

Simultaneously generating pseudo-real or idealized data has a two-fold advantage: (i) We can bench-
mark causal discovery methods with known causal graphs and well-designed challenges, and (ii) once
calibrated, methods can be extended to realistic applications. This way, we ensure a comprehensive
workflow for developing trustworthy, novel causal discovery methods. CausalDynamics provides that
framework and builds a robust foundation for testing any novel algorithm’s applicability to real-world
scenarios. A quickstart guide to CausalDynamics can be found in Appendix [B}

Our contributions include:
* CausalDynamics, the largest benchmark for causal discovery methods for stochastic chaotic
systems containing over 14000 graphs and over 50 million preprocessed samples.

* A novel graph generating algorithm that allows users to easily extend the complexity of the
synthetic dataset as more powerful causal discovery methods are developed.

* An all-in-one benchmark for evaluating causal discovery methods such that any new algo-
rithm can be reliably evaluated on synthetic data with known graph structure before being
tested on a real-world example within the same framework.

* Evaluation of the performance of several state-of-the-art (SOTA) DL-based and non-DL-
based causal discovery algorithms for graph reconstruction on our benchmark.

2 CausalDynamics

CausalDynamics is a large-scale benchmark and extensible data generation framework as illustrated
in Figure We produce three tiers of datasets, each introducing a progressively greater level



of complexity as detailed in Appendix [C] Our benchmark consists of true causal graphs derived
from thousands of coupled ordinary and stochastic differential equations (tiers 1 and 2), as well as
two idealized climate models (tier 3). The first tier contains ground-truth graphs for hundreds of
three-dimensional chaotic dynamical systems. In the second tier, we adapt an existing algorithm
[20] to generate complex graph structures by coupling deterministic and stochastic systems using
periodic functions (see Appendix [D)), capturing many of the challenges commonly encountered
in real-world dynamical systems. The final tier comprises true causal graphs for two idealized
atmosphere-ocean models, including multiple coupling experiments targeting different modes of
climate variability. Full documentation, code, and the dataset are publicly available at https:
//kausable.github.io/CausalDynamics,

2.1 Causal challenges

We include a set of causal challenges that are common in real-world physical systems to maximize the
applicability of our benchmark. The challenges include: (i) Noise can obscure statistical dependencies
or identify spurious links [21]]; (ii) Hidden confounders, i.e., unobserved variables that are a common
cause of at least two other unrelated variables, induce correlations that algorithms may misinterpret
as direct causal links [22} 23| [19]; (iii) Delays between cause and effect, i.e., time-lags, lead to causal
effects at multiple time scales, which obscure conditional independence test and result in spurious
links [24]. Lastly, varsortability is an artifact in synthetically generated data from structural causal
models (SCMs) describing the increase in a variable’s variance along its topological order [25, 26].
Therefore, we also implement the option to (iv) standardize [17,[18]].

2.2 Dataset summary

We provide a summary of the preprocessed dataset in Table[T]and Figure[I3] Unless otherwise stated,
each graph constitutes 5 randomly initialized trajectories with 1000 time steps. In total, we generated
585 simple, 14096 coupled, and 12 climate graphs, for a total of 14693 graphs. More details on the
selected parameters can be found in Appendix [E]

Table 1: Complexity tiers in CausalDynamics.

Tier | Model Challenges # Graphs
Simple ODE/SDE Confounder 585
Coupled | Coupled ODE/SDE (N={3,5,10}) Confounder, time-lag, standardized, forcing 14096
Climate | MAOOAM + ENSO models High dimensionality 12

3 Experiments

To showcase how SOTA algorithms handle the various challenges of our benchmark, we evaluate
the approaches described in Appendix [FI] reporting a selection of the results in Tables[2}{3|and the
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Figure 2: CDF (y-axis) of AUROC (top, x-axis) and AUPRC (bottom, x-axis) for mean values
reported in Table 2 for different baselines across coupled system experiments. Models that perform
better yield a low area under the curve for both AUROC and AUPRC.
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Table 2: Baseline AUROC (1) / AUPRC (1) scores across different experiments in the hierarchy of
increasingly complex dynamical systems. The scores are averaged over all generated graphs within a
specific experiment. The experiments reported here consider one causal problem at a time, while
keeping other factors at the default setting. The full results, including all possible experimental
permutations, are found in our data repository.

| PCMCI+ F-PCMCI VARLINGAM DYNOTEARS NGC  TSCI  CUTS+ RCD  GRaSP  TCDF

Experiments | Simple

Default S52/.71 517.70 .50 /.69 43 /.67 50/.69 46/7.68 50/.69 50/.69 52/7.71 51/7.70

Noise .50 /.69 52770 53770 48 /.68 50/.68 49/.68 50/.68 .50/.68 .49/.68 .50/ .68

Confounder 49 /.59 .50 /.59 48 /.58 52/ .64 50/.58 53/7.66 50/7.58 50/.58 .55/.64 .50/ .58
| Coupled

Default .67 /.25 67 /.27 .60 /.19 9 /.21 S50/7.15 .60/ .23 0/.15 50/.15 .49/ .15 8 /.15

Noise 64 /.25 57121 5717 .18 57171 .20 S50/.15 53/7.17 50/.15 50/.15 .50/7.50 .50/ .50

Confounder .58/ .20 S557.19 S1/7 a7 49 /.17 S50/7.16 51/7.18 49/.16 51/.18 50/ .17 .50/ .50

Time-lag 587 .24 59/ .24 547 .22 537 .22 50/.20 53721 50/.20 50/.20 .50/.50 .50/ .50

Standardize 69 /.27 .68 /.28 .60 /.19 5 /.23 S50/7.15 6517 .23 0/.15 .50/.16 .50/ .50 0/ .50
| Climate

MAOOAM | .69/ .88 50/ .81 50/ .81 64786 50/ 81 58/.84 50/.81 50/.81 48/.81 .50/ .81

ENSO 57170 S571.70 56 /.69 5517 .69 50/.67 50/7.67 .50/.67 50/.67 .50/.50 .50/ .50

full results at https://huggingface.co/datasets/kausable/CausalDynamics, The default
setup for the simple case refers to ODE systems (0 = 0) with no unobserved confounder. In the
coupled systems tier, the default setup refers to dynamics with n = 10 coupled ODEs (6 = 0), no
confounder, no time-lag (7 = 0), and no standardization. We performed an initial hyperparameter
search for most of the baseline algorithms and provide the results in Appendix

We find methods that do not require much fine tuning, such as the non-DL-based algorithms, perform
better as illustrated in Tables [2}f3] and Figure[2] and observed by [14]. This is striking for the coupled
atmosphere-ocean model, where each node represents a 2-dimensional spatial field. Methods that
only consider 1-dimensional time-series, perform best, compared to DL-based methods, which claim
to have a notion of space. We also find some evidence that topology-based methods, such as TSCI,
perform better than purely DL-based approaches, for confounded and higher dimensional systems.

Table 3: Baseline SHD (]) score across different experiments in the hierarchy of increasingly complex
dynamical systems. The scores are averaged over all generated graphs within a specific experiment.
The experiments reported here consider one causal problem at a time, while keeping other factors at
the default setting. The full results, including all possible experimental permutations, are found in
our data repository.

| PCMCI+ F-PCMCI VARLINGAM DYNOTEARS NGC TSCI CUTS+ RCD GRaSP TCDF

Experiments | Simple
Default 41.04 35.30 35.96 52.37 2891 52.50 48.11 61.85 59.04 59.46
Noise 183.90 149.60 248.90 180.95 84255 173.50 150.50 155.65 842.55 842.55
Confounder 23.02 21.07 22.04 21.74 19.96 22.02 24.04 26.74 27.09 26.61
\ Coupled
Default 224.80 192.90 311.45 181.50 840.95 17470  152.00 157.05 21594 252.00
Noise 183.90 149.60 248.90 180.95 842.55 173.50 150.50 155.65 84255 842.55
Confounder 324.63 195.74 159.63 248.32 670.53 26526 272.68 136.53 136.00 670.53
Time-lag 327.72 350.61 449.33 261.44 793.67 24456 24722 | 201.11 793.67 793.67
Standardize 228.32 201.79 349.63 243.84 840.26 24442 310.63 159.84 840.26 840.26
| Climate
MAOOAM 80.00 130.00 130.00 94.00 31.00 108.00 130.00 130.00 126.00 130.00
ENSO 529.36 530.27 453.00 589.36 337.09 666.27 608.73 66536 66627 666.27

Overall, existing algorithms show shortcomings when confronted with coupled dynamical and
physical systems as shown in Figure [3] for a random single graph realization. Across methods
we find that autocorrelation is inferred where none exists. The baselines also appear conservative,
predicting dense adjacency in the presence of nonstationary dynamics. In the climate case, methods
perform well but do not recover the full coupling between ocean basins. Nevertheless, scores are
the highest for the climate examples, possibly due to the noise in the generated data which might
benefit some methods in recovering the underlying graph structure. Surprisingly in Figure [2] we
observe minimal improvement in the standardized case, especially for methods like VARLiINGAM
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that exploit topological ordering. We performed additional ablation studies that consider the effect of
time subsampling, partial observability, and varying edge-level activation function in Appendix [G|
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Truth

[o])

NPMM
SPMM
ENSO
SlobD

Prediction

Figure 3: Example of baseline performance for coupled systems (n = 5) for causal challenges and
ENSO in the decoupled Atlantic setting (climate). Inference is performed using the best performing
algorithm. Grey nodes and edges represent unobserved confounder, and dashed lines denote time-
lagged relationships.

4 Conclusion

We present CausalDynamics, an extensible data generation framework that we use to construct
the largest benchmark dataset with over 14000 preprocessed graphs of increasing complexity. We
structure our benchmark as a tiered system ranging from simple three-dimensional dynamical systems
to pseudo-real physical systems. We provide a plug-and-play workflow to facilitate the development
of novel causal discovery methods across various domains. Evaluating a set of state-of-the-art
causal discovery algorithms on CausalDynamics shows that many advanced DL-based algorithms
are outperformed by simpler methods, notably on high-dimensional datasets, highlighting a need
for future method development. We believe our work provides the necessary foundation for the
advancement of causal discovery algorithms that are applicable in high-dimensional, nonlinear and
dynamical settings.
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A Background

In this section, we will give a brief background on the connection between dynamical systems and
structural dynamical causal models to introduce the necessary notation.



A.1 Structural dynamical causal model

Dynamical system. For each time ¢ € R>(, we characterize a dynamical system with an associated
state 2(t) € RY for N € N. In general, the description of the system dynamics are given through
differential equations of the form:

dx th

— = f(t 0—— 1
(R (M)
where f is a function, the solution x(¢) depends on the initial condition z(to) = x at time o, and § is
the noise amplitude of the Brownian process W, [28H30]]. When § = 0, Equation[I|becomes ordinary
differential equations (ODEs) whereas ¢ > 0 yields stochastic differential equations (SDEs).

Structural causal models. We describe causal mechanisms through structural causal models (SCMs)
such that a system of d random variables = {x1,..., 24} is expressed as an arbitrary function f*
of its direct parents (causes) Tpa, and an exogenous distribution of noise ek [27):

zy = f*(zpa,, "), fork=1,...,d 2

For dynamical systems, we can extend Equation [2] with Equation [I|for a collection of d differential
equations to define structural dynamical causal models (SDCM) [27, 131} 132]:

d .
k= f*(xpa, 1, 0), with 21 o = 2£(0) 3)

where k € {1,...,d}.

Causal graph. The structural assignment of the SCM induces a directed acyclic graph (DAG)
G = (V, &) over the variables x. G includes nodes v € V for every x5, € x and directed edges
(k,i) € € if z}, € xpa, [17]. Edges are represented in a squared adjacency matrix A € R with
each entry a; € A : ap; = 1if z; is causally impacted by z, else ax; = 0. A corresponding
graphical representation of the DAG is shown in Figure

X=-y —2z 011
y=x+ay m A=|1 1 0| 4

Z=b+2zx —cz 1 0 1

Figure 4: Illustration of the Rossler Oscillator ODE:s (left), the associated adjacency matrix .4 (center)
and the corresponding causal graph (right).

A.2 Related work

Real-world. Real-world datasets for causal discovery remain rare because true causal graphs are
difficult to obtain. A handful of benchmarks provides time series data, e.g. human-motion capture
(MoCap) [33l], S&P 100 stock prices [16]], climate variability and teleconnections [34], river discharge
(CausalRivers) [14]], and ecological observations [35]]. However, most observed collections focus
on static, domain-specific graphs, such as large-scale single-cell RNA perturbations (CausalBench)
[12}[13], the Old Faithful geyser eruptions [36] and immune-cell protein networks [37,|38]]. Bivariate
settings like the Tiibingen Cause Effect Pairs [30] further complement these resources.

Synthetic. Due to the domain specifications, limited availability and often low dimensionality of
real-world datasets, synthetic data plays an important role in understanding complex systems in
general [39-42] and benchmarking causal discovery methods [1] specifically. In szatic settings, SCMs
or structural vector autoregressive (SVAR) models sample causal coefficients and noise to generate
graphs [18]] often following multivariate linear or nonlinear functions [36} 43} 44], or physical laws
[45]. More realistic pipelines derive the causal graph to fit coefficients from observational data
(e.g. causalAssembly [9]], SynTReN [460]), which limits their application to the domain and the
properties of the underlying observed dataset. For time series, idealized dynamical systems, e.g.,



Lorenz or Rossler Oscillators [47]], underpin simpler benchmarks [33}148-H50]], while domain-informed
models include fMRI networks (Netsim) [S1], gene regulatory networks (DREAM3 & 4) [52, 53] or
financial data (FINANCE) [54} 155]]. A collection of climate and weather benchmarks can be found
on CauseMe (https://causeme.uv.es/) [15, 56] with pseudo-realistic climate data generated
using the SAVAR model [[L1]]. Going beyond single-domain applications, novel approaches propose
pipelines to flexibly generate time series datasets for a range of properties and natural systems [57]]
from any observational dataset using DL (e.g., CausalTime [10]).

Time series data is critical for benchmarking SDCM discovery algorithms. However, as outlined
above, relevant benchmarks contain only domain specific datasets consisting of a small number of
graphs [51} 11} [10] and weakly nonlinear systems [[14]. Further, even though datasets might contain
thousands of samples [12], the underlying graphs are but a handful. Although observation-based
approaches generate pseudo-real data for a range of domains, they lack a reliable ground truth
validation [[10, [57].

A.3 Causal discovery methods

In the following section, we provide a summary of the different causal discovery approaches which
can be categorized into five classes. A detailed review of existing methods can be found in [5§]].

(1) Granger causality (GC) [S9] is one of the oldest concepts in causal inference [60]. GC tests
whether a given effect is optimally forecast by its causes under the assumptions of no unobserved
confounders. GC often fails for nonlinear dynamics [35], leading to deep-learning variants: Neural
GC (NGC) [33] employs regularized multilayer perceptrons (c(MLP) or long short-term memory
(cLSTM) to learn nonlinear autoregressive links, while CUTS+ uses a coarse-to-fine pipeline with a
message-passing graph neural network to recover causal graphs from high-dimensional, irregular
time series [61]]. Another notable time-series extension is Temporal Causal Discovery Framework
(TCDF) [55]], which leverages convolutional neural networks with attention mechanisms to identify
lagged causal links directly from multivariate sequences.

(i1) Constraint-based methods infer causal structure by enforcing the statistical constraints implied by
conditional independencies in the data (e.g., PC [21]]). PCMCI+ (Peter Clark Momentary Conditional
Independence) [24] adapts PC to multivariate time series by preselecting candidate parents and
performing Momentary Conditional Independence (MCI) tests over all time-lags to infer contempo-
raneous and lagged edges. F-PCMCI boosts scalability by prefiltering parents via transfer-entropy
before MCI testing [62]]. More recently, permutation-based methods such as Greedy Relaxations
of the Sparsest Permutation (GRaSP) [63] have been developed, which search over permutations of
variables and iteratively prune spurious edges to identify sparse causal graphs.

(iii) Noise-based causal discovery methods exploit the fact that in a correctly specified SCM, the noise
term is statistically independent of its inputs only in the true causal direction. For example, LINGAM
[64] and its temporal extension VARLINGAM [65] assume a linear model with non-Gaussian
noise and recover a unique DAG and lagged links by analysis the residuals, while additive noise
models (ANMs) (e.g., [36]]) generalize this to nonlinear relations by choosing the direction where
residuals remain independent of their input. The recent Repetitive Causal Discovery (RCD) algorithm
[66] extends the LINGAM family by incorporating constrained functional causal models with
regularization, enabling more robust identification in high-dimensional or noisy settings.

(iv) Score-based learning algorithms infer causal relationships between variables by evaluating and
ranking potential causal graphs based on a score function such as least-squares error. For instance,
DYNOTEARS [16]] adopts a score-based SVAR formulation with a penalized least-squares loss and a
differentiable acyclicity constraint to jointly recover instantaneous and lagged weights.

(v) Topology-based approaches are based on Takens’ theorem [67]] to reconstruct the attractor of a
dynamical system from delay-embedded time series data. TSCI (Tangent Space Causal Inference)
[68] then applies Convergent Cross Mapping [35] within each manifold’s tangent space to test for
causal influence by assessing how well the state-space of one variable predicts another.


https://causeme.uv.es/

B Getting started

We provide an overview, including code examples, on how to use the CausalDynamics Python pack-
age. The open-sourced code is available at https://github.com/kausable/CausalDynamics/
and the latest documentation is published at https://kausable.github.io/CausalDynamics/
README.html.

All results, code examples and descriptions rely on version 1.0.0 of the CausalDynamics Python
package.

B.1 Installation

The easiest way to install the Python package is via PyPi, see https://pypi.org/project/
causaldynamics/, which currently requires Python=3. 10.

$ pip install causaldynamics

It is also possible to install the package locally. Further installation instructions are available in the
project repository at https://kausable.github.io/CausalDynamics/README.html|

B.2 Download data

We provide a pre-generated dataset at https://huggingface.co/datasets/kausable/
CausalDynamics)that can be directly downloaded using the following commands:

$ wget https://huggingface.co/datasets/kausable/CausalDynamics/resolve
/main/process_causaldynamics.py

$ python process_causaldynamics.py

The dataset was generated using the scripts published in the repository under: https://github!
com/kausable/CausalDynamics/tree/main/scriptsl

B.3 Generate data

Simple causal models. Here, we showcase how to generate data for the simple complexity tier that
consists of individual dynamical systems. As an example, we choose the Lorenz system and show
how to (i) get the adjacency matrix of the system, (ii) solve the system for 1000 time steps resulting
in time series trajectory data, and (iii) store the data.

We introduce function solve_system, a lightweight wrapper around the dysts package [47,[69],
including ODE/SDE integration schemes that return the trajectories of the integrated system. The
function get_adjacency_matrix_from_jac function then takes the Jacobian computed by dysts
and extracts its adjacency matrix. Within our framework, a single dynamical system can correspond
to a single root node, hence one of the dataset’s dimension is referred to as node. Multiple systems
can be simulated in parallel via the num_systems argument in solve_system.

Finally, we combine the generated time series (data) and its corresponding adjacency matrix A in a
single dataset to save as a NetCDF file [70] using the Xarray package [71].

Coupled causal models. We showcase example code of how to (i) create an SCM, (ii) simulate
the system to generate the time series data, and (iii) plot the data. To create the SCM, we use the
create_scm function which returns the corresponding adjacency matrix A, the weights W and biases
b of all MLPs and the root_nodes that act as temporal system drivers. We then simulate the system
consisting of num_nodes nodes for num_timesteps driven by the dynamical systems system_name
located on the root nodes. We provide a simple example for basic functionality and an advanced
example that shows the modular plug-and-play feature configurability.
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import xarray as Xr
from causaldynamics.systems import get_adjacency_matrix_from_jac
from causaldynamics.systems import solve_system

system_name = "Lorenz"

A = get_adjacency_matrix_from_jac(sys_name)

data = solve_system(
num_timesteps=1000,
num_systems=1,
system_name=system_name

)
data = xr.DataArray(data, dims=[’time’, ’node’, ’dim’])
ds = create_dynsys_dataset(adjacency_matrix=A, time_series=data)

save_xr_dataset (ds, "out_path.nc)

The create_scm and simulate_system function interface can be used to generate more complex
graphs and causal challenges providing the option to introduce confounders, time-lag, noise, periodic
functions as root nodes, and to standardize (i.e., correct for varsortability).




from causaldynamics.creator import create_scm,

create_plots

num_nodes = 2
node_dim = 3
num_timesteps = 1000
system_name=’Lorenz’
confounders = False

A, W, b, root_nodes,
confounders)

= create_scm(num_nodes, node_dim,

data = simulate_system(A, W, b,

create_plots(
data,
A ’

num_timesteps=num_timesteps,
num_nodes=num_nodes,
system_name=system_name)

root_nodes=root_nodes,

out_dir="’.

J
>

show_plot=True,
save_plot=False,
create_animation=False,

simulate_system,

confounders=




from matplotlib import pyplot as plt
from causaldynamics.creator import create_scm, simulate_system
from causaldynamics.scm import create_scm_graph
from causaldynamics.plot import (
plot_scm,
plot_trajectories,
plot_3d_trajectories
)
from causaldynamics.data_io import create_output_dataset,
save_xr_dataset

num_nodes = 5
node_dim = 3
num_timesteps = 1000

confounders = False
standardize = False
init_ratios [1, 1, 11

system_name=’random’
activations_names = [’identity’, ’sin’, ’sigmoid’, ’tanh’, ’relu’]

noise = 0.5

time_lag = 10
time_lag_edge_probability = 0.1

A, W, b, root_nodes, _ = create_scm(num_nodes,
node_dim,
confounders=confounders,
time_lag=time_lag,
time_lag_edge_probability=
time_lag_edge_probability)

data = simulate_system(A, W, b,
num_timesteps=num_timesteps,
num_nodes=num_nodes,
system_name=system_name,
init_ratios=init_ratios,
time_lag=time_lag,
standardize=standardize,
activations_names=activations_names,
make_trajectory_kwargs={’noise’: noisel})

plot_scm(G=create_scm_graph(A), root_nodes=root_nodes)
plot_3d_trajectories(data, root_nodes)
plot_trajectories(data, root_nodes=root_nodes, sharey=False)
plt.show ()

dataset = create_output_dataset(
adjacency_matrix=A,
weights=W,

biases=b,
time_lag=time_lag,
time_series=data,
root_nodes=root_nodes,
verbose=False,

)

save_xr_dataset (dataset, "out_path.nc")
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B.4 Plotting functions

Plotting functions have been implemented to visualize the generated graph structures and system
trajectories given the adjacency matrix 4, the time series data and optionally the root_nodes (see

Figure5).

from causaldynamics.scm import create_scm_graph
from causaldynamics.plot import (plot_scm, plot_trajectories,
plot_3d_trajectories, animate_3d_trajectories)

plot_scm(G=create_scm_graph(A), root_nodes=root_nodes)

plot_trajectories (data, root_nodes=root_nodes, sharey=False)

plot_3d_trajectories(data, root_nodes, line_alpha=1.)

anim = animate_Bd_trajectories(data,
root_nodes=root_nodes,
plot_type="subplots")
display(anim)

= "w“ Iy
Wi |
Structural Causal Model st U R R
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(a) Plot SCM for a graph consisting of 2 nodes
(autocorrelated root node in grey). (b) Plotted trajectories for the SCM from (a).

Node 0 Root node 1

(c) 3D trajectories for the SCM from (a) and the time series from (b). These trajectories can
also be animated to visualize their temporal development with rotating axes to intuitively
grasp the 3D structure. The last frame of this animation is the visualized figure.

Figure 5: Plotting function in CausalDynamics at the example of a SCM consisting of 2 nodes, with
the root node (grey) driven by a 3-dimensional dynamical system.




B.5 Baseline evaluation

The following example demonstrates how to evaluate a single dynamical system. First, we load the
dataset along with its generating causal graph (ground truth), represented as adjacency matrix.

import xarray as Xr

import copy

import numpy as np

from tqdm import tqdm

from causaldynamics.baselines import CUTSPlus

ds = xr.open_dataset (DATA_DIR / "<SYSTEM_NAME>.nc")

timeseries = ds[’time_series’].to_numpy().transpose(l, 0, 2)
adj_matrix = ds[’adjacency_matrix’].to_numpy ()

For coupled systems, slight changes to data loading are required since there are several new adjacency
matrices, such as the adjacency_matrix_time_edges for the lagged connection.

timeseries = ds[’time_series’].to_numpy()[..., O].transpose(l, 0, 2)

adj_matrix = ds[’adjacency_matrix_summary’].to_numpy ()

Finally, using CUTS+ as an example, we provide sample evaluation script and visualize the predicted
SCM in Figure[6]

tau_max = 1
corr_thres = 0.8
cuts_adj_matrix = []

for x in tqdm(timeseries):

cuts_model = CUTSPlus(tau_max=tau_max, corr_thres=corr_thres)

cuts_model.run (X=x)

cuts_adj_matrix.append/(
copy.deepcopy (cuts_model.adj_matrix)

score (preds= cuts_adj_matrix, labs= adj_matrix, name=’CUTS+’)

G = create_scm_graph(cuts_model.adj_matrix)
plot_scm(G);




Structural Causal Model

Figure 6: Predicted graph for a single dynamical system using CUTS+.

The complete baseline pipeline is available athttps://kausable.github.io/CausalDynamics/
notebooks/eval_pipeline.html,

We also provide the complete metrics for each graph in our HuggingFace data repository https
//huggingface.co/datasets/kausable/CausalDynamics) but analyzing each of the 14k+
graphs can be too granular. As a result, we have added a built-in, easy-to-use diagnosis script
that allows users to quickly analyze results on the experiment-level. For instance, if users are
interested in understanding the effects of unobserved confounders (confounders=True) on the perfor-
mance of different causal discovery algorithms, especially in light of high internal noise/stochasticity
(noise=2.0), they can run the following:

python diagnose.py --exp_dir data/simple/noise=2.00_confounder=True
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C CausalDynamics

C.1 Tier 1 - Simple causal models

In the simple complexity tier, we select 59 three-dimensional systems from the dysts benchmark
[47,169] and derive their SDCMs as adjacency matrices. For each system, we simulate trajectories
with 5 random initial conditions over 1000 time steps.

We perform two experiments in this tier: (i) unobserved confounding by excluding the respective time
series during evaluation (z in the system in Figured), and (ii) we evaluate for varying Langevin noise
amplitude () exploiting the dysts support for both deterministic and stochastic integration schemes.

C.2 Tier 2 - Hierarchically coupled causal models

In the second complexity tier, we introduce hierarchically coupled causal models, which move beyond
isolated dynamical systems and simulate causal interdependence between multiple driving processes.
For this, we adapt an algorithm first proposed by [20] and extend it to conduct flexible experiments
on pseudo-real causal challenges.

Sampling. Coupled models are sampled using a Growing Network with Redirection (GNR) model
following [20], which we refer to as scale-free DAGs due to their underlying preferential attachment
nature [72]] with redirection mechanisms. The redirection probability r controls the balance between
preferential attachment and ancestor-based connections. We outline the GNR model for graph
generation in Algorithm[I]and visualized in Figure

Causal units. Each node v;, € V represents a causal unit consisting of d time series ., (t) € R4 for
k € n, where d = {1, 3}.

Root nodes, i.e., nodes without incoming edges, are initialized using one of the following drivers

(Figure[7h):

* Dynamical drivers: Chaotic systems sampled from the dysts package (tier 1), such as
Lorenz or Rossler (d = 3).

* Periodic drivers: Sinusoidal functions of the form x,, (t) = A sin(wt + ¢), capturing sea-
sonal or oscillatory influences (d = 1).

* Linear drivers: Linear functions x,, (t) = mt + b modeling continuous temporal changes
such as rising global mean temperatures in first order approximation.

Algorithm 1 Growing Network with Redirection (GNR) model from [20]

Require: n € N,r € [0, 1]
1: A« zeros(n x n); K < zeros(n); v, < zeros(n) > adj. matrix; attachm. kernel; ancestors

2: if n =1 then > Case single node
3: A+ [[0]]; K + [0]; vq « [0]

4: return A

5: end if

6: K[0] < 1;v,[0] <0 > Initialize attachment kernel and ancestors
7: fori < 1ton —1do

8: KP™ « K0 :4]/ > (K[0:14]) > Normalize to get probabilities
9: m < Multinomial (KP*° 1) > Sample node based on probabilities
10: if random(n — 1) < r = True then

11: m < vg[m] > Redirect to ancestor node
12: end if

13: Ali,m] + 1 > Add edge in graph
14: K[i] «+ K[i]+ 1; K[m] + K[m]+ 1 > Update source & target attachment kernels
15: valt] —m > Track ancestor
16: end for

17: return A
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Figure 7: (a) Hierarchically coupled graphs are sample as scale-free DAGs, where root nodes can
either be driven by period functions (root node 1) or dynamical systems (root node 2). Information
is passed to the leaf nodes (leaf node 0) through MLPs. To correct for varsortability node values
can optionally be standardized. To create a diverse set of challenges we introduce (b) unobserved
confounders (green dotted lines), or (c) time-lag 7 (red node). The type of nonlinearity can also
be varied by prescribing or randomly assigning different edge-level activation functions. Assigned
drivezs are pc}otted by solid black edges. Note that each node is € R? and each edge is a function
f:R* — R%

Standardize

Edges. Non-root nodes integrate the transformed signals received from their parent nodes via the
information carried by the edges [73| [74]. Each edge (k,¢) € & is realized as an MLP [75]] with
optional activations ¢y, ;:

Foeiy (@ () = bty Wik (t) + b)) »
W(k,z) ~ N(Oa 1)7 b(k,i) ~ N(O7 1)a (4)
@(k,iy ~ Uniform ({identity, sin, sigmoid, tanh, ReLU})

where Wy, ;) € R%*4 and é(k,s) = identity in case of no activations. Weights are sparsified with a
dropout probability p,ero. The value of node vy, at time ¢ is computed by aggregating its incoming
signals:

Tu(8) = > Fiay(@n(t). )

k€Epa;
Following this flexible coupling we can generate the following experiments:

* Confounder: By sampling two adjacency matrices, i.e. two sets of edges, for a set of nodes,
rotating the off-diagonal entries in the second matrix by 90 degrees, and then combining the
two, we can introduce confounders as visualized in Figure ma This method also ensures that
the confounded graph is a scale-free DAG.

* Time-lag: To model delayed effects, we introduce time-lagged edges as shown in Figure [7f.
For a fixed lag 7, selected edges introduce temporal delay:

Loy, (1) = fi,p) (@e(t — 7)), (6)
breaking the acyclic constraint over time and introducing temporally cyclic graphs. The

delay 7 is constant per graph instance and such edges are sampled with probability p;.

* Standardized: Similar to [17, 18] we standardize node values to remove scaling artifacts
over the time dimension:
- Ty, (L) — Moy,
T, (t) — M’ @)
Ous
where p,, and o,, are the mean and standard deviation over time.

More details on data generation for coupled systems, including pseudocode, graphical illustrations,
and a detailed sketch of the procedure of standardization are included in Appendix
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C.3 Tier 3 — Pseudo-real physical systems

In the highest tier, we generate pseudo-real climate data of coupled atmosphere—ocean dynamics. The
Earth’s climate is a high-dimensional, non-equilibrium, chaotic, complex system and its predictability
remains an active area of research [76H78] [3]. Between the two implementations, our benchmark
includes datasets that closely mimic both observed dynamical systems and operational climate model
outputs. For more details, please refer to the documentation at https://kausable.github.io/
CausalDynamics/notebooks/climate_causal_models.html,

In a low-dimensional setting, we model the El Nifio-Southern Oscillation (ENSO) as implemented in
the XRO package [79]], which merges the Hasselmann stochastic framework and recharge oscillator
dynamics [[81]]. As XRO initializes with observed sea surface temperatures and thermocline depth,
it reproduces key observational ENSO statistics [82]]. The package also links multiple ocean-basin
modes, allowing for adjustable coupling strengths to simulate tightly coupled or largely independent
behavior. We will now provide more details on the package:

The XRO (eXtended nonlinear Recharge Oscillator) model is a Python implementation [79] of a
recharge oscillator (RO) model for El Nifio-Southern Oscillation (ENSO) [81] coupled to stochastic-
deterministic models for other climate modes (M) (as shown in Figure which allows for a two-way
interaction. A detailed description of the model is given by [82].

The system can be described through the following set of equations:

d (X X N
(%) =1 (Kge) + (Vo) + e ®
with J
%S = —re§ +w(t) 9

where Xgnso = [Tinso, 1] and Xv = [Taemm, Tsemm, Tios, Tiop, Tsion, TtNa, Tatis, Tsasp) are
the state vectors of averaged sea surface temperatures (T') over the respective regions (see Table ).
To describe the oscillatory behavior of ENSO the thermocline depth (h) averaged over the ENSO
region is additionally included in Xgnso-

Figure 8: Anomalies of observed sea surface temperatures from the detrended ORASS reanalysis
[83] for the period 1979-2019. Colored circles represent index regions for ENSO and other modes.
Arrows visualize the associated causal graph with constantly coupled modes shown in black and
potentially decoupled modes in grey. Figure inspired by [82]].

Governing dynamics of X = [Xgnso, X m] can be decomposed into linear (L), nonlinear (IN') and
stochastic (§) terms. Linear dynamics contain four submatrices:

_ (Lgnso Ch
L_(02 LM> (10)
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where Lgnso describes ENSO internal dynamics, Ly internal processes and interactions of other
climate modes, and C'; and C'; represent the coupling matrices summarizing the feedback of ENSO
on other modes and reversed, respectively. To conduct decoupling experiments we therefore intervene
on C'; and C’5. Note, that IOD cannot be decoupled as it is essential for the prediction of ENSO [84]]
(black arrows in Figure[8) and its asymmetry is therefore included in the nonlinear dynamics N along
with quadratic terms describing ocean advection and sea surface temperature-wind stress feedbacks in
the ENSO region [85H89]. Stochastic forcing £ is composed of weather and high-frequency noise for
example the Madden-Julian Oscillation or westerly wind bursts. Due to a strong seasonality across
climate modes, periodic parameters are added to the linear and nonlinear terms:

2

L=1Ly+ Z (L§ cos(jwt) + L sin(jwt)) , (11)
§=0
2
N =Ny + Z (Njc cos(jwt) + N3 sin(jwt)) (12)
j=0

where w = 27/(12 months), and the subscripts j = [0, 1, 2] refer to the mean, annual cycle and the
semi-annual components, respectively.

Table 4: Definition of SST indices for climate modes used in the study.

Climate Mode | Abbr. Geographic region
El Nifio—Southern Oscillation \ ENSO Nifio3.4 region (170°-120°W, 5°S-5°N)
North Pacific Meridional Mode \ NPMM  160°-120°W, 10°-25°N
South Pacific Meridional Mode ‘ SPMM  110°-90°W, 25°-15°S
Indian Ocean Basin mode ‘ 10B 40°-100°E, 20°S-20°N
Indian Ocean Dipole mode | 10D 50°=70°E, 10°S—-10°N minus 90°-110°E, 10°S-0°N
|
|
|
|

SIOD 65°-85°E, 25°-10°S minus 90°-120°E, 30°-10°S
TNA 55°-15°W, 5°-25°N
ATL3 20°W-0°E, 3°S-3°N
SASD 60°-0°W, 45°-35°S minus 40°W-20°E, 30°-20°S

Southern Indian Ocean Dipole mode

Tropical North Atlantic variability

Atlantic Nifio

South Atlantic Subtropical Dipole

To simulate higher dimensional atmosphere-ocean dynamics, we utilize the qgs package of a simpli-
fied quasi-geostrophic two-layer model resolving barotropic and baroclinic interactions derived from
the Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM) [90]. The qgsﬂlibrary provides
a Python implementation of a the model. It represents a two-layer quasi-geostrophic atmosphere
(41, 4?), represented by barotropic v, and baroclinic 6, streamfunctions, mechanically and thermally
coupled to a shallow-water ocean component (1),,), with interactions driven by wind forcing alongside
radiative and heat exchanges (see Figure [Op).

The core PDEs are the barotropic and baroclinic streamfunctions for the atmospheric layer and the
ocean, plus anomalies of ocean 67, and atmospheric temperature 67,. Each field is defined by a finite
basis with a zonally periodic channel with no-flux boundary conditions in the meridional direction
for the atmosphere and a closed basin with no-flux boundary conditions for the ocean. The fields are
then projected on Fourier modes respecting these boundary conditions and the truncated model can
be summarized by the following system of ODEs (see Figure Op):

"https://github.com/Climdyn/qgs/
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Figure 9: In (a) schematic of the atmosphere (grey) and ocean (blue) components of the simplified
model, where dotted lines represent periodic and solid lines closed boundary conditions; figure
inspired by https://qgs.readthedocs.io/en/latest/files/model/macoam_model.html,
In (b) associated causal graph showing the coupling of the individual model components represented
by the set of ODEs in Equations T3|{T6]

Yai ==} Y i (Ya¥am + 0aibam) = Bail D cijta;
Jym=1 j=1
— 8 (Yo — ba) + B ai Y dijo (13)
j=1
0o = ﬁ{— Z bijm (Va,j0a,m + bajtPam) — ﬁzci,ﬂa,j
B2 J,m=1 j=1
+ 505 (Vo — 0ai) = 5D dijboy — 2Ky ai Ga,,}
j=1
1 o
+ Qi o _ 1{ Z gi,j,m 'l/)a,jea,m + ()\; + SB,a) 00‘77;
1,0 g jom=1
— (3 +58.0) D 515 0T0s — Chi}- (14)
j=1
) 1 No No Mo
Yo,i = 7{— Y Cigatostor =B Nigtos — (d+7) Y My,
M, +G ) ° X
’ Jj,m=1 j=1 j=1
+AY K (s~ 0a3) }, (15)
j=1

5To,i = — Z Oi,j,m wo,j 5To,m — ()\; -+ SB,O) 5T07i

Jm=1

+ (2N, +5B.a) Y Wijbaj+ Y Wi;Cl ). (16)

j=1 j=1

Here, W, K, d and s denote the coupling coefficients governing ocean—atmosphere interactions; a, g, b
and c are the inner-product coefficients for the atmospheric Fourier modes and M, O, C, N those for
the ocean. A detailed model description is given in [90] and https://qgs.readthedocs.io/en/
latest/files/model/maocoam_model.html.
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D Generate coupled causal models

Here, we elaborate on the propagation of information via MLPs in the DAG and provide the key

algorithms used to generate coupled causal models.

D.1 System initialization

To generate data for coupled causal models we need to
initialize the number of time steps, the number of nodes
(e.g., 5), the ratio of dynamical systems to periodic func-
tions as root node drivers, the system name of dynamical
system drivers, the dimensionality of the nodes (e.g., 3),
and optional time-lags, as outlined in Algorithm [2] and
sketched out in Figure

If the dynamical system drivers are selected at random,
the algorithm chooses randomly from the set of available
3D systems (see Algorithm [3). Users can also choose
whether to include periodic or linear functions as drivers
by initializing r appropriately. In this case, sinusoidal or
linear trajectories are generated as outlined in Algorithm 4]
and Algorithm [5] The generated data of the system’s
drivers is randomly assigned to the respective root nodes,

Add time lag

Figure 10: Initialize graph.

and all non-root nodes initial states are set to zero (see Algorithm [6).

Finally, the initial time series data can be standardized in order to prevent varsortability as illustrated

in Appendix

Algorithm 2 Initialize Coupled Causal Models

Require: 7' (num_timesteps), N (num_nodes), 7 (init_ratios), name (system_name), D (node_dim),

[ (time_lag)
Ensure: init € RT*NVN*D (initial values tensor)
. if [ > 0 then
Tewt T+l
: else
Tewt T

> Extended time for lag calculation

D Nsysy Msin, Nin allocate_elements_based_on_ratios(N, r) > Divide nodes by type

. if system_name = "random" then

: dsys < solve_random_systems (T, Msys)
9: else
10: dsys < solve_system(Tezt, Noys, System_name)
11: end if

12: dyp < drive_lin(Tpt, yin, D)

13: dgip < drive_sin(Tept, Nsin, D)

14: init < concat(dsys, dsin, diin, dim = 1)

15: init < init[:, randperm(NV), :]

16: if [ > O then

1
2
3
4:
5: end if
6
7
8

17: init_now < init[: T',:, :]

18: init_future « init[l : Topt, ¢,

19: init <— concat(init_now, init_future, dim = 1)
20: end if

21: return init

> Generate random system trajectories

> Generate named system trajectories

> Generate linear trajectories

> Generate sinusoidal trajectories
> Combine trajectories

> Randomly permute nodes

> Current time steps
> Future time steps for lagged edges
> Combine current and future
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Algorithm 3 Generate random system trajectories

Require: 7' (num_timesteps), N (num_nodes)
Ensure: data € RT*N*D (trajectory tensor)
1: names < get_3d_chaotic_system_names|()
2: s < random_sample(names, min(N, [names|))
3: data « []
4: fori < 0to N — 1do

5 sol < None

6: counter < 0

7: while sol = None and counter < max_retry do
8: system < random_choice(names \ {s[i mod |s||})
9: sol < solve_single_system(system, T")

10: counter < counter + 1

11: end while

12: if counter > max_retry then

13: raise Exception

14: end if

15: data.append(sol)

16: end for

17: data < convert_to_tensor(data)

18: data «+ data.permute(1, 0, 2)

19: return data

> Get list of available 3D systems
> Select systems
> Initialize empty trajectory list

> Handle failing integration

> Solve system ODEs

> Failed to integrate system
> Add trajectory to list

> Convert to tensor
> Reshape to [T, N, D]

Algorithm 4 Generate Sinusoidal Driver Trajectories

Require: 7' (num_timesteps), /N (num_nodes), D (node_dim), P,,,, (max_num_periods)

Ensure: data € RT”*V*D (sinusoidal trajectory tensor)
1: amplitude <— 2 x rand(N, D) — 1
phase_shift < 27 x rand(N, D)
data < zeros(T, N, D)
if N > 0 then
max_time < P4, X 27 X rand(N, D)
time <+ linspace(0, max_time, T')
fori < 0toT —1do

end for
end if
return data

TeYeRdansRy

—_ =

data[i, :, :] + amplitude X sin(time[i] + phase_shift)

> Random amplitudes in [—1, 1]
> Random phase shifts in [0, 27]
> Initialize output tensor

> Random max times
> Generate time points

> Compute sine values

Algorithm 5 Generate Linear Driver Trajectories

Require: 7' (num_timesteps), N (num_nodes), D (node_

bmin, bmax (intercept range)

Ensure: data € RT*V XD (linear trajectory tensor)
1: m < (Mmax — Mmin) X rand(N, D) + mpmin

b« (bmax - bmin) X rand(N, D) + bmin
data < zeros(T, N, D)
if N > 0 then

max_time < rand(N, D)

time < linspace(0, max_time, T")

fori < OtoT —1do

data[é, :,:] + m x time[i] + b

end for
end if
return data

YRR InsRN

—_—

dim), Mumin, Mmax (slope range),

> Random slopes in [Mmin, Mmax]
> Random intercepts in [Din, bmax)
> Initialize output tensor

> Random max times in [0, 1]
> Generate time points

> Compute linear values
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Algorithm 6 Initialize state x for Coupled Causal Models

Require: init € R7*VXP (initial values tensor), A € RVXN or R2V*N (adjacency matrix),
standardize (boolean)
Ensure: z € RT*N*P (initialized tensor with values for root nodes and zero else)

1: x < zeros_like(init) > Initialize output tensor with zeros
2: if A.shape[0] = A.shape[1] then > No time lag edges
3: root_nodes < get_root_nodes_mask(A) > Identify nodes with no incoming edges
4: x[:, root_nodes, :] +— init[:, root_nodes, :] > Set values only for root nodes
5: else > With time lag edges
6: Apnow + Al: A.shape[0]/2] > Extract current time step connections
7 Apast < A[A.shape[0]/2 {] > Extract past time step connections
8: root_now < get_root_nodes_mask( Ao, ) > Current time root nodes
9: root_past get_root_nodes_mask(Apast) > Past time root nodes
10: root_nodes <— concat(root_now, root_past, dim = 0) > Combine masks
11: x[:, root_nodes, :] +— init[:, root_nodes, :] > Set values only for root nodes
12: end if
13: if standardize then
14: i < mean(x,dim = 0) > Compute mean over time
15: 0% « var(x,dim = 0) > Compute variance over time
16: x 9\”/}2‘ > Standardize results
17: end if
18: return x
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D.2 MLP propagation

In the following, we outline how the information is passed through
the DAG starting from the root nodes (see Figure[TT)). A detailed de-
scription of the MLP implementation to forward information through
the DAG is giving in Algorithm |7}

Note, that this process follows the reverse order, i.e., from the highest
node number to zero. This ensures that information is processed in
the right order through the network because by construction, a node
cannot have incoming edges from a node with higher degree (see
Algorithm T).

To correct for varsortability, we include the option to standardize
the propagated time-series to maintain the variance of the original
drivers along the causal structure (see Appendix [D.3).

Figure 11: MLP propagation.

Algorithm 7 MLP Propagation through the DAG

Require: A € {0,1}™*™ (adjacency matrix), W € R"*9*4 (weight tensor), b € R™* (bias tensor),
init € RT*"*d (initial values), ¢ € A", standardize € {True, False}
Ensure: © ¢ RT*"X4 (propagated values)

1: T,n,d < shape(init) > Get dimensions
2: x < initialize_x(init, A) > Initialize state tensor, see Algorithm [6]
30 A+ AT > Transpose adjacency matrix for easier indexing
4: fori <—n —1to0do > Process nodes in reverse topological order
5: if A.shape[0] # A.shape][1] then > Handle time lag edges
6: i <— i mod A.shape[0]
7: end if
8: m; <— Ali].bool() > Get incoming edge mask
9: if m;.any() then > If node has any incoming edges
10: Wer + Wmy] > Select weights for incoming edges
11: bser < b[m;] > Select biases for incoming edges
12: Zsel < x[:,my] > Select input values
13: y < matmul(Wep, Tser) + bser > MLP transformation
14: y < ¢[i](y) > Apply activation (optional)
15: y < sum(y,dim = 1) > Aggregate incoming signals
16: if standardize then
17: p < mean(y, dim = 0) > Compute mean over time
18: 0?2 < var(y,dim = 0) > Compute variance over time
19: Y f/}; > Standardize results
20: end if
21: x[, 4] [, i +y > Update node values
22: end if
23: end for

24: return x
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D.3 Standardization

In this section we present our approach to standardize the generated data by estimating the
mean and standard deviation over time in order to account for varsortability, following the idea
of [17]. Our approach is similar to standardizing data in for causal discovery on time se-
ries to account for confounders such as seasonality (e.g., 4]). More details and examples
are available at https://github.com/kausable/CausalDynamics/blob/main/notebooks/
standardization.ipynb.

As shown at the example of the SCM in Figure ﬂzh, the variance increases with each node vy,
for k = [0,1,2,3,4] (compare orange line in (b), and the corresponding time series in (c)). By
standardizing the data following:

Tu, (1) = x(f% (17)

where y1,, and o,, are the mean and standard deviation over time, we can control for the variance
increase (see blue line in (b), and the corresponding time series in (d)).

(a) (b)

10 — standardized
0 non-standardized

2
Nodes

(c) Root node 4

Non-standardized

(d)

Standardized

Figure 12: In (a) structural causal model consisting of 5 nodes. In (b) variance comparison for
the non-standardized and standardized causal model along decreasing order of nodes (i.e., causal
direction). In (c) trajectory of the non-standardized nodes and in (d) for the standardized nodes.
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E Benchmark details

E.1 Summary

The final distribution of our preprocessed dataset is illustrated in Figure For the SDE cases, we
combine all dynamics with noise level § > 0. The nonlinear and periodic attributes refer to graphs
where at least one of the root nodes represents only a simple dynamics or also mixed with periodic,
nonlinear forcing.
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Figure 13: Distribution of graphs across hierarchy of dynamical systems, and their associated causal
tasks meant to be solved.

E.2 Hierarchy of Differential Equations

The data-generating code for the three tiers of dynamical system complexity is described below.

Simple. From over 130 ordinary and stochastic models, we filter the dysts package[47] for three
state variables and available Jacobian, which enables us to extract the adjacency matrix, yielding our
59 target systems. We generate different combination of graphs from these 59 uncoupled (simple)
differential equations and perform the following combination of experiments: (i) varying the Langevin
noise amplitude (6 € {0.0,0.5,1.0,1.5,2.0}, where § > 0.0 generates SDEs integrated with Euler-
Maruyama integration scheme), and (ii) mimicking unobserved confounding scenarios. In total, 585
unique simple graphs are generated. Finally, the success rate for evaluating simple cases is 90% (or
3612 out of 4095 possible evaluations). One of the most common failure reasons involves a singular
value of the true adjacency matrix where score metrics such as AURQC fail.

Coupled. We then couple the simple systems and perform the following combination of experiments:
(i) varying the Langevin noise amplitude (§ € {0.0,0.5,1.0,1.5,2.0}, (ii) mimicking unobserved
confounding scenarios, (iii) changing the number of coupled nodes (N,oqe € {3,5,10}), (iv)
introducing periodic drivers (Coupled: Periodic) at equal ratio as dynamical system drivers or only
having the latter, i.e., nonlinear chaotic drivers (Coupled: Nonlinear), (v) time-signal standardization,
(vi) time-lags (7 € {0,1}), (vii) nonlinear edge-level activations. Though 18000 coupled graphs
are supposed to be generated, we keep 14096 of them, as the rest exhibit undesired outcomes, e.g.,
trajectories diverge, even after multiple retries.

Climate. We generated 11 graphs for the different coupling strategies in the coupled ENSO model,
and 1 graph for the coupled atmosphere-ocean model. Specific hyparameters follow the original
papers and discussed in Section All evaluation succeeded for the climate case.

21



F Experiment details

In this section, we describe additional experimental details, including the baseline models, hyperpa-
rameter choices, and evaluation metrics used. Unless otherwise stated, all experiments are conducted
on 1xA100 NVIDIA GPU on a 100GB memory node with 12 CPU cores.

F.1 Baselines

As part of our benchmark, we deploy 10 methods. We also summarize the final set of hyperparameters
after a comprehensive search on a held-out dataset from the simple case, and attempt to set them
to their default configurations. Nevertheless, we find that methods with little to no fine-tuning
often outperform those that do so intensively. In all algorithms, we set the maximum lag Tm.x = 1,
unless otherwise specified. This choice is motivated by the fact that dynamical systems governed by
differential equations typically evolve based on a single discretization step, which suffices to capture
the system’s causal structure in the resulting time series.

PCMCI+ (Peter Clark Momentary Conditional Independence) [24] extends the PC-algorithm to
multivariate time series by first preselecting candidate parents and then applying momentary condi-
tional independence (MCI) tests across all lags to estimate contemporaneous and lagged edges under
controlled false discovery. We set the maximum lagged time (7,4, = 1) and the critical p-value
(aerit = 0.01).

F-PCMCI (Filtered PCMCI) [62] extends PCMCI+ by incorporating transfer-entropy-based feature
selection to prefilter candidate parents before momentary conditional independence testing, improving
scalability and robustness in high-dimensional time series. We set the maximum lagged time
(Tmaz = 1) and the critical p-value (ar+ = 0.01).

VARLINGAM [63] fits a vector autoregressive model (VAR) and then applies the LINGAM (Linear
Non-Gaussian Acyclic Model) [64] algorithm to the non-Gaussian residuals to recover a directed
acyclic graph of contemporaneous effects alongside the estimated lagged coefficients. We set the
maximum lagged time to Tq, = 1.

DYNOTEARS [16] adopts a score-based structural VAR (SVAR) formulation to jointly estimate
contemporaneous and time-lagged weight matrices by minimizing a penalized least-squares objective
expended with a differentiable penalty that forbids any directed cycles in the instantaneous effects.
We set the maximum lagged time to 7,4, = 1.

TSCI (Tangent Space Causal Inference) [68] builds on the idea that nonlinear dynamics locally
resemble linear systems by estimating the data manifold’s tangent spaces. TSCI first learns a
continuous vector-field model for each variable’s dynamics, e.g., via neural ODEs or Gaussian
processes, then applies Convergent Cross Mapping (CCM) within each tangent to test for causal
influence by assessing how well the state-space of one variable predicts another. This yields a
single, interpretable causal graph for deterministic dynamical systems. We set the maximum lagged
time (T,qr = 1), the delay embedding dimension (hempeq = 2), and the correlation threshold
(pcrit = 0.8).

Neural GC (Neural Granger Causality) [33] employs sparse-input multilayer perceptrons (¢cMLP) and
long short-term memory (cLSTM) to model nonlinear autoregressive dependencies in multivariate
time series, using input-weight regularization to identify directed Granger-causal links. In our
evaluation, we focus solely on the cLSTM variant. We set the maximum lagged time (7,4, = 1),
number of hidden LSTM dimension (hs,, = 16), with a learning rate of (Ir = 10~2) fitted over
100 epochs.

CUTS+ [61] builds on the Granger-causality framework of CUTS [48] by combining a two-stage
coarse-to-fine strategy with a message-passing graph neural network to discover causal structure
in high-dimensional, irregularly-sampled time series. First, lightweight Granger-causality tests pre-
filter candidate parents for each variable, dramatically reducing the search space. Then, a GNN
simultaneously imputes missing or unevenly spaced data and learns a sparse adjacency matrix via a pe-
nalized reconstruction loss that incorporates temporal encoding. This alternating imputation—learning
loop makes CUTS+ both scalable and robust to missing data. We set the maximum lagged time
(Tmaz = 1), the number of hidden MLP dimension (%, = 16), the number of gated recurrent unit
(GRU) (ngr, = 1), with a learning rate of Ir = 1073 fitted over 10 epochs.
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RCD (Repetitive Causal Discovery) [66] extends LINGAM to settings with latent confounders
under the linear, non-Gaussian, acyclic model (LINGAM) assumption. Classic LINGAM [64]]
identifies a unique DAG by exploiting non-Gaussianity and independence of error terms, but its
basic form assumes causal sufficiency. RCD relaxes this by repeatedly partitioning variables into
(approximate) causal orders and pruning edges using statistical tests, while allowing for latent
common causes. Concretely, RCD alternates between: (i) screening and ordering steps that use
correlation/independence diagnostics to propose parent sets under linear models with non-Gaussian
residuals, and (ii) refinement steps that remove spurious links via independence checks on residuals
(testing that, in the correct direction, residuals are independent of putative causes) and normality
checks to ensure non-Gaussianity (a key LINGAM identifiability condition). The repetitive loop
iteratively updates ordering and adjacency until convergence, yielding a sparse adjacency estimate
that is robust to latent confounding under the RCD model assumptions. We set the maximum lagged
time (7,4, = 1) and the critical p-value (a¢r;¢ = 0.01).

GRaSP (Greedy Sparsest Permutations) [63] is a permutation-based causal discovery method that
learns DAGs by searching over variable orderings. The method is grounded in the permutation-DAG
correspondence: any variable ordering defines a unique minimal DAG consistent with the observed
conditional independencies. Identifying the true DAG is then equivalent to finding the sparsest
permutation, i.e., the one that yields the fewest edges. GRaSP employs a greedy local search strategy
to approximate this combinatorial optimization. Starting from a random initial ordering, it iteratively
applies adjacent swaps of variables. At each step, the algorithm updates the candidate DAG using
conditional independence tests and accepts swaps that reduce the number of edges, gradually moving
toward a sparser representation. This approach avoids the exhaustive search over all n! permutations,
making it scalable to moderately high-dimensional problems. By focusing on sparsity, GRaSP is
particularly effective when the true underlying causal graph is relatively sparse and conditional
independencies can be reliably tested. We set the maximum lagged time (7,4, = 1).

TCDF (Temporal Causal Discovery Framework) [55] uses convolutional neural networks (CNN) with
an attention mechanism to detect lagged causal relationships in multivariate time series, combining
temporal filters and statistical pruning to handle nonlinear, high-dimensional, and noisy data. We set
the maximum lagged time (7,4, = 1), the CNN kernel size (h.y,, = 4), the dilation coefficient of 4
with a learning rate of I[r = 10~2 fitted over 100 epochs.

Note that most of these models, in the standard implementation, only infer a single and stationary
causal graph. For this benchmark, we focus on summary graph estimation. Though some algorithms,
such as PCMCI+, are able to infer a lagged adjacency matrix, this remains less common and will
be the focus of the next version of the benchmark when the need arises and the choice of baseline
algorithms capable of this proliferates.

F.2 Metrics

Our benchmark is concerned with reconstructing the true causal graph of the underlying dynamical
systems. To evaluate the similarity of the graphs inferred by the baselines and the true causal graph
we estimate Area Under the Receiver Operating Characteristic (AUROC) [91}192]], Area Under the
Precision Recall Curve (AUPRC) [93]] , and Structural Hamming Distance (SHD) [94] 95]].scores by
comparing the true and predicted adjacency matrices. In the following, we describe the metrics used
in this work, including AUROC, AUPRC and SHD.

Let G = (V, €) be the true DAG on n nodes v; € V with edge (4,j) € Eandlet§: V x V — Rbe
a scoring function so that an edge (4, j) is predicted whenever §(, j) > 7. For each threshold 7, we
define a true-positive rate (TPR) and false-positive rate (FPR):

) ) €€ 36.9) > 7} [{(i.5) € £+ 5(i.5) > 7}

TPR(7 , FPR(7) = , (18
€] n(n—1) = [€]
The Area Under the receiver operating characteristic curve (AUROC) is then:
1
AUROC = / TPR(FPR ™ (u)) du, (19)
0

which defines the probability that a true edge ranks above a false one, i.e., 0.5 means random, < 0.5
means worse than random, 1.0 means a perfect prediction.
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Similarly, we define precision and recall:

- {G,5) €€ 30, 5) > 1}

Precision(7) = T , Recall(7) = TPR(7). (20)
’{(Z,j) 2 8(i,9) > T}‘
The area under the precision—recall curve (AUPRC) is:
1
AUPRC = / Precision (Recall ™" (1)) dr. (21)
0

which unlike AUROC depends on the edge-density ﬁ and thus more accurately reflects perfor-

mance in the sparse-graph regime. For AUROC the optimal score is 1, i.e., perfect prediction.
SHD is defined as the minimum number of edge additions, deletions, or reversals required to transform
G into G:

SHD(G,G) = [{(i.4) € E\EY| + [{(i,5) € E\EY + #{(i.4) : (i) € €. () € €} (22)
which a smaller SHD indicates a closer match to the ground truth, with 0 corresponding to exact

recovery. Unlike AUROC and AUPRC, which are ranking-based metrics, SHD directly evaluates the
correctness of the learned graph structure.

Finally, we note that for sparse graphs, AUROC can be deceptively high because the false-positive
rate remains low due to a higher number of true-negatives. Thus, for coupled systems AUPRC scores
might be more representative of the true performance due to the penalization of false positives. Other
metrics like SHD [94]195] or Structural Intervention Distance [96]], suffer from different limitations
as they generally only return absolute error counts independent from the edge density or graph size,
thus making a comparison across graph hierarchies difficult.
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G Additional results

G.1 Time discretisation ablation

We investigate the sensitivity of causal discovery algorithms to different sam-
pling frequencies by sub-sampling every Ist, 5th, or 10th time step. As
an illustration, we consider one of the most difficult experiments: cou-

pling=nonlinear_noise=2.00_systems=10_confounder=True_standardize=True_timelag=1.
Results are shown in Table[5] Overall, we find that reducing sampling frequency tends to improve
detection accuracy. This is potentially due to the reduction of data redundancy that can noise the
algorithm.

Table 5: Ablating time discretisation: AUROC, AUPRC, and SHD scores at different sampling

frequencies (every 1st, 5th, or 10th step).

Model AUROC (1/5/10)  AUPRC (1/5/10)  SHD (1/5/10)
PCMCI+ 0.486/0.550/0.553 0.382/0.415/0.425 51.9/44.4/40.5
F-PCMCI 0.547/0.557/0.566  0.406/0.418/0.429 45.7/44.2/38.9
VARLINGAM 0.519/0.518/0.548 0.389/0.389/0.407 51.9/51.3/47.2
DYNOTEARS 0.546/0.539/0.574 0.426/0.416/0.444 38.9/41.6/37.9
NGC-LSTM 0.497/0.500/0.500 0.377/0.378/0.378 56.0/34.0/34.0
TSCI 0.533/0.576/0.567 0.416/0.458/0.443 41.4/38.6/36.4
CUTS+ 0.495/0.500/0.500 0.376/0.378/0.378 39.0/34.0/34.0
RCD 0.500/0.501/0.505 0.378/0.382/0.385 34.0/34.1/34.1
GRaSP 0.498/0.484/0.490 0.385/0.379/0.384 35.8/36.2/36.2
TCDF 0.500/0.500/0.500 0.378/0.378/0.378 34.0/34.0/34.0

G.2 Partial observability ablation

We also test algorithm performance under partial versus full observability, by sampling
only one variable per multidimensional node versus averaging across all variables at each
node. As an illustration, we consider one of the most difficult experiments: cou-
pling=nonlinear_noise=2.00_systems=10_confounder=True_standardize=True_timelag=1. Results
are shown in Table [l We find that fully observing the system yields a modest improvement in
detection performance. One possible explanation is that, even when some variables are hidden, their
influence still propagates through the variables we do observe, so the loss of information is less severe
than it might appear.

Table 6: Ablating partial observability: AUROC, AUPRC, and SHD scores for partially vs. fully
observed systems.

Model AUROC (partial /full) AUPRC (partial/full) SHD (partial/ full)
PCMCI+ 0.486/0.500 0.382/0.386 51.9/50.2
F-PCMCI 0.545/0.546 0.405/0.406 45.8/47.4
VARLINGAM 0.519/0.503 0.389/0.381 51.9/51.7
DYNOTEARS 0.546/0.559 0.426/0.426 38.9/37.2
NGC-LSTM 0.499/0.500 0.377/0.378 55.9/34.0
TSCI 0.533/0.552 0.416/0.421 41.4/38.5
CUTS+ 0.496/0.500 0.376/0.378 39.2/34.0
RCD 0.500/0.499 0.378/0.377 34.0/34.0
GRaSP 0.498/0.499 0.385/0.388 35.8/36.4
TCDF 0.500/0.500 0.378/0.378 34.0/34.0

G.3 Edge-level activation ablation

We also perform additional experiment where the edge-level activation functions vary. For each
identical experiment_id, we pass a new argument activation=mixed, which by default ran-
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domly samples activations_names=[‘‘identity’’, ‘‘sin’’, ‘‘sigmoid’’, ‘‘tanh’’, ‘‘relu’’]
as the graph’s edge-level activation. We compare results for the following experiments with cou-

pling=nonlinear_noise=0.00_systems=3_confounder=False_standardize=False_timelag=0:

1. Linear activation (identity)

2. Mixed activation

Table 7: Ablating different (linear vs. mixed nonlinear) activations: AUROC, AUPRC, and SHD

scores.
Model AUROC (linear/mixed) ~AUPRC (linear/ mixed) SHD (linear/ mixed)
CUTS+ 0.500/0.478 0.378/0.417 37.200/45.667
DYNOTEARS 0.532/0.646 0.407/0.541 39.500/30.167
F-PCMCI 0.546/0.604 0.405/0.493 46.650/36.333
GRaSP 0.521/0.488 0.396/0.437 35.500/42.667
NGC-LSTM 0.498/0.503 0.377/0.428 55.900/51.278
PCMCI+ 0.526/0.560 0.398/0.462 47.900/41.167
RCD 0.500/0.495 0.378/0.424 34.000/38.333
TCDF 0.500/0.491 0.378/0.430 34.000/41.167
TSCI 0.537/0.689 0.414/0.601 39.850/24.889
VARLINGAM 0.503/0.554 0.380/0.458 51.700/43.667

We find that mixed activations tend to improve causal discovery performance, potentially because
directionality is more detectable in nonlinear cases, i.e., the signal is less invertible (see LINGAM
paper [64]]). This effect is especially pronounced for deep learning—based methods such as TSCI,
which shows an improvement of the SHD score by 40% (Table[7). This suggests that DL-based
methods are better at capturing nonlinearities in the data.

26



	Introduction
	CausalDynamics
	Causal challenges
	Dataset summary

	Experiments
	Conclusion
	Appendix
	 
	Background
	Structural dynamical causal model
	Related work
	Causal discovery methods

	Getting started
	Installation
	Download data
	Generate data
	Plotting functions
	Baseline evaluation

	CausalDynamics
	Tier 1 – Simple causal models
	Tier 2 – Hierarchically coupled causal models
	Tier 3 – Pseudo-real physical systems

	Generate coupled causal models
	System initialization
	MLP propagation
	Standardization

	Benchmark details
	Summary
	Hierarchy of Differential Equations

	Experiment details
	Baselines
	Metrics

	Additional results
	Time discretisation ablation
	Partial observability ablation
	Edge-level activation ablation



