
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GUIDING VLM AGENTS WITH PROCESS REWARDS AT
INFERENCE TIME FOR GUI NAVIGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in visual language models (VLMs) have notably enhanced
their capabilities in handling complex Graphical User Interface (GUI) interac-
tion tasks. Despite these improvements, current frameworks often struggle to
generate correct actions in challenging GUI environments. State-of-the-art com-
mercial VLMs are black-boxes, and fine-tuning open-source VLMs for GUI tasks
requires significant resources. Additionally, existing trajectory-level evaluation and
refinement techniques frequently fall short due to delayed feedback and local opti-
mization issues. To address these challenges, we propose an approach that guides
VLM agents with process supervision by a reward model during GUI navigation
and control at inference time. This guidance allows the VLM agent to optimize
actions at each inference step, thereby improving performance in both static and
dynamic environments. In particular, our method demonstrates significant perfor-
mance gains in the GUI navigation task setting, achieving a 5% improvement in
action accuracy for static environments and a around 15% increase in task success
rate in dynamic environments. With further integration of trajectory reflection and
retry mechanisms, we also demonstrate even greater enhancement in task success.

1 INTRODUCTION

Recent advances in VLMs have significantly enhanced their capabilities in understanding, reasoning,
and generalizing, enabling them to handle complex real-world GUI interaction tasks (Hong et al.,
2024b; You et al., 2024; Cheng et al., 2024). For instance, given an instruction like “How do I get to
the nearest Walmart?”, a VLM agent is expected to navigate to the Google Maps application, search
for Walmart locations in the vicinity, and select the nearest one to initiate route navigation. These
advancements greatly improve the accessibility and efficiency of GUI interaction tasks.

However, even state-of-the-art visual language models (VLMs) like GPT-4V (OpenAI, 2023), Gemini
1.5 Pro (Reid et al., 2024) and others, as well as interaction agent frameworks like Yan et al. (2023);
Wang et al. (2024); Zhang et al. (2024), still struggle to generate correct actions when completing
GUI tasks such as VisualWebarena (Koh et al., 2024), OSWorld (Xie et al., 2024) and others. These
commercial VLMs are typically black-box models, making them inaccessible for tuning, and further
fine-tuning open-source VLMs for GUI tasks remains resource-intensive. Additionally, Pan
et al. (2024) introduce a technique where GPT-4V serves as an evaluator to assess task success and
provide reflection for retrying in case of failure, which can enhance the performance of agents in GUI
navigation and control. However, such evaluation and refinement methods at the end of a trajectory
will lead to local optimization deficiency and delayed feedback. Evaluating only at the end of the
trajectory can result in insufficient optimization of individual actions, overlooking the refinement
needed at each step. In GUI tasks, where each step impacts the final outcome, neglecting step-by-step
optimization may degrade overall performance. Moreover, trajectory-level evaluation delays error
correction, increasing both computational and time costs. Meanwhile, Bai et al. (2024) propose
DigiRL, improving task performance in dynamic environments by combining Advantage-Weighted
Regression with online reinforcement learning (RL) and an automatic curriculum mechanism. Such
RL methods can lead to high computational and time costs, along with a complex training process
that requires extensive online interaction data. Moreover, the training of RL algorithms is often
unstable due to the sparsity and uncertainty of feedback, as well as the inherent trade-off between
exploration and exploitation. These factors contribute to the high training cost and prolonged training
time, particularly in dynamic and complex environments.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Instruction: Go to accessibility settings

Action: Open settings in
Apps page

(Human demonstration)

Action: Search accessibility
in Google search

(Synthesized data by LLMs)

Toward final success/
identify the effectiveness

of current action

Action
Candidates

Click “Samsung
AU&002”

Slide Down

Back_Home

Select the action with
the highest reward

Interact with
environment

(c) Integrate with Trajectory Refinement

Reward:1

Reward:0.5

Reward:0

(a) Process Reward Model Training

(b) Guide VLM with Process Reward Model during Inference Time
Instruction: What's the
price of the Samsung TV?
Summary of history: Open Chrome
browser from home screen…

Assign
Reward

Open-Source
VLMs

Open-Source
VLMs

Instruction

Step 1

Step 2

Step 3

.

.

.

Evaluation

Reflection
and

RetryTrajectory

If failed

Figure 1: Overview of GuidNav.

To address these limitations, we propose GuidNav, guiding the VLM agent with a process reward
model during interaction inference in GUI navigation and control tasks. Our empirical findings,
along with OpenAI’s o1 results (OpenAI, 2024), show that increasing effort during inference can
significantly improve performance. Furthermore, there are strong reasons to favor process supervision
through a reward model. It offers more precise feedback by identifying the exact step where an
error occurs. This approach directly rewards models for following a path to success. In contrast,
models guided by trajectory-based outcome supervision often take inefficient actions, deviating from
the correct path and requiring additional effort to correct. Process-based rewards can help reduce
these deviations, leading to a more efficient action trajectory. Guiding the VLM agent with this
process reward model enables the agent to learn which actions are effective for achieving the given
goal within the GUI task environment. As illustrated in Figure 1, to achieve this guidance, we first
train a process reward model based on a limited amount of human demonstrations and synthesized
data generated by the VLM. This process reward model learns the feedback signal from GUI data,
guiding the VLM agent during GUI navigation inference to ensure it executes optimal actions. By
providing process reward feedback at each inference step, the VLM agent can more accurately adjust
its behavior. This fine-grained optimization enhances the success rate of tasks, especially in complex
GUI environments where the correct execution of each step is crucial. Furthermore, unlike delayed
feedback in trajectory-level evaluation, step-level process rewards enable the model to learn and
adapt to environmental changes in real-time, preventing the accumulation of errors caused by delayed
feedback. Additionally, like the demonstration in Figure 1 (c), our process reward model can also
been integrated into outcome supervision pipline to further improve action generation and selection.

We evaluate GuidNav in both static and dynamic settings within Android-in-the-Wild (AitW) (Rawles
et al., 2024b), measuring action accuracy at each step based on existing annotations and overall task
success through human evaluation. The experimental results demonstrate that our method improves
GPT-4o by around 5% in action accuracy of static environments and about 15% in task success rate
within dynamic environments. With trajectory reflection and retry mechanisms, the success rate can
reach a peak of 75.9%. In summary, our contributions are primarily in the following three areas:

• We introduce GuidNav, an approach that guides VLM agents for action decision during GUI
interactions through a process reward model.

• Our approach can be easily integrated into trajectory-level refinement to further strengthen
the performance.

• We show that our method can enhance VLM agents in both static and dynamic settings.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

GUI Navigation Agents and Benchmarks Previous GUI navigation agents primarily focused on text-
based prompts describing the environment, such as the HTML code, Document Object Model (DOM),
or accessibility trees. However, current research leverages both screenshots and text instructions to
navigate interfaces more akin to human-environment interactions. For instance, Auto-UI (Zhan &
Zhang, 2023) utilizes GUI data to tune the language and projection modules, enabling interaction in
multimodal GUI environments without the need for environment parsing or application-dependent
API access. AppAgent (Yang et al., 2023b) employs the vision capabilities of large language models
to operate smartphone applications in a human-like manner. Mobile-Agent-v2 (Wang et al., 2024)
presents a multi-agent architecture for assisting mobile device operations. OS-Copilot (Wu et al.,
2024) accelerates the development of computer agents on Linux and MacOS by providing a universal
interaction interface. MM-Navigator (Yan et al., 2023) generates executable actions based on the
screen image, text instructions, and interaction history. CogAgent (Hong et al., 2024b) leverages
extensive GUI grounding data to further train the VLM for enhanced interaction. Additionally,
several works focus on visual interaction tasks across app, web, and OS environments. AitW (Rawles
et al., 2024b) and Weblinx (Lù et al., 2024) use human demonstrations to evaluate the accuracy
of proposed actions. Osworld (Xie et al., 2024), AgentStudio (Zheng et al., 2024), AndroidWorld
(Rawles et al., 2024a), and Visualwebarena (Koh et al., 2024) provide simulation environments for
executing arbitrary agent trajectories in various domains and tasks. While these are not yet perfect,
they serve as suitable platforms for assessing agents’ capabilities.

Evaluation by Reward and Reinforcement Learning Methods Apart from agent framework, some
researchers use reinforcement learning and reward models to enhance VLM agents further. Pan
et al. (2024) introduce an Autonomous Evaluator for agent behavior, refining the agent’s ability
through reflection or fine-tuning based on filtered behavior cloning data. Bai et al. (2024) improve
task performance in dynamic environments by combining Advantage-Weighted Regression with
online reinforcement learning and an automatic curriculum mechanism. Zhai et al. (2024) employ a
reinforcement learning method with a game-rule-based reward to strengthen VLM-powered agents
in Gym Cards and ALFWorld. Fereidouni & Siddique (2024) utilize a two-stage learning process:
Supervised Learning, where human demonstration data maps state to action, and Unsupervised
Learning, where the PPO algorithm fine-tunes by optimizing policy gradients. A language model
calculates action probabilities based on user goals and observations. Compared to process reward
models, these methods often struggle to provide fine-grained step-level feedback and tend to incur
significantly higher training costs.

Discussion Unlike methods like DigiRL (Bai et al., 2024) and Autonomous Evaluator (Pan et al.,
2024) that rely on trajectory-level feedback or high computational training costs, GuidNav provides
step-level rewards, enabling immediate optimization and reducing computational costs. This approach
offers more efficient and precise action refinement, improving task performance in both static and
dynamic environments.

3 METHOD

The primary task of GUI navigation involves enabling the VLM agent to interpret task instructions
and interact with GUI screenshots to achieve a desired goal. Formally, let x represent the task
instruction, and let St = {s1, s2, . . . , st} represent the sequence of GUI states observed at different
time steps t. The VLM agent must generate and select actions At = {a1, a2, . . . , at}, where at is
the action taken at time step t, that modify the GUI state from st to st+1. The overall goal is to
generate and determine an action sequence A that leads the GUI environment from the initial state s1
to a final state sT that satisfies the task’s objective. The core challenge is to enable the VLM agent
to generate and determine actions at at each time step that are most aligned with the task’s goal g,
while minimizing errors or irrelevant operations. The method, GuidNav, we propose consists of a
two-stage process aimed at training the process reward model and guide VLMs agent for efficient
task execution in GUI task environments at each time step t. The stages are as follows:

3.1 REWARD MODEL TRAINING

As shown in Figure 1 (a) and task definition, given a user instruction x, the historical states St−1 =
{s1, s2, . . . , st−1} and corresponding actions At−1 = {a1, a2, . . . , at−1}, as well as the current state
st and an action candidates at, the VLM as process reward model R assigns a reward r to a given

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

action candidate at in the context of the user instruction x and current (St−1, At−1). The training
data for this process reward model can be obtained through two primary sources:

1. Human Demonstrations: This involves collecting data from human experts who interact
with the environment, providing a trajectory of states, actions, and corresponding rewards,
i.e., {x(i), (S(i), A(i), R(i))}Ni=1, where R(i) represents the reward sequence for trajectory i.
The reward value rt at time step t of a trajectory is typically set to 1, as each action candidate
is carefully selected by human experts and is assumed to be correct by default.

2. Self-Playing via VLMs: VLMs simulate interactions with the environment, generating
synthetic trajectories of states and actions {x(j), (S(j), A(j), R̃(j))}Mj=1, where R̃(j) denotes
the synthesized reward sequence. The reward rt is assigned based on the effectiveness of
the VLM - generated action candidate at in achieving the user instruction x(j) and the task’s
goals, rather than merely its similarity to human demonstrations. Details regarding the value
assignment of rt are provided in Appendix 8.1.

To reduce the input length, thus mitigating potential degradation in performance due to excessively
long inputs, at each time step, the VLM is employed to perform multimodal self-summarization
based on the prompt P (elaborated in Appendix 8.3), which converts the historical state and actions
(S,A) into a concise history in the form of natural language:

ht = VLM((St−1, At−1), P)) (1)

Then, the reward rt guided by process reward model R and assigned to action candidate at can be
represented as:

rt = R(x, ht, st, at) (2)

Training Objective: The process reward model R is trained to minimize the difference between
the predicted rewards and the annotated rewards by minimizing a loss function. Specifically, the
objective is to minimize the Mean Squared Error across all trajectories and their respective time steps
between the predicted reward rt,pred for each action candidate and the annotated reward rt,anno:

L(θ) = 1∑N
i=1 T

(i)

N∑
i=1

T (i)∑
t=1

(
r
(i)
t,pred − r

(i)
t,anno

)2

(3)

Here, N represents the total number of trajectories, and T (i) is the number of time steps in trajectory
i. The term r

(i)
t refers to the predicted reward at time step t in the i-th trajectory, and r

(i)
t,true is the

corresponding annotated reward.

3.2 GUIDE VLMS WITH A PROCESS REWARD MODEL

We demonstrate the process in Figure 1 (b), as the aforementioned reward model training.

Action Generation We follow the similar strategy for VLM interaction inference in GUI tasks.
Given a user instruction x, the historical states St−1 = {s1, s2, . . . , st−1} and corresponding actions
At−1 = {a1, a2, . . . , at−1}, the VLM serves as policy model P will first summarize the previous
states and actions to obtain a concise history summary ht. Thus, the user instruction x, history
summary ht, current time step state st and corresponding prompt Pinference (Appendix 8.3) will be
used as input of VLM to generate k possible actions At = a1t , a

2
t , . . . , a

k
t . This can be formulated as:

At = P(x, ht, st, Pinference) (4)

Reward Assignment According to Equation 2, the reward model assigns a scalar reward rkt for each
action candidate akt based on its alignment with the task. The reward rkt is calculated as:

rkt = R(x, ht, a
k
t , st) (5)

Action Selection The VLM selects the action a∗ with the highest reward r∗:

a∗t = argmax
ak
t

rkt (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

This selected action a∗ is then executed to interact with the environment. The process is iteratively
refined to improve the alignment of the VLM’s actions with the desired outcomes, ensuring that the
actions taken are those most likely to achieve the user’s objective.

3.3 TRAJECTORY REFINEMENT AND EVALUATION

The process reward model can also been integrated with the refinement of the trajectories generated
by the VLM to further enhance the performance, as depicted in Figure 1 (c).

Trajectory Formation Once an action a is selected and executed, it becomes part of the trajectory
T = (s1, a1), (s2, a2), . . . , (st, at). The trajectory represents the sequence of state-action pairs
leading from the initial state toward the task objective.

Evaluation and Reflection At the end of each trajectory, the VLM evaluates the success of the
trajectory in achieving the desired outcome. If the trajectory fails to meet the desired criteria, the
VLM reflects on the reasons for the failure, generating a “reflection thought” that encapsulates the
lessons learned from the unsuccessful attempt. This reflective thought is then incorporated into the
retry process, informing the next iteration.

Reflection and Retry The reflective thought generated by the VLM becomes part of the input for
the next attempt. The VLM uses this enriched input, including the original instruction and the new
reflective thought, to generate a new trajectory. This iterative process of reflection and retry continues
until the VLM successfully achieves the task objective. Once a successful trajectory is identified, it is
confirmed, and the process is completed.

4 EXPERIMENT

4.1 BASELINES

Direct Prompting (DP) involves directly prompting a Visual Language Model (VLM) to generate an
action based on the instruction query, the current screenshot, and a summary of the previous state.

TopK is a technique where the model generates the top k most probable actions (Xiong et al., 2023;
Tian et al., 2023). In this procedure, while the model generates k actions (with k set to 3 in our work),
we simplify the process by always selecting the most probable one (the first action in the list). This
ensures that the model still considers multiple possibilities but prioritizes the highest-probability
action for execution.

Reflection (Shinn et al., 2024) is a framework that improves LLMs’ decision-making abilities in
various tasks by using linguistic feedback and episodic memory, achieving significant performance
gains in environments.

Autonomous Refinement (AR) (Pan et al., 2024) leverages the Reflexion technique (Shinn et al.,
2024), an agent first attempts a task, and an external evaluator is used to judge whether its attempt
was successful or not. If it is judged as unsuccessful, the agent will be prompted to reflect on the
failure and retry. Here, we utilize GPT-4o as the external evaluator.

DigiRL (Bai et al., 2024) is an autonomous RL approach, for training in-the-wild device control
agents through fine-tuning a pre-trained VLM in two stages: offline RL to initialize the model,
followed by offline-to-online RL.

4.2 DATASET

Android-in-the-Wild (AitW) (Rawles et al., 2024b) is a large-scale dataset for Android device control,
comprising 715,142 human demonstrations across 30,378 unique instructions. These instructions
are divided into four subsets: General, WebShopping, GoogleApps, and Installation. We leverage
ground-truth data and self-play data from 300 tasks in each subset to form the training set for the
process reward model. Following the approach outlined in Yan et al. (2023), we randomly select 300
tasks from the AitW test set to evaluate action accuracy in a static environment. To ensure balanced
representation, each subset contributes 75 tasks. For dynamic environment evaluation, we sample
120 tasks (30 from each subset) as instruction queries in a simulated setting. We also attach the
comprehensive action space of AitW in Appendix 8.4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.3 SETUP

We utilize GPT-4o as the VLM policy model (set the tempature as 0.8) and leverage CogVLM2
(Hong et al., 2024a) as process reward model. Additionally, we leverage Set-of-Mark (SoM) method
(Yang et al., 2023a) to enable the communication between VLM and screen. More details about
SoM setting can be found in Appendix 8.2. In terms of static evaluation, we follow the previous
settings (Rawles et al., 2024b; Yan et al., 2023) and compute the screen-wise partial action matching
score as the main evaluation metric, defined as the number of correct actions divided by the episode
length, then this score is averaged over all tested episodes. As for dynamic assessment, we call for 2
annotators to measure final success for each task.

General Google apps Install Web shopping Average

Topk w/ Oracle Eval 55.8 49.5 54.4 57.2 53.7

DP 30.3 39.1 36.2 34.4 34.3
TopK 31.0 35.8 34.4 36.9 34.0
Reflection (Shinn et al., 2024) 31.2 37.9 32.6 30.0 32.9

GuidNav 35.5 41.4 40.9 38.5 38.9
GuidNav Pass@N 43.4 48.4 48.8 42.3 46.8

Table 1: Performance comparison of approaches in static assessment across four AitW tasks. Topk
w/ Oracle Eval uses an oracle to select the best action from the top-K candidates. Pass@N, with N
set to 3, calculates the action accuracy across multiple attempts, counting how many outcomes are
correct in 3 trials.

General Google apps Install Web shopping Average

DP 48.3 51.7 29.4 17.4 38.8
Topk 40.0 45.5 41.2 25.0 43.3
AR (Pan et al., 2024) 59.3 50.0 41.9 17.6 42.2
DigiRL (Bai et al., 2024) 56.3 - - 32.7 -
GuidNav 58.6 64.5 47.8 35.3 54.0
Integration 80.0 91.3 64.7 53.8 75.9

Table 2: Performance comparison of approaches in dynamic assessment across four AitW tasks.
Integration refers to the method where we combine the process reward model with the AR approach
(3 retries), as detailed in Section 3.3.

5 PERFORMANCE

5.1 EXPERIMENTAL RESULTS IN AITW

Static Evaluation As shown in Table 1, compared to DP, our method achieves an average improve-
ment of 4.6%, particularly in the ‘General’ domain tasks where we see a 5.2% gain. Simply applying
the TopK method does not yield the same benefit. However, when we incorporate a reward model
to identify the most likely action, the improvement becomes even more substantial. Furthermore,
among the top k possible actions, selecting the action based on oracle evaluation (Topk w/ Oracle
Eval) reveals a high upper bound. This indicates that while VLMs can generate a potentially correct
action, the correct one is often not their first choice. By applying our method multiple times (GuidNav
Pass@N), we can significantly enhance its overall performance.

Dynamic Assessment In the dynamic environments of table 2, we use human evaluation to
assess task success rates, offering a more realistic evaluation aligned with real-world scenarios. Our
GuidNav outperforms both DP and AR, achieving overall improvements of approximately 15.2% and
11.8%, respectively. Even when compared to the DigiRL method, which includes further tuning via
reinforcement learning, GuidNav maintains superiority. Additionally, our method provides process-
level supervision, whereas the AR approach evaluates the final outcome and offers insights for retries.
These two methods can be naturally integrated (the results of ‘Integration’), enabling us to achieve a
higher success rate with a maximum of three retries.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0
The Number of Refinement

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

54.0%

67.8%

74.7%
78.3%

38.8%
42.2%

52.9%

61.8%

43.3%

54.2%

63.8% 63.8%

GuidNav+AR
Top-K+AR
DP+AR

Figure 2: The performance curve across different trial numbers shows the impact of refinement
techniques. ‘DP+AR’ represents the combination of direct prompting for action at each step, followed
by AR at the end of each trajectory trial. ‘GuidNav+AR’ integrates TopK action selection guided
by a reward model, with AR applied at the end of each trajectory trial. ‘TopK+AP’ refers to TopK
method integrated with AR.

5.2 SELF-IMPROVEMENT IN OPEN SOURCE VLM POLICY MODEL

Based on the guidance provided by the process reward model, the policy model can be enhanced
during inference. Additionally, the model’s intrinsic abilities are strengthened as a result of the
process reward model’s guidance through successful trajectory fine-tuning. Table 3 demonstrates
the benefit of increasing successful trajectories. With 300 and 800 trajectories data, the model’s
performance can be further improved.

Method General Google Apps Install Web shopping Average

VLM-FT300 28.9 34.9 37.1 33.2 32.3
VLM-FT800 45.1 44.8 54.6 45.5 47.9

Table 3: Performance comparison of different numbers of generated trajectories data. VLM-FT300
refers to the model fine-tuned with 300 successful trajectories, and VLM-FT800 indicates fine-tuning
with 800 successful trajectories. We evaluate using a static environment and its corresponding metrics,
with 75 tasks in each subset.

6 ANALYSIS

6.1 INTEGRATION WITH AUTONOMOUS REFINEMENT

As mentioned earlier, our method can also be integrated with an AR approach. Specifically, we
continue to guide the VLM agent with the reward model at each action step, and then use GPT-4o as
an evaluator to provide reflective feedback. We apply up to three rounds of this integration to assess
the performance of both the AR and the integrated methods.

As shown in Figure 2, the performance of the AR method significantly improves from the first to
the third round, though the incremental benefit decreases with each additional round. However, the
performance curve of the integrated method with the process reward consistently remains above
that of the AR (DP+AR) alone, indicating that our approach consistently enhances the AR method’s
effectiveness.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Search for flights from Barcelona to Mexico city

Opened Chrome browser from home screen,
clicked the search bar to find flights.

G1: The search bar is present on the screen. By typing
"Google Flights" into the search bar, we can quickly
navigate to a reliable flight search engine.
So the next one action is:
{"action_type": "type", "text": "Google Flights"} ✗

G2: To search for flights, we need to type the relevant
keywords into the search bar and then execute the
search. Clicking the search bar is the first step in this
process.\nSo the next one action is:
{"action_type": "click", "id": 30} ✓

G3: The user needs to search for flights. The
microphone icon next to the search bar can be used for
voice input.
So the next one action is:
{"action_type": "click", "id": 38} ✗

G4: Typing "Skyscanner" into the search bar is
another good approach to find flights. It directly helps
us navigate to a reliable flight search engine.\nSo the
next one action is:
{"action_type": "type", "text": "Skyscanner"} ✗

Previous Actions Summary

Task Top-4 possible actions proposed by GPT
Probabilities for each Action:
0.9 0.8 0.8 0.85

Action choice:
{"action_type": "type",
"text": "Google Flights"}

Probabilities for each Action:
0.00 1.00 0.00 0.00

Action choice:
{"action_type": "click",
"id": 30}

GPT-4o Reward model

30 38

Figure 3: Example of case study. Search for flight in Google Chrome.

6.2 COMPARISON OF COMPUTATIONAL EFFICIENCY

We compare the efficiency of several methods across different metrics. Table 4 presents the average
token consumption, API cost, and average number of interaction turn required to complete a task for
each method. First, the DP and TopK methods show noticeable differences in token consumption
and cost. DP consumes 41.0k tokens with a cost of $0.13, while TopK consumes 59.4k tokens,
resulting in a higher cost of $0.23. Additionally, the number of interaction turns is lower for DP (8.7
turns) compared to TopK (10.6 turns). The AR (n=1) and Integration (n=1) methods consume more
tokens, 102.1k and 108.6k respectively, resulting in higher costs of $0.40 and $0.41. However, AR
(n=2) consumes the most tokens, 129.4k, leading to the highest cost of $0.51, showing a significant
increase in cost with the number of evaluation rounds. These results suggest that the DP and GuidNav
methods are more cost-effective, especially for tasks requiring more interaction turn. Although the
AR methods consume more tokens and incur higher cost, they may offer different advantages, such
as improved accuracy or other performance aspects, depending on the specific task requirements.

Method Tokens Cost Turn

DP 41.0k 0.13 8.7
TopK 59.4k 0.23 10.6
GuidNav 53.4k 0.20 9.8
AR(n=1) 102.1k 0.40 17.8
AR(n=2) 129.4k 0.51 22.5
Integration(n=1) 108.6k 0.41 19.8

Table 4: Efficiency measurement for different methods is analyzed across several metrics. “Tokens”
refers to the average token consumption per task. The “Cost” metric corresponds to the average API
cost per task, based on the latest GPT-4o pricing ($5.00 per 1M tokens). “Turn” indicates the average
number of interaction turn. The variable n denotes the number of evaluation rounds.

6.3 CASE STUDY

Our method demonstrates a superior capability to select the most appropriate actions for complex
tasks. This is particularly evident in tasks requiring precise operation sequences. As illustrated in
Figure 3, when searching for flights in Google Chrome, the correct procedure involves first clicking
the search bar before typing the search content, as highlighted in the previous action summary. Our
method correctly identifies this action sequence, ensuring a more accurate and efficient interaction
with the environment. In contrast, GPT-4o suggests typing the search content without clicking the
search bar first, leading to an incorrect operation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

......

Task: Go to accessibility settings

Swip up Click Click Input Text Enter Actions End

Task Trajectory with Process Reward Model

Task trajectory without Process Reward Model

Swip Up Click Swip Down Actions End

Repeat the swipe-dwon
action and stay on this page.

Task: Go to accessibility settings

Figure 4: Example of case study. Access the accessibility settings.

Moreover, our approach surpasses other methods in efficiency. The reward model we employ actively
learns to prioritize actions that drive progress towards the task goal with minimal redundancy. This is
evident in how our method directly focuses on the relevant actions, avoiding unnecessary exploration.
For instance, in the bottom scenario of Figure 4, when accessing the accessibility settings, other
methods, such as the VLM, exhibit a lack of precision. The VLM continues to swipe down and stucks
on this page, reflecting a blind, exhaustive search approach. In contrast, our method identifies the
correct path swiftly, avoiding redundant actions and demonstrating a more intelligent task-solving
strategy.

This efficiency is not just about completing tasks faster but also about making decisions that align
closely with the goal of task, resulting in more robust and reliable performance in dynamic environ-
ments.

7 CONCLUSION

In this work, we presented the approach to guiding VLMs with a process reward model for improved
performance in GUI interaction tasks. Our method addresses the limitations of existing frameworks
by enabling VLM agents to optimize actions at each inference step, significantly enhancing action
accuracy and task success rates in both static and dynamic environments. Specifically, we demonstrate
a near 5% improvement in action accuracy in static GUI environments and a around 15% increase in
task success rate in dynamic settings. These results highlight the effectiveness of our process reward
model guidance strategy in overcoming challenges such as delayed feedback and local optimization.
Furthermore, by incorporating trajectory reflection and retry mechanisms, we further demonstrate
advancements in the robustness and efficiency of VLM agents in complex GUI navigation tasks.
For future work, GuidNav’s generalization can be tested in broader scenarios beyond specific apps,
using new benchmarks that cover tasks across operating systems, professional tools, and workflows.
Expanding evaluation in these areas will offer deeper insights into its effectiveness in more diverse,
real-world contexts.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. arXiv preprint
arXiv:2406.11896, 2024.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing GUI grounding for advanced visual GUI agents. arXiv preprint
arXiv:2401.10935, 2024.

Moghis Fereidouni and AB Siddique. Search beyond queries: Training smaller language models for
web interactions via reinforcement learning. arXiv preprint arXiv:2404.10887, 2024.

Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng,
Shiyu Huang, Junhui Ji, Zhao Xue, et al. Cogvlm2: Visual language models for image and video
understanding. arXiv preprint arXiv:2408.16500, 2024a.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for GUI agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024b.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
multi-turn dialogue. arXiv preprint arXiv:2402.05930, 2024.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

OpenAI. OpenAI o1 System Card. 2024.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. arXiv preprint arXiv:2404.06474, 2024.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic
benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573, 2024a.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36, 2024b.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher D Manning. Just ask for calibration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human feedback. arXiv preprint arXiv:2305.14975,
2023.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective navigation via
multi-agent collaboration. arXiv preprint arXiv:2406.01014, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. OS-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. OSworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms
express their uncertainty? an empirical evaluation of confidence elicitation in llms. arXiv preprint
arXiv:2306.13063, 2023.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models for
zero-shot smartphone GUI navigation. arXiv preprint arXiv:2311.07562, 2023.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023a.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent:
Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023b.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. Ferret-UI: Grounded mobile UI understanding with multimodal llms. arXiv
preprint arXiv:2404.05719, 2024.

Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr, Saining
Xie, Yann LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making
agents via reinforcement learning. arXiv preprint arXiv:2405.10292, 2024.

Zhuosheng Zhan and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
arXiv preprint arXiv:2309.11436, 2023.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and
Duyu Tang. Android in the zoo: Chain-of-action-thought for GUI agents. arXiv preprint
arXiv:2403.02713, 2024.

Longtao Zheng, Zhiyuan Huang, Zhenghai Xue, Xinrun Wang, Bo An, and Shuicheng Yan. Agentstu-
dio: A toolkit for building general virtual agents. arXiv preprint arXiv:2403.17918, 2024.

Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li, Jianfeng Wang, Lijuan Wang, Jianfeng
Gao, and Yong Jae Lee. Segment everything everywhere all at once. Advances in Neural
Information Processing Systems, 36, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

8 APPENDIX

8.1 REWARD ANNOTATION

To collect training data for the reward model, we utilize the AitW dataset (Rawles et al., 2024b) and
employ GPT-4o as the policy model in a static environment for self-play. We automatically label each
action at the step level by evaluating its effectiveness. Since the AitW ground truth is represented as
coordinates, while our model outputs numeric labels for detected elements, we treat any point within
the detected bounding elements as equivalent. According to our rule, a predicted action from GPT-4o
is considered correct if both the action type and gesture match the annotator’s ground truth actions.
Specifically, our evaluation metrics are based on those used in AitW.

• For click actions: The action is considered correct if the chosen element by action is
within 14% of the screen distance from the ground truth coordinate, or if both the ground
truth coordinate and the element selected by generated action fall within the same detected
bounding box (expanded to 240% of its original size for action matching).

• For scroll actions: the predicted action is considered correct if the scroll direction (up,
down, left, or right) matches the ground truth direction.

• For other actions: For other actions: The predicted action is considered correct if the action
type matches the ground truth. However, for the typing action, both the action type and the
typed content must match the ground truth.

8.2 SOM SETTINGS

SoM utilizes off-the-shelf interactive segmentation models, such as SEEM (Zou et al., 2024) or
SAM (Kirillov et al., 2023), to partition an image into regions of varying granularity. Each region is
annotated with marks like alphanumeric labels, masks, or bounding boxes. This enhances the VLM’s
ability to interpret and understand elements within the image.

In our implementation, we maintain the original SoM configuration (input an image, output bounding
boxes and corresponding labels, and overlay the labels onto the image). We choose SAM as the
segmentation model and, for each identified entity, assign a unique numeric label positioned at the
center. Additionally, we store the labeled screenshot along with the coordinates of each labeled entity
for subsequent interactions.

Given the complex structure of GUI interfaces, which often include numerous small entities with
relationships such as containment and overlap, we implement specific strategies to ensure accurate
interpretation by the VLM. For entities in containment relationships, we retain the identifiers of both
the containing and contained entities. In cases of overlapping entities, we prioritize the identifier of
the smaller entity to ensure clarity and precision.

8.3 PROMPTS

Instruction:
Provide a summary of the previous actions as follows: {previous text} , the current thinking steps and the
action to be executed as follows: {text}, and the screenshot of the interface after the action is executed.
Please summarize the actions above and the status after the action is executed into the new previous actions
using descriptive languages brief as possible.(do not speculate on the next move)
Summary:

Table 5: Prompt for generating historical summarization

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Task: Goal of task
Task Requirements:
Above are two screenshots of a android phone. one is the original screen and the other one has blocks with
numeric IDs. You are an AI assistant with a deep understanding of these screenshot and the android phone
operations.
For example, The home page does not display all installed apps, scrolling up on the home page can open the
App Drawer where all the installed apps [If an app is not in the app drawer, it is not installed.] are stored and
organized, or you can check whether an app is installed in Google Shop. You need to generate an action
based on the current situation, which will be executed automatically without user intervention.
The user will not interfere with the entire operation process, such as voice input, which will be regarded as
an incorrect operation.
Attention: When the user can find the answer from the current page (without needing detailed information),
the task can be considered complete.”
Available Actions:
available actions
Summary of previous actions:
Previous actions: previous actions
Instruction:
Based on the above information and the following instruction. please provide your k best thought processes
(think step by step) and answers for the next one action(only one action),then provide the probability (0.0 to
1.0) that each action contributes to completing the user’s requirement at the current stage (according to the
image).
Answer format for example:
G1: <the step-by-step explanation of your thought process (No more than three sentences)> So the next one
action is:{”action type”: <action type in <Available Actions>, <the rest information of the action>}
P1: <the probability between 0.0 and 1.0 that G1 is correct, without any extra commentary whatsoever; just
the probability!>
...
Gk: <the step-by-step explanation of your thought process (No more than three sentences)> So the next one
action is:{”action type”: <action type in <Available Actions>, <the rest information of the action>}
Pk: <the probability between 0.0 and 1.0 that Gk is correct, without any extra commentary whatsoever; just
the probability!>

Table 6: Prompt for generating k possible actions

8.4 ACTION SPACE OF AITW DATASET

The AitW dataset consists of a set of predefined actions that the VLM agent can perform in Android
environment GUI navigation tasks. The actions are represented as follows:

• "click": Perform a click action on a UI element with a specific id.
Example: {"action type": "click", "id": <numeric IDs on the
screen>}.

• "type": Input text into a UI element. Example: {"action type": "type",
"text": <text>}.

• "navigate home": Navigate back to the home screen. Example: {"action type":
"navigate home"}.

• "navigate back": Navigate to the previous screen. Example: {"action type":
"navigate back"}.

• "enter": Confirm the current action, typically mimicking an ’enter’ key press. Example:
{"action type": "enter"}.

• "scroll": Scroll in a specified direction, where the direction can be "up",
"down", "left", or "right". Example: {"action type": "scroll",
"direction": "up"}.

• "task complete": Mark the task as completed. Example: {"action type":
"task complete"}.

13

	Introduction
	Related Work
	Method
	Reward Model Training
	Guide VLMs with a Process Reward Model
	Trajectory Refinement and Evaluation

	Experiment
	Baselines
	Dataset
	Setup

	Performance
	Experimental results in AitW
	Self-improvement in Open Source VLM Policy Model

	Analysis
	Integration with Autonomous Refinement
	Comparison of Computational Efficiency
	Case Study

	Conclusion
	Appendix
	Reward Annotation
	SoM Settings
	Prompts
	Action Space of AitW Dataset

