Under review as a conference paper at ICLR 2026

EXPLORING THE DESIGN SPACE OF
TRANSITION MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transition Matching (TM) is an emerging paradigm for generative modeling that
generalizes diffusion and flow-matching models as well as continuous-state autore-
gressive models. TM, similar to previous paradigms, gradually transforms noise
samples to data samples, however it uses a second “internal” generative model to
implement the transition steps, making the transitions more expressive compared to
diffusion and flow models. To make this paradigm tractable, TM employs a large
backbone network and a smaller "head" module to efficiently execute the generative
transition step. In this work, we present a large-scale, systematic investigation
into the design, training and sampling of the head in TM frameworks, focusing
on its time-continuous bidirectional variant. Through comprehensive ablations
and experimentation involving training 56 different 1.7B text-to-image models
(resulting in 549 unique evaluations) we evaluate the affect of the head module
architecture and modeling during training as-well as a useful family of stochastic
TM samplers. We analyze the impact on generation quality, training, and inference
efficiency. We find that TM with an MLP head, trained with a particular time
weighting and sampled with high frequency sampler provides best ranking across
all metrics reaching state-of-the-art among all tested baselines, while Transformer
head with sequence scaling and low frequency sampling is a runner up excelling at
image aesthetics. Lastly, we believe the experiments presented highlight the design
aspects that are likely to provide most quality and efficiency gains, while at the
same time indicate what design choices are not likely to provide further gains.

1 INTRODUCTION

Transition Matching (TM) |Shaul et al.[(2025) is a recent generalization of several media generative
paradigms including diffusion models Sohl-Dickstein et al. (2015); [Ho et al.| (2020); |[Song et al.
(2020), flow matching models |Lipman et al.| (2022)); Liu et al.|(2022); |Albergo & Vanden-Eijnden
(2022), and continuous-state autoregressive image generation Li et al.| (2024); |Team et al.| (2025)) that
offers new design choices that go beyond the scope of these former paradigms and already shown to
yield improved image quality and/or more efficient sampling at inference time.

In this work we focus on TM’s continuous time bidirectional variant, which, similarly to previous
paradigms, learns a transition function (kernel) that gradually transfers a source (noise) sample X
to a target (data) sample X by iteratively producing future samples X/ from previous samples X,
0 <t < t' < 1. Differently from previous work, TM models the transition kernel with a second
“internal” generative model, offering a more expressive transition kernels than, e.g., diffusion models
that utilize a factorized (i.e., independent in each coordinate) multivariate Gaussian as kernels. To
keep things tractable, TM adopts a backbone—head paradigm, in which: The backbone (typically a
large transformer) encodes current state X; as well as conditioning information, producing a rich
latent representation per input token. The head (typically much smaller than the backbone) serves as
a learnable module tasked with translating backbone latent representations into concrete transition
outputs, producing the next state X/ with ¢’ > ¢. While backbone architecture for diffusion models
have been, and still are, thoroughly investigated (e.g., Peebles & Xie|(2022))), systematic exploration
of head architecture and hyperparameters is lacking in the current literature. Most existing works treat
the head as a fixed, minimal component—often a single MLP or a lightweight mapping—without
investigating how variations in design might impact model behavior and efficiency (L1 et al.| [2024;
Fan et al.; Team et al.| 2025} |Shaul et al., |[2025). In fact, due to its particular role in the generative
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Figure 1: Samples comparing of our Best D-TM MLP (DTM++) and Transformer (DTM+) Models
with DTM baseline, FM-lognormal, AR, MAR, AR-discrete, MAR-discrete as baselines. All models
share similar architecture and training recipe.

process and its small relative size, the head design holds much potential for improving the model
performance by exploring head-specific architectures and different scaling laws. In this paper we take
on this opportunity and explore different design choices for the head both in training and inference
stages, with the goal of improving one or more of the three main properties of a highly performant
generative model: generation quality, training efficiency, and inference efficiency. We offer the
following contributions:

(1) Comprehensive exploration: We perform a large-scale (i.e., 56 different 1.7B unique model
trains resulting in 549 unique evaluations), systematic ablation study of TM design space
including exploration of head model architecture and size, sequence scaling laws, batch size
scaling laws, time weighting, model parameterizations and inference algorithms. For fair
comparison across models and baselines we keep backbone, training dataset, and most training
hyperparameters strictly fixed, while evaluating all models on a comprehensive setup of 4
datasets with 25 individual metrics summed up to a single performance rank.

(i1) TM sampling: We design a novel stochastic sampling algorithm for Transition Matching that is
shown to considerably improve generative quality while keeping the computational cost the
same.

(iii) Actionable Guidelines: Our ablations illuminate tradeoffs and best practices for continuous-time
bidirectional TM-based generative models. In a nutshell: TM with MLP head trained with
particular backbone-head time weighting and sampled with high frequency stochastic sampler
leads to the best ranking model (DTM++), where Transformer head with sequence scaling and
low frequency sampling is the runner-up (DTM+) that excels in image aesthetics, see fig.[I]
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2 BACKGROUND: CONTINUOUS-TIME TRANSITION MATCHING

Goal and motivation of Transition Matching In this paper we focus on continuous-time fully-
bidirectional variant of Transition Matching (TM) (Shaul et al., 2025)), which we found to lead to best
results in our text-to-image experimental setup. An image is encoded as a sequence of n continuous

tokens in dimension d, thatis z = (z!,...,z") € R"*%, Capital letters are used to denote random
variables. Similar to diffusion and flow models, TM learns a transition kernel,
Xp ~pl (-1 X)), 0<t<t <1 (1)

gradually transforming a source (e.g., noise) sample Xy ~ py to a target (e.g., data) sample X; ~ py,
where 6 denotes the learnable parameters. In diffusion modelsﬂ transitions p?, have the simplified

form of a factorized Gaussian kernel,
P (-1 2) = N(- | pe(), 071), )

where in flow matching this kernel is even simpler, i.e., a delta function. Transition Matching (TM)
is a generalization of diffusion and flow models that utilizes more expressive transition kernels pf, It

which are modeled by an “internal” generative flow model that learns to sample X,/ given state X;.
TM learns pf,l , by matching it to the transitions of some user defined supervision process denoted

qy|¢ defined next.

|t

Supervising process and kernel parameterization The TM model pf, is learned by regressing

|t
a supervision process q. A supervision process is any random process (X¢):¢[o,1], With probability
density ¢ such that its marginals, denoted by ¢;(x;), at time ¢ = 0 and ¢ = 1 coincides with the
desired source distribution pg and target distributions p;, respectively. That is, gg = pg and ¢; = p;.
The choice of a supervision process g is a design freedom of TM, where in this paper we follow the
standard choice of the linear (a.k.a. conditional optimal transport) path|Lipman et al.|(2022); Liu et al.
(2022)); Shaul et al.| (2025)):

Xi=1-t)Xg+tXy Linear supervising process 3)
where ¢ € [0, 1], Xo ~ N(0, ) is a noise sample, and X; ~ p; is a data sample.

The conditional distribution gy (24 |;) is the main object we want to regress in TM. That is, given
a current state X, learn to sample X so it is distributed according to g/, (-| X;). However, it is often
useful to learn to predict a different random quantity Y given X; instead of directly X . The reason
is two-fold: First, avoid dealing with the extra time variable ¢’ during training; and second, improve
inductive bias and performance by e.g., removing the dependence on ¢ in the target quantity. To
make the Y parameterization useful in practice, one needs to make sure that predicting Xy given
samples Y and X} is rather easy and computationally cheap. The parameterization process is justified
mathematically by the law of total (conditional) probability,

qoo(ele) = / ao ey @e |20, y)py e (vl dy. @

That is, TM learns to sample Y ~ py(-|z;). After a sample of Y is produced, the next state is
sampled according to
Xy~ Qt'\t,Y('|XtaY)7 (5)

which is guaranteed to have the distribution g,/;(-|X;) by the law in eq. (4). The choice of Y is
another degree of freedom of TM. |Shaul et al.| (2025 made the choice of noise-data difference,

Y = X; — Xo D-TM (6)

motivated by the relation
Xy =X+ (t' —t)(X1 — Xo) @)

that holds for the linear process (eq. (3)); this variant is called Difference Transition Matching (D-TM).
An equivalent parameterization is also explored in|Zhang et al.| (2025)).

"'We use the forward-time convention similar to flow matching, while standard diffusion models use backward-
time convention moving from state X to state X;_1.
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Figure 2: Head architectures explored (in green): MLP, Convolution, and Transformer. The backbone
model (in orange) is kept fixed.

Modeling The goal in TM is to learn a model to sample Y ~ py-;(-|X;) for each ¢ € [0, 1) and
X ~ q. This entails an “interior” model that is resampled for each ¢. To make this tractable (and in
fact, improve performance), TM uses a backbone-head architecture. That is, given a current state X
a backbone network computes a latent vector representation,

he = [ (X4). (®)
Next, this latent vector is used by a head network uf|t(~|:17t) to sample Y ~ py(-[X¢). The head

will be used to sample Y via flow matching (Lipman et al., 2022} Liu et al. [2022; |Albergo &
'Vanden-Eijnden| [2022). That is, it is learned by minimizing the flow matching loss

2
‘CTM(H) = B¢ Xo,x1,5,0.1 Hu?(YYS“Lt) - (Yl - YO)H ) )
where ¢, s ~ U(0,1) uniformly and independently, X; = (1 — )Xo + t X1 ~ gz, Yo ~ N(0,1),
Y1 ~ py (| X¢), and Yy = (1 — s)Y) + sY1. Once training is completed, sampling Y ~ py-|(-|z¢)
is done by solving the ordinary differential equation (ODE),
d
—Y: =
ds '
starting with Yy ~ A/(0, I) and solving until s = 1, with h; = f; (). The total learnable parameters
of the TM model are § = (i, ¢); for brevity, we sometimes omit the parameters superscript. The
sampling pseudocode is provided in algorithm 2]

(Ys|hy) (10)

e\f

3 EXPLORING THE DESIGN SPACE

The main goal of this paper is to explore the design space of continuous-time Transition Matching
for maximizing performance (i.e., quality and text adherence of generated images) and efficiency
(i.e., inference and training speed). First we consider the training phase, focusing on head modeling
and architecture. The head u,; is responsible for sampling Y given the current state Xy encoded via
a latent h; computed by the backbone f;. The head introduces a useful leverage point as it can be
chosen (as we will see) to be significantly smaller and faster than the backbone model and therefore
exhibits scaling laws that can improve the overall performance and efficiency without a significant
increase to the overall computational and memory costs. Second, we explore different inference
options including efficiency-quality tradeoffs and a novel TM stochastic sampling algorithm. We
start by describing our experimental setup (text-to-image generation), and then move to discuss the
different design choices explored and the relevant experiments.

3.1 EXPERIMENTAL SETUP

We start with explaining the experimental setup that is fixed throughout the experiments.

Backbone model and Data We fix our backbone model f;° to a DiT transformer model (Peebles &
Xie, [2022) with 24 layers (including self and cross attention) and a hidden dimension of dj, = 2048;
this gives total of 1.7B parameters for the backbone. Our data consists of 350M text-image pairs.
Each image is of dimension 256 x 256 x 3; we move it to a latent representation as follows: we first
embed it into a latent space using SDXL-VAE (Podell et al.,[2023) to dimension 32 x 32 x 4 and
then 2 x 2 patched to get a latent representation of 16 x 16 x 16 and therefore our data and noisy
vectors X,Y € R"*¢ where n = k? with k = 16 and d = 16. The standard hyperparameters are
following [Shaul et al.| (2025) including optimizer, number of training iterations (500k), where the
only difference is that we use learning rate decay. We use standard Classifier Free Guidance (CFG)
(Ho & Salimans| [2022) training and sampling for flow matching, see appendix [F
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(a) Performance (b) Inference Speed (c) Training Speed

Figure 3: (a) Performance as a function of additional parameters. Increasing the head size does not
improve performance. (b) Inference speed (seconds). (c) Training speed (iteration, seconds).

Metrics We report text—to-image metrics over four different prompt datasets: MS-COCO (Lin
et al., 2014), PartiPrompts (Yu et al., [2022), GenEval (Ghosh et al.} 2023), and T2ICompBench
(Huang et al., 2023)). Over MS-COCO and PartiPrompts we calculate standard image quality metrics:
CLIPScore (Hessel et al.,|2021)), PickScore (Kirstain et al.| 2023)), ImageReward (Xu et al., 2023al),
UnifiedReward (Wang et al., 2025)), Aesthetic (aes,[2022), and DeQA (You et al., 2025). On GenEval
and T2ICompBench we calculate their internal metrics and the corresponding overall scores. As
there is a large amount of datasets (4) and metrics (25 different metrics), we aggregate all metrics
into a single rank calculated for each evaluated model as follows. We rank each model to be tested
(we have a total of 549 such models from 56 unique trains) according to each metric (scores from 1
to 549, where higher is better). We then average these ranks across all metrics and divide by the total
number of models to get a final rank score in [0, 1] for each model.

3.2 TRAINING AND HEAD MODELING

In this section we discuss the TM training and explore different design choices for the head model’s:
head architecture type and size, sequence scaling, model parameterization Y, head batch size, and
time weighting. In each of the following experiments we start from a base model and ablate on
the specific design choice. Our base model is: a medium size head, with sequence scaling of 1,
difference paramterization Y = X; — X, head batch size of 4, uniform backbone and head time
weighting, and sampled with 32 x 32 backbone-head steps; FM uses 256 steps.

Head architectural type One natural design choice is the architecture type of the head model u|;.
We considered three options, see also fig. [2f (i) MLP - This is the most basic choice, used in (Shaul
et al.,[2025), where an MLP acting independently on each image token y given the current step’s
latent h;, and producing a prediction in token dimension R%, i.e., uy:(y'|hi) € R, i =1,...,n.
(ii) Convolution - we use 2D convolution layers across the image tokens y° with kernels of size
3 x 3. (iii) Transformer- incorporating attention layers across the image tokens y*. Both Convolution
and Transformer head architectures take in the entire sequence of tokens y € R"*? and produce a
prediction in the same dimension, i.e., uy;(y|h:) € R™*4, For the transformer head we further apply
16 x 16 x 16 — 8 x 8 x 64 reshape layer to allow for equivalently efficient head.

Head model size To check the influence of both head type and size, we have experimented with a
variety of head model sizes for each type: x-small, small, medium, large, and x-large. In particular
these correspond to head models with hidden dimensions of d;, € {768,1024, 1280, 1536, 2048}
(remember that our backbone hidden dim is d;, = 2048) and {6, 6, 8,12, 16} layers, respectively.
Figure [3| shows, for each architecture type, the model rank as a function of the relative additional
parameters to the backbone. For D-TM this corresponds to the relative size of the head, while for
flow matching (FM) we also show what happens when we add the same number of parameters to the
backbone as our medium size head. Dense shows the affect of using the backbone for both backbone
and head similar to[Zhang et al.| (2025). Note that while having a head considerably improves the
model’s rank, the size of the head does not show strong correlation with performance, even in the
limit case with a head almost the size of the backbone (>1 relative size). Figure[3](b) and (c) show the
affect of different heads on inference and training iteration time. As expected both inference time and
training time increase with the head size and is particularly costly for dense inference. To summarize,
smaller head sizes already provide good performance, improved inference time compared to FM and
roughly equivalent training time.
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Sequence scaling We tested the affect of scaling the number of tokens inserted into the head. To that
end we trained three learnable linear layers (see ﬁg.(a)): Liny : RT— R Ly, : R% — RIXds,
and Loy, : R4 — R?, where L, , maps each token ' into [ tokens of the same dimensions; Li, ,
maps backbone latents h’ into [ tokens of the same dimensions; and Ly, maps back [ output tokens
into a single latent token y. We experimented with different scalings I € {1,22,32 42 52 62}

where /1 is applied to each dimension (of size k) of the latent image y € RK*xd or hy € Rk?xds
The sequence scaling law is incorporated in the head as follows

Lou,yts|t(Linyy | Lin,nht)- Y

Figure ] shows that for the transformer head, scaling the head sequence improves the model ranking
significantly. In contrast, for the MLP head, scaling up the sequence does not impact performance
consistently. One possible explanation is that MLP is applied on each scaled token independently,
compared to the transformer that share information across all tokens via the attention layers. In fig. 4]
(b) we report the inference speed as a function of sequence scaling, and in (c) we show the affect on
training speed. Notably, while the affect of sequence scaling is limited in inference speed it is rather
significant during training.
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Figure 4: (a): Performance as a function of the sequence scaling factor. Scaling the input sequence to
the head improves Transformer heads while not affecting MLP heads.

Model parameterization Y Another design choice of the TM head
is the choice of posterior Y learned by the head and used to sample
the next state X,/. For the linear process (eq. (3)) formulating the two
equations for X and X; results in three unknowns, Xy, X7, X/, and
a single known quantity, X;. Therefore predicting one more quantity
such as X or X or any independent relation of those two, would allow
us to compute X /. Alternatively, we can also predict X directly but
as mentioned above that would force us to introduce a second time Figure 5: Performance of
parameter t’. Therefore, here we opt to experiment with the following different Y choices.
options:

Y e {X; — Xy, X1, X0} Y -TM parameterizations (12)

Calculating X given X, and Y gives an instantiation of the sampling relation in eq. (5) and given
for completeness in appendix [H] In fig. [I2] we log the effect of different Y parameterizations on
the ranking of Y-TM models, where the difference parameterization Y = X; — X, is better than
denoiser Y = X; which is much better than noise prediction Y = X. In appendix [G| we show the
ablation of the flow matching target used in the FM loss, where the difference parameterization (used
in eq. (9)) is also favorable.

Head batch size Another simple and mod-
erately effective scaling law can be achieved
by increasing the batch size used by the head
(see fig. @l (b)). In practice for each time ¢
and state sample X, we consider head batch
sizes ky € {1,4, 16,64}, see more details in (a) Performance (b) Training Speed
appendix [C] For the MLP architecture, since
each token is processed independently (see
fig. |Z| second from left), we use differenti.i.d. s
samples for each token; we name this time-per-token (TPT). In table[I] (a) we report experiments

Table 1: (a) Performance as a function of the head
batch size. (b) Training iteration time (seconds).
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comparing different head batch sizes for D-TM; we see that using a larger head batch size boosts
performance, while reaching plateau after ~16 for the Transformer head. The impact of head batch
size is smaller for the MLP head compared to Transformer, which can potentially be explained by
the fact that MLP attends to each token as an independent sample, compared to a transformer where
all patches of the same image are treated as a single sample. In table[I](b) we report training speed,
which shows that going beyond k;, = 16 might lead to significantly slower training times.

Time weighting A useful training design
choice explored in (Esser et al.| [2024) for flow
matching is time weighting during training.
In our case, instead of uniform time sampling
t,s ~ U(0,1) in the TM loss (eq. (9)), we con-
sider a non-uniform time sampling that will
concentrate on certain times for the backbone
(t) and head (s). [Esser et al.| (2024} noticed
that for flow matching time ¢ it is beneficial
to use a centered distribution favoring mid-
dle times in the interval (0, 1). In particular,
the log-normal distributions 7, (4, o) where
(1, 0) = (0, 1) was favorable. In our case, we
tested time weighting for both the backbone
t and head s time parameters for D-TM. We
tested two t-weighting distributions similar to
flow matching, U (0, 1) and m,(0, 1), while for s-weighting we tested U (0, 1), 1, (0, 1), s (—0.5,1)
and Beta(0.1, 1.3), Beta(0.5,2.0), and Beta(1.1,2.4), where Beta denotes the beta distributions.
We chose the values to cover different s-time profiles, see fig. [TT|for an illustration. We report results
for the ablations of the backbone time ¢ weighting in table () and for the head time s (with 7, (0, 1)
for backbone) in (b). In general, backbone training enjoys standard log-normal time weighting
71 (0, 1), although the transformer head is equally good with uniform time weight. For the head time
weighting, both Beta and standard log-normal works well with the exception of Beta(0.1, 1.3) for
the Transformer head.

(a) t weighting (b) s weighting
Table 2: Performance as a function of the backbone
and head time weighting distribution. (a) Backbone
time weighting (¢), with Uniform time weighting on
head. (b) Head time weighting (s), with lognormal
time weighting on backbone.

3.3 INFERENCE

We move to discuss design choices in sampling of the models at inference time, i.e., once training
is done. We focus on efficiency-quality tradeoffs and investigate the affect of a novel stochastic
sampling method that, under a particular design and hyper-parameter regime, offers a significant
quality boost at no extra sampling computational cost to D-TM.

Efficiency-quality tradeoff When sampling a D-
TM model we have the degree of freedom of choos-
ing the ¢ and s time discretizations both affecting
the total (wall-clock) generation time. Throughout o o
this experiment we keep s and ¢ equidistant, i.e., 03
t = i/T and s = j/S where T,S are number f | o
of steps we ablate over. Figure [f]is a scatter plot 2

showing inference wall-clock speed (in seconds) ver- :". o ° ? S N
sus model rank for a collection of T, .S, namely we o @ DT Convlaian
consider T € {1,2,4,8,16,32,64,128 256} and N s oo

S e{1,2,4,8,16,32}. We compare flow matching o 3 i s : 10

Inference Speed (s)

(FM), and D-TM with the three head architectures
(MLP, Convolution, and Transformer), as well as the

Dense architecture. As can be seen in the figure, D-
TM (MLP, Transformer, and Convolution) sampling
can be made both faster and of higher quality. For
example, FM peak performance is with 32 midpoint
samples (64 NFEs, corresponding to the 4sec red dot),

Figure 6: Performance as a function of Infer-
ence speed. Each color represents a different
model, and each dot represents a different
setup of transition steps and head NFE. We
show Pareto optimal dots.

where D-TM-MLP can achieve higher ranking with 0.8 second providing a ~ 5x wall-clock speedup.
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Stochastic samplers In this last section we
show that a certain family of stochastic sam-
plers provides significant improvements to D-
TM sample quality at no additional computa-
tional cost over standard TM sampling. The
basic observation is that we can sample our
trained model using any given supervision pro-

T

cess ¢ as long as: (i) it has the same marginal X ' !
distributions as the one we trained our model a) D-TM (MLP) (b) D-TM (Transformer)

with g¢; and (ii) Gy ¢,y (-| X¢,Y') is known and
can be sampled efficiently. Ipsp1red by (Xu model rank) for various ¢, 7 for the D-TM with MLP
ctal}2023b) we develop a family of stochastic .4 iy (a), D-TM with Transformer head in (b). Red

Table 3: Stochastic sampling performance (i.e.,

samplers for D-TM for the case of Gaussian
source noise, i.e., pg = N(0, I). For Gaussian
noise the conditional probability path takes the
form q;(x|x1) = N (z|toy, (1—1)2I). Now, let 0 < ¢t < ¢/ < " < 0 be three consecutive times, then
given a sample X ~ ¢ (| X1) we can use it to sample from the marginal ¢ by (see appendix
for details)

colors indicate low ranking, while blue correspond
to high ranking.

t—%, (t' X + Z), with Z ~ N (0, (t" — "Y' +t" = 2t't')I). (13)
Note that the joint probability of (X;/, X;~) is no longer the same as the supervision process ¢ but
shares its marginals at times t’,¢”; where in the extreme case of ¢ = 1 we get that X 1 Xy
(independent). This allows introducing more stochasticity into the D-TM sampling process where
we explore two hyperparameters: (i) scale ¢ € [0,1] used to set ¢/ = ¢/ + ¢(1 — t'); and (ii)
frequency T € {1,2,...,T} setting how often should we add a stochastic step; see algorithm |I|
for the pseudocode of the stochastic D-TM sampling. Intuitively, the algorithm uses the D-TM
prediction of Y = X7 — X to move to a future state X, at time ¢/, and then adds independent noise
at the right amount so to achieve a sample X at the earlier time ¢'. In this experiment we tested
32 x 32 backbone-head sampling, which gave near optimal performance in table[3] and the following
hyper-parameters (¢, 7) € {0,0.02,0.04,...,0.1,0.2,...,1} x {1,2,4,8,16, 32}. Table(a) and
(b) show the affect of stochastic sampling on D-TM MLP and Transformer head (resp.). Interestingly,
MLP head enjoys the stochastic sampling more that Transformer head leading to a 0.66 rank (+0.15
from standard sampling), which is the highest in our experiments, and is consistently achieved across
high frequency sampling. Transformer head reaches its peak performance of 0.58 rank (+0.06) with
low frequency sampling. In appendix [[] we discuss applying algorithm [I]to flow matching.

Xt/ =

3.4 SUMMARY RESULTS FOR SELECTED MODELS

Each of the design space exploration above

tested ablations from a base model (detailed Algorithm 1 Stochastic D-TM sampling.

in section[3.2). Among all these ablations we Require: o & Trained model
picked two design choices balancing perfor- po quire: T It > Backbone steps
mance and train/inference speed: (i) D-TM with Re quire: g > Scale and frequency

MLP head, head batch size k;, = 16, lognormal - S le X ~ 0.1
s and ¢ time weights, with and without high fre- 2: ﬁf:l;pj 0 o 2N( ’ 1) _ 1 do

quency stochastic sampling 7 = 32, ¢ = 0.2; (T T

and (ii) D-TM with Transformer head, sequence 3 Sample Y ~ p g’lt(' | X¢)

scale I = 4, head batch size k, = 16, lognor- 4 t—1t+ %

mal s and ¢ time weights, with and without low ~ 5:  if¢ (mod [T/7]) = 0 then

frequency stochastic sampling 7 = 1, ¢ = 0.8.  6: t"—t +c(1-1)

In table[d and figs. [[|and [7]to 0] we present our ~ 7: Compute X~ > eqﬂ
most performing D-TM variants discovered via ~ 8: Compute X/ > eq.

the previous experiments compared with rele- 9 else

vant baselines implemented, trained and eval- 10: Compute X/ > eq. (IZ])
uated under the exact same setting. The base- 11 end if

lines include: the D-TM variant in (Shaul et al, 12: end for
2025) and the Dense version in (Zhang et al., 13: return Xr
2025)); Flow Matching (FM) with its optimal
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time-weighting variant (Esser et al., 2024); Autoregressive image generation with a flow matching
head generating continuous tokens (AR/MAR) Team et al.|(2025); |Li et al.| (2024); Fan et al.; discrete
tokens autoregressive (AR) (Yu et al.l 2022); and discrete tokens masked autoregressive (MAR)
(Chang et al.|[2022). Due to lack of space we only present subset of the metrics where all the data,
including all evaluations are presented in appendix [[] As can be seen in the table, design choice (i)
with MLP head and high frequency sampling (denoted DTM++) reaches the top performance with
0.66 rank score; and design choice (ii) includes the Transformer head and excels at image quality
(see e.g., Aesthetic and PickScore) but do not benefit as much from the stochastic sampling and
ends up being second to the MLP head (denoted DTM+). As sequence scaling is training-costly we
limited it to [ = 4, note that for [ = 36 (see Sequence scaling) the Transformer head model becomes
competitive with our best model.

Table 4: Main Results comparing most performant D-TM variants and relevant baselines.

Head MS-COCO PartiPrompts GenEval T2ICompBench
Model Type  Size Seqscale batchsize Weighting Sampling  CLIPScore  PickScore T Aesthetic 1 ImageReward 7 CLIPScore 7 PickScore  Aesthetic 1 ImageReward 7 Overall?  Overallf  Rank 1

DTM MLP  mid
DTM MLP  mid
DTM++  MLP  mid
DTM
DTM
DTM 2 T
DTM+  Transformer mid

4 U(0,1) x U(0,1) linear 262 213 5.64 0.28 26.6 212 5.46 0.51 0.55 0.4422 0.36
16 Tin(0,1) x 7, (0, 1) linear 264 214 5.69 0.4 27.0 213 547 0.63 0.55 0.4549 0.51
16 mu(0,1) x ma(0.1) c=02,7=1 263 215 578 047 270 214 557 0.70 0.8 04625 066

4 U(0,1) x U(0,1)

26.1 214 5.76 0.32 264 213 552 051 0.54 0.4294 0.4

1
1
1
1
1 4 U(0,1) x U(0,1) linear 26.1 214 5.76 031 26.5 213 5.54 051 0.54 0434 043
4 16 m(0,1) % m, (0,1) linear 26.2 21.6 5.87 0.44 26.6 214 559 0.62 0.50 0.4461 052
4 16 m(0,1) x m(0,1) ¢=08,7 =32 262 216 588 0.44 266 214 558 0.63 0.58 0.4487 0.58

DTM Dense U(0,1) x U(0,1) linear 259 213 5.69 0.18 26.1 212 544 036 0.52 04185 025

M U(0,1) linear 259 212 555 0.14 26.1 211 533 034 0.50 0.4252 0.16
FM 1 (0,1) lincar 262 213 5.67 03 266 21.2 544 048 0.52 04332 028
AR 267 203 493 -0.06 26.7 204 481 -0.01 0.41 0.3879 0.17
AR MLP  mid 1 4 U(0,1) 248 20.1 476 048 249 20.1 45 043 034 0.3429 0.08
MAR argmaz 266 206 527 0.01 268 20.7 515 0.14 0.44 0.3944 0.19
MAR MLP  mid 1 4 U(0,1) linear 26.1 207 5.06 0.17 27.0 20.7 4.95 033 0.52 0.4393 0.19

4 RELATED WORK

Iterative generative models, which gradually transform noise to data, were pioneered with diffusion
models (Sohl-Dickstein et al., 2015} Ho et al., 2020) and further generalized and improved with
flow matching (Lipman et al.,|2022; [Liu et al., |2022; |Albergo & Vanden-Eijnden, 2022). Transition
Matching (TM) (Shaul et al., [2025) is a further recent generalization that replaces the simplified
transition kernel in diffusion and flow models with a more expressive internal generative model. A
related method that used the same difference modeling but with a single backbone architecture (called
Dense in this paper) was developed in|Zhang et al.| (2025). TM uses head-backbone construction to
inject relevant inductive bias and maintain efficiency; similar head MLP constructions was introduced
and incorporated in continuous autoregressive image generation methods (Li et al., [2024; |[Fan et al.;
Team et al.|[2025)), however different head models and architectures were not systematically explored
previously. Similar to our work, systematic design space exploration was done for diffusion models
in|Karras et al.|(2022). Stochastic sampling has shown some benefit in diffusion (Song et al., 2020)
and flow (Ma et al.| 2024) models while usually based on adding Langevin dynamics to existing
SDE/ODE formulation. Our TM stochastic sampler is inspired by Xu et al.| (2023b)) that re-noises
the variance exploding denoiser in [Karras et al.| (2022)), see more details in the Stochastic samplers
section.

5 CONCLUSIONS

We conducted a large-scale ablation of design choices in continuous-time Transition Matching,
focusing on the D-TM variant. Our experiments highlight that head design choices—architecture,
size, sequence scaling, head batch size, and time scheduling — can significantly improve generative
quality and efficiency, even with a fixed backbone and dataset. Some design choices, such as large
sequence scaling and head batch size improve performance but at the cost of increase training
times and/or memory footprint. Stochastic TM sampling offers a further significant improvement in
generation quality at not extra computational cost. It is not clear to the authors why token-wise head
(i.e., MLP) leads to improved text-adherence scores compared to the more expressive Transformer
head, which opens an interesting future research question. LLMs were used in this paper to aid/polish
writing in introduction and abstract sections.
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A QUALITATIVE RESULTS

FM-lognorm

DTM-++ (ours) DTM+ (ours)

Oil painting of a giant robot made of sushi, holding chopsticks.
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the International Space Station

a sunken submarine at the bottom of the ocean
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penguin wearing aviator goggles and flying confidently next to a bemused eagle.

Xy

a bloody mary cocktail

Figure 7: (Cont.) Samples comparing of our Best D-TM MLP (DTM++) and Transformer (DTM+)
Models with DTM baseline, FM-lognormal, AR, MAR, AR-discrete, MAR-discrete as baselines. All
models share similar architecture and training recipe.
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One of them is reading a newspaper. The window shows the river in the background.
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Figure 8: (Cont.) Samples comparing of our Best D-TM MLP (DTM++) and Transformer (DTM+)
Models with DTM baseline, FM-lognormal, AR, MAR, AR-discrete, MAR-discrete as baselines. All

models share similar architecture and training recipe.
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a large open book showing text and an illustration of a cat

Figure 9: (Cont.) Samples comparing of our Best D-TM MLP (DTM++) and Transformer (DTM+)
Models with DTM baseline, FM-lognormal, AR, MAR, AR-discrete, MAR-discrete as baselines. All
models share similar architecture and training recipe.
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B STOCHASTIC SAMPLING

We derive eq. (I3) used in the D-TM stochastic sampling in algorithm[I} consider two arbitrary times
0 <a < b<1inthe[0,1] time interval, and x; a constant data sample. Let X, be a sample from
the conditional probability path g3 at time b, i.e.,

Xy ~ N (- bxy, (1 —b)21). (14)
Now, we want to transform X, to a sample X, from the conditional probability path at time a, i.e.,
X, ~N(-|az1, (1 —a)I). (15)
To that end note that
a a(l —b) 2
EXbNN - | azq, T I]. (16)

Now let Z ~ N (-|0,0%I) be an independent Gaussian sample with o > 0 as a degree of freedom.

Therefore )
aleCL(lbb)) +o? I). a7

(“”‘b)>2+02 —(1-a) (8)

(ZXbJrZNgN('

Lastly, we solve for o such that

b

leading to
52 (b—a)(ab—;—b—2ab). (19)

This coincides with eq. ifwesethb=1t"anda =t'.

C HEAD BATCH SIZE

The loss corresponding for head batch size k, € {1,4, 16,64} takes the form

2

uf, (Y, , (20)

fE(Xe) — (Y1 = Yo,)

1 &
£(9) = Et;XhSi’YO,ikih Z
i=1

where s; ~ U(0, 1) arerandom i.i.d., Yy ; ~ N(0,1),and Yy, = (1—s;)Yp i +s;Y1 fori = 1,..., k.
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Figure 10: (a) Scaling the sequence length entering the head. (b) Scaling the head batch size.
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E TIME WEIGHTING DISTRIBUTIONS

—— Beta(0.1,1.3)
— Beta(0.5,2.0)
—— Beta(1.1,2.4)
min(0,1)
4 — Mn(=0.5,1)

Probability Density

0.6 0.8 1.0

Figure 11: Visualization of the Beta and lognormal distributions used for time weighting.

F CLASSIFIER FREE GUIDANCE

We use Classifier Free Guidance (CFG) (Ho & Salimans, 2022), defined by a weight w > 0 and the
corresponding transformation to the velocity (Zheng et al.,[2023)),

Ut (- |he,c) = (1 — w)ugpe (| he,e) — witse(|he,o), @21

where we use the standard choice of w = 6.5 and our latent representation is learned with a condition
C = ¢, e.g., text prompts, that can also be empty, denoted by C' = (),

hic = ff (X¢,C). (22)

In the training loss (eq. (EI)) we random a prompt-image pair from the dataset, (C, X1), where with
probability 0.15 we set C = ().

G FLOW MATCHING HEAD PARAMETERIZATION

Another design choice for the TM head is the

target predicted by the head model used to sam-

ple Y (i.e., the target in the FM loss eq. (9)). As 00/ ’ v —
known in flow matching and diffusion literature 0351 :
(Lipman et al.} 2024)) one can choose different 030
targets to sample Y; = Y ~ py4(:|X;) (and
change the sampling in eq. accordingly).
Flow matching learns the difference Y7 — Yj;
the denoiser prediction learns Y] and noise pre-
diction Y. Figure @ (b) shows comparison
of these parameterizations for Y = X; — X
where in essence: the difference target Y7 — Y P — - ¥o

is slightly better than denoiser Y; which is con-

siderably better than noise prediction Yy. We Figure 12: Performance of different flow matching
set the difference Y; — Yy as in eq. (E[) as our targets.

default choice.
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H Y SAMPLING RELATIONS

Calculating X/ given X; and Y can be done by writing the equations of the linear process (in eq. (3))
for t and ¢’ and solving for X} as functions of Y and X leading to an instantiation of the sampling
relation in eq. (5) for the Y choices in eq. (12),

X=X+t —t)Y withY = X; — Xy (Difference) (23)
1-tHX t —)Y
Xy = ( ) lt +t( ) withY = X3 (Denoiser) 24)

X+ (t—t)Y

Xy = with Y = X, (Noise) (25)

I APPLYING TM STOCHASTIC SAMPLING TO FM

As a side contribution, we found that applying algorithm [[| where sampling with eq. (7) is replaced
with standard ODE solve in FM also leads to considerable gains in FM sampling, specifically for
medium frequency 8 — 16 (for 7' = 32 NFEs) and scale ¢ > 0.1, see fig. @ Note that this algorithm
is similar to the restart algorithm in (2023b) with several key differences: we use if for
flow matching rather than variance exploding denoiser EDM, we parameterize it with two simple
parameters, and we avoid the EDM discretization scheme. Lastly, note that for FM sampling this
algorithm increases computational cost as it requires ODE solving during the sampling algorithm,
this is in contrast to using it in TM which does not increase computational cost.

sER o4 047 0.42 041 .

2] 0.47 0.46 0.44

5 0.46 0.46 0.44

© m 0.46 0.46 0.42

] m 0.45 0.48 0.43

z 0.45 047 0.43
oz 0.48 047 0.42

o m 0.47 0.46 0.40

1 042 0.41 0.44

S

S

g- 045 0.40

S

.

1

2

1 8

T

Figure 13: Applying a version of the TM stochastic sampling algorithm (algorithm |1)) to flow
matching, where eq. (7) is replaced with ODE sampling (and consequently requires more NFE),
seems to also improve FM generation ranking. Red colors indicate low ranking, while blue colors
correspond to high ranking; colors are on consistent scale with tableEl

J RELATION OF Y PARAMETERIZATION TO DIFFUSION AND FLOW MATCHING

Predicting Y = X; — X can be seen as the TM version of flow matching 2025), which
instead predicts the deterministic function E[X; — Xo|X; = a¢]; Y = X is the TM versions of
a denoiser (Salimans & Ho, 2022) which predicts the function E[X;|X; = 2], while Y = X is
the TM version of noise-prediction Ho et al.|(2020) which predicts the function E[X(|X; = x¢]. In
contrast to flow matching or diffusion, TM learns to sample from the posterior X; — Xy, X; or Xy
directly rather than estimating their mean as done in flow matching and diffusion models. Note that
similarly to the situation with denoiser and noise-prediction (see e.g., (Lipman et al., [2024)), also
for Y-TM, the former has a singularity near ¢ = 1 and the latter near ¢ = 0. The singularity near
t = 0 becomes an issue in sampling as numerical instability is introduced at the beginning of the
sampling rather at the end, providing a potential explanation to the lower performance of the Y = X
parameterization.
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K D-TM SAMPLING PSEUDOCODE

For completeness we provide the standard D-TM sampling pseudocode for continuous time in
algorithm 2]

Algorithm 2 DTM Sampling adapted from |Shaul et al.| (2025) for continuous time.

Require: Trained model (u?, f¥)
Require: Time grids0 =ty <t} <---<tpr=land0 =59 <51 <---<sg=1.
1: Sample Xq ~ N (0, I)
2: fori=0to7T — 1do
4 Sample Yy ~ N(0, )
5: Y + ode_solve(YO,uﬁti(.|hl—),{so,...,ss})
6: Xip1 X+ %Y
7: end for
8: return X,
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Table 5: All ablations and evaluated models used in the paper.
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