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ABSTRACT

Generator Matching (GM) is a new framework which encompasses the current
workhorse generative modeling methods. However GM suffers from the computa-
tionally intensive sampling process common to these ODE/SDE based models. We
introduce ”Implicit Generator Matching” (IGM), a general framework for one-step
distillation of generator matching models. Our method generalizes the recently pro-
posed one-step diffusion distillation (Zhou et al., 2024; Luo et al., 2024b) methods
to Generator Matching. We present promising initial results on image generation.

1 INTRODUCTION

ODE/SDE-based generative models have revolutionized the generation of images (Rombach et al.,
2022; Saharia et al., 2022; Podell et al., 2023), videos (Brooks et al., 2024; Gupta et al., 2024), and
audio (Liu et al., 2023; Evans et al., 2024). At the core of this success lies the use of continuous-time
processes that simulate the transformation from noise to data, such as diffusion models (Song et al.,
2020; Ho et al., 2020) and flow matching (Peluchetti, 2022; Lipman et al., 2022). Researchers have
further extended these methods to handle diverse data types, including discrete data (Campbell et al.,
2022; Gat et al., 2024), graphs (Kong et al., 2023), manifolds (Huang et al., 2022; Chen and Lipman,
2024), and tabular data (Jolicoeur-Martineau et al., 2024).

While the training processes for these generative models vary—ranging from score matching (Song
et al., 2020) and denoising diffusion (Ho et al., 2020) to flow matching (Lipman et al., 2022)—they
share a common feature: the emulation of a Markovian process. Starting with an initial sample,
these methods iteratively construct new samples by applying a functional transform that depends
solely on the current sample. Recognizing this similarity, Holderrieth et al. (2024) unified these ideas
into a single framework called Generator Matching (GM). GM provides a scalable, simulation-free
approach to training parameterized approximations of generators for arbitrary Markov processes.

Despite its strengths, GM models inherit a key challenge from diffusion and flow matching methods:
slow inference. Specifically, generating samples requires simulating an ODE (or SDE) using a
numerical solver, where each step involves evaluating a deep neural network. Moreover, because the
sample paths are non-linear, small step sizes are necessary for accurate simulation, as larger steps can
lead to accumulating discretization errors (Song et al., 2023). Improving the sampling efficiency of
these models is therefore critical for broadening their practical applications.

2 RELATED WORK

Researchers have proposed various approaches to accelerate sampling in diffusion and flow matching
methods. A prominent family of techniques involves distribution distillation (Luo et al., 2024a;
Salimans and Ho, 2022; Gu et al., 2023; Fan and Lee, 2023; Aiello et al., 2023), which aims directly
match the output distribution of a fast (few-step) generative model with a pre-trained teacher diffusion
model. One prominent example is the Score-Identity method (Zhou et al., 2024), which enables one-
shot distillation of diffusion models. Recently,Luo et al. (2024b) extended the method of (Zhou et al.,
2024), and achieved SoTA distillation results. However, these methods rely on the score-projection
identity (Zhou et al., 2024; Vincent, 2011), limiting their applicability to score based generators.

Inspired by the distribution distillation methods (Zhou et al., 2024; Luo et al., 2024b; Huang et al.,
2024), we propose a general framework called Implicit Generator Matching (IGM) for one-step
distillation of any generator matching model. This framework extends the benefits of distillation
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beyond diffusion models, offering a versatile solution for improving sampling efficiency across a
broader range of generative frameworks.

3 BACKGROUND

3.1 GENERATOR MATCHING

Let xt denote a set of time t indexed multivariate random variables. We denote by p0 the target
distribution for which we want to learn a generative model.

If (x1, x2, .., xt, xt+1, ..) is a Markov process then xt+h is independent of any variables xt−δ when
conditioned on xt. A Markov process can be identified by its transition kernel, (kt+h|t). From
the transition kernel k one can obtain an operator Lt, known as the generator defined as Lt :=
d
dh

∣∣
h=0

kt+h|t − kt|t Under certain regularity assumptions, there is a direct correspondence between
Markov processes and their generators (Ethier and Kurtz, 2009; Rüschendorf et al., 2016).

Holderrieth et al. (2024) propose a broad recipe for generative modelling of data based on the idea
of generators of markov processes. Specifically, the current workhorses of many generative models,
diffusion models (Ho et al., 2020) and flow matching (Lipman et al., 2022), can be cast into this
framework. Holderrieth et al. (2024) propose learning parameterized generators Lθ,t to match the
generator L of the Markov process. by optimizing a generator matching loss DGM = E[D(Ft, Fθ,t)]
where D is a Bregman divergence and Ft is a natural parameterization of Lt. However the above
objective is intractable without access to Lt/Ft.

Inspiring from Lipman et al. (2022), Holderrieth et al. (2024) propose using a generator linearly
parameterized by conditional generators viz Ft(xt) = Et,px0|xt

[F x0
t (xt)], and show that the following

conditional GM objective which uses conditional generators has the same minima as the GM objective.

DCGM = Et,xt∼pt
D(F x1

t (xt), Fθ,t(xt))

Comparing to the standard flow matching problem, we see that F corresponds to the velocity field u
and Fθ = vθ is a neural network used to parameterize the flow objective. Then the FM loss and the
CFM loss correspond naturally to DGM and DCGM respectively. 1

4 IMPLICIT GENERATOR MATCHING

Our goal is to train a model Mθ, which in one step maps a random noise ϵ ∼ pϵ to obtain a sample
x = Mθ(ϵ). Let pθ,0 denote the distribution of the student model over the generated sample x, and
pθ,t denote the marginal probability path transitioned with kt|0(.|x0), i.e.,

pθ,t(xt) =
∫

kt|0(xt|x0)pθ,0(x0)dx0

This marginal probability path implicitly defines a generator Fθ,t(xt). Further note, that with such a
choice of pθ, t, we do not need to consider how θ influences pθ when differentiating any expectation
over pθ i.e. Epθ,t

as the reparameterization trick applies in this case(Kingma, 2013). Instead we can
differentiate wrt θ the empirical expectations by differentiating through the samples xt directly. Thus
depending on context we may use xt(θ) to highlight this. We also denote by ρt the coupling induced
by kt|0 i.e. it is the joint distribution of xt, x0. Finally as is common in distillation literature, we
will assume access to a pre-trained GM trained model Ft for the target data p0. Note that we do not
require access to samples from p0.

We propose to minimize the Generator matching loss DGM between the implicit generator Fθ,t and
the pre-trained generator Ft, which writes

DGM (θ) := Et,xt∼pθ,t
D(Ft(xt), Fθ,t(xt)) (1)

It is clear to see that the DGM = 0 if and only if all induced generator are the same, i.e.
Fθ,t(xt) = Ft(xt) with respect to the support of pθ,t. Unfortunately, minimizing objective (1) di-
rectly is intractable because we do not have direct access to the induced generator Fθ,t(xt).

1FM/CFM uses the L2 loss which is a Bregman Divergence
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4.1 TRACTABLE OBJECTIVE

Our goal is to optimize the parameter θ to minimize the objective (1). A natural option is to consider
gradient based optimization. However, consider the gradient of the DGM objective:

∂

∂θ
DGM (θ) =

∂

∂θ
Et,xt∼pθ,t

D(Ft(xt), Fθ,t(xt))

= Et,xt∼pθ,t

[
∂

∂xt
D(Ft(xt), Fθ,t(xt))

∂xt(θ)
∂θ

]
+ Et,xt∼pθ,t

⟨ ∂

∂Fθ,t
D(Ft(xt), Fθ,t(xt)),

∂

∂θ
Fθ,t(xt)⟩ (2)

Remark 4.1. Note that here when we differentiated wrt θ the expectation Epθ,t
, we were able to move

the derivative inside the expected value because of the reparameterization trick(Kingma, 2013).

The direct optimization approach faces two primary obstacles in computing the gradient of the
objective function: first, the need to evaluate Fθ,t, and second, the need to evaluate its derivative with
respect to θ. However, we do not have access to the generator corresponding to pθ,0. Recall that we
only have the model Mθ instead which can generate samples from pθ,0, and the generator Fθ,t is
implicit. This inherent limitation makes direct minimization of the objective intractable. Furthermore,
even if we assume access to an oracle capable of evaluating Fθ,t, the challenge of computing its
derivative remains unresolved.

Next, we show however that we can replace the derivatives of F with an alternative that only uses
oracle access to F . This is formalized in Theorem 4.2.

Theorem 4.2. Under simple regularity conditions, we have for any smooth function g(xt, θ), the
generative model pθ(x) and its generator Fθ(x)

Ext∼pθ,t
⟨g(xt, θ),

∂

∂θ
Fθ,t(xt)⟩ = Ex0,xt∼ρt

∂

∂xt
⟨g(xt, θ), F x0

t (xt)− Fθ,t(xt)⟩
∂xt
∂θ

(3)

+ Ex0,xt∼ρt
⟨g(xt, θ),

∂

∂x0
F x0
t (xt)⟩

∂x0
∂θ

(4)

The proof is in the Appendix.

We draw the readers attention to a key property of the above expression: any derivative wrt θ of the
implicitly defined Fθ does not exist any more. Instead we are left with evaluation of the generator
Fθ,t, the conditional generators F x0

t , and the derivative of the conditional generator F x0
t which is

independent of θ. Thus in principle we can replace the Fθ,t on the right side with an oracle which
can simply give the value of Fθ,t at any given point.

We then propose that instead of an oracle we can use a model Fη,t that is trained to match Fθ,t. This
is relatively easy as Fη,t can be obtained by simply optimizing the Generator matching loss DGM

using the generated samples pθ,0. This then gives the following objective function

DIGM (θ, η) = Et,xt∼pθ,t
D(F x0

t (xt), Fη,t(xt))︸ ︷︷ ︸
A1

+Et,xt∼pθ,t
D(Ft(xt), Fsg(η),t(xt))︸ ︷︷ ︸

A2

+ Et,xt∼pθ,t
⟨ ∂

∂Fη,t
D(Ft, Fsg(η),t), F

x0
t (xt)− Fsg(η),t(xt)⟩︸ ︷︷ ︸

A3

where sg refers to the stop gradient operator. sg is applied on η because we want η to only learn the
induced generator Fθ,t via the standard generator matching loss.
Remark 4.3. Since Fη,t is supposed to act as the oracle, it should be close Fθ,t before we optimize
the terms A2,3. To achieve this we update η for K iterations where K is a hyperparameter, and then
do one update of θ.
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Figure 1: Samples from the best performing
Jump + Flow IGM model

Method FID ↓
DDPM (Ho et al., 2020) 3.17
VP-SDE (Song et al., 2020) 3.01
EDM (Karras et al., 2022) 1.98

Flow model (Holderrieth et al., 2024) 2.94
Jump model (Holderrieth et al., 2024) 4.23
Jump + Flow (Holderrieth et al., 2024) 2.49

Flow IGM (Our) 3.11
Jump IGM (Ours) 5.22
Jump + Flow IGM (Our) 2.79

Table 1: Experimental results for image
generation on CIFAR-10. Euler integration
was used for sampling the flow models with
NFE=100. All our methods are one-shot gen-
erators (NFE=1)

5 EXPERIMENTS

Since our framework is supposed to work for arbitrary generator matching models, instead of working
with regular diffusion and flow matching models, we instead focus on jump models, a new class of
generative models enabled by Generator Matching.

Holderrieth et al. (2024) show that jump processes with rate kernel Qt and transition kernel kt given
below satisfy the CondOT path used in Lipman et al. (2022) to connect a given target data with
gaussian noise.

Qt(x′; x|x1) =
[kt(x)]+
(1− t)3︸ ︷︷ ︸

λt(x)

[−kt(x′)]+pt(x′|x1)∫
[−kt(x̃)]+pt(x̃|x1)dx̃︸ ︷︷ ︸

Jt(x′;)

, kt(x) = x2 − (t+ 1)xx1 − (1− t)2 + tx21

(5)

The corresponding generative process can be trained with the following loss

Dθ = (
∑
x′ ̸=x

Qθ
t (x

′;x)−Qt(x
′;x|z) logQθ

t (x
′;x))

where logQθ
t is the parameterized generator. For modeling Q Holderrieth et al. (2024) parameterized

the rate λ, J seperately and combined them according to Equation (5). They then show that these
models could be used to generate images. The jump process is parameterized by applying softmax on
the output of a U-Net model with d+ 1 channels. Each channel follows its own independent process,
however the parameters of the process is determined by all the channels combined.

We follow the same approach and train an initial model on the image data. Then we distill it using
our IGM method, and compare generative performance. As is common with image data, the results
are evaluated with FID (Heusel et al., 2017) metric. Results on CIFAR-10 are presented in Table 1,
with some samples presented in Figure 1. We can see from the results that IGM models are in general
close in quality with their teacher models while having and NFE=1. Moreover they can learn not
only from a flow matching objective, but also other models like jump model and a combination of
different generators.

6 CONCLUSION

We presented a novel framework for distilling generators of general Markov processes using the idea
of Generator Matching (Holderrieth et al., 2024). Our framework generalizes the recent and promising
score-distillation framework for diffusion models (Luo et al., 2024b); and applies simultaneously
to flow matching, diffusion processes as well as jump processes. We show experimentally some
promising results for image generation.
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A PROOFS

Lemma A.1. Under simple regularity conditions, for any function g we have the following:

Ext∼pθ,t
⟨g, Fθ,t(xt)⟩ = Ex0,xt∼ρt⟨g, F

x0
t (xt)⟩

Proof. By the definition of pθ,t and Fθ,t:

pθ,t(xt) =
∫

kt|0(xt|x0)pθ,0(x0)dx0 (6)

Fθ,t(xt) =
∫

F x0
t (xt)p0|t(x0|xt)dx0 (7)

=

∫
F x0
t (xt)

kt|0(xt|x0)pθ,0(x0)
pθ,t(xt)

dx0. (8)

We have

Ext∼pθ,t
⟨g, Fθ,t(xt)⟩ = Ext∼pθ,t

⟨g,
∫

F x0
t (xt)

kt|0(xt|x0)pθ,0(x0)

pθ,t(xt)
dx0⟩

=

∫
pθ,t(xt)⟨g,

∫
F x0
t (xt)

kt|0(xt|x0)pθ,0(x0)
pθ,t(xt)

dx0⟩dxt

=

∫ ∫
⟨g, F x0

t (xt)kt|0(xt|x0)pθ,0(x0)dx0⟩dxt

= Ex0,xt∼ρt
⟨g, F x0

t (xt)⟩ (9)

Note that this a more general form of the score projection identity (Zhou et al., 2024). One can obtain
the score projection identity by plugging in the generator for diffusion model given by Holderrieth
et al. (2024) into Lemma A.1.

By replacing g with ∂θg(xt, θ) in (9), we also get that, for any differentiable θ dependent function
g(., θ) :

Ext∼pθ,t
⟨ ∂

∂θ
g(xt, θ), Fθ,t(xt)⟩ = Ex0,xt∼ρt

⟨ ∂

∂θ
g(xt, θ), F x0

t (xt)⟩ (10)
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A.1 PROOF OF THEOREM 4.2

Proof. Let us put g = g(xt, θ) in (9) and differentiate wrt θ. We get

Ext∼pθ,t

(
∂

∂θ
⟨g(xt, θ), Fθ,t(xt)⟩+ ⟨g(xt, θ),

∂

∂θ
Fθ,t(xt)⟩

)
+ Ext∼pθ,t

∂

∂xt
⟨g(xt, θ), Fθ,t(xt)⟩

∂xt

∂θ

= Ex0,xt∼ρt
⟨ ∂

∂θ
g(xt, θ), F x0

t (xt)⟩+ Ex0,xt∼ρt

∂

∂xt
⟨g(xt, θ), F x0

t (xt)⟩
∂xt
∂θ

(11)

+ Ex0,xt∼ρt⟨g(xt, θ),
∂

∂x0
F x0
t (xt)⟩

∂x0
∂θ

a⇒ Ext∼pθ,t

(
����������
⟨ ∂

∂θ
g(xt, θ), Fθ,t(xt)⟩+ ⟨g(xt, θ),

∂

∂θ
Fθ,t(xt)⟩

)
+ Ext∼pθ,t

∂

∂xt
⟨g(xt, θ), Fθ,t(xt)⟩

∂xt
∂θ

= Ex0,xt∼ρt
����������
⟨ ∂

∂θ
g(xt, θ), F

x0
t (xt)⟩+ Ex0,xt∼ρt

∂

∂xt
⟨g(xt, θ), F x0

t (xt)⟩
∂xt

∂θ
(12)

+ Ex0,xt∼ρt
⟨g(xt, θ),

∂

∂x0
F x0
t (xt)⟩

∂x0
∂θ

⇒ Ext∼pθ,t
⟨g(xt, θ),

∂

∂θ
Fθ,t(xt)⟩+ Ext∼pθ,t

∂

∂xt
⟨g(xt, θ), Fθ,t(xt)⟩

∂xt
∂θ

= Ex0,xt∼ρt

∂

∂xt
⟨g(xt, θ), F x0

t (xt)⟩
∂xt
∂θ

+ Ex0,xt∼ρt
⟨g(xt, θ),

∂

∂x0
F x0
t (xt)⟩

∂x0
∂θ

(13)

b⇒ Ext∼pθ,t
⟨g(xt, θ),

∂

∂θ
Fθ,t(xt)⟩+ Ex0,xt∼ρt

∂

∂xt
⟨g(xt, θ), Fθ,t(xt)⟩

∂xt
∂θ

= Ex0,xt∼ρt

∂

∂xt
⟨g(xt, θ), F x0

t (xt)⟩
∂xt
∂θ

+ Ex0,xt∼ρt⟨g(xt, θ),
∂

∂x0
F x0
t (xt)⟩

∂x0
∂θ

(14)

⇒ Ext∼pθ,t
⟨g(xt, θ),

∂

∂θ
Fθ,t(xt)⟩

= Ex0,xt∼ρt

∂

∂xt
⟨g(xt, θ), F x0

t (xt)− Fθ,t(xt)⟩
∂xt
∂θ

+ Ex0,xt∼ρt⟨g(xt, θ),
∂

∂x0
F x0
t (xt)⟩

∂x0
∂θ

(15)

Here in (a) we used the Equation 10 to cancel the indicated terms. In (b) we used the fact that
underlined term is independent of x0 and so the expectation can be changed from only over xt to the
coupling ρ.
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