
Revisiting Learning Rate Control 1

Anonymous1 2

1
Anonymous Institution 3

Abstract The learning rate is one of the most important hyperparameters in deep learning, and how 4

to control it is an active area within both AutoML and deep learning research. Approaches 5

for learning rate control span from classic optimization to online scheduling based on 6

gradient statistics. This paper compares paradigms to assess the current state of learning 7

rate control. We find that methods from multi-fidelity hyperparameter optimization, fixed- 8

hyperparameter schedules, and hyperparameter-free learning often perform very well on 9

selected deep learning tasks but are not reliable across settings. This highlights the need for 10

algorithm selection methods in learning rate control, which have been neglected so far by 11

both the AutoML and deep learning communities. We also observe a trend of hyperparameter 12

optimization approaches becoming less effective as models and tasks grow in complexity, 13

even when combined with multi-fidelity approaches for more expensive model trainings. A 14

focus on more relevant test tasks and new promising directions like finetunable methods 15

and meta-learning will enable the AutoML community to significantly strengthen its impact 16

on this crucial factor in deep learning. 17

1 Introduction 18

Deep learning produces state-of-the-art algorithms in applications such as image recognition 19

(Dosovitskiy et al., 2021; Gu et al., 2024; Z. Li and Ren, 2020; Muszynski et al., 2024; Wortsman et al., 20

2022) and natural language processing (Brown et al., 2020; Vaswani et al., 2017). However, deep 21

learning models are sensitive to their hyperparameters, including the learning rate of the optimizer. 22

It is perhaps the hyperparameter most responsible for training success in deep learning (Goodfellow 23

et al., 2016). Thus, effectively controlling the learning rate is a major factor for training success. 24

Automated Machine Learning (AutoML; Hutter, Kotthoff, et al., 2019) aims to automate the 25

configuration of machine learning algorithms in an efficient manner, e.g. through black-box 26

optimization combined with efficient scheduling strategies (multi-fidelity HPO; Bischl et al., 2023; 27

Falkner et al., 2018; Jamieson and Talwalkar, 2016). Its adoption for hyperparameter optimization in 28

the deep learning community, however, remains somewhat low (Bouthillier and Varoquaux, 2020). 29

A key drawback of many approaches from the AutoML community is the need for repeated model 30

training, which can become infeasibly expensive for complex deep learning tasks. 31

To alleviate this computational cost, hyperparameter-free optimization has emerged as an 32

alternative to standard AutoML approaches, eliminating the need for external tuning by developing 33

optimization methods without hyperparameters to adapt (Carmon and Hinder, 2024; Defazio and 34

Mishchenko, 2023; Orabona and Cutkosky, 2020). Unlike hyperparameter schedules, which depend 35

solely on the current optimization step (Loshchilov and Hutter, 2017; Smith and Topin, 2017), the 36

learning process is used to determine the learning rate, e.g. via the development of the gradients. 37

These approaches predominantly focus on the learning rate (Carmon and Hinder, 2024; Defazio 38

and Mishchenko, 2023; Orabona and Tommasi, 2017), though there are also hyperparameter-free 39

methods for other hyperparameters like the momentum (Levy et al., 2021). Naturally, this presents a 40

significant cost reduction, especially in computationally intensive domains like language modeling. 41

We compare both multi-fidelity HPO and hyperparameter-free approaches to learning rate 42

schedules on different deep learning tasks from logistic regression, computer vision, and language 43

Submitted to AutoML 2025 © 2025 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/


modeling. We find that all options perform only situationally well, and none are a viable default 44

choice across tasks. While multi-fidelity HPO performs well on the lightweight LIBSVM (Chang and 45

Lin, 2011) benchmark, more complex deep learning problems favor varying hyperparameter-free 46

methods. Therefore, our results identify a significant gap in learning rate control research: selecting 47

between different configuration approaches and paradigms. Furthermore, they demonstrate that 48

we cannot infer the superiority of multi-fidelity HPO approaches compared to hyperparameter-free 49

methods from small deep-learning tasks. To increase the impact of AutoML in this important area 50

of deep learning, we need to evaluate the use cases we want to target and embrace approaches like 51

hyperparameter-free learning with strengths specific to expensive deep learning settings – here 52

the lack of repeating runs. Our evaluation shows that there is still plenty of room for improvement 53

over the overall best methods and thus fertile ground for novel AutoML research. 54

2 Prior Work on Learning Rate Control 55

We give a brief overview of important strands of learning rate control literature from the communi- 56

ties concerning our comparison: configuration approaches from the AutoML community, learning 57

rate schedules, and hyperparameter-free configuration methods motivated by deep learning theory. 58

The selection of optimizers themselves is related to our topic of learning rate control as well. 59

Schmidt et al., 2020 conduct a similar investigation to ours for optimizers and also find algorithm 60

selection to be a key challenge for that problem. 61

2.1 The AutoML Approach To Learning Rate Selection & Control 62

In the realm of AutoML, there are several paradigms to optimize hyperparameters for maximum 63

performance, usually through repeated evaluations of the target function. To improve over simple 64

baselines such as Random Search and Grid Search (Bergstra and Bengio, 2012), HPO methods 65

commonly use either model-based or model-free optimization. Model-based configuration ap- 66

proaches (Hutter, Hoos, et al., 2011; Snoek et al., 2012) use a surrogate model of the target algorithm’s 67

performance to guide the search for good configurations with Bayesian Optimization (Brochu et al., 68

2010). Model-free methods, on the other hand, rely on paradigms such as evolutionary strategies to 69

evolve well-performing configurations over time (Ansótegui et al., 2009; X. He et al., 2021). 70

To improve the efficiency of these methods, partial target function evaluations are employed to 71

eliminate bad configurations early on (L. Li et al., 2018). Such scheduling approaches are referred 72

to as multi-fidelity methods and common in both model-based and model-free HPO (Awad et al., 73

2021; Falkner et al., 2018). Since these methods can make HPO approaches based on black-box 74

optimization significantly more efficient, we focus on multi-fidelity HPO in this comparison. 75

The majority of HPO approaches target finding a single configuration for the full training run. 76

Dynamic algorithm configuration (DAC; Adriaensen et al., 2022) is a recent paradigm adapting 77

hyperparameters during the run and it has been applied to simple deep learning tasks (Daniel et al., 78

2016), but so far, there are no standard DAC solvers. Therefore, we do not include DAC in our 79

comparison and instead focus on approaches deep learning practitioners can apply out of the box. 80

Configuring deep learning algorithms is part of several AutoML benchmarks like 81

HPOBench (Eggensperger et al., 2021), LCBench (Zimmer et al., 2021), or PD1 (Wang et al., 2024). 82

Except for PD1, however, these benchmarks are quite limited compared to deep learning in state- 83

of-the-art systems, using far smaller networks and less complex datasets than current research. 84

PD1 is a new addition with relevant architectures like ResNets (K. He et al., 2016) and Transform- 85

ers (Vaswani et al., 2017), though currently most AutoML literature around learning rate control is 86

still centered around applying methods for HPO to relatively simple deep learning tasks. 87

2.2 Learning Rate Schedules 88

In contrast to multi-fidelity HPO approaches, learning rate schedules are not based on optimization 89

but pre-defined heuristic approaches that do not require multiple runs. Usually, they are a function 90

2



of the current time step, adapting the learning rate during training time. Popular choices are Step 91

Decay (Ge et al., 2019), Exponential Decay (Z. Li and Arora, 2020) and Cosine Annealing Warm 92

Restarts (CAWR, Loshchilov and Hutter, 2017). CAWR sets the learning rate in step 𝑡 according to 93

𝜂𝑡 = 𝜂𝑖
min

+ 1

2

(
𝜂𝑖
max

− 𝜂𝑖
min

) (
1 + cos

(
𝑇cur

𝑇𝑖
𝜋

))
where 𝑖 is the restart counter, 𝜂min and 𝜂max are bounds on the learning rate and 𝑇cur the number of 94

steps since the last restart. Intuitively, this means that the learning rate decays from 𝜂max to 𝜂min in a 95

cosine shape in𝑇𝑖 steps. After that, it resets to 𝜂𝑚𝑎𝑥 and scales𝑇𝑖 with𝑇mult. While computationally 96

inexpensive compared to HPO, such schedules often make use of several hyperparameters. Fixed 97

schedules cannot adapt to different settings and thus possibly do not work well when moving to a 98

different target algorithm or dataset. 99

2.3 From Theory: Hyperparameter-free Learning 100

Researchers have looked to deep learning theory to combine the efficiency of learning rate schedules 101

with the adaptiveness of multi-fidelity HPO approaches. Setting the optimal learning rate of deep 102

learning optimizers is possible using information about the problem, e.g. distance 𝐷 between the 103

initial iterate and the optimum (Defazio andMishchenko, 2023). However, this information is usually 104

not directly available. D-Adaptation (Defazio and Mishchenko, 2023) and Prodigy (Mishchenko 105

and Defazio, 2024) estimate a lower bound on the distance 𝐷 to the optimum via gradient statistics. 106

Prodigy is an update on the original D-Adaptation with improved convergence rate and more 107

exploitative behavior. Similarly, Distance over Weighted Gradients (DoWG; Khaled et al., 2023) 108

computes the step size of SGD using this simple estimate of 𝐷 and a weighted sum of observed 109

Gradients. COCOB (Orabona and Tommasi, 2017), on the other hand, reduces the learning rate 110

control task to a coin betting scenario. COCOB uses a betting strategy to solve coin betting and 111

achieves optimal convergence for this scenario. However, this optimality is specific to assumptions 112

and may not extend to deep learning tasks. 113

While these theory-motivated approaches promise to be the zero-shot solution for learning rate 114

control and have shown impressive performances in their own evaluations, there is as of yet no 115

broad comparison of hyperparameter-free learning approaches, let alone how they fare compared 116

to HPO methods. In fact, there has been discussion about the fairness of evaluations for some 117

hyperparameter-free learning methods (Orabona, 2023). Thus, we want to validate how the different 118

strands of hyperparameter-free learning compare to each other and to learning rate schedules and 119

multi-fidelity HPO methods, establishing common ground between these communities. 120

3 Comparing Learning Rate Control Approaches 121

In this section, we describe our empirical evaluation of three different learning rate control ap- 122

proaches: we evaluate hyperparameter-free methods alongside multi-fidelity HPO and scheduling 123

approaches on a diverse set of tasks. Our experiments span domains including natural language 124

processing, computer vision, and convex optimization. The full details on the datasets and corre- 125

sponding architectures can be found in Appendix A. 126

Hyperparameter-free Methods Our study includes four hyperparameter-free methods: COCOB, 127

a method that reduces learning rate control to a simpler problem, and D-Adaptation, Prodigy, and 128

DoWG, which are methods that estimate the optimal learning rates through gradient information. As 129

these methods are proposed as tuning-free, i.e. they do not possess any important hyperparameters 130

to tune, we apply them directly in all experiments. 131

Multi-fidelity HPO For multi-fidelity HPO, we use SMAC3 (Lindauer et al., 2022), a state-of- 132

the-art HPO tool (Eggensperger et al., 2021), with the Hyperband (L. Li et al., 2018) intensifier to 133

find the best fixed learning rate, i.e. the learning rate multi-fidelity HPO finds stays constant during 134

3



the whole run. We call this approach SMAC. SMAC’s total optimization budget is 50 trials for all 135

experiments. Hyperband is used with a minimum budget depending on the task (see Appendix A), 136

a maximum budget equal to the total number of iterations, and 𝜂 = 3. 137

Scheduling Approaches We focus on Cosine Annealing (Loshchilov and Hutter, 2017) as a 138

learning rate schedule due to its impressive performance and adjustment options. These adjustment 139

options allow us to report both the performance of cosine annealing with its default settings and a 140

SMAC-tuned variation that shows how much we can adapt the schedule to new settings. We use 141

the cosine annealing as originally proposed with warm restarts for the entire empirical evaluation. 142

As Cosine Annealing Warm Restarts (CAWR) default, we use a well-performing configuration 143

(𝑇0 = 10,𝑇𝑚𝑢𝑙𝑡 = 2, 𝜂𝑚𝑖𝑛 = 0, 𝜂𝑚𝑎𝑥 = 0.005) from Loshchilov and Hutter, 2017 that achieved great 144

results on CIFAR-10 and CIFAR-100. Tuned CAWR denotes runs where we use SMAC3 to optimize 145

CAWR’s four hyperparameters 𝑇0,𝑇𝑚𝑢𝑙𝑡 , 𝜂𝑚𝑖𝑛, 𝜂𝑚𝑎𝑥 (see Appendix A). 146

3.1 Experimental Setup 147

As an experimental framework, we employ the DACBench (Eimer et al., 2021) SGD Benchmark, 148

which provides a structured environment for evaluating hyperparameter scheduling approaches. 149

We evaluate all methods on deep learning settings from different domains: i. As a simple yet 150

diverse application, we consider logistic regression in the form of the LIBSVM (Chang and Lin, 151

2011) library on nine of its well-studied datasets. ii. medium complexitycomputer vision taks with 152

ResNet (K. He et al., 2016) variations on the CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) datasets 153

and a ViT (Dosovitskiy et al., 2021) on the Describable Textures Dataset (DTD; Cimpoi et al., 154

2014). iii. in natural language processing, we pre-train RoBERTa (Liu et al., 2019) architecture on a 155

reproduction of the BookWiki dataset
1
. As DoWG does not support weight decay, we do not use it. 156

Unless otherwise specified, we use the beta defaults 𝛽1 = 0.9, 𝛽2 = 0.999. For other hyperparameters 157

and number of seeds, we use problem-specific standards with details in Appendix A. Our full code 158

is available at https://anonymous.4open.science/r/Revisiting_LR_Control-FA77/. Our raw 159

experiment data with the results of all runs is available in the supplement and will be published 160

upon acceptance. 161

Logistic RegressionWe evaluate on the nine datasets Aloi, Dna, Iris, Letter, Pendigits, Sensorless, 162

Vehicle, Vowel and Wine (Anderson and Goldenstein, 2014; Dua and Graff, 2017). They have been 163

included in several works on hyperparameter-free learning and are domains where these methods 164

perform well compared to their own baselines (Defazio and Mishchenko, 2023; Mishchenko and 165

Defazio, 2024; Orabona, 2023). As there do not exist typical splits and some datasets are very small, 166

we only report training loss and accuracy. Every method is executed for 100 epochs. 167

Computer Vision We train WRN-16-8 (Zagoruyko and Komodakis, 2016) on CIFAR-10 and 168

DenseNet-121 (Huang et al., 2017) for CIFAR-100 to test two variations of ResNet architectures. On 169

DTDwe use the ViT/T-16 (Dosovitskiy et al., 2021). With CIFAR and DTD, we evaluate learning rate 170

control approaches on standard task settings and architectures for many practical deep learning 171

applications. We run these experiments for 300 epochs. 172

Natural Language Processing On BookWiki with RoBERTa we use 𝛽2 = 0.98 and a learning 173

rate warmup of 10 000 steps with default linear decay. For COCOB and DoWG, adopting the decay 174

involves scaling the gradients by the learning rate. For CAWR and Tuned CAWR, the cosine schedule 175

takes over after warmup. We limit the experiment to 23 000 steps. 176

3.2 LIBSVM Classification Datasets 177

We begin with a comparison of learning rate control approaches on a selection of simple but 178

diverse classification tasks from LIBSVM datasets. Our results reflect this diversity (see Figure 2 179

1
We try to replicate BookWiki from Defazio and Mishchenko, 2023 which is not publicly available. Therefore, we use

a snapshot from Wikipedia concatenated with books from Zhu et al., 2015.

4

https://anonymous.4open.science/r/Revisiting_LR_Control-FA77/


Figure 2: Training Accuracies for hyperparameter-free methods on LIBSVM datasets. Figures show the

mean across 10 seeds with standard error.

for hyperparameter-free variations): COCOB, Prodigy and the default learning rate perform best 180

on at least one dataset, and each method performs below a training accuracy of 50% at least once. 181

Figure 1: Average differences in final training accu-

racy of every method to the oracle on each

LIBSVM dataset. Methods are sorted accord-

ing to the mean average difference across all

datasets (in parentheses).

In terms of overall performance, COCOB per- 182

forms best among the hyperparameter-free 183

methods, setting or matching the best train- 184

ing accuracy in six out of nine cases. Prodigy 185

and the default learning rate are inconsistent, 186

sometimes not improving training accuracy at 187

all (e.g. on aloi for Prodigy or wine for the 188

default). D-Adaptation varies less across the 189

datasets but only matches the top performance 190

once on vehicle. DoWG does not perform well 191

on any dataset, being by far the worst choice 192

of the methods we tested. Therefore, we can 193

conclude that none of the hyperparameter-free 194

approaches work well overall. 195

These inconclusive results are less pro- 196

nounced for HPO approaches (see Figure 3). 197

CAWR in its untuned variation outperforms 198

the default static learning rate, but cannot find 199

a good solution on wine. Its tuned counterpart 200

outperforms default CAWR on some datasets, 201

solving wine, but is also less stable and thus sub- 202

optimal on others like sensor. SMAC performs 203

best among HPO approaches, improving upon 204

the previous best, COCOB. In fact, SMAC is the 205

best overall method in this comparison, ranking first or second on every dataset. Thus, it is the only 206

consistent approach, with an overall mean difference to the optimum of only 5.5% (see Figure 1). 207

5



Figure 3: Training Accuracies for LIBSVM, non-hyperparameter-free methods. Figures show the mean

across 10 seeds with standard error. We add the best hyperparameter-free method according

to the final training accuracy. The Best HP-Free method is COCOB for every dataset except

vowel and wine. For the latter it is Prodigy.

For optimal performance across these simple datasets, our results show that we need a portfolio 208

of six different methods (their marginal accuracy contribution in brackets): SMAC (6.8%), Tuned 209

CAWR (0.1%), COCOB (11.8%), CAWR (3.8%), the default learning rate (3.2%) and Prodigy (4%)). Even 210

ignoring Tuned CAWR due to its small contribution leaves us with a portfolio of a multi-fidelity 211

HPO tool, a schedule, two hyperparameter-free learning methods, and the default learning rate. 212

3.3 Computer Vision Tasks 213

The LIBSVM tasks are not very representative of the currently most interesting tasks for learning 214

rate control. Therefore, we repeat this evaluation on CIFAR-10, CIFAR-100, and DTD as archetypal 215

deep learning tasks of medium complexity. Figures 4 and 5 show the results for DTD and CIFAR-100, 216

respectively. Since the learning curves of CIFAR-10 and CIFAR-100 show similar trends, we only 217

show CIFAR-100 here; refer to Appendix C for the full results. 218

On these datasets, hyperparameter-free methods perform well in terms of validation accuracy, 219

even though the validation loss for DOWG on CIFAR-100 diverges. DoWG produces adequate, if not 220

competitive, results compared to its poor performance on the LIBSVM datasets. COCOB’s relative 221

performance is worse, not being able to compete with other methods on the CIFAR datasets, even 222

though it does well on DTD. Prodigy excels on these tasks, clearly outperforming D-Adaptation, 223

and thus showing that its exploitative behavior is helpful in these settings. 224

Performance of HPO methods (see Figure 5) also changes from LIBSVM. We can now clearly 225

see that the default CAWR schedule, while quite successful on the LIBSVM data, causes significant 226

performance drops upon reset, leading to less stable performance and, on CIFAR-100 and DTD, to a 227

clear performance drop compared to other methods. The tuned variation is much smoother and 228

performs on par with the default learning rate on CIFAR, though it fails to learn on DTD.. SMAC 229

cannot match it on CIFAR-100 with a gap of 2.79%, but matches the default learning rate’s good 230

performance on DTD. It is not fully clear why SMAC cannot recover the default learning rate on 231

CIFAR. We believe it is not due to multi-fidelity scheduling since the incumbent was selected at 100 232

6



(a) Training losses (b) Validation losses (c) Validation accuracies

Figure 4: Resulting Training losses (a), Validation losses (b) and Validation Accuracies (c) for the

hyperparameter-free methods (first row) and non-hyperparameter-free methods (second row)

on DTD. In the second row, the best hyperparameter-free method (COCOB) is added to the

plot. Figures show the mean across seeeds with standard error.

Adam SMAC CAWR T. CAWR D-Adapt Prodigy COCOB DoWG

CIFAR-10 0.06 0.61 0.71 0.24 0.41 0.0 1.20 0.54

CIFAR-100 0.80 3.59 7.93 1.40 1.86 0.0 4.72 6.00

DTD 2.28 1.68 24.40 26.05 3.16 0.15 0.0 3.51

Overall 1.05 1.96 11.01 9.23 1.81 0.05 1.97 3.35

Table 1: Average differences in final validation accuracy of every method compared to the oracle on

computer vision datasets. All numbers are in %. Best method on each dataset is marked bold.

epochs, after which no significant changes in performance happen for any method. It is more likely 233

that the HPO landscape is harder to navigate, as preliminary results suggest that in deep learning, 234

well-performing hyperparameters are close to regions of instability (Sohl-Dickstein, 2024). 235

We can see that the average gap to the optimum (see Table 1) is now smallest for Prodigy, with 236

the default learning rate being ranked second, doing better than SMAC and other hyperparameter- 237

free methods. For optimal performance, we only need a portfolio of COCOB and Prodigy for these 238

datasets, with COCOB’s marginal contribution being very low at 0.15%. CAWR cannot improve 239

upon the default learning rate here and methods still show big discrepancies between datasets, 240

though hyperparameter-free methods perform better overall here than on LIBSVM. 241

3.4 Language Model Training 242

We move to an even more complex deep learning task and an even larger model: pre-training 243

RoBERTa with a one-cycle warmup and decay schedule for all learning rates, see Figure 6. We see 244

that most methods deteriorate at some point during training to a local minimum. Only DoWG 245

and D-Adaptation keep improving over time. This is surprising since both methods have not been 246

among our best choices for any dataset so far. Figure 6c shows the likely cause for this performance 247

collapse: D-Adaptation has by far the lowest learning rate and the methods to collapse earliest are 248

the methods with the highest learning rates, CAWR and SMAC. Since RoBERTa seems sensitive 249

to larger learning rates, the resets in CAWR become a risky strategy. However, we can see that 250

7



(a) Training losses (b) Validation losses (c) Validation accuracies

Figure 5: Resulting Training losses (a), Validation losses (b) and Validation Accuracies (c) for the

hyperparameter-free methods (first row) and non-hyperparameter-free methods (second row)

on CIFAR-100. In the second row, the best hyperparameter-free method is added to the plot.

Figures show the mean across seeeds with standard error.

(a) Training Perplexity (b) Validation Perplexity (c) Learning Rates

Figure 6: Resulting Training Perplexity (a), Validation Perplexity (b) and observed Learning Rates (c)

for the all methods on BookWiki using RoBERTa. The y-axes of (a) and (b) are on a log scale

and show the mean across seeeds with standard error.

CAWR and SMAC are successful during the first optimization steps. We theorize this is why SMAC 251

selects such a high learning rate. What SMAC sees as promising configurations on lower fidelities 252

are unstable choices for full runs. This suggests that multi-fidelity optimization can be difficult to 253

set up correctly for RoBERTa, even though these function evaluations are exceedingly costly. 254

The default learning rate and Prodigy collapse later, at around half of our optimization steps. 255

Prodigy was conceived as a more exploitative version of D-Adaptation (Defazio and Mishchenko, 256

2023), and this change likely contributes to a worse performance in our evaluation. It also makes 257

explicit that while Prodigy outperforms D-Adaptation on other domains, it is not a universal 258

improvement but instead a different inductive bias. COCOB performs very poorly in this experiment 259

with no notable improvement. Thus, our experiments have shown COCOB to progressively get 260

worse with larger networks and more complex tasks. DoWG has shown the opposite trend, though 261

even here its final validation perplexity is worse than D-Adaptation’s by a gap of 18.14. Clearly, these 262

methods also have a strong inductive bias and are not universal learning rate control mechanisms. 263

8



Adam SMAC CAWR T. CAWR D-Adapt Prodigy COCOB DoWG

LIBSVM ↑ −0.39 1.97 0.96 1.65 −0.40 −1.31 1.41 −3.88
CIFAR-10 ↑ 0.06 −0.02 −0.03 0.03 0.01 0.07 −0.10 −0.01
CIFAR-100 ↑ 0.34 −0.06 −0.55 0.25 0.19 0.45 −0.22 −0.40
DTD ↑ 0.77 0.85 −2.39 −2.63 0.64 1.07 1.09 0.59

Overall ↑ 0.20 0.69 −0.50 −0.18 0.11 0.07 0.55 −0.93
BookWiki ↓ 627.8 985.2 −464.2 −273.7 −824.4 1303.2 −532.1 −821.8

Table 2: This table shows the marginal contribution to average portfolio accuracy or perplexity (on

BookWiki) of all methods for every dataset. All values except for BookWiki are in percent (%).

For accuracy higher is better and for perplexity lower is better. Best methods are marked bold.

4 Conclusion: What Is Best For Learning Rate Control? 264

Our results point to a chaotic state within learning rate control. No method we tested generalizes 265

particularly well across deep learning tasks. For an optimal solution of all our tasks, we need 266

a portfolio of six methods. Even considering only the best method per domain, SMAC, Prodigy 267

and D-Adaptation, we are left with a portfolio of three approaches to learning rate control with 268

very different performance profiles, as shown by their marginal contributions of 0.69%, 0.07% and 269

0.11% respectively (see Table 2). We conclude that there are several excellent strategies for learning 270

rate control, but that the problem is too varied to be solved by any one existing approach, even 271

in the limited selection in our evaluation. Given the significant overhead of SMAC and other 272

multi-fidelity HPO methods compared to hyperparameter-free learning, however, our results show 273

that black-box HPO as a default choice is impractical for many deep learning settings. With the 274

unoptimized standard setting we test, it falls behind on complex tasks, and we see that its most 275

efficient cost-saving measure, multi-fidelity optimization, can lead to poor performances. 276

That does not mean the AutoML community should stop focusing on learning rate control. 277

More than anything, we show that selection between control mechanisms is extremely important. 278

Furthermore, the tuned and default versions of CAWR show complementary strengths, showing 279

that learning rate schedules benefit from tuning - and that, quite possibly, the same is true for 280

hyperparameter-free methods. Right now, these methods claim to function fully tuning-free, 281

even though we can clearly see that they cannot adapt to every task. Therefore, exposing a few 282

key hyperparameters and focusing on tuning these for new tasks could be a best-of-both-worlds 283

approach combining the concept behind hyperparameter-free learning and current HPO methods. 284

To test these approaches, we believe evaluations on complex deep learning tasks, or the creation of 285

surrogate versions like in NASBench-301 (Zela et al., 2022), are instrumental since the decreasing 286

effect of multi-fidelity HPO methods is not obvious on the smaller datasets in our comparison. 287

We furthermore show hyperparameter-free learning methods to be brittle and situational, but 288

to perform exceptionally well when suited to the task. Therefore, they can be used to meta-learn 289

improved learning rate control strategies. Existing efforts have used reinforcement learning to 290

learn dynamic control strategies for CMA-ES step sizes from existing heuristics (Shala et al., 2020). 291

The same could be done for learning rate control, resulting in learned mechanisms that generalize 292

better across settings. Without this problem of inconsistent performance, learning rate control 293

mechanisms will be much more appealing to the broader ML community than current methods. 294

295

Broader Impact After careful reflection, the authors have determined that this work presents no 296

notable negative impacts to society or the environment. 297

9



References 298

Adriaensen, S. et al. (2022). “Automated Dynamic Algorithm Configuration”. In: Journal of Artificial 299

Intelligence Research (JAIR) 75, pp. 1633–1699. 300

Anderson, R. and S. Goldenstein (2014). “Multiclass from Binary: Expanding One-Versus-All, One- 301

Versus-One and ECOC-Based Approaches”. In: IEEE transactions on neural networks and learning 302

systems 25, pp. 289–302. 303

Ansótegui, C., M. Sellmann, and K. Tierney (2009). “A Gender-Based Genetic Algorithm for the 304

Automatic Configuration of Algorithms”. In: Proc. of CP’09, pp. 142–157. 305

Awad, N., N. Mallik, and F. Hutter (2021). “DEHB: Evolutionary Hyperband for Scalable, Robust 306

and Efficient Hyperparameter Optimization”. In: Proc. of IJCAI’21, pp. 2147–2153. 307

Bergstra, J. and Y. Bengio (2012). “Random Search for Hyper-Parameter Optimization”. In: JMLR 13, 308

pp. 281–305. 309

Bischl, B. et al. (2023). “Hyperparameter Optimization: Foundations, Algorithms, Best Practices, 310

and Open Challenges”. In:Wiley IRDMKD, e1484. 311

Bouthillier, X. and G. Varoquaux (2020). Survey of machine-learning experimental methods at 312

NeurIPS2019 and ICLR2020. Research Report [hal-02447823]. Inria Saclay Ile de France. 313

Brochu, E., V. Cora, and N. de Freitas (2010). “A Tutorial on Bayesian Optimization of Expensive 314

Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement 315

Learning”. In: arXiv:1012.2599v1 [cs.LG]. 316

Brown, T. et al. (2020). “Language Models are Few-Shot Learners”. In: Proc. of NeurIPS’20, pp. 1877– 317

1901. 318

Carmon, Y. and O. Hinder (2024). Making SGD Parameter-Free. arXiv: 2205.02160. url: https: 319

//arxiv.org/abs/2205.02160. 320

Chang, C. and C. Lin (2011). “LIBSVM: A Library for Support VectorMachines”. In:ACMTransactions 321

on Intelligent Systems and Technology 2.3, pp. 1–27. 322

Cimpoi, M. et al. (2014). “Describing Textures in the Wild”. In: Proc. of CVPR’14. 323

Daniel, C., J. Taylor, and S. Nowozin (2016). “Learning Step Size Controllers for Robust Neural 324

Network Training”. In: Proc. of AAAI’16. 325

Defazio, A. and K. Mishchenko (2023). “Learning-Rate-Free Learning by D-Adaptation”. In: Proc. of 326

ICML’23, pp. 7449–7479. 327

Dosovitskiy, A. et al. (2021). “An Image is Worth 16x16 Words: Transformers for Image Recognition 328

at Scale”. In: Proc. of ICLR’21. 329

Dua, D. and C. Graff (2017). UCI Machine Learning Repository. 330

Eggensperger, K. et al. (2021). “HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark 331

Problems for HPO”. In: Proc. of NeurIPS’21 Datasets and Benchmarks Track. 332

Eimer, T. et al. (2021). “DACBench: A Benchmark Library for Dynamic Algorithm Configuration”. 333

In: Proc. of IJCAI’21. ijcai.org, pp. 1668–1674. 334

Falkner, S., A. Klein, and F. Hutter (2018). “BOHB: Robust and Efficient Hyperparameter Optimization 335

at Scale”. In: Proc. of ICML’18, pp. 1437–1446. 336

Ge, R. et al. (2019). “The Step Decay Schedule: A Near Optimal, Geometrically Decaying Learning 337

Rate Procedure For Least Squares”. In: Proc. of NeurIPS’19, pp. 14951–14962. 338

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. MIT Press. 339

Gu, H. et al. (2024). “How to build the best medical image segmentation algorithm using foundation 340

models: a comprehensive empirical study with Segment Anything Model”. In: arXiv:2404.09957 341

[cs.CV]. 342

He, K. et al. (2016). “Deep residual learning for image recognition”. In: Proc. of CVPR’16, pp. 770–778. 343

He, X., K. Zhao, and X. Chu (2021). “AutoML: A Survey of the State-of-the-Art”. In: Knowledge-Based 344

Systems 212, p. 106622. 345

Huang, G. et al. (2017). “Densely connected convolutional networks”. In: Proc. of CVPR’17. 346

10

https://arxiv.org/abs/2205.02160
https://arxiv.org/abs/2205.02160
https://arxiv.org/abs/2205.02160
https://arxiv.org/abs/2205.02160


Hutter, F., H. Hoos, and K. Leyton-Brown (2011). “Sequential Model-Based Optimization for General 347

Algorithm Configuration”. In: Proc. of LION’11, pp. 507–523. 348

Hutter, F., L. Kotthoff, and J. Vanschoren, eds. (2019). Automated Machine Learning: Methods, Systems, 349

Challenges. Available for free at http://automl.org/book. Springer. 350

Jamieson, K. and A. Talwalkar (2016). “Non-stochastic Best Arm Identification and Hyperparameter 351

Optimization”. In: Proc. of AISTATS’16. 352

Khaled, A., K. Mishchenko, and C. Jin (2023). “DoWG Unleashed: An Efficient Universal Parameter- 353

Free Gradient Descent Method”. In: Proc. of NeurIPS’23, pp. 6748–6769. 354

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Tech. rep. University of 355

Toronto. 356

Levy, K., A. Kavis, and V. Cevher (2021). “STORM+: Fully Adaptive SGD with Recursive Momentum 357

for Nonconvex Optimization”. In: Proc. of NeurIPS’21. 358

Li, L. et al. (2018). “Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization”. 359

In: JMLR 18.185, pp. 1–52. 360

Li, Z. and S. Arora (2020). “An Exponential Learning Rate Schedule for Deep Learning”. In: Proc. of 361

ICLR’20. 362

Li, Z. and J. Ren (2020). “Fine-tuning ERNIE for chest abnormal imaging signs extraction”. In: J. 363

Biomed. Informatics 108, p. 103492. 364

Lindauer, M. et al. (2022). “SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter 365

Optimization”. In: JMLR 23.54, pp. 1–9. 366

Liu, Y. et al. (2019). “RoBERTa: A Robustly Optimized BERT Pretraining Approach”. In: 367

arXiv:1907.11692 [cs.CL]. 368

Loshchilov, I. and F. Hutter (2017). “SGDR: Stochastic Gradient Descent with Warm Restarts”. In: 369

Proc. of ICLR’17. 370

Mishchenko, K. andA. Defazio (2024). “Prodigy: An Expeditiously Adaptive Parameter-Free Learner”. 371

In: Proc. of ICML’24. 372

Muszynski, M. et al. (2024). “Fine-tuning of Geospatial FoundationModels for Aboveground Biomass 373

Estimation”. In: arXiv:2406.19888 [cs.AI]. 374

Orabona, F. (2023). Yet Another ICML Award Fiasco. url: https://parameterfree.com/2023/08/ 375

30/yet-another-icml-award-fiasco/. 376

Orabona, F. and A. Cutkosky (2020). ICML Tutorial on Parameter-Free Online Optimization. url: 377

https://parameterfree.com/icml-tutorial/. 378

Orabona, F. and T. Tommasi (2017). “Training Deep Networks without Learning Rates Through 379

Coin Betting”. In: Proc. of NeurIPS’17, pp. 2160–2170. 380

Proc. of IJCAI’21 (2021). 381

Proc. of NeurIPS’17 (2017). 382

Schmidt, R., F. Schneider, and P. Hennig (2020). “Descending through a Crowded Valley - Bench- 383

marking Deep Learning Optimizers”. In: arXiv:2007.01547 [cs.LG]. 384

Shala, G. et al. (2020). “Learning Step-Size Adaptation in CMA-ES”. In: Proc. of PPSN’20, pp. 691–706. 385

Smith, L. and C. Topin (2017). “Super-Convergence: Very Fast Training of Residual Networks Using 386

Large Learning Rates”. In: arXiv: 1708.07120. url: http://arxiv.org/abs/1708.07120. 387

Snoek, J., H. Larochelle, and R. Adams (2012). “Practical Bayesian Optimization of Machine Learning 388

Algorithms”. In: Proc. of NeurIPS’12. 389

Sohl-Dickstein, J. (2024). “The boundary of neural network trainability is fractal”. In: CoRR 390

abs/2402.06184. 391

Vaswani, A. et al. (2017). “Attention is All you Need”. In: Proc. of NeurIPS’17. Curran Associates, Inc. 392

Wang, Z. et al. (2024). “Pre-trained Gaussian Processes for Bayesian Optimization”. In: JMLR 25, 393

212:1–212:83. 394

Wortsman, M. et al. (2022). “Model soups: averaging weights of multiple fine-tuned models improves 395

accuracy without increasing inference time”. In: Proc. of ICML’22. 396

11

http://automl.org/book
https://parameterfree.com/2023/08/30/yet-another-icml-award-fiasco/
https://parameterfree.com/2023/08/30/yet-another-icml-award-fiasco/
https://parameterfree.com/2023/08/30/yet-another-icml-award-fiasco/
https://parameterfree.com/icml-tutorial/
https://arxiv.org/abs/1708.07120
http://arxiv.org/abs/1708.07120


Zagoruyko, S. and N. Komodakis (2016). “Wide Residual Networks”. In: Proc. of BMVC 2016, pp. 87.1– 397

87.12. 398

Zela, A. et al. (2022). “Surrogate NAS Benchmarks: Going Beyond the Limited Search Spaces of 399

Tabular NAS Benchmarks”. In: Proc. of ICLR’22. 400

Zhu, Y. et al. (2015). “Aligning Books and Movies: Towards Story-Like Visual Explanations by 401

Watching Movies and Reading Books”. In: Proc. of ICCV’15, pp. 19–27. 402

Zimmer, L., M. Lindauer, and F. Hutter (2021). “Auto-Pytorch: Multi-Fidelity MetaLearning for 403

Efficient and Robust AutoDL”. In: TPAMI 43 (9), pp. 3079–3090. 404

12



Submission Checklist 405

1. For all authors. . . 406

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 407

contributions and scope? [Yes] 408

(b) Did you describe the limitations of your work? [Yes] 409

(c) Did you discuss any potential negative societal impacts of your work? [Yes] 410

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them? 411

https://2022.automl.cc/ethics-accessibility/ [Yes] 412

2. If you ran experiments. . . 413

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same 414

benchmarks, data (sub)sets, available resources)? [Yes] 415

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing, 416

search spaces, hyperparameter tuning)? [Yes] 417

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account 418

for the impact of randomness in your methods or data? [Yes] 419

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or 420

splits)? [Yes] 421

(e) Did you report the statistical significance of your results? [No] 422

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] 423

(g) Did you compare performance over time and describe how you selected the maximum 424

duration? [Yes] 425

(h) Did you include the total amount of compute and the type of resources used (e.g., type of 426

gpus, internal cluster, or cloud provider)? [Yes] 427

(i) Did you run ablation studies to assess the impact of different components of your approach? 428

[N/A] 429

3. With respect to the code used to obtain your results. . . 430

(a) Did you include the code, data, and instructions needed to reproduce the main experimental 431

results, including all requirements (e.g., requirements.txt with explicit versions), random 432

seeds, an instructive README with installation, and execution commands (either in the 433

supplemental material or as a url)? [Yes] 434

(b) Did you include a minimal example to replicate results on a small subset of the experiments 435

or on toy data? [Yes] 436

(c) Did you ensure sufficient code quality and documentation so that someone else can execute 437

and understand your code? [Yes] 438

(d) Did you include the raw results of running your experiments with the given code, data, and 439

instructions? [Yes] 440

(e) Did you include the code, additional data, and instructions needed to generate the figures 441

and tables in your paper based on the raw results? [Yes] 442

4. If you used existing assets (e.g., code, data, models). . . 443

13

https://2022.automl.cc/ethics-accessibility/


(a) Did you cite the creators of used assets? [Yes] 444

(b) Did you discuss whether and how consent was obtained from people whose data you’re 445

using/curating if the license requires it? [N/A] 446

(c) Did you discuss whether the data you are using/curating contains personally identifiable 447

information or offensive content? [N/A] 448

5. If you created/released new assets (e.g., code, data, models). . . 449

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [N/A] 450

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g., 451

GitHub or Hugging Face)? [N/A] 452

6. If you used crowdsourcing or conducted research with human subjects. . . 453

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 454

cable? [N/A] 455

(b) Did you describe any potential participant risks, with links to Institutional Review Board 456

(irb) approvals, if applicable? [N/A] 457

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 458

on participant compensation? [N/A] 459

7. If you included theoretical results. . . 460

(a) Did you state the full set of assumptions of all theoretical results? [N/A] 461

(b) Did you include complete proofs of all theoretical results? [N/A] 462

14



A Experimental Details 463

Table 3: LIBSVM Configuration

Parameter Value

Architecture Logistic Regression

Epochs 100

CPUs 1×AMD Epyc

Device Batch Size 64

LR schedule None

Seeds 10

decay 0

𝛽1, 𝛽2 0.9, 0.999

Table 4: CIFAR-10 Configuration

Parameter Value

Architecture Wide ResNet 16-8

Epochs 300

GPUs 1×H100
Device Batch Size 64

LR schedule None

Seeds 10

decay 0

𝛽1, 𝛽2 0.9, 0.999

Table 5: CIFAR-100 Configuration

Parameter Value

Architecture DenseNet-121

Epochs 300

GPUs 1×H100
Device Batch Size 64

LR schedule None

Seeds 10

decay 0

𝛽1, 𝛽2 0.9, 0.999

Table 6: RoBERTa BookWiki Configuration

Parameter Value

Architecture roberta_base

Task masked_lm

Max updates 23,000

GPUs 4×H100
Max Length 512

Dropout 0.1

Attention Dropout 0.1

Device Batch Size 64

Warmup 10,000

Fp16 True

Gradient Accumulation 1

LR schedule None

Seeds 3

Decay 0.0

Adam LR 0.001

𝛽1, 𝛽2 0.9, 0.98

15



Table 7: DTD Configuration

Parameter Value

Architecture ViT Tiny Patch 16_224

Epochs 300

GPUs 1×H100
Device Batch Size 64

LR schedule None

Seeds 10

decay 0

𝛽1, 𝛽2 0.9, 0.999

All of our experiments are executed on a

slurm cluster. For experiments utilizing a

GPU. A full training run of CIFAR-10 or

CIFAR-100 experiments uses one H100 GPU

and takes about 5 hours. One run on DTD

takes about 3 hours. With regard to num-

ber of methods and seeds as well as tuning

runs (see Tabel 4,5,7), our computer vision

experiments utilized approximately 770 GPU

hours. One run of our RoBERTa experiments

used 4×H100 and takes 6 hours. Therefore,

the natural language processing experiments

including tuning runs used approximately

610 GPU hours. In total, we invested approx-

imately 1380 GPU hours for all experiments.

LIBSVM CIFAR-10 CIFAR-100 DTD RoBERTa

SMAC

n_trials 50

min_budget 20 5 5 5 500

max_budget 100 300 300 300 23 000

𝜂 3

log 𝑓 𝑎𝑙𝑠𝑒

Searchspace

lr [0, 1] [0.1, 1] [0.1, 1] [0.1, 1] [0, 1]

Tuned CAWR

n_trials 50

min_budget 20 3125 3125 145 500

max_budget max batch steps 187 500 187 500 8 700 23 000

𝜂 3

log 𝑓 𝑎𝑙𝑠𝑒

Searchspace

𝜂𝑚𝑖𝑛 [0, 0.005]
base_lr [0, 1] [0, 0.1] [0, 0.1] [0, 0.1] [0, 1]
𝑇0 [0, 50]
𝑇𝑚𝑢𝑙𝑡 [1, 5]

Table 8: This table shows the configuration of SMAC and Hyperband used to tune our multi-fidelity

HPO methods. Notice that the search spaces for the learning rates on LIBSVM and for

RoBERTa are set to a broader spectrum than the computer vision experiments as there are no

immediate typical ranges.

16



Table 9: This table shows the learning rate and CAWR hyperparameters found by SMAC on LIBSVM.

Additionally, we report the mean final adapted learning rate of D-Adaptation and Prodigy.

Method Aloi Dna Iris Letter Pendigits Sensorless Vehicle Vowel Wine

SMAC 0.2708 0.9523 0.9863 0.7047 0.7532 0.7031 0.9394 0.9896 0.9896

D-Adaptation 1.7224 3.8347 5.4031 3.0777 4.5138 2.1328 2.5959 4.8939 0.0000

Prodigy 3.3224 4.1537 7.7059 3.0777 11.0018 10.4012 7.5469 6.9458 9.9160

Tuned CAWR
eta_min 0.0030 0.0030 0.0043 0.0030 0.0030 0.0030 0.0011 0.0011 0.0043

base_lr 0.5987 0.5987 0.2405 0.5987 0.5987 0.5987 0.0180 0.0180 0.2405

T_0 38 38 30 38 38 38 45 45 30

T_mult 2 2 4 2 2 2 5 5 4

DTD CIFAR-10 CIFAR-100 BookWiki

SMAC lr 0.000880923938 0.0193164317787 0.0022199946895 0.0044237631561

D-Adaptation lr 0.000029 0.001541 0.000245 3.453551 × 10
−8

Prodigy lr 0.000407 0.002246 0.001589 2.809611 × 10
−4

Tuned CAWR
eta_min 0.0012426552362 0.0048900232824 0.0049729217242 0.0029495649644

base_lr 0.0048815239592 0.0057869866522 0.0019257718469 0.0142293709729

T0 40 29 39 47

T_mult 1 4 2 2

Table 10: This table shows the learning rate and CAWR hyperparameters found by SMAC on computer

vision and natural language processing experiments. Additionally, we report the mean final

adapted learning rate of D-Adaptation and Prodigy.

17



B Additional Plots 464

Figure 7: Estimated effective learning rates of DoWG and COCOB on the RoBERTa BookWiki experi-

ments.

(a) Rank heatmap for the LIBSVM experiments

according to final training loss. The average

rank in denoted in parantheses.

(b) Average Difference Heatmap (Training

Loss)

18



C CIFAR-10 Results 465

(a) Training losses (b) Validation losses (c) Validation accuracies

Figure 9: Resulting Training losses (a), Validation losses (b) and Validation Accuracies (c) for the

hyperparameter-free methods (first row) and non-hyperparameter-free methods (second row)

on CIFAR-10. In the first row, the best hyperparameter-free method is added to the plot.

19


	Introduction
	Prior Work on Learning Rate Control
	The AutoML Approach To Learning Rate Selection & Control
	Learning Rate Schedules
	From Theory: Hyperparameter-free Learning

	Comparing Learning Rate Control Approaches
	Experimental Setup
	LIBSVM Classification Datasets
	Computer Vision Tasks
	Language Model Training

	Conclusion: What Is Best For Learning Rate Control?
	Experimental Details
	Additional Plots
	CIFAR-10 Results

