
FED-CURE: A Robust Federated Learning Algorithm
with Cubic Regularized Newton

Avishek Ghosh 1 Raj Kumar Maity 2 Arya Mazumdar 3

Abstract

In this paper, we analyze the cubic-regularized
Newton method that avoids saddle points in
non-convex optimization in the Federated
Learning (FL) framework and simultaneously
address several practical challenges that naturally
arise in FL, like communication bottleneck and
Byzantine attacks. We propose FEDerated CUbic
REgularized Newton (FED-CURE) and obtain
convergence guarantees under several settings.
Being a second order algorithm, the iteration
complexity of FED-CURE is much lower than its
first order counterparts, and furthermore we can
use compression (or sparsification) techniques like
δ-approximate compression to achieve communi-
cation efficiency and norm-based thresholding for
Byzantine resilience. We validate the performance
of FED-CURE with experiments using standard
datasets and several types of Byzantine attacks,
and obtain an improvement of 25% with respect
to first order methods in total iteration complexity.

1. Introduction
In FL, it is well-known that one of the major challenges is to
tackle the behavior of the Byzantine machines (Lamport et al.,
1982), which behave completely arbitrarily. This can happen
owing to software or hardware crashes, poor communica-
tion link between the local machines and the center machine,
stalled computations, and even coordinated or malicious at-
tacks by a third party (see (Yin et al., 2018; Blanchard et al.,
2017)). Another critical challenge in FL is the communica-
tion cost between the local machines and the center machine.
The gains we obtain by parellelization of the task among sev-
eral local machines often get bottle-necked by the this cost.

1Systems and Control Engg. and the Centre for Machine
Intelligence and Data Sciences (CMInDS) at the Indian Institute
of Technology, Bombay. 2CS Department, University of
Massachusetts, Amherst. 3Halicioglu Data Science Institute,
University of California, San Diego. Correspondence to: Avishek
Ghosh <avishek ghosh@iitb.ac.in>.

Workshop of Federated Learning and Analytics in Practice, colo-
cated with 40 th International Conference on Machine Learning,
Honolulu, Hawaii, USA. Copyright 2023 by the author(s).

In order to fit complex machine learning models, one often re-
quires to find local minima of a non-convex loss f(.), instead
of just critical points which may include several saddle points.
Training deep neural networks and other high-capacity
learning architectures (Soudry & Carmon, 2016; Ge et al.,
2017) are some of the examples where finding local minima
is crucial. (Ge et al., 2017; Kenji, 2016) show that the station-
ary points of these problems are in fact saddle points and far
away from any local minimum, and hence designing efficient
algorithm that escapes saddle points is of interest. Moreover,
(Jain et al., 2017; Sun et al., 2016) argue that saddle points
can lead to highly sub-optimal solutions in many problems
of interest. This is amplified in high dimension as shown in
(Dauphin et al., 2014), and becomes the main bottleneck in
training deep neural nets. Furthermore, a line of recent work
(Sun et al., 2016; Bhojanapalli et al., 2016; Sun et al., 2017),
show that for many non-convex problems, it is sufficient to
find a local minimum. In fact, in many problems of interest,
all local minima are global minima (e.g., dictionary learning
(Sun et al., 2017), phase retrieval (Sun et al., 2016), matrix
sensing and completion (Bhojanapalli et al., 2016; Ge et al.,
2017), and some of neural nets (Kenji, 2016)). Also, in
(Choromanska et al., 2015), it is argued that for more general
neural nets, the local minima are as good as global minima.

The issue of local minima convergence becomes non-trivial
in the presence of Byzantine local machines as they can
create fake local minima that are close to the saddle point
of the loss function f(.), and these are far away from the true
local minima. This is popularly known as the saddle-point
attack (see (Yin et al., 2019)), and it can arbitrarily destroy
the performance of any non-robust learning algorithm.

The problem of saddle point avoidance in the context of
non-convex optimization has received considerable attention
in the past few years. In the seminal paper of (Jin et al., 2017),
a (first order) gradient descent based approach is proposed. A
few papers (Xu et al., 2017; Allen-Zhu & Li, 2017) following
the above use various modifications. A Byzantine robust first
order saddle point avoidance algorithm is proposed in (Yin
et al., 2019), and probably is the closest to this work. Being a
first order algorithm, the convergence rate is quite slow (the
rate for gradient decay is 1/

√
T , where T is the number of

iterations). Moreover, implementation-wise, the algorithm
presented in (Yin et al., 2019) is computation heavy, and
takes potentially many iterations between the center and

1

FED-CURE

Algorithm 1 FED-CURE
1: Input: Step size ηk, parameter 0≤α≤β,γ >0,M >0

and δ-approximate compressorQ.
2: Initialize: Initial iterate x0∈Rd

3: for k=0,1,...,T−1 do
4: Central machine: broadcasts xk

for i∈ [m] do in parallel
5: i-th local machine:

Non-Byzantine: Compute local gradientgi,k and Hes-
sianHi,k; locally solve the problem equation (1). Use
the compressorQ and sendQ(si,k+1) to the center,
Byzantine: Generate ⋆ (arbitrary), and send to center
end for

6: Center Machine:
(i) Sort the local machines in a non decreasing order
according to norm of updates {Q(si,k+1)}mi=1

(ii) Return first 1−β fraction indices, Uk,
(iii) Update: xk+1=xk+ηk

1
|Uk|
∑

i∈Uk
Q(si,k+1)

7: end for

the local machines (as we check in Section 4). Hence, this
algorithm is not efficient in terms of the communication cost.

In this work, we consider a variant of the famous cubic-
regularized Newton algorithm of Nesterov and Polyak
(Nesterov & Polyak, 2006), namely FEDerated CUbic
REgularized newton (FED-CURE), which efficiently
escapes the saddle points of a non-convex function by
appropriately choosing a regularization and thus pushing the
Hessian towards a positive semi-definite matrix. The primary
motivation behind this choice is the faster convergence rate
compared to first order methods, which is crucial in terms
of communication efficiency in applications like FL. Indeed,
the rate of gradient decay is 1

T 2/3 .

FED-CURE simultaneously uses (i) a δ-approximate com-
pressor (defined shortly) to compress the message send from
local machines to center for communication reduction and
(ii) a simple norm-based thresholding on the (compressed)
solution sent by the local machines to defend adversarial
(Byzantine) attacks. Norm based thresholding is also a
standard trick for Byzantine resilience as featured in (Ghosh
et al., 2021; 2020a). However, since the local optimization
problem lacks a closed form solution, using norm-based
trimming is also technical challenging in this case.

1.1. Our Contributions

Technical Novelty We propose FED-CURE that escapes
saddle point efficiently and converges at a rate of 1

T 2/3 ,
which is faster than the first order methods (which converge
at 1/

√
T rate, see (Yin et al., 2019)). Also, the convergence

rate matches to that of the centralized scheme of (Nesterov
& Polyak, 2006) and hence, we do not lose in terms of
convergence rate while making the algorithm distributed.

In FED-CURE, the center machine aggregates the solution
of the local machines. We emphasize that, unlike gradient
aggregation, the aggregation of the solutions of the local
optimization problems is a highly non-linear operation, as
evidenced by even a much simpler second order optimization
algorithm like GIANT ((Wang et al., 2019)). Hence, it is
quite non-trivial to extend the centralized cubic regularized
algorithm to a distributed one. The solution to the cubic regu-
larization even lacks a closed form solution unlike the second
order Hessian based update or the first order gradient based
update. The analysis of FED-CURE is carried out by lever-
aging the first order and second order stationary conditions
of the auxiliary function solved in each local machines.

Along with the saddle point avoidance, we simultaneously
address the issues of (i) communication efficiency and (ii)
Byzantine resilience by using a δ-approximate compressor
and a norm-based thresholding scheme respectively. A
major technical challenge here is to simultaneously address
the above mentioned issues jointly.
Experiments In Section 4 (and in Appendix D), we verify
our theoretical findings via experiments. We first show
that FED-CURE indeed avoids saddle points via a simple
example. Moreover, we use benchmark LIBSVM ((Chang &
Lin, 2011)) datasets for logistic regression and non-convex
robust regression and show convergence results for both
non-Byzantine and several different Byzantine attacks. We
observe that the algorithm of (Yin et al., 2019) requires 25%
more total iterations than ours.

1.2. Problem Formulation
We minimize a loss function of the form: f(x) =
1
m

∑m
i=1 fi(x), where the function f : Rd → R is twice

differentiable and non-convex. We consider a standard FL
framework withm local machines and one center machine
where the local machines can only communicate to the
center machine. Each local machine is associated with a
local loss function fi. We assume that the data distribution
is non-iid across local machines, which is standard in FL. In
addition to this, we also consider the case where α fraction
of the local machines are Byzantine for some α < 1

2 . The
Byzantine machines can send arbitrary updates to the central
machine which can disrupt the learning. Furthermore, the
Byzantine machines can collude with each other, create fake
local minima or attack maliciously by gaining information
about the learning algorithm and other local machines.
Furthermore, as stated in Section 1, we use a generic class
of compressors from (Karimireddy et al., 2019):

Definition 1.1 (δ-Approximate Compressor). An operator
Q(.) :Rd→Rd is defined as δ approximate compressor on
a set S ⊆Rd if, ∀x∈S, ∥Q(x)−x∥2≤ (1−δ)∥x∥2, where
δ∈(0,1] is the compression factor.
2. Algorithm: FED-CURE
In this section, we describe FED-CURE. Starting with initial-
ization x0, the center machine broadcasts the parameter to

2

FED-CURE

the local machines. At k-th iteration, the i-th local machine
solves a cubic-regularized auxiliary loss function based on
its local data:

si,k+1=argmin
s

gT
i,ks+

γ

2
sTHi,ks+

M

6
γ2∥s∥3, (1)

where M > 0, γ > 0 are parameter choose suitably and
gi,k,Hi,k are the gradient and Hessian of the local loss
function fi computed on data (Si) stored in the local
machine given by gi,k=∇fi(xk)= 1

|Si|
∑

zi∈Si
∇fi(xk,zi)

and Hi,k = ∇2fi(xk) =
1

|Si|
∑

zi∈Si
∇2fi(xk, zi). After

solving the problem described in (1), each local machine
applies compression operatorQ as defined in Definition 1.1
on update si,k+1. The application of the compression on the
update is to minimize the communication cost.

Moreover, we also consider that α(< 1
2) fraction of the local

machines are Byzantine in nature. We denote the set of
Byzantine local machines by B and the set of the rest of the
good machines as M. In each iteration, the good machines
send the compressed update of solution of the sub-cubic
problem described in equation (1) and the Byzantine
machines can send any arbitrary values or intentionally
disrupt the learning algorithm with malicious updates.

After receiving all the updates from the local machines, the
central machine outputs a set U which consists of the indices
of the local machines with smallest norm. FED-CURE
chooses the size of the setU to be (1−β)m. Hence, we ‘trim’
β fraction of the local machine so that we can control the
iterated update by not letting the local machines with large
norm participate and diverge the learning process. We denote
the set of trimmed machine as T . We choose β>α so that at
least one of the good machines gets trimmed for theoretical
tractability. The central machine updates the parameter, with
step-size ηk as xk+1=xk+ηk

1
|Ut|
∑

i∈Ut
Q(si,k+1).

Remark 2.1 (Exact solution only for theory). We emphasize
that the exact solution of the sub-problem is only required for
theoretical tractability. In practice, it is not possible to obtain
such solution. For that reason, in experiments (Section 4) we
run the gradient based first order algorithm of (Tripuraneni
et al., 2018) to achieve this. We expand on this in Section 3.1.
Remark 2.2. Note that, we introduce the parameter γ in the
cubic regularized sub-problem, which was absent in the origi-
nal formulation of (Nesterov & Polyak, 2006). γ emphasizes
the effect of the second and third order terms in the sub-
problem, and is important for convergence of FED-CURE.

3. Theoretical Guarantees
Assumption 3.1. f(.) is twice continuously-differentiable
and bounded below, i.e., f∗=infx∈Rdf(x)>−∞.

Assumption 3.2. The loss f(.) is L-Lipschitz continuous
(∀x,y, |f(x)−f(y)| ≤ L∥x− y∥), has L1-Lipschitz gra-
dients (∥∇f(x)−∇f(y)∥≤L1∥x−y∥) and L2-Lipschitz
Hessian (

∥∥∇2f(x)−∇2f(y)
∥∥≤L2∥x−y∥).

The above assumption states that the loss and the gradient
and Hessian of the loss do not drastically change in the
local neighborhood. These assumptions are standard in the
analysis of the saddle point escape for cubic regularization
(see (Tripuraneni et al., 2018; Kohler & Lucchi, 2017;
Nesterov & Polyak, 2006; Carmon & Duchi, 2016)).

We assume the data distribution across local machines to
be non-iid. However, we assume that the local gradient
and Hessian computed at local machines (using local data)
satisfies the following gradient and Hessian dissimilarity
conditions. Note that these conditions are only applicable
for non-Byzantine machines only. Byzantine machines can
generate arbitrary gradients and Hessian.
Definition 3.3 (Bounded Heterogeneity). For ϵg > 0
and ϵH > 0, we have ∥∇f(xk) − gi,k∥ ≤ ϵg and
∥∇2f(xk)−Hi,k∥≤ϵH for all k and i.

We emphasize that bounded gradient and hessian dissim-
ilarity are quite common in FL, and are one major way to
characterize the degree of heterogeneity. For example, see
(Zhao et al., 2018; Sahu et al., 2018; Li et al., 2018; Sattler
et al., 2019; Mohri et al., 2019; Karimireddy et al., 2020;
Fallah et al., 2020) and the references therein. These papers
use this bounded heterogeneity condition to motivate the
need of obtaining a single model for all local machines.
Values of ϵg and ϵH in special cases In (Kohler & Lucchi,
2017; Tripuraneni et al., 2018; Wang et al., 2020), the authors
consider gradient and Hessian with sub-sampled data being
drawn uniformly randomly from the data set leading to
(ϵg,ϵH) diminishing at the rate ∝ 1/

√
|S| where |S| is the

size of the data sample in each local machine.
Remark 3.4 (Two rounds of communication ϵg=0, ϵH =0).
We can make ϵg=0 via one more round of communication
in each iteration. In the first iteration, all the local machines
compute the local gradient, sends back and the center ma-
chine broadcasts the global gradient ∇f(xk)=

1
m

∑m
i=1gi,k.

In this manner, the local machines solve the sub-problem (1)
with the actual gradient. Note that (Wang et al., 2019) does
this exactly to avoid ϵg . Similarly, with more communication
cost, we can make ϵH =0 by allowing local machines to send
local Hessians and the center to aggregate and broadcast the
aggregated Hessian. However, in standard FL, one typically
avoids this additional round of communication and deal with
gradient and Hessian dissimilarities.
Theorem 3.5 (Convergence of FED-CURE). Suppose
0 ≤ α < β ≤ 1

2 and m ≥ 2. Furthermore, we choose the
problem parameters,M =O(m(1−β)(1+

√
1−δ)3), and

ηk =
c

Tmν ;γ =
c

Tmν , for some constant c > 0,ν > 3. Then,
after T iterations of FED-CURE (Algorithm 1), the sequence
{xi}Ti=1 generated contains a point x̃ such that

∥∇f(x̃)∥≤ χ1

T 2/3
+ϵg+χG, λmin

(
∇2f(x̃)

)
≥− χ2

T
1
3

−ϵH−χH ,

where (χ1,..,χH) are T independent and depend onm,δ,β.
The complete expressions can be found at Appendix B.

3

FED-CURE

(a) (b) (c) (d)
Figure 1. (a) Plot of the function value with different initialization to show that the algorithm escapes the saddle point with functional
value 0. (b,c,d) Comparison of our algorithm with ByzantinePGD (Yin et al., 2019) in terms of the total number of iterations.

Corollary 3.6 (Matching (Nesterov & Polyak, 2006)).
Suppose α=0,β=0,δ=1, m=1 (centralized), η= γ=1.
With this, we get ∥∇f(x̃)∥≤O(1

T 2/3) and λmin

(
∇2f(x̃)

)
≥

−O(1
T 1/3), which matches (Nesterov & Polyak, 2006).

Discussion In Theorem 3.5, we have three terms. The first
term implies rate of decay for gradient and the minimum
eigenvalue of the Hessian are O(1/T

2
3) and O(1/T

1
3),

respectively. We point out that both of these rates match
with that of the centralized version of the cubic regularized
Newton as shown in (Nesterov & Polyak, 2006).

The second term depends on ϵg and ϵH . This is owing to
the non-iid nature of data. Note that in the centralized setup
of (Nesterov & Polyak, 2006), this aspect of heterogeneity
was absent. Furthermore, as mentioned above, in the special
cases, both the terms ϵg and ϵH decrease at the rate of1/

√
|S|,

where |S| is the number of data in each of the local machines.

The third term is an error floor that decays with the number
of machines,m, and can be made arbitrarily small. As shown
in Corollary 3.6, this term vanishes whenm=1. This term
originates from several sources. First, the center machine
simply aggregates the solution of the local machines to
obtain the next update. Unlike gradient aggregation, this
yields a different solution from the global one, and hence
one incurs a bias. This is the cost of going from centralized
to a distributed setup. Second, our norm based thresholding
also creates an error floor.

Comparison with (Yin et al., 2019) In a recent work, (Yin
et al., 2019) provides a perturbed gradient based algorithm
to escape the saddle point in non-convex optimization in
the presence of Byzantine local machines. Also, in that
paper, the Byzantine resilience is achieved using techniques
such as trimmed mean, median and collaborative filtering.
These methods require additional assumptions (coordinate
of the gradient being sub-exponential etc.). In this work,
we do not require such assumptions. Also (Yin et al., 2019)
requires several rounds of communications between the
central machine and the local machines whenever the norm
of the gradient is small as this is an indication of either a local
minima or a saddle point. In contrast to that, our method
does not require any additional communication. Our method
provides such ability by virtue of cubic regularization. Our

algorithm achieves a superior rate of O(1/T
2
3) compared

to the gradient based approach of rateO(1/
√
T). Our algo-

rithm dominates ByzantinePGD (Yin et al., 2019) in terms
of convergence, communication rounds and simplicity.

3.1. Solution of the cubic sub-problem
The cubic regularized sub-problem (1) needs to be solved
to update the parameter. As this particular problem does not
have a closed form solution, a solver is usually employed
which yields a satisfactory solution (Cartis et al., 2011a; Agar-
wal et al., 2017; Carmon & Duchi, 2016). For the purpose of
theoretical convergence analysis, similar to previous works
(Wang et al., 2020; Zhou et al., 2018; Wang et al., 2019), we
consider that local machines obtain the exact solution in each
round. However, in experiments (Section 4), we apply the
gradient based solver of (Tripuraneni et al., 2018) to solve
the sub-problem. In Appendix C, we discuss this in detail.

4. Experimental results
First we show that FED-CURE escapes saddle point with
a toy example with (d=2) minw∈R2 [f1(w)+f2(w)] where
f1(w)=w

2
1−w2

2 and f2(w)=2w2
1−2w2

2 (Herewi denotes
the i-th coordinate of w. In Figure 1 (a) we observe that
our algorithm escapes the saddle point (0,0), with random
initialization. Note that, checking whether a point is a
local minima or a saddle point is an NP-hard problem for
non-convex losses (see (Jin et al., 2021), Sec. 2.2). So, for a
simple toy problem, we may brute-force our way through to
show saddle points escape, but this becomes intractable for
real data examples. Also, in Figure 1 (b)-(d), we compare
the total iteration complexity with PGD of (Yin et al., 2019).

More experimental details can be found in Appendix D. Here
we provide a brief overview. We demonstrate the conver-
gence of our algorithm, FED-CUREwith benchmark dataset
LIBSVM ((Chang & Lin, 2011)) with and without compres-
sion for both convex and non-convex losses. We choose four
different Byzantine attacks, and show resilience against them.
We compare our results with ByzantinePGD (Yin et al., 2019),
a standard benchmark for robust saddle point avoidance algo-
rithms. Furthermore, we compare FED-CUREwith standard
Federated Learning algorithms such as FEDGLOMO(Das
et al., 2020) and FedAvg (McMahan et al., 2017).

4

FED-CURE

References
Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E., and Ma,

T. Finding approximate local minima faster than gradient
descent. In 49th Annual ACM SIGACT Symposium on
Theory of Computing, pp. 1195–1199, 2017.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. Qsgd: Communication-efficient sgd via gradient quan-
tization and encoding. In NeurIPS, pp. 1709–1720, 2017.

Alistarh, D., Hoefler, T., Johansson, M., Konstantinov, N.,
Khirirat, S., and Renggli, C. The convergence of sparsified
gradient methods. In NeurIPS, pp. 5973–5983, 2018.

Allen-Zhu, Z. and Li, Y. Neon2: Finding local minima via
first-order oracles. arXiv:1711.06673, 2017.

Avdiukhin, D. and Yaroslavtsev, G. Escaping saddle points
with compressed sgd. In NeurIPS, 2021.

Bernstein, J., Zhao, J., Azizzadenesheli, K., and Anandku-
mar, A. signsgd with majority vote is communication
efficient and byzantine fault tolerant. arXiv:1810.05291,
2018.

Bhojanapalli, S., Neyshabur, B., and Srebro, N. Global opti-
mality of local search for low rank matrix recovery, 2016.

Blanchard, P., Mhamdi, E. M. E., Guerraoui, R., and
Stainer, J. Byzantine-tolerant machine learning.
arXiv:1703.02757, 2017.

Carmon, Y. and Duchi, J. C. Gradient descent efficiently
finds the cubic-regularized non-convex newton step.
arXiv:1612.00547, 2016.

Cartis, C., Gould, N. I., and Toint, P. L. Adaptive cubic
regularisation methods for unconstrained optimization.
part i: motivation, convergence and numerical results.
Mathematical Programming, 127(2):245–295, 2011a.

Cartis, C., Gould, N. I., and Toint, P. L. Adaptive cubic regu-
larisation methods for unconstrained optimization. part ii:
worst-case function-and derivative-evaluation complexity.
Mathematical programming, 130(2):295–319, 2011b.

Chang, C.-C. and Lin, C.-J. Libsvm: A library for support
vector machines. ACM transactions on intelligent systems
and technology (TIST), 2(3):27, 2011.

Chen, Y., Su, L., and Xu, J. Distributed statistical machine
learning in adversarial settings: Byzantine gradient de-
scent. ACM on Measurement and Analysis of Computing
Systems, 1(2):44, 2017.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B.,
and LeCun, Y. The loss surfaces of multilayer networks,
2015.

Das, R., Acharya, A., Hashemi, A., Sanghavi, S., Dhillon,
I. S., and Topcu, U. Faster non-convex federated
learning via global and local momentum. arXiv preprint
arXiv:2012.04061, 2020.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli,
S., and Bengio, Y. Identifying and attacking the saddle
point problem in high-dimensional non-convex optimiza-
tion. In NeurIPS, volume 27, pp. 2933–2941, 2014.

Du, S. S., Jin, C., Lee, J. D., Jordan, M. I., Poczos, B., and
Singh, A. Gradient descent can take exponential time to
escape saddle points. arXiv:1705.10412, 2017.

Fallah, A., Mokhtari, A., and Ozdaglar, A. Personal-
ized federated learning: A meta-learning approach.
arXiv:2002.07948, 2020.

Feng, J., Xu, H., and Mannor, S. Distributed robust learning.
arXiv:1409.5937, 2014.

Gandikota, V., Kane, D., Maity, R. K., and Mazumdar, A.
vqsgd: Vector quantized stochastic gradient descent. In
AISTATS, pp. 2197–2205. PMLR, 2021.

Ge, R., Jin, C., and Zheng, Y. No spurious local minima
in nonconvex low rank problems: A unified geometric
analysis. In 34th ICML, volume 70, pp. 1233–1242.
PMLR, 2017.

Ghosh, A., Maity, R. K., and Mazumdar, A. Distributed new-
ton can communicate less and resist byzantine workers.
In NeurIPS December 6-12, 2020, virtual, 2020a.

Ghosh, A., Maity, R. K., Mazumdar, A., and Ramchandran,
K. Communication efficient distributed approximate
newton method. In ISIT, pp. 2539–2544. IEEE, 2020b.

Ghosh, A., Maity, R. K., Kadhe, S., Mazumdar, A.,
and Ramchandran, K. Communication-efficient and
byzantine-robust distributed learning with error feedback.
IEEE Journal on Selected Areas in Information Theory,
2(3):942–953, 2021.

Jain, P., Jin, C., Kakade, S. M., and Netrapalli, P. Global con-
vergence of non-convex gradient descent for computing
matrix squareroot, 2017.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan,
M. I. How to escape saddle points efficiently. In ICML,
pp. 1724–1732. PMLR, 2017.

Jin, C., Netrapalli, P., Ge, R., Kakade, S. M., and Jordan,
M. I. On nonconvex optimization for machine learning:
Gradients, stochasticity, and saddle points. Journal of the
ACM (JACM), 68(2):1–29, 2021.

5

FED-CURE

Karimireddy, S. P., Rebjock, Q., Stich, S., and Jaggi, M. Error
feedback fixes signsgd and other gradient compression
schemes. In ICML, pp. 3252–3261. PMLR, 2019.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich,
S., and Suresh, A. T. Scaffold: Stochastic controlled
averaging for federated learning. In ICML, pp. 5132–5143.
PMLR, 2020.

Kenji, K. Deep learning without poor local minima. In Lee,
D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett,
R. (eds.), NeurIPS, volume 29, pp. 586–594. Curran
Associates, Inc., 2016.

Kohler, J. M. and Lucchi, A. Sub-sampled cubic regu-
larization for non-convex optimization. In ICML, pp.
1895–1904. PMLR, 2017.

Lamport, L., Shostak, R., and Pease, M. The byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4
(3):382–401, July 1982. ISSN 0164-0925.

Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B. Gra-
dient descent converges to minimizers. arXiv:1602.04915,
2016.

Lee, J. D., Panageas, I., Piliouras, G., Simchowitz, M.,
Jordan, M. I., and Recht, B. First-order methods almost
always avoid saddle points. arXiv:1710.07406, 2017.

Li, L., Xu, W., Chen, T., Giannakis, G. B., and Ling, Q.
Rsa: Byzantine-robust stochastic aggregation methods
for distributed learning from heterogeneous datasets.
arXiv:1811.03761, 2018.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
Arcas, B. A. y. Communication-Efficient Learning
of Deep Networks from Decentralized Data. In 20th
AISTATS, pp. 1273–1282, 2017.

Mohri, M., Sivek, G., and Suresh, A. T. Agnostic federated
learning. In ICML, pp. 4615–4625. PMLR, 2019.

Nesterov, Y. and Polyak, B. T. Cubic regularization of
newton method and its global performance. Mathematical
Programming, 108(1):177–205, 2006.

Sahu, A. K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar, A.,
and Smith, V. On the convergence of federated optimiza-
tion in heterogeneous networks. arXiv:1812.06127, 3,
2018.

Sattler, F., Wiedemann, S., Müller, K.-R., and Samek, W.
Robust and communication-efficient federated learning
from non-iid data. IEEE Transactions on Neural Networks
and Learning Systems, 31(9):3400–3413, 2019.

Soudry, D. and Carmon, Y. No bad local minima: Data
independent training error guarantees for multilayer
neural networks, 2016.

Sun, J., Qu, Q., and Wright, J. A geometric analysis of phase
retrieval. CoRR, abs/1602.06664, 2016.

Sun, J., Qu, Q., and Wright, J. Complete dictionary
recovery over the sphere i: Overview and the geometric
picture. IEEE Transactions on Information Theory, 63
(2):853–884, Feb 2017.

Tripuraneni, N., Stern, M., Jin, C., Regier, J., and Jordan,
M. Stochastic cubic regularization for fast nonconvex
optimization. In NeurIPS, pp. 2899–2908, 2018.

Wang, H., Sievert, S., Liu, S., Charles, Z., Papailiopoulos, D.,
and Wright, S. Atomo: Communication-efficient learning
via atomic sparsification. In NeurIPS, pp. 9850–9861,
2018.

Wang, Z., Zhou, Y., Liang, Y., and Lan, G. Stochastic
variance-reduced cubic regularization for nonconvex
optimization. In The 22nd AISTATS, pp. 2731–2740.
PMLR, 2019.

Wang, Z., Zhou, Y., Liang, Y., and Lan, G. Cubic regu-
larization with momentum for nonconvex optimization.
In Uncertainty in Artificial Intelligence, pp. 313–322.
PMLR, 2020.

Xu, Y., Jin, R., and Yang, T. First-order stochastic algorithms
for escaping from saddle points in almost linear time.
arXiv:1711.01944, 2017.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. Byzantine-
robust distributed learning: Towards optimal statistical
rates. In 35th ICML, 2018.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. Defending
against saddle point attack in byzantine-robust distributed
learning. In ICML, 2019.

Zhang, C. and Li, T. Escape saddle points by a simple
gradient-descent based algorithm. In NeurIPS, 2021.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra, V.
Federated learning with non-iid data. arXiv:1806.00582,
2018.

Zhou, D., Xu, P., and Gu, Q. Stochastic variance-reduced
cubic regularized newton methods. In ICML, pp.
5990–5999. PMLR, 2018.

6

FED-CURE

Supplementary Material

A. Detailed Related Work
Saddle Point avoidance algorithms: In the recent years, there are handful first order algorithms (Lee et al., 2016; 2017; Du
et al., 2017) that focus on the escaping saddle points and convergence to local minima. The critical algorithmic aspect is running
gradient based algorithm and adding perturbation to the iterates when the gradient is small. ByzantinePGD (Yin et al., 2019),
PGD (Jin et al., 2017), Neon+GD(Xu et al., 2017), Neon2+GD (Allen-Zhu & Li, 2017) are examples of such algorithms. The
work of Nesterov and Polyak (Nesterov & Polyak, 2006) first proposes the cubic regularized second order Newton method and
provides analysis for the second order stationary condition. An algorithm called Adaptive Regularization with Cubics (ARC)
was developed by (Cartis et al., 2011a;b) where cubic regularized Newton method with access to inexact Hessian was studied.
Cubic regularization with both the gradient and Hessian being inexact was studied in (Tripuraneni et al., 2018). In (Kohler
& Lucchi, 2017), a cubic regularized Newton with sub-sampled Hessian and gradient was proposed and analyzed. Momentum
based cubic regularized algorithm was studied in (Wang et al., 2020). A variance reduced cubic regularized algorithm was
proposed in (Zhou et al., 2018; Wang et al., 2019). In terms of solving the cubic sub-problem, (Carmon & Duchi, 2016) proposes
a gradient based algorithm and (Agarwal et al., 2017) provides a Hessian-vector product technique. (Zhang & Li, 2021) employs
a a negative curvature finding algorithm based on gradient descent and accelerated gradient descent method to improve the
PGD algorithm (Jin et al., 2017). (Avdiukhin & Yaroslavtsev, 2021) proposes perturbed compressed SGD with error feedback.

Compression: In the recent years, several gradient quantization or sparsification schemes have been studied in (Gandikota
et al., 2021; Alistarh et al., 2018; Wang et al., 2018; Alistarh et al., 2017). In (Karimireddy et al., 2019), the authors introduced
the idea of δ-approximate compressor. In (Ghosh et al., 2020b), the authors use δ-approximate compressor to sparsify the
second order update.

Byzantine resilience: In the distributed learning context, (Feng et al., 2014) proposes one shot median based robust learning.
A median of mean based algorithm was proposed in (Chen et al., 2017) where the worker machines are grouped in batches
and the Byzantine resilience is achieved by computing the median of the grouped machines. Later (Yin et al., 2018) proposes
co-ordinate wise median, trimmed mean and iterative filtering based approaches. Communication-efficient and Byzantine
robust algorithms were developed in (Bernstein et al., 2018; Ghosh et al., 2021). A norm based thresholding approach for
Byzantine resilience for distributed Newton algorithm was also developed (Ghosh et al., 2020a). All these works provide
only first order convergence guarantee (small gradient). The work (Yin et al., 2019) is the only one that provides second
order guarantee (Hessian positive semi-definite) under Byzantine attack.

B. Theorem 3.5 with special cases
We here state the convergence guarantee of FED-CURE formally.

Theorem B.1 (Convergence of FED-CURE). Suppose 0≤ α < β ≤ 1
2 and m≥ 2. Furthermore, we choose the problem

parameters,M=O(m(1−β)(1+
√
1−δ)3), and ηk= c

Tmν ;γ=
c

Tmν , for some constant c>0,ν >3. Then, after T iterations
of FED-CURE (Algorithm 1), the sequence {xi}Ti=1 generated contains a point x̃ such that

∥∇f(x̃)∥≤ χ1

T 2/3
+ϵg+χG, λmin

(
∇2f(x̃)

)
≥− χ2

T
1
3

−ϵH−χH ,

where,

7

FED-CURE

χ1=O(
(1−α)(1+

√
1−δ)2

2(1−β)
+m(1−β)(1+

√
1−δ)3)

χ2=O(
(1+

√
1−δ)(1−α)

(1−β)
+m(1−β)(1+

√
1−δ)3)

χG=O
([

(1−α)(1+
√
1−δ)2

(1−β)
+m(1−β)(1+

√
1−δ)3

]
(
1

m
)(

2ν
3

)

+
α(1+

√
1−δ)2

(1−β)m2ν
+

α

(1−β)mν
(1+

√
1−δ)

)
χH =O

([
m(1−β)(1+

√
1−δ)3+

(1+
√
1−δ)(1−α)

(1−β)

]
(
1

m
)
ν
3

+
(1+

√
1−δ)α

(1−β)mν

)

Here, we state two corollaries. First, we relax the compression by choosing δ=1 and then the Byzantine resilience.

Corollary B.2 (No compression). Suppose 0≤α≤ β ≤ 1
2 , and we choose M =O(m(1−β)), η= γ = c/mνT for some

c > 0,ν > 3. Then, after T iterations of FED-CURE for uncompressed update (δ = 1), the sequence {xi}Ti=1 generated
contains a point x̃ such that

∥∇f(x̃)∥≤ χ1

T 2/3
+ϵg+χG,λmin

(
∇2f(x̃)

)
≥− χ2

T
1
3

−ϵH−χH ,

where,

χ1=O([
(1−α)
(1−β)

+m(1−β)]), χ2=O([
(1−α)
(1−β)

+m(1−β)])

χG=O(

[
(1−α)
(1−β)

+m(1−β)
]
(
1

m
)(

2ν
3)+

α

(1−β)m2ν
+

α

(1−β)mν
)

χH =O(

(
m(1−β)+ (1−α)

(1−β)

)
(
1

m
)ν/3+

α

(1−β)mν
).

Note that we still obtain similar three terms, but the expressions of χ1, χ2.χG, χH have reduced, which improves the
convergence guarantees. The observations we made in Theorem 3.5 continues to hold here.

Next, we choose the non-Byzantine setup with α=β=0 in addition to the uncompressed update. This is just the distributed
variant of the cubic regularized Newton method of (Nesterov & Polyak, 2006).

Corollary B.3 (Non Byzantine and no compression). Suppose we chooseM=O(m), η=γ=c/Tmν for some c>0,ν >3.
Then, after T iterations of FED-CURE for uncompressed update (δ=1), the sequence {xi}Ti=1 generated contains a point
x̃ such that

∥∇f(x̃)∥≤ χ1

T 2/3
+ϵg+χG,λmin

(
∇2f(x̃)

)
≥− χ2

T
1
3

−ϵH−χH ,

where, χ1=χ2=O(m) and χG=O(1

m
2ν
3

−1
),χH =O(1

m
ν
3
−1).

Note that the term χ1,χ2,χG and χH have further reduced, thus improving the performance. As ν>3, the parameter χG,χH

are decreasing with the number of worker machines. Note that even in the simple distributed variant, the extra error terms
(second and third terms) are present. As explained earlier, these are owing to the non-iid nature of data distribution and the
simple (biased) aggregation of local solutions at the center respectively.

C. Solution of the cubic sub-problem
The cubic regularized sub-problem (1) needs to be solved to update the parameter. As this particular problem does not have
a closed form solution, a solver is usually employed which yields a satisfactory solution. In previous works, different types
of solvers have been used. (Cartis et al., 2011a;b) solve the sub-problem using Lanczos based method in Krylov subspace.

8

FED-CURE

(a) (b) (c) (d)

Figure 2. Comparison of the FED-CUREwith (a) FedGLOMO and FedAvg (b) for Gaussian attack. (c) Comparison of FED-CUREwith
robust PGD. (d) Plot of the gradient norm for ’a9a‘ data-set with Gaussian attack for robust linear regression.

In (Agarwal et al., 2017), the authors propose a solver based on Hessian-vector product and binary search. Gradient descent
based solver is proposed in (Carmon & Duchi, 2016; Tripuraneni et al., 2018).

Previous works, (Wang et al., 2020; Zhou et al., 2018; Wang et al., 2019), consider the exact solution of the cubic sub-problem
for theoretical analysis. Recently, inexact solutions to the sub-problem is also proposed in the centralized (non-distributed)
framework. For instance, (Kohler & Lucchi, 2017) analyzes the cubic model with sub-sampled Hessian with approximate
model minimization technique developed in (Cartis et al., 2011a). Moreover, (Tripuraneni et al., 2018) shows improved
analysis with gradient based minimization which is a variant studied in (Carmon & Duchi, 2016). Both exact and inexact
solutions to the sub-problem yields similar theoretical guarantees.

In our framework, each local machine is tasked with solving the sub-problem. For the purpose of theoretical convergence
analysis, we consider that local machines obtain the exact solution in each round. However, in experiments (Section 4),
we apply the gradient based solver of (Tripuraneni et al., 2018) to solve the sub-problem. Here, we let each local machines
run the gradient based solver for 10 iterations and send the update to the center machine in each iteration.

D. Detailed Experimental results
We now validate on benchmark LIBSVM ((Chang & Lin, 2011)) data-set in both convex and non-convex problems. We
choose the following loss functions:

• Logistic loss:minw∈Rd
1
n

∑
ilog

(
1+exp(−yixT

i w)
)
+ λ

2n∥w∥2,

• Non-convex robust linear regression: minw∈Rd
1
n

∑
ilog(

(yi−wTxi)
2

2 +1),

where w∈Rd is the parameter, {xi}ni=1∈Rd are the feature vectors and {yi}ni=1∈{0,1} are the corresponding labels. We
choose ‘a9a’(d=123,n≈ 32K, and split the data into 70/30 and use as training/testing purpose) and ‘w8a’(training data
d=300,n≈50K and testing data d=300,n≈15K) classification datasets and partition the data in 20 machines.

We demonstrate FED-CURE in the presence of Byzantine machines and compressed update. For com-
pression, each worker applies compression operator of QSGD (Alistarh et al., 2017). For a given vector
x ∈ Rd, [Q(x)]i = ∥x∥2sign(xi) × Ber(|xi|/∥x∥2) for all i ∈ [d]. We consider the following four Byzantine at-
tacks: 1. ‘Gaussian Noise attack’: where the Byzantine worker machines add Gaussian noise to the update. 2. ‘Random
label attack’: where the Byzantine worker machines train and learn based on random labels instead of the proper labels. 3.
‘Flipped label attack’: where (for Binary classification) the Byzantine worker machines flip the labels of the data and learn
based on wrong labels. 4. ‘Negative update attack’: where the Byzantine workers computes the update s (here solves the
sub-problem in Eq. (1)) and communicates −c∗s with c∈(0,1) making the direction of the update opposite of the actual one.

Comparison with ByzantinePGD We compare our uncompressed version of FED-CURE (δ=1) with ByzantinePGD
of (Yin et al., 2019) here. We take the total number of iterations as a comparison metric. One outer iteration of Algorithm 1
corresponds to one round of communication between the center and the worker machines (and hence one parameter update).
Note that in our algorithm the worker machines use 10 steps of gradient solver (see (Tripuraneni et al., 2018)) for the local sub

9

FED-CURE

problem per iteration. So, the total number of iterations is given by 10 times the number of outer iterations. For both the algo-
rithms, we choose ℓ2 norm of the gradient as a stopping criteria. For ByzantinePGD, we chooseR=10,r=5,Q=10,Tth=10
and ‘co-ordinate wise Trimmed mean. In the Figure 1 (b-d), we plot the total number of iterations in all four types of attacks
with different fraction of Byzantine machines. It is evident from the plot that our method requires less number of over all
iterations (at least 48.4%, 29% and 25% less for 10%, 15% and 20% of Byzantine machines respectively).

Although FED-CURE uses Hessian (second order) information, the sub-problem actually uses gradient based first order
algorithm, and hence we compare the total iteration complexity mentioned above. To the best of our knowledge, there is no
saddle point avoidance second order algorithm in FL framework, and so we adhere to the comparison with first order methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Non convex robust linear regression with ‘a9a’ (a,b,c,d) and ‘w8a’ (e,f,g,h) with 10%,15%,20% Byzantine worker machines
for (a,e). Flipped label attack.(b,f). Negative Update attack. (c,g) Gaussian attack. (d,h) Random attack.

Comparison with standard FL algorithms We have implemented and compared the performance of standard FL algorithm
like FedGLOMO (Das et al., 2020) (Federated Learning via Global and Local Momentum) and FedAvg (McMahan et al.,
2017) with FED-CURE. The results are shown in Figure 2(a,b). Our method outperforms these standard baselines since they
can tolerate Byzantine attacks (Gaussian attack in the experiment).

Training loss for compressed update In Figure 3, we plot the function value of the robust linear regression problem for
’flipped labels‘, ’negative update‘, ’Gaussian‘ and ’Random label‘ attacks with compressed update for both ‘w8a’ and ‘a9a’
datasets. We choose the parameters λ=1,M =10, learning rate ηk =1, α= {.1,.15,.2} and β=α+ 2

m , where number of
worker machinesm=20. In Figure 2(d), we plot the gradient norm (∥g∥) for Gaussian attack with 10%,15% and 20% of
machines being Byzantine.

Classification accuracy We show the classification accuracy on testing data of ‘a9a’ and ‘w8a’ dataset for logistic
regression problem in Figure 4 and training function loss of ‘a9a’ and ‘w8a’ dataset for robust linear regression problem
in the Figure 4. It is evident from the plots that a simple norm based thresholding makes the learning algorithm robust.

Training loss for uncompressed update In Figure 5, we plot the function value of the robust linear regression with the
similar attacks for the uncompressed update (δ=1) for both ‘w8a’ and ‘a9a’ dataset.

10

FED-CURE

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Classification accuracy of the testing data ‘a9a’ dataset (first row) and ‘w8a’ dataset (second row) with 10%,15%,20% Byzantine
worker machines for (a,e). Flipped label.(b,f). Negative Update (c,g). Gaussian noise and (d,h). Random label attack for logistic regression
problem.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Function training loss for the training data ‘a9a’ (first row) and ‘w8a’ (second row) with 10%,15%,20% Byzantine worker
machines. for (a,e). Gaussian attack.(b,f).Random attack (c,g) Flipped Attack and (d,h) Negative update attack for non-convex robust
linear regression problem.

11

FED-CURE

E. Proofs of main results
In this part, we establish some useful facts and lemmas. Next, we provide analysis of Theorems 3.5.

E.1. Some useful facts

For the purpose of analysis we use the following sets of inequalities.
Fact 1. For a1,...,an we have the following inequality

∥

(
n∑

i=1

ai

)
∥3≤

(
n∑

i=1

∥ai∥

)3

≤n2
n∑

i=1

∥ai∥3 (2)

∥

(
n∑

i=1

ai

)
∥2≤

(
n∑

i=1

∥ai∥

)2

≤n
n∑

i=1

∥ai∥2 (3)

Fact 2. For a1,...,an>0 and r<s (
1

n

n∑
i=1

ari

)1/r

≤

(
1

n

n∑
i=1

asi

)1/s

(4)

Lemma E.1 ((Nesterov & Polyak, 2006)). Under Assumption 3.2, i.e., the Hessian of the function isL2-Lipschitz continuous,
for any x,y∈Rd, we have

∥∇f(x)−∇f(y)−∇2f(x)(y−x)∥≤ L2

2
∥y−x∥2 (5)∣∣∣∣f(y)−f(x)−∇f(x)T (y−x)− 1

2
(y−x)T∇2f(x)(y−x)

∣∣∣∣≤ L2

6
∥y−x∥2 (6)

Next, we establish the following Lemma that provides some nice properties of the cubic sub-problem.
Lemma E.2. LetM>0,γ>0,g∈Rd,H∈Rd×d, and

s=argmin
x

gTx+
γ

2
xTHx+

Mγ2

6
∥x∥3. (7)

The following holds

g+γHs+
Mγ2

2
∥s∥s=0, (8)

H+
Mγ

2
∥s∥I⪰0, (9)

gT s+
γ

2
sTHs≤−M

4
γ2∥s∥3. (10)

Proof. The equations (8) and (9) are from the first and second order optimal condition. We proof (10), by using the
conditions of (8) and (9).

gT s+
γ

2
γsTHs=−

(
γHs+

M

2
γ2∥s∥s

)T

s+
γ

2
γsTHs (11)

=−γsTHs−M

2
γ2∥s∥3+ γ

2
γsTHs

≤M

4
γ2∥s∥3−M

2
γ2∥s∥3 (12)

=−M
4
γ2∥s∥3.

In (11), we substitute the expression g from the equation (8). In (12), we use the fact that sTHs+ Mγ
2 ∥s∥3> 0 from the

equation (9).

12

FED-CURE

E.2. Proof of Theorem 3.5

First we state the results of Lemma E.2 for each worker machine in iteration k,

gi,k+γHi,ksi,k+1+
M

2
γ2∥si,k+1∥si,k+1=0 (13)

γHi,k+
M

2
γ2∥si,k+1∥I⪰0 (14)

gT
i,ksi,k+1+

γ

2
sTi,k+1Hi,ksi,k+1≤−M

4
γ2∥si,k+1∥3 (15)

We also use the following fact form the setup and trimming set

|U|= |U∩M|+|U∩B| (16)
|M|= |U∩M|+|T ∩M| (17)

Combining both the equations (16) and (17), we have

|U|= |M|−|T ∩M|+|U∩B| (18)

Now we state the following fact from the trimming set. as mentioned in the Algorithm 1, the norm of the update from any
worker machines from the set U is less than the norm of the update from any worker machines in the set T . Now as β>α,
at least one good machine (the largest norm) is in the set T . So, we can claim the following,

For all i∈U∩B, ∥si∥≤max
i∈M

∥si∥

Summing over all the Byzantine machines in the untrimmed set which is U∩B, we get

∑
i∈U∩B

∥.∥≤αmmax
i∈M

∥.∥

as |U∩B|≤αm. Also, ∑
i∈M∩T

∥.∥≤
∑
i∈M

∥.∥

Combining the above two equations, we get∑
i∈U∩B

∥.∥+
∑

i∈M∩T
∥.∥≤

∑
i∈M

∥.∥+αmmax
i∈M

∥.∥ (19)

For the rest of the calculation, we use the following notation

Γ= max
i∈M,k

∥si,k∥. (20)

If the optimization sub-problem domain is bounded, Γ can be upper-bounded by the diameter of the parameter space. Note
that in the definition of Γ, the maximum is taken over good machines only.

Characterization of Γ : For any good worker machine i∈M, we have the following

si,k+1=argmin
s

gT
i,ks+

γ

2
sTHi,ks+γ

2M

6
∥s∥3

for someM>0 and γ= c
T . Next, we consider ui,k+1=γsi,k+1 and we get the following expression

ui,k+1=argmin
u

gT
i,ku+

1

2
uTHi,ku+

M

6
∥u∥3

13

FED-CURE

Following the similar results of the E.2, we have the following result from the second order condition,

gT
i,kui,k+1+

1

2
uT
i,k+1Hi,kui,k+1≤−M

4
∥ui,k+1∥3.

Therefore,

M

4
∥ui,k+1∥3

≤∥gi,k∥ui,k+1∥+
1

2
∥Hi,k∥∥ui,k+1∥2

=∥gi,k−∇f(si,k+1)+∇f(si,k+1)∥ui,k+1∥+
1

2
∥Hi,k−∇2f(si,k+1)+∇2f(si,k+1)∥∥ui,k+1∥2

≤(∥gi,k−∇f(si,k+1)∥+∥∇f(si,k+1)∥ui,k+1∥+
1

2
(∥Hi,k−∇2f(si,k+1)∥+∥∇2f(si,k+1)∥)∥ui,k+1∥2

≤(ϵg+L)∥ui,k+1∥+(ϵH+L1)∥ui,k+1∥2

In the above expression, we have ϵg, ϵH are gradient and Hessian dissimilarity respectively and ∥∇f(si,k+1∥ ≤
L,∥∇2f(si,k+1∥ ≤ L1 which are constants. This shows that ∥ui,k+1∥ to be bounded and hence maxi∈M∥ui,k+1∥ to be
bounded. For γ= c

T , we have

∥si,k+1∥=∥ui,k+1/γ∥=O(T)

⇒Γ=O(T) (21)

From the definition of the δ-approximate compressor in Definition 1.1, we use the following simple fact

∥Q(x)∥≤(1+
√
1−δ)∥x∥ (22)

At any iteration k, we have (with Taylor’s expansion)

f(xk+1)−f(xk)

≤∇f(xk)
T (xk+1−xk)+

1

2
(xk+1−xk)

T∇2f(xk)(xk+1−xk)+
L2

6
∥xk+1−xk∥3

=
ηk
|U|

∇f(xk)
T
∑
i∈U

Q(si,k+1)︸ ︷︷ ︸
Term1

+
η2k

2|U|2

(∑
i∈U

Q(si,k+1)

)T

∇2f(xk)

(∑
i∈U

Q(si,k+1)

)
︸ ︷︷ ︸

Term2

+
L2

6

∥∥∥∥∥ ηk|U|∑
i∈U

Q(si,k+1)

∥∥∥∥∥
3

︸ ︷︷ ︸
Term3

(23)

In 23, we use the update of the parameter in the center machine xk+1 − xk = ηk

|U|
∑

i∈UQ(si,k+1), as expressed in the
Algorithm 1.

14

FED-CURE

First we choose the Term 1 in (23) and expand it using (18)
ηk
|U|

∇f(xk)
T
∑
i∈U

Q(si,k+1)

=
ηk

(1−β)m
∇f(xk)

T

[∑
i∈M

Q(si,k+1)−
∑

i∈M∩T
Q(si,k+1)+

∑
i∈U∩B

Q(si,k+1)

]
=

ηk
(1−β)m

∑
i∈M

[
gT
i,ksi,k+1+∇f(xk)

TQ(si,k+1)−gT
i,ksi,k+1

]
︸ ︷︷ ︸

Term1.1

+
ηk

(1−β)m
∇f(xk)

T

[
−
∑

i∈M∩T
Q(si,k+1)+

∑
i∈U∩B

Q(si,k+1)

]
︸ ︷︷ ︸

Term1.2

(24)

First we consider Term 1.1 in (24) (notice that the sum is over only good machines),
ηk

(1−β)m
∑
i∈M

[
gT
i,ksi,k+1+∇f(xk)

TQ(si,k+1)−gT
i,ksi,k+1

]
=

ηk
(1−β)m

∑
i∈M

gT
i,ksi,k+1+

ηk
(1−β)m

∑
i∈M

[
∇f(xk)

TQ(si,k+1)−∇f(xk)
T si,k+1+∇f(xk)

T si,k+1−gT
i,ksi,k+1

]
=

ηk
(1−β)m

∑
i∈M

gT
i,ksi,k+1+

ηk
(1−β)m

∑
i∈M

[
∇f(xk)

T (Q(si,k+1)−si,k+1)+(∇f(xk)−gi,k)
T si,k+1

]
≤ ηk
(1−β)m

∑
i∈M

gT
i,ksi,k+1+

ηk
(1−β)m

∑
i∈M

[∥∇f(xk)∥∥Q(si,k+1)−si,k+1∥+∥∇f(xk)−gi,k∥∥si,k+1∥]

≤ ηk
(1−β)m

∑
i∈M

gT
i,ksi,k+1+

ηk
(1−β)m

∑
i∈M

[
L
√
1−δ∥si,k+1∥+ϵg∥si,k+1∥

]
(25)

≤ ηk
(1−β)m

∑
i∈M

gT
i,ksi,k+1+

ηk(1−α)
(1−β)

(L
√
1−δ+ϵg)Γ (26)

In (25), we use the following facts: 1. ∥∇f(xk)∥ ≤ L as the function f is L- Lipschitz. 2. ∥Q(si,k+1)− si,k+1∥ ≤√
1−δ∥si,k+1∥ by definition of the δ-compressor. 3. ∥∇f(xk)−gi,k∥≤ϵg (gradient dissimilarity). In (26), we use the bound

stated in (20).

Next we consider Term1.2 in (24),

ηk
(1−β)m

∇f(xk)
T

[
−
∑

i∈M∩T
Q(si,k+1)+

∑
i∈U∩B

Q(si,k+1)

]

≤ ηk
(1−β)m

[∑
i∈M∩T

∥∇f(xk)∥∥Q(si,k+1)∥+
∑

i∈U∩B
∥∇f(xk)∥∥Q(si,k+1)∥

]

≤ ηkL

(1−β)m

[∑
i∈M∩T

∥Q(si,k+1)∥+
∑

i∈U∩B
∥Q(si,k+1)∥

]
(27)

≤ ηkL

(1−β)m

[∑
i∈T

max
i∈M

∥Q(si,k+1)∥+
∑
i∈B

max
i∈M

∥Q(si,k+1)∥

]
(28)

≤ ηkL

(1−β)m

[
βmmax

i∈M
∥Q(si,k+1)∥+αmmax

i∈M
∥Q(si,k+1)∥

]
(29)

≤ηk(α+β)L
(1−β)

(1+
√
1−δ)

[
max
i∈M

∥si,k+1∥)
]

(30)

≤ηk(α+β)L
(1−β)

(1+
√
1−δ)Γ (31)

15

FED-CURE

We use the fact ∥∇f(xk)∥≤L in (27), ,the fact stated in (19), in (28). We use the definition of δ-compressor in (30) and
the bound of update as described in (20) in (31).

We apply the bound derived for Term1.1 in (26) and for Term1.2 in (31) in the bound for Term1 in (24) and derive the following,

Term1

≤ ηk
(1−β)m

∑
i∈M

gT
i,ksi,k+1+

ηk
(1−β)

(L
√
1−δ+ϵg)Γ+

ηkαL

(1−β)
(1+

√
1−δ)Γ

=
ηk

(1−β)m
∑
i∈M

[
gT
i,ksi,k+1+

γ

2
sTi,k+1Hi,ksi,k+1

]
− ηk
(1−β)m

∑
i∈M

γ

2
sTi,k+1Hi,ksi,k+1

+
ηk

(1−β)
(L

√
1−δ+ϵg)Γ+

ηkαL

(1−β)
(1+

√
1−δ)Γ

≤− γ2Mηk
4(1−β)m

∑
i∈M

∥si,k+1∥3−
ηk

(1−β)m
∑
i∈M

γ

2
sTi,k+1Hi,ksi,k+1

+
ηk(1−α)
(1−β)

(L
√
1−δ+ϵg)Γ+

ηk(α+β)L

(1−β)
(1+

√
1−δ)Γ (32)

In line (32), we use the bound stated in (15).

Now we consider the Term 3 in equation (23),

L2

6

∥∥∥∥∥ ηk|U|∑
i∈U

Q(si,k+1)

∥∥∥∥∥
3

≤L2η
3
k

6|U|
∑
i∈U

∥Q(si,k+1)∥3 (33)

≤L2η
3
k

6|U|

[∑
i∈M

∥Q(si,k+1)∥3−
∑

i∈M∩T
∥Q(si,k+1)∥3+

∑
i∈U∩B

∥Q(si,k+1)∥3
]

(34)

≤L2η
3
k

6|U|

[∑
i∈M

∥Q(si,k+1)∥3+
∑

i∈U∩B
∥Q(si,k+1)∥3

]
(35)

≤ L2η
3
k

6(1−β)m

[∑
i∈M

∥Q(si,k+1)∥3+αmmax
i∈M

∥Q(si,k+1)∥3
]

(36)

≤ L2η
3
k

6(1−β)m

[∑
i∈M

(1+
√
1−δ)3∥si,k+1∥3+αmmax

i∈M
(1+

√
1−δ)3∥si,k+1∥3

]
(37)

≤ L2η
3
k

6(1−β)m
(1+

√
1−δ)3

[∑
i∈M

∥si,k+1∥3+αmΓ3

]
(38)

In (33), we use the fact stated in (2). Next in (34), we expand the trimmed set U using (18) and in (36), we use the bound
of (19). Finally, in (37), we use the definition of the δ-compressor and the bound stated in (20) in (38).

16

FED-CURE

Now we consider the Term 2 in (23)

η2k
2|U|2

(∑
i∈U

Q(si,k+1)

)T

∇2f(xk)

(∑
i∈U

Q(si,k+1)

)

=
η2k

2(1−β)2m2

∑
i∈U

Q(si,k+1)
T∇2f(xk)Q(si,k+1)︸ ︷︷ ︸
Term2.1

+
η2k

2(1−β)2m2

∑
i̸=j∈U

Q(si,k+1)
T∇2f(xk)Q(sj,k+1)︸ ︷︷ ︸

Term2.2

(39)

Now we consider Term2.1 in (39) and expand it using (18)

∑
i∈U

Q(si,k+1)
T∇2f(xk)Q(si,k+1)

=
∑
i∈M

Q(si,k+1)
T∇2f(xk)Q(si,k+1)︸ ︷︷ ︸

Term2.1.1

−
∑

i∈M∩T
Q(si,k+1)

T∇2f(xk)Q(si,k+1)+
∑

i∈B∩U
Q(si,k+1)

T∇2f(xk)Q(si,k+1)︸ ︷︷ ︸
Term2.1.2

We consider Term2.1.1

∑
i∈M

Q(si,k+1)
T∇2f(xk)Q(si,k+1)

=
∑
i∈M

sTi,k+1Hi,ksi,k+1−
∑
i∈M

sTi,k+1Hi,ksi,k+1+
∑
i∈M

Q(si,k+1)
T∇2f(xk)Q(si,k+1)

=
∑
i∈M

sTi,k+1Hi,ksi,k+1−
∑
i∈M

sTi,k+1(Hi,k−∇2f(xk)si,k+1−
∑
i∈M

sTi,k+1∇2f(xk)si,k+1+

+
∑
i∈M

Q(si,k+1)
T∇2f(xk)Q(si,k+1)−

∑
i∈M

sTi,k+1∇2f(xk)Q(si,k+1)+
∑
i∈M

Q(si,k+1)
T∇2f(xk)si,k+1

=
∑
i∈M

sTi,k+1Hi,ksi,k+1−
∑
i∈M

sTi,k+1(Hi,k−∇2f(xk)si,k+1−
∑
i∈M

(Q(si,k+1)−si,k+1)
T∇2f(xk)si,k+1+

+
∑
i∈M

Q(si,k+1)
T∇2f(xk)(Q(si,k+1)−si,k+1)

≤
∑
i∈M

sTi,k+1Hi,ksi,k+1+
∑
i∈M

∥(∇2f(xk)−Hi,k)∥∥si,k+1∥2+2
∑
i∈M

∥∇2f(xk)∥∥si,k+1∥∥Q(si,k+1)−si,k+1∥

≤
∑
i∈M

sTi,k+1Hi,ksi,k+1+
∑
i∈M

ϵH∥si,k+1∥2+2
∑
i∈M

L1

√
1−δ∥si,k+1∥2 (40)

≤
∑
i∈M

sTi,k+1Hi,ksi,k+1+
∑
i∈M

(ϵH+2L1

√
1−δ)∥si,k+1∥2 (41)

≤
∑
i∈M

sTi,k+1Hi,ksi,k+1+(1−α)m(ϵH+2L1

√
1−δ)Γ2 (42)

In 40, we use the Hessian dissimilarity bound of ∥(∇2f(xk)−Hi,k)∥≤ ϵH and the Hessian bound of ∥(∇2f(xk)∥≤L1.
And in 41, we apply the definition of the δ-compressor.

17

FED-CURE

Next, we consider the Term2.1.2,

∑
i∈M∩T

Q(si,k+1)
T∇2f(xk)Q(si,k+1)+

∑
i∈B∩U

Q(si,k+1)
T∇2f(xk)Q(si,k+1)

≤
∑

i∈M∩T
L1∥Q(si,k+1)∥2+

∑
i∈B∩U

L1∥Q(si,k+1)∥2 (43)

≤
∑
i∈B

max
i∈T

L1(1+
√
1−δ)2∥si,k+1∥2+

∑
i∈B

max
i∈M

L1(1+
√
1−δ)2∥si,k+1∥2 (44)

≤βmL1(1+
√
1−δ)2Γ2+αmL1(1+

√
1−δ)2Γ2

=(α+β)mL1(1+
√
1−δ)2Γ2 (45)

Combining (42) and (45), we bound the Term2.1,

Term2.1

≤
∑
i∈M

sTi,k+1Hi,ksi,k+1+(1−α)m(ϵH+2L1

√
1−δ)Γ2+(α+β)mL1(1+

√
1−δ)2Γ2 (46)

Now we consider the Term 2.2 in equation (39)

∑
i̸=j∈U

Q(si,k+1)
T∇2f(xk)Q(sj,k+1)

≤
∑

i̸=j∈U

L1(1+
√
1−δ)2∥si,k+1∥∥sj,k+1∥ (47)

=L1(1+
√
1−δ)2

[
∥
∑
i∈U

si,k+1∥2−
∑
i∈U

∥si,k+1∥2
]

≤L1(1+
√
1−δ)2

[
|U|
∑
i∈U

∥si,k+1∥2−
∑
i∈U

∥si,k+1∥2
]

=L1(1+
√
1−δ)2((1−β)m−1)

[∑
i∈M

∥si,k+1∥2−
∑

i∈M∩T
∥si,k+1∥2+

∑
i∈B∩U

∥si,k+1∥2
]

(48)

≤L1(1+
√
1−δ)2((1−β)m−1)

[∑
i∈U

∥si,k+1∥2
]

(49)

=L1(1+
√
1−δ)2((1−β)m−1)(1−β)mΓ2 (50)

In (47), we apply the definition of δ compressor. We use the expansion described in (18) in (48).

Now combining the results in (50) and (39) we get,

Term2

≤ η2k
2(1−β)2m2

[∑
i∈M

sTi,k+1Hi,ksi,k+1+(1−α)m(ϵH+2L1

√
1−δ)Γ2+(α+β)mL1(1+

√
1−δ)2Γ2

]

+
η2k

2(1−β)2m2
L1(1+

√
1−δ)2((1−β)m−1)(1−β)mΓ2

18

FED-CURE

Now we combine all the upper bound of the Term 1, Term 2 and Term 3

f(xk+1)−f(xk)

≤− γ2Mηk
4(1−β)m

∑
i∈M

∥si,k+1∥3−
ηk

(1−β)m
∑
i∈M

γ

2
sTi,k+1Hi,ksi,k+1

+
ηk(1−α)
(1−β)

(L
√
1−δ+ϵg)Γ+

ηk(α+β)L

(1−β)
(1+

√
1−δ)Γ

+
η2k

2(1−β)2m

[
(1−α)(ϵH+L1+L1(1+

√
1−δ)2)+(α+β)L1(1+

√
1−δ)2

]
Γ2

+
η2k
2
L1(1+

√
1−δ)2Γ2+

L2η
3
k

6(1−β)m
(1+

√
1−δ)3

[∑
i∈M

∥si,k+1∥3+αmΓ3

]

=

(
− γ2Mηk
4(1−β)m

+
L2η

3
k

6(1−β)m
(1+

√
1−δ)3

)∑
i∈M

∥si,k+1∥3−
ηk

2(1−β)m

(
γ− ηk

(1−β)m

)
sTi,k+1Hi,ksi,k+1

+

(
ηk(1−α)
(1−β)

(L
√
1−δ+ϵg)+

ηk(α+β)L

(1−β)
(1+

√
1−δ)

)
Γ+

L2η
3
k

6(1−β)
(1+

√
1−δ)3αΓ3

+
η2k

2(1−β)2m

(
(1−α)(ϵH+2L1

√
1−δ)+(α+β)L1(1+

√
1−δ)2)+L1(1+

√
1−δ)2((1−β)m−1)(1−β)m

)
Γ2

Also we assume that γ≥ ηk

(1−β)m and use the fact −si,k+1Hi,ksi,k+1≤ Mγ
2 ∥si,k+1∥3. We also choose that

λΓ=

(
ηk(1−α)
(1−β)

(L
√
1−δ+ϵg)+

ηk(α+β)L

(1−β)
(1+

√
1−δ)

)
Γ+

L2η
3
k

6(1−β)
(1+

√
1−δ)3αΓ3

+
η2k

2(1−β)2m

(
(1−α)(ϵH+2L1

√
1−δ)+(α+β)L1(1+

√
1−δ)2)+L1(1+

√
1−δ)2((1−β)m−1)(1−β)m

)
Γ2

(51)

Using the fact step-size ηk= c
mνT for some ν≥3 and the bound of Γ as described in (21), we have λΓ to be upper bounded by

O(1
mν) Now we have,

f(xk+1)−f(xk) (52)

≤
(
− γ2Mηk
4(1−β)m

+
L2η

3
k

6(1−β)m
(1+

√
1−δ)3

)∑
i∈M

∥si,k+1∥3+
ηk

2(1−β)m

(
γ− ηk

(1−β)m

)∑
i∈M

Mγ

2
∥si,k+1∥3+λΓ

=

(
− γMη2k
4(1−β)2m2

+
L2η

3
k

6(1−β)m
(1+

√
1−δ)3

)∑
i∈M

∥si,k+1∥3+λΓ

=−λcomp
1

(1−α)m
∑
i∈M

∥ηksi,k+1∥3+λΓ (53)

where

λcomp=[
γM

4(1−β)2ηkm2
− L2

6(1−β)m
(1+

√
1−δ)3](1−α)m

To ensure λcomp>0, we need

M>
4ηkm(1−β)

γ

L2

6
(1+

√
1−δ)3 (54)

Now for the choice of ηk = c
Tmν and γ= c1

Tmν for some constant c1> 0. We have M =O(m(1−β)(1+
√
1−δ)3). Thus

we have λcomp=O(1) and λΓ=O(1
mν). Now we have

1

(1−α)m
∑
i∈M

∥ηksi,k+1∥3≤
1

λcomp
[f(xk)−f(xk+1)+λΓ]

19

FED-CURE

At any iteration k, we have

∥xk+1−xk∥3=∥ηk Q(sk+1)∥3

≤ 1

(1−β)m
∑
i∈U

∥ηk0
Q(si,k+1)∥3

≤ (1+
√
1−δ)3

(1−β)m
∑
i∈U

∥ηksi,k+1∥3

=
(1+

√
1−δ)3

(1−β)m

[∑
i∈M

∥ηksi,k+1∥3−
∑

i∈M∩T
∥ηksi,k+1∥3+

∑
i∈U∩B

∥ηksi,k+1∥3
]

≤ (1+
√
1−δ)3

(1−β)m

[∑
i∈M

∥ηksi,k+1∥3+αmη3kΓ3

]

Now we consider the step k0, where k0=argmin0≤k≤T−1∥xk+1−xk∥.

min
0≤k≤T

∥xk+1−xk∥3

≤ min
0≤k≤T

(1+
√
1−δ)3

(1−β)m

[∑
i∈M

∥ηksi,k+1∥3+αmη3kΓ3

]

≤ 1

T

T−1∑
k=0

(1+
√
1−δ)3 (1−α)

(1−β)

[
1

(1−α)m
∑
i∈M

∥ηksi,k+1∥3+
α

1−α
η3k0

Γ3

]

≤ 1

T

T−1∑
k=0

(1+
√
1−δ)3 (1−α)

(1−β)

[
f(xk)−f(xk+1)

λcomp
+

λΓ
λcomp

+
α

1−α
η3k0

Γ3

λcomp

]

≤ 1

T
(1+

√
1−δ)3 (1−α)

(1−β)

[
f(x0)−f∗

λcomp
+

T−1∑
k=0

λΓ
λcomp

+

T−1∑
k=0

α

1−α
η3k0

Γ3

λcomp

]

≤(1+
√
1−δ)3 (1−α)

(1−β)

[
f(x0)−f∗

Tλcomp
+

λΓ
λcomp

+
α

1−α
η3k0

Γ3

λcomp

]

With the choice of ηk,γ we have the terms λΓ

λcomp
and α

1−α

η3
k0

Γ3

λcomp
are upper bounded by O(1

mν) and higher order of O(1
mν).

We have

1

(1−β)m

[∑
i∈M

∥ηk0
si,k0+1∥3+αmη3k0

Γ3

]
≤ (1−α)

(1−β)

[
f(x0)−f∗

Tλcomp
+

λΓ
λcomp

+
α

1−α
η3k0

Γ3

λcomp

]

⇒ 1

(1−α)m

[∑
i∈M

∥ηk0si,k0+1∥3+αmη3k0
Γ3

]
≤

[
f(x0)−f∗

Tλcomp
+

λΓ
λcomp

+
α

1−α
η3k0

Γ3

λcomp

]

⇒ 1

(1−α)m
∑
i∈M

∥ηk0
si,k0+1∥3≤

[
f(x0)−f∗

Tλcomp

]
=
ψcomp

T
+CΓ

where ψcomp=
f(x0)−f∗

λcomp
whereCΓ is O(1/m).

So, we have the term ψcomp is of the order O(1).

20

FED-CURE

The gradient condition is (using (13))

∥∇f(xk+1)∥

=

∥∥∥∥∥∇f(xk+1)−
1

|M|
∑
i∈M

gi,k−
1

|M|
∑
i∈M

γHi,k+1si,k+1−
1

|M|
∑
i∈M

Mγ2

2
∥si,k+1∥si,k+1

∥∥∥∥∥
≤
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1−xk)

∥∥+∥∥∥∥∥ 1

|M|
∑
i∈M

(gi,k−∇f(xk))

∥∥∥∥∥
+

∥∥∥∥∥∇2f(xk)(xk+1−xk)−γ
1

|M|
∑
i∈M

Hi,ksi,k+1

∥∥∥∥∥+
∥∥∥∥∥ 1

|M|
∑
i∈M

Mγ2

2
∥si,k+1∥si,k+1

∥∥∥∥∥
≤L2η

2
k

2

∥∥∥∥∥ 1

|U|
∑
i∈U

Q(si,k+1)

∥∥∥∥∥
2

+ϵg+
Mγ2

2

1

|M|
∑
i∈M

∥si,k+1∥2+

∥∥∥∥∥ ηk|U|∑
i∈U

∇2f(xk)Q(si,k+1)−
γ

|M|
∑
i∈M

Hi,ksi,k+1

∥∥∥∥∥
(55)

Now consider the term in (55)

∥∥∥∥∥ ηk|U|∑
i∈U

∇2f(xk)Q(si,k+1)−
γ

|M|
∑
i∈M

Hi,ksi,k+1

∥∥∥∥∥
≤

∥∥∥∥∥ ηk|U|
[∑
i∈M

∇2f(xk)Q(si,k+1)−
∑

i∈M∩T
∇2f(xk)Q(si,k+1)+

∑
i∈B∩U

∇2f(xk)Q(si,k+1)

]
− γ

|M|
∑
i∈M

Hi,ksi,k+1

∥∥∥∥∥
≤

∥∥∥∥∥ ηk|U|∑
i∈M

∇2f(xk)Q(si,k+1)−
γ

|M|
∑
i∈M

Hi,ksi,k+1

∥∥∥∥∥+ ηk
|U|

∑
i∈M∩T

∥∇2f(xk)Q(si,k+1)∥

+
ηk
|U|

∑
i∈B∩U

∥∇2f(xk)Q(si,k+1)∥

≤

∥∥∥∥∥ ηk|U|∑
i∈M

∇2f(xk)Q(si,k+1)−
γ

|M|
∑
i∈M

∇2f(xk)Q(si,k+1)

∥∥∥∥∥
+

∥∥∥∥∥ γ

|M|
∑
i∈M

∇2f(xk)Q(si,k+1)−
γ

|M|
∑
i∈M

∇2f(xk)si,k+1

∥∥∥∥∥
+

∥∥∥∥∥ γ

|M|
∑
i∈M

∇2f(xk)si,k+1−
γ

|M|
∑
i∈M

Hi,ksi,k+1

∥∥∥∥∥+ ηk
(1−β)m

(1+
√
1−δ)L1[

∑
i∈M

∥si,k+1∥+αmΓ]

≤(
ηk

(1−β)m
− γ

(1−α)m
)L1(1+

√
1−δ)

∑
i∈M

∥si,k+1∥+
γ

(1−α)m
L1

√
1−δ

∑
i∈M

∥si,k+1∥

+
γϵH

(1−α)m
∑
i∈M

∥si,k+1∥+
ηk

(1−β)m
(1+

√
1−δ)L1[

∑
i∈M

∥si,k+1∥+αmΓ]

≤
(

ηk
(1−β)m

L1(1+
√
1−δ)(2+αm)− γL1

(1−α)m

)∑
i∈M

∥si,k+1∥+
γϵH

(1−α)m
∑
i∈M

∥si,k+1∥

=

(
(1−α)
(1−β)

2L1(1+
√
1−δ)− γ

ηk
(L1−ϵH)

)
1

(1−α)m
∑
i∈M

∥ηksi,k+1∥+
ηkα

(1−β)
(1+

√
1−δ)Γ

Next we consider the term

21

FED-CURE

L2η
2
k

2

∥∥∥∥∥ 1

|U|
∑
i∈U

Q(si,k+1)

∥∥∥∥∥
2

≤L2(1+
√
1−δ)2η2k

2(1−β)m
∑
i∈U

∥si,k+1∥2

≤L2(1+
√
1−δ)2η2k

2(1−β)m

[∑
i∈M

∥si,k+1∥2+
∑

i∈U∩B
∥si,k+1∥2

]

=
L2(1+

√
1−δ)2η2k

2(1−β)m
∑
i∈M

∥si,k+1∥2+
L2α(1+

√
1−δ)2η2k

2(1−β)
Γ2 (56)

So finally we have

∥∇f(xk+1)∥

≤L2(1+
√
1−δ)2η2k

2(1−β)m
∑
i∈M

∥si,k+1∥2+ϵg+
Mγ2

2(1−α)m
∑
i∈M

∥si,k+1∥2

+

(
(1−α)
(1−β)

2L1(1+
√
1−δ)− γ

ηk
(L1−ϵH)

)
1

(1−α)m
∑
i∈M

∥ηksi,k+1∥

+
L2α(1+

√
1−δ)2η2k

2(1−β)
Γ2+

ηkα

(1−β)
(1+

√
1−δ)Γ

Now we choose γ> (1−α)
(1−β)2L1(1+

√
1−δ) ηk

L1−ϵH
.

∥∇f(xk+1)∥

≤
[
L2(1−α)(1+

√
1−δ)2

2(1−β)
+
Mγ2

2η2k

]
1

(1−α)m
∑
i∈M

∥ηksi,k+1∥2

+
L2α(1+

√
1−δ)2η2k

2(1−β)
Γ2+

ηkα

(1−β)
(1+

√
1−δ)Γ+ϵg

≤
[
L2(1−α)(1+

√
1−δ)2

2(1−β)
+
Mγ2

2η2k

][
1

(1−α)m
∑
i∈M

∥ηksi,k+1∥3
]2/3

+
L2α(1+

√
1−δ)2η2k

2(1−β)
Γ2+

ηkα

(1−β)
(1+

√
1−δ)Γ+ϵg

At step k=k0,

∥∇f(xk0+1)∥

≤
[
L2(1−α)(1+

√
1−δ)2

2(1−β)
+
Mγ2

2η2k

](
ψcomp

T
+CΓ

)2/3

+ϵg+
L2α(1+

√
1−δ)2η2k

2(1−β)
Γ2+

ηkα

(1−β)
(1+

√
1−δ)Γ

≤
[
L2(1−α)(1+

√
1−δ)2

2(1−β)
+
Mγ2

2η2k

](
ψcomp

T

)2/3

+ϵg

+

[
L2(1−α)(1+

√
1−δ)2

2(1−β)
+
Mγ2

2η2k

]
C

2/3
Γ +

L2α(1+
√
1−δ)2η2k

2(1−β)
Γ2+

ηkα

(1−β)
(1+

√
1−δ)Γ

≤ χ1

T 2/3
+ϵg+χG

22

FED-CURE

where χ1=
[
L2(1−α)(1+

√
1−δ)2

2(1−β) +Mγ2

2η2
k

]
(ψcomp)

2/3. And asCΓ=O(1
mν), we have χG=O(1

m2ν/3−1)+O(α
mν). As ν≥3,

χG is always decreasing withm.

The Hessian bound is

λmin(∇2f(xk+1))

=
1

(1−α)m
∑
i∈M

λmin

[
∇2f(xk+1)

]
=

1

(1−α)m
∑
i∈M

λmin

[
Hi,k−(Hi,k−∇2f(xk+1))

]
≥ 1

(1−α)m
∑
i∈M

[
λmin(Hi,k)−∥Hi,k−∇2f(xk+1)∥

]
≥ 1

(1−α)m
∑
i∈M

λmin(Hi,k)−
1

(1−α)m
∑
i∈M

∥Hi,k−∇2f(xk+1)∥

≥ 1

(1−α)m
∑
i∈M

−Mγ

2
∥si,k+1∥−

1

(1−α)m
∑
i∈M

∥Hi,k−∇2f(xk)∥

− 1

(1−α)m
∑
i∈M

∥∇2f(xk)−∇2f(xk+1)∥

≥ 1

(1−α)m
∑
i∈M

−Mγ

2ηk
∥ηksi,k+1∥−ϵH− 1

(1−α)m
∑
i∈M

L2∥xk−xk+1∥

≥−Mγ

2ηk

[
1

(1−α)m
∑
i∈M

∥ηksi,k+1∥3
]1/3

−L2∥xk−xk+1∥−ϵH

≥−Mγ

2ηk

[
1

(1−α)m
∑
i∈M

∥ηksi,k+1∥3
]1/3

−L2

[
(1+

√
1−δ)

(1−β)m
∑
i∈U

∥ηksi,k+1∥

]
−ϵH

≥−Mγ

2ηk

[
1

(1−α)m
∑
i∈M

∥ηksi,k+1∥3
]1/3

−L2
(1+

√
1−δ)

(1−β)m

[∑
i∈M

∥ηksi,k+1∥+
∑

i∈B∩U
∥ηksi,k+1∥

]
−ϵH

≥−Mγ

2ηk

[
1

(1−α)m
∑
i∈M

∥ηksi,k+1∥3
]1/3

−L2
(1+

√
1−δ)(1−α)
(1−β)

[
1

(1−α)m
∑
i∈M

∥ηksi,k+1∥

]
−ϵH

−L2
(1+

√
1−δ)α

(1−β)
ηkΓ (57)

At k=k0 we have

λmin(∇2f(xk0+1)) (58)

≥−Mγ

2ηk

[
ψcomp

T
+CΓ

]1/3
−L2

(1+
√
1−δ)(1−α)
(1−β)

[
ψcomp

T
+CΓ

]1/3
−ϵH−L2

(1+
√
1−δ)α

(1−β)
ηkΓ

≥−
[
Mγ

2ηk
+L2

(1+
√
1−δ)(1−α)
(1−β)

]
ψ1/3
comp

(
1

T

)1/3

−ϵH−
(
Mγ

2ηk
C

1/3
Γ +L2

(1+
√
1−δ)(1−α)
(1−β)

C
1/3
Γ

)
−L2

(1+
√
1−δ)α

(1−β)
ηkΓ

≥− χ2

T 1/3
−ϵH−χH (59)

where χ2 =
[
Mγ
2ηk

+L2
(1+

√
1−δ)(1−α)
(1−β)

]
ψ
1/3
comp . And , we have χH =O(1

mν/3−1)+O(1
mν). As ν ≥ 3, we χH to be strictly

decreasing withm.

23

FED-CURE

Finally, we restate the Theorem 3.5,

Theorem 3.5 (Convergence of FED-CURE). Suppose 0≤ α< β ≤ 1
2 . Furthermore, we choose the problem parameters,

M =O(m(1−β)(1+
√
1−δ)3), and η= γ= c

Tmν for some constant c> 0,ν > 3. Then, after T iterations of FED-CURE
(Algorithm 1), the sequence {xi}Ti=1 generated contains a point x̃ such that

∥∇f(x̃)∥≤ χ1

T 2/3
+ϵg+χG, λmin

(
∇2f(x̃)

)
≥− χ2

T
1
3

−ϵH−χH , where,

χ1=

[
L2(1−α)(1+

√
1−δ)2

2(1−β)
+
Mγ2

2η2k

]
(ψcomp)

2/3

χ2=

[
Mγ

2ηk
+L2

(1+
√
1−δ)(1−α)
(1−β)

]
ψ1/3
comp

χG=

[
L2(1−α)(1+

√
1−δ)2

2(1−β)
+
Mγ2

2η2k

]
C

2/3
Γ +

L2α(1+
√
1−δ)2η2k

2(1−β)
Γ2+

ηkα

(1−β)
(1+

√
1−δ)Γ

χH =

(
Mγ

2ηk
+L2

(1+
√
1−δ)(1−α)
(1−β)

)
C

1/3
Γ +L2

(1+
√
1−δ)α

(1−β)
ηkΓ

ψcomp=
f(x0)−f∗

λcomp
andCΓ=

λΓ
λcomp

λcomp=[
γM

4(1−β)ηkm2
− L2

6(1−β)m
(1+

√
1−δ)3](1−α)m

λΓ=

(
ηk(1−α)
(1−β)

(L
√
1−δ+ϵg)+

ηk(α+β)L

(1−β)
(1+

√
1−δ)

)
Γ+

L2η
3
k

6(1−β)
(1+

√
1−δ)3αΓ3

+
η2k

2(1−β)2m

(
(1−α)(ϵH+2L1

√
1−δ)+(α+β)L1(1+

√
1−δ)2)+L1(1+

√
1−δ)2((1−β)m−1)(1−β)m

)
Γ2.

For the choice of η= c
Tmν and γ= c

Tmν andM=O(m(1−β)(1+
√
1−δ)3), we have λΓ=O(1

mν) and λcomp to be O(1).

E.3. Proof of Corollary 3.6

In this Corollary statement we consider centralized (m=1), uncompressed (δ=1) and non-Byzantine setup (α=β=0). With
these parameters, we have the value of λΓ from equation (51) to be 0. Consequently, we haveCΓ=0. With γ=1, we have

λcomp=
M

4ηk
−L2

6

So in order for λcomp> 0, for constant step-size (ηk =1), we need M > 2L2

3 . With CΓ =0,α=0, we have χG =χH =0.
Moreover we have χ1=

[
L2+M

2

]
(ψcomp)

2/3 and χ2=
[
2M+L2

2

]
(ψcomp)

1/3. As it is a centralized setup, there are no gradient
and Hessian dissimilarities ϵg=ϵH =0. So we have

∥∇f(x̃)∥≤
[
L2+M

2

]
(ψcomp)

2/3 1

T 2/3
, λmin

(
∇2f(x̃)

)
≥−

[
2M+L2

2

]
(ψcomp)

1/3 1

T 1/3
,

whereM> 2L2

3 . Thus, the convergence rate of FED-CURE reduces to that of (Nesterov & Polyak, 2006).

24

