
Revisiting Learning Rate Control

Micha Henheik1 Theresa Eimer1 Marius Lindauer1

1
Leibniz University Hannover

Abstract The learning rate is one of the most important hyperparameters in deep learning, and how

to control it is an active area within both AutoML and deep learning research. Approaches

for learning rate control span from classic optimization to online scheduling based on

gradient statistics. This paper compares paradigms to assess the current state of learning

rate control. We find that methods from multi-fidelity hyperparameter optimization, fixed-

hyperparameter schedules, and hyperparameter-free learning often perform very well on

selected deep learning tasks but are not reliable across settings. This highlights the need for

algorithm selection methods in learning rate control, which have been neglected so far by

both the AutoML and deep learning communities. We also observe a trend of hyperparameter

optimization approaches becoming less effective as models and tasks grow in complexity,

even when combined with multi-fidelity approaches for more expensive model trainings. A

focus on more relevant test tasks and new promising directions like finetunable methods

and meta-learning will enable the AutoML community to significantly strengthen its impact

on this crucial factor in deep learning.

1 Introduction

Deep learning produces state-of-the-art algorithms in applications such as image recognition (Z. Li

and Ren, 2020; Dosovitskiy et al., 2021; Wortsman et al., 2022; Gu et al., 2024; Muszynski et al., 2024)

and natural language processing (Vaswani et al., 2017; Brown et al., 2020). However, deep learning

models are sensitive to their hyperparameters, including the learning rate of the optimizer. It is

perhaps the hyperparameter most responsible for training success in deep learning (Goodfellow

et al., 2016). Thus, effectively controlling the learning rate is a major factor for training success.

Automated Machine Learning (AutoML; Hutter, Kotthoff, et al., 2019) aims to automate the

configuration of machine learning algorithms in an efficient manner, e.g. through black-box

optimization combined with efficient scheduling strategies (multi-fidelity HPO; Jamieson and

Talwalkar, 2016; Falkner et al., 2018; Bischl et al., 2023). Its adoption for hyperparameter optimization

in the deep learning community, however, remains somewhat low (Bouthillier and Varoquaux,

2020). A key drawback of many approaches from the AutoML community is the need for repeated

model training, which can become infeasibly expensive for complex deep learning tasks.

To alleviate this computational cost, hyperparameter-free optimization has emerged as an

alternative to standard AutoML approaches, eliminating the need for external tuning by developing

optimization methods without hyperparameters to adapt (Orabona and Cutkosky, 2020; Defazio

and Mishchenko, 2023; Carmon and Hinder, 2024). Unlike hyperparameter schedules, which depend

solely on the current optimization step (Loshchilov and Hutter, 2017; Smith and Topin, 2017), the

learning process is used to determine the learning rate, e.g. via the development of the gradients.

These approaches predominantly focus on the learning rate (Orabona and Tommasi, 2017; Defazio

and Mishchenko, 2023; Carmon and Hinder, 2024), though there are also hyperparameter-free

methods for other hyperparameters like the momentum (Levy et al., 2021). Naturally, this presents a

significant cost reduction, especially in computationally intensive domains like language modeling.

We compare both multi-fidelity HPO and hyperparameter-free approaches to learning rate

schedules on different deep learning tasks from logistic regression, computer vision, and language

AutoML 2025 © 2025 the authors, released under CC BY 4.0

mailto:micha.henheik@web.de
mailto:t.eimer@ai.uni-hannover.de
mailto:m.lindauer@ai.uni-hannover.de
https://creativecommons.org/licenses/by/4.0/


modeling. We find that all options perform only situationally well, and none are a viable default

choice across tasks. While multi-fidelity HPO performs well on the lightweight LIBSVM (Chang and

Lin, 2011) benchmark, more complex deep learning problems favor varying hyperparameter-free

methods. Therefore, our results identify a significant gap in learning rate control research: selecting

between different configuration approaches and paradigms. Furthermore, they demonstrate that

we cannot infer the superiority of multi-fidelity HPO approaches compared to hyperparameter-free

methods from small deep-learning tasks. To increase the impact of AutoML in this important area

of deep learning, we need to evaluate the use cases we want to target and embrace approaches like

hyperparameter-free learning with strengths specific to expensive deep learning settings – here

the lack of repeating runs. Our evaluation shows that there is still plenty of room for improvement

over the overall best methods and thus fertile ground for novel AutoML research.

2 Prior Work on Learning Rate Control
We give a brief overview of important strands of learning rate control literature from the communi-

ties concerning our comparison: configuration approaches from the AutoML community, learning

rate schedules, and hyperparameter-free configuration methods motivated by deep learning theory.

The selection of optimizers themselves is related to our topic of learning rate control as well.

Schmidt et al., 2020 conduct a similar investigation to ours for optimizers and also find algorithm

selection to be a key challenge for that problem.

2.1 The AutoML Approach To Learning Rate Selection & Control

In the realm of AutoML, there are several paradigms to optimize hyperparameters for maximum

performance, usually through repeated evaluations of the target function. To improve over simple

baselines such as Random Search and Grid Search (Bergstra and Bengio, 2012), HPO methods

commonly use either model-based or model-free optimization. Model-based configuration ap-

proaches (Hutter, Hoos, et al., 2011; Snoek et al., 2012) use a surrogate model of the target algorithm’s

performance to guide the search for good configurations with Bayesian Optimization (Brochu et al.,

2010). Model-free methods, on the other hand, rely on paradigms such as evolutionary strategies to

evolve well-performing configurations over time (Ansótegui et al., 2009; X. He et al., 2021).

To improve the efficiency of these methods, partial target function evaluations are employed to

eliminate bad configurations early on (L. Li et al., 2018). Such scheduling approaches are referred

to as multi-fidelity methods and common in both model-based and model-free HPO (Falkner et al.,

2018; Awad et al., 2021). Since these methods can make HPO approaches based on black-box

optimization significantly more efficient, we focus on multi-fidelity HPO in this comparison.

The majority of HPO approaches target finding a single configuration for the full training run.

Dynamic algorithm configuration (DAC; Adriaensen et al., 2022) is a recent paradigm adapting

hyperparameters during the run and it has been applied to simple deep learning tasks (Daniel et al.,

2016), but so far, there are no standard DAC solvers. Therefore, we do not include DAC in our

comparison and instead focus on approaches deep learning practitioners can apply out of the box.

Configuring deep learning algorithms is part of several AutoML benchmarks like

HPOBench (Eggensperger et al., 2021), LCBench (Zimmer et al., 2021), or PD1 (Wang et al., 2024).

Except for PD1, however, these benchmarks are quite limited compared to deep learning in state-

of-the-art systems, using far smaller networks and less complex datasets than current research.

PD1 is a new addition with relevant architectures like ResNets (K. He et al., 2016) and Transform-

ers (Vaswani et al., 2017), though currently most AutoML literature around learning rate control is

still centered around applying methods for HPO to relatively simple deep learning tasks.

2.2 Learning Rate Schedules

In contrast to multi-fidelity HPO approaches, learning rate schedules are not based on optimization

but pre-defined heuristic approaches that do not require multiple runs. Usually, they are a function

2



of the current time step, adapting the learning rate during training time. Popular choices are Step

Decay (Ge et al., 2019), Exponential Decay (Z. Li and Arora, 2020) and Cosine Annealing Warm
Restarts (CAWR, Loshchilov and Hutter, 2017). CAWR sets the learning rate in step 𝑡 according to

𝜂𝑡 = 𝜂𝑖
min

+ 1

2

(
𝜂𝑖
max

− 𝜂𝑖
min

) (
1 + cos

(
𝑇cur

𝑇𝑖
𝜋

))
where 𝑖 is the restart counter, 𝜂min and 𝜂max are bounds on the learning rate and 𝑇cur the number of

steps since the last restart. Intuitively, this means that the learning rate decays from 𝜂max to 𝜂min in a

cosine shape in𝑇𝑖 steps. After that, it resets to 𝜂𝑚𝑎𝑥 and scales𝑇𝑖 with𝑇mult. While computationally

inexpensive compared to HPO, such schedules often make use of several hyperparameters. Fixed

schedules cannot adapt to different settings and thus possibly do not work well when moving to a

different target algorithm or dataset.

2.3 From Theory: Hyperparameter-free Learning

Researchers have looked to deep learning theory to combine the efficiency of learning rate schedules

with the adaptiveness of multi-fidelity HPO approaches. Setting the optimal learning rate of deep

learning optimizers is possible using information about the problem, e.g. distance 𝐷 between the

initial iterate and the optimum (Defazio andMishchenko, 2023). However, this information is usually

not directly available. D-Adaptation (Defazio and Mishchenko, 2023) and Prodigy (Mishchenko

and Defazio, 2024) estimate a lower bound on the distance 𝐷 to the optimum via gradient statistics.

Prodigy is an update on the original D-Adaptation with improved convergence rate and more

exploitative behavior. Similarly, Distance over Weighted Gradients (DoWG; Khaled et al., 2023)

computes the step size of SGD using this simple estimate of 𝐷 and a weighted sum of observed

Gradients. COCOB (Orabona and Tommasi, 2017), on the other hand, reduces the learning rate

control task to a coin betting scenario. COCOB uses a betting strategy to solve coin betting and

achieves optimal convergence for this scenario. However, this optimality is specific to assumptions

and may not extend to deep learning tasks.

While these theory-motivated approaches promise to be the zero-shot solution for learning rate

control and have shown impressive performances in their own evaluations, there is as of yet no

broad comparison of hyperparameter-free learning approaches, let alone how they fare compared

to HPO methods. In fact, there has been discussion about the fairness of evaluations for some

hyperparameter-free learning methods (Orabona, 2023). Thus, we want to validate how the different

strands of hyperparameter-free learning compare to each other and to learning rate schedules and

multi-fidelity HPO methods, establishing common ground between these communities.

3 Comparing Learning Rate Control Approaches

In this section, we describe our empirical evaluation of three different learning rate control ap-

proaches: we evaluate hyperparameter-free methods alongside multi-fidelity HPO and scheduling
approaches on a diverse set of tasks. Our experiments span domains including natural language

processing, computer vision, and convex optimization. The full details on the datasets and corre-

sponding architectures can be found in Appendix A.

Hyperparameter-free Methods Our study includes four hyperparameter-free methods: COCOB,
a method that reduces learning rate control to a simpler problem, and D-Adaptation, Prodigy, and
DoWG, which are methods that estimate the optimal learning rates through gradient information. As

these methods are proposed as tuning-free, i.e. they do not possess any important hyperparameters

to tune, we apply them directly in all experiments.

Multi-fidelity HPO For multi-fidelity HPO, we use SMAC3 (Lindauer et al., 2022), a state-of-

the-art HPO tool (Eggensperger et al., 2021), with the Hyperband (L. Li et al., 2018) intensifier to

find the best fixed learning rate, i.e. the learning rate multi-fidelity HPO finds stays constant during

3



the whole run. We call this approach SMAC. SMAC’s total optimization budget is 50 trials for all

experiments. Hyperband is used with a minimum budget depending on the task (see Appendix A),

a maximum budget equal to the total number of iterations, and 𝜂 = 3.

Scheduling Approaches We focus on Cosine Annealing (Loshchilov and Hutter, 2017) as a

learning rate schedule due to its impressive performance and adjustment options. These adjustment

options allow us to report both the performance of cosine annealing with its default settings and a

SMAC-tuned variation that shows how much we can adapt the schedule to new settings. We use

the cosine annealing as originally proposed with warm restarts for the entire empirical evaluation.

As Cosine Annealing Warm Restarts (CAWR) default, we use a well-performing configuration

(𝑇0 = 10,𝑇𝑚𝑢𝑙𝑡 = 2, 𝜂𝑚𝑖𝑛 = 0, 𝜂𝑚𝑎𝑥 = 0.005) from Loshchilov and Hutter, 2017 that achieved great

results on CIFAR-10 and CIFAR-100. Tuned CAWR denotes runs where we use SMAC3 to optimize

CAWR’s four hyperparameters 𝑇0,𝑇𝑚𝑢𝑙𝑡 , 𝜂𝑚𝑖𝑛, 𝜂𝑚𝑎𝑥 (see Appendix A).

3.1 Experimental Setup

As an experimental framework, we employ the DACBench (Eimer et al., 2021) SGD Benchmark,
which provides a structured environment for evaluating hyperparameter scheduling approaches.

We evaluate all methods on deep learning settings from different domains: i. As a simple yet

diverse application, we consider logistic regression in the form of the LIBSVM (Chang and Lin,

2011) library on nine of its well-studied datasets. ii. medium complexity computer vision taks

with ResNet (K. He et al., 2016) variations on the CIFAR-10 and CIFAR-100 (Krizhevsky, 2009)

datasets and a ViT (Dosovitskiy et al., 2021) on the Describable Textures Dataset (DTD; Cimpoi et al.,

2014). iii. in natural language processing, we pre-train RoBERTa (Liu et al., 2019) architecture on a

reproduction of the BookWiki dataset
1
. As DoWG does not support weight decay, we do not use it.

Unless otherwise specified, we use the beta defaults 𝛽1 = 0.9, 𝛽2 = 0.999. For other hyperparameters

and number of seeds, we use problem-specific standards with details in Appendix A. Our full code

is available at https://github.com/automl/Revisiting_LR_Control. Our raw experiment data

with the results of all runs is available on HuggingFace at https://huggingface.co/datasets/
autorl-org/revisiting_learning_rate_control.

Logistic RegressionWe evaluate on the nine datasets Aloi, Dna, Iris, Letter, Pendigits, Sensorless,

Vehicle, Vowel and Wine (Anderson and Goldenstein, 2014; Dua and Graff, 2017). They have been

included in several works on hyperparameter-free learning and are domains where these methods

perform well compared to their own baselines (Defazio and Mishchenko, 2023; Orabona, 2023;

Mishchenko and Defazio, 2024). As there do not exist typical splits and some datasets are very

small, we only report training loss and accuracy. Every method is executed for 100 epochs.

Computer Vision We train WRN-16-8 (Zagoruyko and Komodakis, 2016) on CIFAR-10 and

DenseNet-121 (Huang et al., 2017) for CIFAR-100 to test two variations of ResNet architectures. On

DTDwe use the ViT/T-16 (Dosovitskiy et al., 2021). With CIFAR and DTD, we evaluate learning rate

control approaches on standard task settings and architectures for many practical deep learning

applications. We run these experiments for 300 epochs.

Natural Language Processing On BookWiki with RoBERTa we use 𝛽2 = 0.98 and a learning

rate warmup of 10 000 steps with default linear decay. For COCOB and DoWG, adopting the decay

involves scaling the gradients by the learning rate. For CAWR and Tuned CAWR, the cosine schedule
takes over after warmup. We limit the experiment to 23 000 steps.

3.2 LIBSVM Classification Datasets

We begin with a comparison of learning rate control approaches on a selection of simple but

diverse classification tasks from LIBSVM datasets. Our results reflect this diversity (see Figure 2

1
We try to replicate BookWiki from Defazio and Mishchenko, 2023 which is not publicly available. Therefore, we use

a snapshot from Wikipedia concatenated with books from Zhu et al., 2015.

4

https://github.com/automl/Revisiting_LR_Control
https://huggingface.co/datasets/autorl-org/revisiting_learning_rate_control
https://huggingface.co/datasets/autorl-org/revisiting_learning_rate_control


Figure 2: Training Accuracies for hyperparameter-free methods on LIBSVM datasets. Figures show the

mean across 10 seeds with standard error.

for hyperparameter-free variations): COCOB, Prodigy and the default learning rate perform best

on at least one dataset, and each method performs below a training accuracy of 50% at least once.

Figure 1: Average differences in final training accu-

racy of every method to the oracle on each

LIBSVM dataset. Methods are sorted accord-

ing to the mean average difference across all

datasets (in parentheses).

In terms of overall performance, COCOB per-

forms best among the hyperparameter-free

methods, setting or matching the best train-

ing accuracy in six out of nine cases. Prodigy

and the default learning rate are inconsistent,

sometimes not improving training accuracy at

all (e.g. on aloi for Prodigy or wine for the

default). D-Adaptation varies less across the

datasets but only matches the top performance

once on vehicle. DoWG does not perform well

on any dataset, being by far the worst choice

of the methods we tested. Therefore, we can

conclude that none of the hyperparameter-free

approaches work well overall.

These inconclusive results are less pro-

nounced for HPO approaches (see Figure 3).

CAWR in its untuned variation outperforms

the default static learning rate, but cannot find

a good solution on wine. Its tuned counterpart

outperforms default CAWR on some datasets,

solving wine, but is also less stable and thus sub-
optimal on others like sensor. SMAC performs

best among HPO approaches, improving upon

the previous best, COCOB. In fact, SMAC is the

5



Figure 3: Training Accuracies for LIBSVM, non-hyperparameter-free methods. Figures show the mean

across 10 seeds with standard error. We add the best hyperparameter-free method according

to the final training accuracy. The Best HP-Free method is COCOB for every dataset except

vowel and wine. For the latter it is Prodigy.

best overall method in this comparison, ranking first or second on every dataset. Thus, it is the only

consistent approach, with an overall mean difference to the optimum of only 5.5% (see Figure 1).

For optimal performance across these simple datasets, our results show that we need a portfolio

of six different methods (their marginal accuracy contribution in brackets): SMAC (6.8%), Tuned

CAWR (0.1%), COCOB (11.8%), CAWR (3.8%), the default learning rate (3.2%) and Prodigy (4%)). Even

ignoring Tuned CAWR due to its small contribution leaves us with a portfolio of a multi-fidelity

HPO tool, a schedule, two hyperparameter-free learning methods, and the default learning rate.

3.3 Computer Vision Tasks

The LIBSVM tasks are not very representative of the currently most interesting tasks for learning

rate control. Therefore, we repeat this evaluation on CIFAR-10, CIFAR-100, and DTD as archetypal

deep learning tasks of medium complexity. Figures 4 and 5 show the results for DTD and CIFAR-100,

respectively. Since the learning curves of CIFAR-10 and CIFAR-100 show similar trends, we only

show CIFAR-100 here; refer to Appendix C for the full results.

On these datasets, hyperparameter-free methods perform well in terms of validation accuracy,

even though the validation loss for DOWG on CIFAR-100 diverges. DoWG produces adequate, if not

competitive, results compared to its poor performance on the LIBSVM datasets. COCOB’s relative

performance is worse, not being able to compete with other methods on the CIFAR datasets, even

though it does well on DTD. Prodigy excels on these tasks, clearly outperforming D-Adaptation,

and thus showing that its exploitative behavior is helpful in these settings.

Performance of HPO methods (see Figure 5) also changes from LIBSVM. We can now clearly

see that the default CAWR schedule, while quite successful on the LIBSVM data, causes significant

performance drops upon reset, leading to less stable performance and, on CIFAR-100 and DTD, to a

clear performance drop compared to other methods. The tuned variation is much smoother and

performs on par with the default learning rate on CIFAR, though it fails to learn on DTD.. SMAC

cannot match it on CIFAR-100 with a gap of 2.79%, but matches the default learning rate’s good

6



(a) Training losses (b) Validation losses (c) Validation accuracies

Figure 4: Resulting Training losses (a), Validation losses (b) and Validation Accuracies (c) for the

hyperparameter-free methods (first row) and non-hyperparameter-free methods (second row)

on DTD. In the second row, the best hyperparameter-free method (COCOB) is added to the

plot. Figures show the mean across seeeds with standard error.

Adam SMAC CAWR T. CAWR D-Adapt Prodigy COCOB DoWG

CIFAR-10 0.06 0.61 0.71 0.24 0.41 0.0 1.20 0.54

CIFAR-100 0.80 3.59 7.93 1.40 1.86 0.0 4.72 6.00

DTD 2.28 1.68 24.40 26.05 3.16 0.15 0.0 3.51

Overall 1.05 1.96 11.01 9.23 1.81 0.05 1.97 3.35

Table 1: Average differences in final validation accuracy of every method compared to the oracle on

computer vision datasets. All numbers are in %. Best method on each dataset is marked bold.

performance on DTD. It is not fully clear why SMAC cannot recover the default learning rate on

CIFAR. We believe it is not due to multi-fidelity scheduling since the incumbent was selected at 100

epochs, after which no significant changes in performance happen for any method. It is more likely

that the HPO landscape is harder to navigate, as preliminary results suggest that in deep learning,

well-performing hyperparameters are close to regions of instability (Sohl-Dickstein, 2024).

We can see that the average gap to the optimum (see Table 1) is now smallest for Prodigy, with

the default learning rate being ranked second, doing better than SMAC and other hyperparameter-

free methods. For optimal performance, we only need a portfolio of COCOB and Prodigy for these

datasets, with COCOB’s marginal contribution being very low at 0.15%. CAWR cannot improve

upon the default learning rate here and methods still show big discrepancies between datasets,

though hyperparameter-free methods perform better overall here than on LIBSVM.

3.4 Language Model Training

We move to an even more complex deep learning task and an even larger model: pre-training

RoBERTa with a one-cycle warmup and decay schedule for all learning rates, see Figure 6. We see

that most methods deteriorate at some point during training to a local minimum. Only DoWG

and D-Adaptation keep improving over time. This is surprising since both methods have not been

among our best choices for any dataset so far. Figure 6c shows the likely cause for this performance

collapse: D-Adaptation has by far the lowest learning rate and the methods to collapse earliest are

7



(a) Training losses (b) Validation losses (c) Validation accuracies

Figure 5: Resulting Training losses (a), Validation losses (b) and Validation Accuracies (c) for the

hyperparameter-free methods (first row) and non-hyperparameter-free methods (second row)

on CIFAR-100. In the second row, the best hyperparameter-free method is added to the plot.

Figures show the mean across seeeds with standard error.

the methods with the highest learning rates, CAWR and SMAC. Since RoBERTa seems sensitive

to larger learning rates, the resets in CAWR become a risky strategy. However, we can see that

CAWR and SMAC are successful during the first optimization steps. We theorize this is why SMAC

selects such a high learning rate. What SMAC sees as promising configurations on lower fidelities

are unstable choices for full runs. This suggests that multi-fidelity optimization can be difficult to

set up correctly for RoBERTa, even though these function evaluations are exceedingly costly.

The default learning rate and Prodigy collapse later, at around half of our optimization steps.

Prodigy was conceived as a more exploitative version of D-Adaptation (Defazio and Mishchenko,

2023), and this change likely contributes to a worse performance in our evaluation. It also makes

explicit that while Prodigy outperforms D-Adaptation on other domains, it is not a universal

improvement but instead a different inductive bias. COCOB performs very poorly in this experiment

with no notable improvement. Thus, our experiments have shown COCOB to progressively get

worse with larger networks and more complex tasks. DoWG has shown the opposite trend, though

even here its final validation perplexity is worse than D-Adaptation’s by a gap of 18.14. Clearly, these

methods also have a strong inductive bias and are not universal learning rate control mechanisms.

4 Conclusion: What Is Best For Learning Rate Control?

Our results point to a chaotic state within learning rate control. No method we tested generalizes

particularly well across deep learning tasks. For an optimal solution of all our tasks, we need

a portfolio of six methods. Even considering only the best method per domain, SMAC, Prodigy

and D-Adaptation, we are left with a portfolio of three approaches to learning rate control with

very different performance profiles, as shown by their marginal contributions of 0.69%, 0.07% and

0.11% respectively (see Table 2). We conclude that there are several excellent strategies for learning

rate control, but that the problem is too varied to be solved by any one existing approach, even

in the limited selection in our evaluation. Given the significant overhead of SMAC and other

multi-fidelity HPO methods compared to hyperparameter-free learning, however, our results show

that black-box HPO as a default choice is impractical for many deep learning settings. With the

8



(a) Training Perplexity (b) Validation Perplexity (c) Learning Rates

Figure 6: Resulting Training Perplexity (a), Validation Perplexity (b) and observed Learning Rates (c)

for the all methods on BookWiki using RoBERTa. The y-axes of (a) and (b) are on a log scale

and show the mean across seeeds with standard error.

Adam SMAC CAWR T. CAWR D-Adapt Prodigy COCOB DoWG

LIBSVM ↑ −0.39 1.97 0.96 1.65 −0.40 −1.31 1.41 −3.88
CIFAR-10 ↑ 0.06 −0.02 −0.03 0.03 0.01 0.07 −0.10 −0.01
CIFAR-100 ↑ 0.34 −0.06 −0.55 0.25 0.19 0.45 −0.22 −0.40
DTD ↑ 0.77 0.85 −2.39 −2.63 0.64 1.07 1.09 0.59

Overall ↑ 0.20 0.69 −0.50 −0.18 0.11 0.07 0.55 −0.93
BookWiki ↓ 627.8 985.2 −464.2 −273.7 −824.4 1303.2 −532.1 −821.8

Table 2: This table shows the marginal contribution to average portfolio accuracy or perplexity (on

BookWiki) of all methods for every dataset. All values except for BookWiki are in percent (%).

For accuracy higher is better and for perplexity lower is better. Best methods are marked bold.

unoptimized standard setting we test, it falls behind on complex tasks, and we see that its most

efficient cost-saving measure, multi-fidelity optimization, can lead to poor performances.

That does not mean the AutoML community should stop focusing on learning rate control.

More than anything, we show that selection between control mechanisms is extremely important.

Furthermore, the tuned and default versions of CAWR show complementary strengths, showing

that learning rate schedules benefit from tuning - and that, quite possibly, the same is true for

hyperparameter-free methods. Right now, these methods claim to function fully tuning-free,

even though we can clearly see that they cannot adapt to every task. Therefore, exposing a few

key hyperparameters and focusing on tuning these for new tasks could be a best-of-both-worlds

approach combining the concept behind hyperparameter-free learning and current HPO methods.

To test these approaches, we believe evaluations on complex deep learning tasks, or the creation of

surrogate versions like in NASBench-301 (Zela et al., 2022), are instrumental since the decreasing

effect of multi-fidelity HPO methods is not obvious on the smaller datasets in our comparison.

We furthermore show hyperparameter-free learning methods to be brittle and situational, but

to perform exceptionally well when suited to the task. Therefore, they can be used to meta-learn

improved learning rate control strategies. Existing efforts have used reinforcement learning to

learn dynamic control strategies for CMA-ES step sizes from existing heuristics (Shala et al., 2020).

The same could be done for learning rate control, resulting in learned mechanisms that generalize

better across settings. Without this problem of inconsistent performance, learning rate control

mechanisms will be much more appealing to the broader ML community than current methods.

9



Broader Impact After careful reflection, the authors have determined that this work presents no

notable negative impacts to society or the environment.

Acknowledgements. Theresa Eimer acknowledges funding by the German Research Foundation

(DFG) under LI 2801/7-1. This project was supported by the Federal Ministry of Education and

Research (BMBF) under the project AI service center KISSKI (grant no.01IS22093C).

References

Adriaensen, S. et al. (2022). “Automated Dynamic Algorithm Configuration”. In: Journal of Artificial
Intelligence Research (JAIR) 75, pp. 1633–1699.

Anderson, R. and S. Goldenstein (2014). “Multiclass from Binary: Expanding One-Versus-All, One-

Versus-One and ECOC-Based Approaches”. In: IEEE transactions on neural networks and learning
systems 25, pp. 289–302.

Ansótegui, C., M. Sellmann, and K. Tierney (2009). “A Gender-Based Genetic Algorithm for the

Automatic Configuration of Algorithms”. In: Proc. of CP’09, pp. 142–157.
Awad, N., N. Mallik, and F. Hutter (2021). “DEHB: Evolutionary Hyperband for Scalable, Robust

and Efficient Hyperparameter Optimization”. In: Proc. of IJCAI’21, pp. 2147–2153.
Bergstra, J. and Y. Bengio (2012). “Random Search for Hyper-Parameter Optimization”. In: JMLR 13,

pp. 281–305.

Bischl, B. et al. (2023). “Hyperparameter Optimization: Foundations, Algorithms, Best Practices,

and Open Challenges”. In:Wiley IRDMKD, e1484.
Bouthillier, X. and G. Varoquaux (2020). Survey of machine-learning experimental methods at

NeurIPS2019 and ICLR2020. Research Report [hal-02447823]. Inria Saclay Ile de France.

Brochu, E., V. Cora, and N. de Freitas (2010). “A Tutorial on Bayesian Optimization of Expensive

Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement

Learning”. In: arXiv:1012.2599v1 [cs.LG].
Brown, T. et al. (2020). “Language Models are Few-Shot Learners”. In: Proc. of NeurIPS’20, pp. 1877–

1901.

Carmon, Y. and O. Hinder (2024). Making SGD Parameter-Free. arXiv: 2205.02160. url: https:
//arxiv.org/abs/2205.02160.

Chang, C. and C. Lin (2011). “LIBSVM: A Library for Support VectorMachines”. In:ACMTransactions
on Intelligent Systems and Technology 2.3, pp. 1–27.

Cimpoi, M. et al. (2014). “Describing Textures in the Wild”. In: Proc. of CVPR’14.
Daniel, C., J. Taylor, and S. Nowozin (2016). “Learning Step Size Controllers for Robust Neural

Network Training”. In: Proc. of AAAI’16.
Defazio, A. and K. Mishchenko (2023). “Learning-Rate-Free Learning by D-Adaptation”. In: Proc. of

ICML’23, pp. 7449–7479.
Dosovitskiy, A. et al. (2021). “An Image is Worth 16x16 Words: Transformers for Image Recognition

at Scale”. In: Proc. of ICLR’21.
Dua, D. and C. Graff (2017). UCI Machine Learning Repository.
Eggensperger, K. et al. (2021). “HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark

Problems for HPO”. In: Proc. of NeurIPS’21 Datasets and Benchmarks Track.
Eimer, T. et al. (2021). “DACBench: A Benchmark Library for Dynamic Algorithm Configuration”.

In: Proc. of IJCAI’21. ijcai.org, pp. 1668–1674.
Falkner, S., A. Klein, and F. Hutter (2018). “BOHB: Robust and Efficient Hyperparameter Optimization

at Scale”. In: Proc. of ICML’18, pp. 1437–1446.
Ge, R. et al. (2019). “The Step Decay Schedule: A Near Optimal, Geometrically Decaying Learning

Rate Procedure For Least Squares”. In: Proc. of NeurIPS’19, pp. 14951–14962.
Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. MIT Press.

10

https://arxiv.org/abs/2205.02160
https://arxiv.org/abs/2205.02160
https://arxiv.org/abs/2205.02160


Gu, H. et al. (2024). “How to build the best medical image segmentation algorithm using foundation

models: a comprehensive empirical study with Segment Anything Model”. In: arXiv:2404.09957
[cs.CV].

He, K. et al. (2016). “Deep residual learning for image recognition”. In: Proc. of CVPR’16, pp. 770–778.
He, X., K. Zhao, and X. Chu (2021). “AutoML: A Survey of the State-of-the-Art”. In: Knowledge-Based

Systems 212, p. 106622.
Huang, G. et al. (2017). “Densely connected convolutional networks”. In: Proc. of CVPR’17.
Hutter, F., H. Hoos, and K. Leyton-Brown (2011). “Sequential Model-Based Optimization for General

Algorithm Configuration”. In: Proc. of LION’11, pp. 507–523.
Hutter, F., L. Kotthoff, and J. Vanschoren, eds. (2019). Automated Machine Learning: Methods, Systems,

Challenges. Available for free at http://automl.org/book. Springer.
Jamieson, K. and A. Talwalkar (2016). “Non-stochastic Best Arm Identification and Hyperparameter

Optimization”. In: Proc. of AISTATS’16.
Khaled, A., K. Mishchenko, and C. Jin (2023). “DoWG Unleashed: An Efficient Universal Parameter-

Free Gradient Descent Method”. In: Proc. of NeurIPS’23, pp. 6748–6769.
Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Tech. rep. University of

Toronto.

Levy, K., A. Kavis, and V. Cevher (2021). “STORM+: Fully Adaptive SGD with Recursive Momentum

for Nonconvex Optimization”. In: Proc. of NeurIPS’21.
Li, L. et al. (2018). “Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization”.

In: JMLR 18.185, pp. 1–52.

Li, Z. and S. Arora (2020). “An Exponential Learning Rate Schedule for Deep Learning”. In: Proc. of
ICLR’20.

Li, Z. and J. Ren (2020). “Fine-tuning ERNIE for chest abnormal imaging signs extraction”. In: J.
Biomed. Informatics 108, p. 103492.

Lindauer, M. et al. (2022). “SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter

Optimization”. In: JMLR 23.54, pp. 1–9.

Liu, Y. et al. (2019). “RoBERTa: A Robustly Optimized BERT Pretraining Approach”. In:

arXiv:1907.11692 [cs.CL].
Loshchilov, I. and F. Hutter (2017). “SGDR: Stochastic Gradient Descent with Warm Restarts”. In:

Proc. of ICLR’17.
Mishchenko, K. andA. Defazio (2024). “Prodigy: An Expeditiously Adaptive Parameter-Free Learner”.

In: Proc. of ICML’24.
Muszynski, M. et al. (2024). “Fine-tuning of Geospatial FoundationModels for Aboveground Biomass

Estimation”. In: arXiv:2406.19888 [cs.AI].
Orabona, F. (2023). Yet Another ICML Award Fiasco. url: https://parameterfree.com/2023/08/

30/yet-another-icml-award-fiasco/.
Orabona, F. and A. Cutkosky (2020). ICML Tutorial on Parameter-Free Online Optimization. url:

https://parameterfree.com/icml-tutorial/.
Orabona, F. and T. Tommasi (2017). “Training Deep Networks without Learning Rates Through

Coin Betting”. In: Proc. of NeurIPS’17, pp. 2160–2170.
Proc. of IJCAI’21 (2021).
Proc. of NeurIPS’17 (2017).

Schmidt, R., F. Schneider, and P. Hennig (2020). “Descending through a Crowded Valley - Bench-

marking Deep Learning Optimizers”. In: arXiv:2007.01547 [cs.LG].
Shala, G. et al. (2020). “Learning Step-Size Adaptation in CMA-ES”. In: Proc. of PPSN’20, pp. 691–706.
Smith, L. and C. Topin (2017). “Super-Convergence: Very Fast Training of Residual Networks Using

Large Learning Rates”. In: arXiv: 1708.07120. url: http://arxiv.org/abs/1708.07120.
Snoek, J., H. Larochelle, and R. Adams (2012). “Practical Bayesian Optimization of Machine Learning

Algorithms”. In: Proc. of NeurIPS’12.

11

http://automl.org/book
https://parameterfree.com/2023/08/30/yet-another-icml-award-fiasco/
https://parameterfree.com/2023/08/30/yet-another-icml-award-fiasco/
https://parameterfree.com/icml-tutorial/
https://arxiv.org/abs/1708.07120
http://arxiv.org/abs/1708.07120


Sohl-Dickstein, J. (2024). “The boundary of neural network trainability is fractal”. In: CoRR
abs/2402.06184.

Vaswani, A. et al. (2017). “Attention is All you Need”. In: Proc. of NeurIPS’17. Curran Associates, Inc.

Wang, Z. et al. (2024). “Pre-trained Gaussian Processes for Bayesian Optimization”. In: JMLR 25,

212:1–212:83.

Wortsman, M. et al. (2022). “Model soups: averaging weights of multiple fine-tuned models improves

accuracy without increasing inference time”. In: Proc. of ICML’22.
Zagoruyko, S. and N. Komodakis (2016). “Wide Residual Networks”. In: Proc. of BMVC 2016, pp. 87.1–

87.12.

Zela, A. et al. (2022). “Surrogate NAS Benchmarks: Going Beyond the Limited Search Spaces of

Tabular NAS Benchmarks”. In: Proc. of ICLR’22.
Zhu, Y. et al. (2015). “Aligning Books and Movies: Towards Story-Like Visual Explanations by

Watching Movies and Reading Books”. In: Proc. of ICCV’15, pp. 19–27.
Zimmer, L., M. Lindauer, and F. Hutter (2021). “Auto-Pytorch: Multi-Fidelity MetaLearning for

Efficient and Robust AutoDL”. In: TPAMI 43 (9), pp. 3079–3090.

12



Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [Yes]

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes]

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes]

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes]

(e) Did you report the statistical significance of your results? [No]

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No]

(g) Did you compare performance over time and describe how you selected the maximum

duration? [Yes]

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes]

(i) Did you run ablation studies to assess the impact of different components of your approach?

[N/A]

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes]

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes]

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes]

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes]

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes]

4. If you used existing assets (e.g., code, data, models). . .

13

https://2022.automl.cc/ethics-accessibility/


(a) Did you cite the creators of used assets? [Yes]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A]

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [N/A]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [N/A]

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

14



A Experimental Details

Table 3: LIBSVM Configuration

Parameter Value

Architecture Logistic Regression

Epochs 100

CPUs 1×AMD Epyc

Device Batch Size 64

LR schedule None

Seeds 10

decay 0

𝛽1, 𝛽2 0.9, 0.999

Table 4: CIFAR-10 Configuration

Parameter Value

Architecture Wide ResNet 16-8

Epochs 300

GPUs 1×H100
Device Batch Size 64

LR schedule None

Seeds 10

decay 0

𝛽1, 𝛽2 0.9, 0.999

Table 5: CIFAR-100 Configuration

Parameter Value

Architecture DenseNet-121

Epochs 300

GPUs 1×H100
Device Batch Size 64

LR schedule None

Seeds 10

decay 0

𝛽1, 𝛽2 0.9, 0.999

Table 6: RoBERTa BookWiki Configuration

Parameter Value

Architecture roberta_base

Task masked_lm

Max updates 23,000

GPUs 4×H100
Max Length 512

Dropout 0.1

Attention Dropout 0.1

Device Batch Size 64

Warmup 10,000

Fp16 True

Gradient Accumulation 1

LR schedule None

Seeds 3

Decay 0.0

Adam LR 0.001

𝛽1, 𝛽2 0.9, 0.98

15



Table 7: DTD Configuration

Parameter Value

Architecture ViT Tiny Patch 16_224

Epochs 300

GPUs 1×H100
Device Batch Size 64

LR schedule None

Seeds 10

decay 0

𝛽1, 𝛽2 0.9, 0.999

All of our experiments are executed on a

slurm cluster. For experiments utilizing a

GPU. A full training run of CIFAR-10 or

CIFAR-100 experiments uses one H100 GPU

and takes about 5 hours. One run on DTD

takes about 3 hours. With regard to num-

ber of methods and seeds as well as tuning

runs (see Tabel 4,5,7), our computer vision

experiments utilized approximately 770 GPU

hours. One run of our RoBERTa experiments

used 4×H100 and takes 6 hours. Therefore,

the natural language processing experiments

including tuning runs used approximately

610 GPU hours. In total, we invested approx-

imately 1380 GPU hours for all experiments.

LIBSVM CIFAR-10 CIFAR-100 DTD RoBERTa

SMAC

n_trials 50

min_budget 20 5 5 5 500

max_budget 100 300 300 300 23 000

𝜂 3

log 𝑓 𝑎𝑙𝑠𝑒

Searchspace

lr [0, 1] [0.1, 1] [0.1, 1] [0.1, 1] [0, 1]

Tuned CAWR

n_trials 50

min_budget 20 3125 3125 145 500

max_budget max batch steps 187 500 187 500 8 700 23 000

𝜂 3

log 𝑓 𝑎𝑙𝑠𝑒

Searchspace

𝜂𝑚𝑖𝑛 [0, 0.005]
base_lr [0, 1] [0, 0.1] [0, 0.1] [0, 0.1] [0, 1]
𝑇0 [0, 50]
𝑇𝑚𝑢𝑙𝑡 [1, 5]

Table 8: This table shows the configuration of SMAC and Hyperband used to tune our multi-fidelity

HPO methods. Notice that the search spaces for the learning rates on LIBSVM and for

RoBERTa are set to a broader spectrum than the computer vision experiments as there are no

immediate typical ranges.

16



Table 9: This table shows the learning rate and CAWR hyperparameters found by SMAC on LIBSVM.

Additionally, we report the mean final adapted learning rate of D-Adaptation and Prodigy.

Method Aloi Dna Iris Letter Pendigits Sensorless Vehicle Vowel Wine

SMAC 0.2708 0.9523 0.9863 0.7047 0.7532 0.7031 0.9394 0.9896 0.9896

D-Adaptation 1.7224 3.8347 5.4031 3.0777 4.5138 2.1328 2.5959 4.8939 0.0000

Prodigy 3.3224 4.1537 7.7059 3.0777 11.0018 10.4012 7.5469 6.9458 9.9160

Tuned CAWR
eta_min 0.0030 0.0030 0.0043 0.0030 0.0030 0.0030 0.0011 0.0011 0.0043

base_lr 0.5987 0.5987 0.2405 0.5987 0.5987 0.5987 0.0180 0.0180 0.2405

T_0 38 38 30 38 38 38 45 45 30

T_mult 2 2 4 2 2 2 5 5 4

DTD CIFAR-10 CIFAR-100 BookWiki

SMAC lr 0.000880923938 0.0193164317787 0.0022199946895 0.0044237631561

D-Adaptation lr 0.000029 0.001541 0.000245 3.453551 × 10
−8

Prodigy lr 0.000407 0.002246 0.001589 2.809611 × 10
−4

Tuned CAWR
eta_min 0.0012426552362 0.0048900232824 0.0049729217242 0.0029495649644

base_lr 0.0048815239592 0.0057869866522 0.0019257718469 0.0142293709729

T0 40 29 39 47

T_mult 1 4 2 2

Table 10: This table shows the learning rate and CAWR hyperparameters found by SMAC on computer

vision and natural language processing experiments. Additionally, we report the mean final

adapted learning rate of D-Adaptation and Prodigy.

17



B Additional Plots

Figure 7: Estimated effective learning rates of DoWG and COCOB on the RoBERTa BookWiki experi-

ments.

(a) Rank heatmap for the LIBSVM experiments

according to final training loss. The average

rank in denoted in parantheses.

(b) Average Difference Heatmap (Training

Loss)

18



C CIFAR-10 Results

(a) Training losses (b) Validation losses (c) Validation accuracies

Figure 9: Resulting Training losses (a), Validation losses (b) and Validation Accuracies (c) for the

hyperparameter-free methods (first row) and non-hyperparameter-free methods (second row)

on CIFAR-10. In the first row, the best hyperparameter-free method is added to the plot.

19


	Introduction
	Prior Work on Learning Rate Control
	The AutoML Approach To Learning Rate Selection & Control
	Learning Rate Schedules
	From Theory: Hyperparameter-free Learning

	Comparing Learning Rate Control Approaches
	Experimental Setup
	LIBSVM Classification Datasets
	Computer Vision Tasks
	Language Model Training

	Conclusion: What Is Best For Learning Rate Control?
	Experimental Details
	Additional Plots
	CIFAR-10 Results

