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ABSTRACT

A fundamental challenge in graph learning is understanding how models generalize
to new, unseen graphs. While synthetic benchmarks offer controlled settings for
analysis, existing approaches are confined to single-graph, transductive settings
where models train and test on the same graph structure. Addressing this gap, we
introduce GraphUniverse, a framework for generating entire families of graphs
to enable the first systematic evaluation of inductive generalization at scale. Our
core innovation is the generation of graphs with persistent semantic communities,
ensuring conceptual consistency while allowing fine-grained control over structural
properties like homophily and degree distributions. This enables crucial but under-
explored robustness tests, such as performance under controlled distribution shifts.
Benchmarking a wide range of architectures—from GNNs to graph transformers
and topological architectures—reveals that strong transductive performance is a
poor predictor of inductive generalization. Furthermore, we find that robustness
to distribution shift is highly sensitive not only to model architecture choice but
also to the initial graph regime (e.g., high vs. low homophily). Beyond benchmark-
ing, GraphUniverse’s flexibility and scalability can facilitate the development of
robust and truly generalizable architectures. An interactive demo is available at
https://graphuniverse.streamlit.app/.

1 INTRODUCTION

Graph learning has emerged as a powerful paradigm for learning from relational data across diverse
domains, from drug discovery (Wong et al., 2024) and fraud detection (Cheng et al., 2025) to
knowledge graphs (Galkin et al., 2023). Graph Neural Networks (GNNs) (Scarselli et al., 2008), with
its countless variants (Gilmer et al., 2017; Kipf & Welling, 2017; Hamilton et al., 2017; Xu et al.,
2019; Veličković et al., 2018), have demonstrated remarkable success in extending deep learning
frameworks to graph-structured data, achieving competitive performance on tasks ranging from node
classification to graph-level prediction. However, unlike the transformative leap from task-specific
models to general-purpose architectures observed in natural language processing and computer vision,
graph learning remains largely limited to specialized, task-specific models with limited evidence of
robust generalization and scaling capabilities.

Recent analyses argue that progress in graph learning is hindered by a flawed benchmarking culture.
Bechler-Speicher et al. (2025), for instance, critiques the field’s excessive focus on incremental gains
on weak benchmarks, which often fail to outperform simpler non-graph baselines. They also highlight
a scarcity of large-scale, diverse datasets, arguing that these limitations hinder the development of
models that can generalize and scale. Complementing this, Wang et al. (2025) pinpoints critical gaps
in the theoretical understanding of model behavior—particularly concerning robustness to distribution
shifts and generalization guarantees. They identify these theoretical weaknesses as key obstacles
preventing graph models from advancing beyond narrow, task-specific applications.

To remedy these issues, both works propose creating better datasets through synthetic generation and
quality-centric curation, alongside developing metrics for generalization, robustness, and trustwor-
thiness. However, existing synthetic generation tools like GraphWorld (Palowitch et al., 2022) are
fundamentally limited in this regard. They generate graphs as isolated, independent instances, which
restricts evaluation to transductive settings where a model trains and tests on the same structure. This
single-graph paradigm makes it impossible to study generalization to unseen graphs and constrains to
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experiment at scale—precisely the two capabilities identified as critical for building powerful graph
foundation models (Wang et al., 2025).

We address this gap with GraphUniverse: a framework for generating graph families at scale. Our
contributions can be summarized as follows:

1. We develop a hierarchical generative model extending Degree Corrected-Stochastic Block Models
(DC-SBMs) (Karrer & Newman, 2011) to an inductive setting with multiple graphs that maintain
semantic consistency—i.e. node identities or community structures persist across different graph
instances—while enabling controlled variation in their structural properties.

2. We provide an interactive web platform (https://graphuniverse.streamlit.app/)
for visualization, exploration, and direct download of generated datasets.

3. We conduct systematic benchmarking comparing inductive and transductive evaluation across
classical and contemporary graph architectures, revealing differences in model rankings between
paradigms. Additionally, we evaluate model robustness under controlled property shifts, an
analysis only possible with our inductive framework, finding that robustness strongly depends
on both architecture choice and initial graph properties. These findings challenge conventional
assumptions about graph model performance and demonstrate the critical importance of evalu-
ation paradigm choice in assessing true model capabilities. Furthermore, we demonstrate that
GraphUniverse-generated datasets can serve as effective proxies for real-world datasets, with
model rankings showing strong correlations with those obtained on real data.

4. All GraphUniverse code can be found at: https://anonymous.4open.science/r/
GraphUniverse-3458. Upon acceptance, we will release GraphUniverse as a PyPi package
for programmatic use, as well as publish its full implementation into TopoBench (Telyatnikov
et al., 2025) to easily reproduce and/or expand our experimental results.

We envision GraphUniverse as a versatile tool for diverse research applications, from targeted
generalization benchmarks to large-scale data generation and augmentation for model pre-training.
While our experiments demonstrate its immediate utility, they represent only a fraction of what is
possible with controllable graph family generation. Thus, we release GraphUniverse to the community
as a flexible framework, inviting extensions and adaptations to explore new frontiers in graph learning.

2 RELATED WORK

The evaluation of graph learning models has evolved from early, limited-scope benchmarks (Dwivedi
et al., 2023; Morris et al., 2020) to large-scale, real-world datasets. The Open Graph Benchmark
(OGB) (Hu et al., 2020) was a significant step forward, providing standardized protocols on large
graphs that revealed critical challenges in generalization. Subsequently, the GOOD benchmark
(Gui et al., 2022) introduced a focus on out-of-distribution (OOD) generalization by creating splits
designed to test robustness to covariate and concept shifts. However, a fundamental limitation of these
real-world benchmarks is their static nature. The datasets are fixed, the properties of the data splits are
not tunable, and as recent critiques have noted, they often lack sufficient coverage of important graph
properties like heterophily, limiting their utility for systematic model analysis (Bechler-Speicher
et al., 2025).

Recognizing the limitations of static datasets, a growing consensus advocates for high-fidelity
synthetic data generation as a path toward more principled and scalable evaluation (Bechler-Speicher
et al., 2025; Wang et al., 2025). The most prominent effort in this direction is GraphWorld (Palowitch
et al., 2022), which uses synthetic generation to study model performance across a space of graph
properties. Related efforts like CGT (Zahirnia et al., 2023) and the metadata-driven approach (Li
et al., 2023) provide valuable insights into model behavior by mapping real-world graphs to synthetic
equivalents and analyzing performance across graph properties, respectively. While these approaches
enable controlled analysis, they remain confined to generating independent, single graphs. This
restricts evaluation to the transductive setting, where models are tested on the same graph structure
seen during training, and fundamentally prevents the study of a model’s ability to generalize to
entirely new and unseen graphs.

The importance of synthetic data extends beyond benchmarking to foundation model development.
GraphFM (Lachi et al., 2024) leverages GraphWorld-style synthetic graphs to expand its pretraining
corpus, though limited to transductive settings, while OpenGraph (Xia et al., 2024) uses LLMs to
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augment existing datasets—mirroring synthetic data’s established role in computer vision (Tobin et al.,
2017) and NLP (Wang et al., 2023). However, existing graph generation frameworks cannot provide
the inductive generalization and systematic coverage of graph modalities that robust foundation
models require (Bechler-Speicher et al., 2025; Wang et al., 2025)—a capability limited to multi-graph
approaches.

GraphUniverse directly addresses these limitations. Unlike static benchmarks, it provides a generative
framework capable of producing unlimited data with fine-grained control over structural properties.
Critically, unlike GraphWorld and other single-graph approaches, it generates entire families of
graphs with shared semantic meaning, enabling systematic study of inductive generalization. Further-
more, our experiments validate that GraphUniverse-generated data closely mirrors real-world model
behavior, suggesting its potential as a complementary data source for model development, including
pre-training applications. We present GraphUniverse as an open-source tool that researchers can
extend and adapt for their specific needs, whether for controlled benchmarking or as a basis for more
sophisticated data augmentation strategies for Graph Foundation Model developement, of which a
detailed discussion is provided in Appendix B.

3 BACKGROUND

Community-based graph generation provides interpretable control over node-level properties and their
relationships, naturally supports community detection tasks, and reflects the modular organization
commonly observed in real-world networks (Fortunato, 2010). This section revisits some previous
works on this topic that GraphUniverse draws inspiration from.

Let G = (V,E) be an undirected graph with |V | = n nodes and A ∈ {0, 1}n×n its adjacency ma-
trix, where Aij = Aji and Aii = 0. Let k ∈ N be the number of communities and bi ∈ {1, . . . , k}
the community label of node i. We denote by P ∈ [0, 1]k×k the (symmetric) block/community
edge probability matrix with entries Prs, with r, s ∈ {1,. . . ,k}.

Stochastic Block Model (SBM). SBMs (Holland et al., 1983) generates a graph by first uniformly
sampling labels b1, . . . , bn, then drawing edges independently as

Aij ∼ Bernoulli
(
Pbibj

)
(1 ≤ i < j ≤ n).

SBM is used in two complementary ways; (i) the inference view: given a single observed A, estimate
(b, P ); and (ii) the generative view (the one adopted in this work): given (n, P ), sample A.

Degree-Corrected SBM (DC-SBM). A limitation of SBM is that it enforces homogeneous ex-
pected degrees within a community, since edge probabilities depend only on block membership.
To address this, the original DC-SBM (Karrer & Newman, 2011) implementation introduces node-
specific degree factors θi > 0 and a nonnegative block matrix Λ ∈ Rk×k

≥0 . Moreover, they shift
focus from simple graphs to multigraphs, i.e. a graph with multi-edges and self-loops. In its original
Poisson multigraph form, edges are counts with rates:

Aij ∼ Poisson
(
λij

)
(i ̸= j),

Aii

2
∼ Poisson

(
1
2 θ

2
i Λbibi

)
, where λij := θiθj Λbibj .

Imposing a per-group sum-to-one normalization on degree factors, i.e.
∑

i: bi=r θi = 1 ∀r ∈
{1, . . . , k}, the expected number of edges between communities r and s (counting each undirected
edge once) becomes:

E[Mrs] =

{
Λrs, r ̸= s,
1
2 Λrr, r = s,

so Λ controls the total number of edges in a block, while θ redistributes degrees within blocks. This
Poisson formulation is standard in inference-focused works (Karrer & Newman, 2011; Abbe, 2018).

Generative Bernoulli Formulation. Since the original DC-SBM naturally generate Poisson multi-
graphs, a common approach to get simple graphs from them is to collapse multi-edges into single
undirected edges and remove self-edges after generation (as done in GraphWorld (Palowitch et al.,
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2022)). However, this leads to a systematic but unpredictable mismatch between the input parameters
and the properties of the output graph. Therefore, we choose to work directly with a Bernoulli
reformulation of the DC-SBM algorithm as the basis for our generator (Rohe et al., 2018). Its
justification and precise correspondence with the Poisson DC-SBM are deferred to Appendix C.
Moreover, a discussion of the limitations of relying on DC-SBM models (e.g. lack of higher order
structures) is provided in Appendix D.

4 GRAPHUNIVERSE

While DC-SBMs generate individual graphs with controllable community structure, they cannot
support inductive generalization studies due to independent graph generation with weak community-
specific signals. To address this, we introduce a hierarchical generation framework that decouples
global community properties from local graph characteristics, enabling systematic investigation of
model performance across semantically related graph distributions.

4.1 THREE-LEVEL ARCHITECTURE

Our framework is organized hierarchically into three levels, each controlling different aspects of
graph generation—see Figure 1.

Universe Level (Global Community Properties). At the top level, a Graph Universe (left panel
in Figure 1) defines a master set of K persistent communities. These communities, assigned at the
node-level, retain stable semantic identities across all generated graphs, specified by:

• Structural patterns: The universe-level edge propensity matrix P̃ ∈ RK×K encodes relative inter-
community connection strengths. Unlike standard DC-SBMs with uniform block probabilities,
we introduce heterogeneity by generating P̃rs = 1 + ξrs where ξrs ∼ N (0, (2ϵ)2) with variance
parameter ϵ. This perturbation is symmetrized and rescaled to preserve target homophily and degree
constraints (details in App. E), yielding fine-grained structural variation across community pairs.

• Degree profiles: A community-specific degree propensity vector δ = (δ1, . . . , δK) ∈ [−1, 1]K ,
with δk ∼ Uniform(−1, 1), determines the characteristic degree propensity of each community.
Unlike standard DC-SBMs where degree factors are independent of community membership, each
δk anchors community k in the degree spectrum, with δk = −1 corresponding to low-degree node
tendencies and δk = +1 to high-degree ones.

• Feature distributions: Community centroids µk ∈ Rd, for k ∈ {1, . . . ,K}, are sampled from
µk ∼ N (0, σ2

centerId), with σ2
center controlling between-community feature separation. Node

features within each community k are then generated from N (µk, σ
2
clusterId), where σ2

cluster controls
within-community feature variance.

Family Level (Generation Constraints). A Graph Family (middle panel in Figure 1) specifies
allowed ranges for graph-level parameters while maintaining consistency through the community-
behaviour defined by the universe-level identities:

• Structural ranges: Target homophily h ∈ [hmin, hmax] and average degree d ∈ [dmin, dmax].
• Size constraints: Number of nodes n ∈ [nmin, nmax] and number of participating communities
k ∈ [kmin, kmax] per graph, with kmax ≤ K.

• Coupling parameters: Degree separation ρ ∈ [ρmin, ρmax] controls the overlap between community
degree distributions (low ρ yields broad overlap, high ρ yields well-separated distributions), and
degree distribution parameters such as power-law exponent α ∈ [αmin, αmax].

Graph Level (Instance Generation). Individual graphs are generated as Graph Sample instances
(right panel in Fig. 1), each obtained by sampling specific values from family-level ranges and
inheriting community properties from the universe. The full procedure is described in next section.

4.2 GRAPH INSTANCE GENERATION PROCESS

Each graph instance is generated in four phases, as shown in the Generate Graph section in Figure 1:

4
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Figure 1: Overview of GraphUniverse generation methodology.

Phase 1: Parameter Sampling. Graph-specific parameters are drawn uniformly from family ranges:

(n, k, h, d, ρ, α) ∼ Uniform
(
[nmin, nmax]× · · · × [αmin, αmax]

)
. (1)

Phase 2: Community Selection. We randomly select k communities C = {c1, . . . , ck} ⊆ {1, . . . ,K}
from the universe to appear in this particular graph.

Phase 3: Probability Matrix Construction. We extract the k × k submatrix

Psub[i, j] = P[ci, cj ], i, j ∈ {1, . . . , k}.
To obtain valid Bernoulli probabilities with the sampled graph-level properties, we rescale in two
stages: (i) homophily adjustment: apply separate scaling factors to diagonal vs. off-diagonal entries so
that the within- and between-community ratio matches the target homophily h; (ii) density adjustment:
apply a global multiplier so that the mean entry matches the target edge density d/(n − 1) for n
nodes.

The resulting matrix Pscaled preserves the heterogeneity of Psub while satisfying both constraints
(see Appendix E).

Phase 4: Graph Realization with Community Properties. The final graph is generated as follows:

1. Node assignment. Nodes are distributed uniformly across the selected communities C.
2. Degree factors. For each node i in community c(i), we assign a degree factor θi by coupling

degree distributions to communities. We first sample power-law degree factors and sort them
as (θ(1), . . . , θ(n)). Each community’s degree center δc(i) maps to a preferred rank µc(i) =
1+δc(i)

2 (n−1), and we assign degree factors by sampling rank indices from N (µc(i), σ
2) truncated

to [1, n], where σ2 is determined by the degree separation parameter ρ. Full details are in Appendix
F.

3. Edge generation. Each pair (i, j) with i < j is connected independently with probability

Pij = min
(
1, θiθjPscaled[c(i), c(j)]

)
. (2)

After sampling, we verify connectivity and connect any disconnected components by adding edges
that minimize deviation from the target block structure Pscaled (details in Appendix G).

4. Feature generation. Finally, node features are sampled from community-specific Gaussian distri-
butions:

xi ∼ N (µc(i), σ
2I). (3)

4.3 VALIDATION OF GRAPHUNIVERSE

To ensure our multiple graph generation framework produces high-fidelity graphs with the intended
properties and learnable signals within and across graphs, we conduct a comprehensive validation

5
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Figure 2: Parameter sensitivity heatmap from 100 randomized graph families with all parameters
simultaneously varied across complete ranges. Pearson correlation coefficients are shown with stars
indicating significance levels. NS indicates no statistically significant correlation.

study examining how generation parameters affect three critical aspects: graph properties, signal
strength, and cross-graph consistency. This systematic analysis serves both to validate the correctness
of our implementation and to characterize the parameter space for downstream applications.

Validation Metrics. We define three categories of validation metrics. Graph Property metrics
verify that generated graphs match target structural characteristics, including homophily levels,
average degree, degree distribution tails, and deviations from expected community edge probability
matrices. Signal Strength metrics assess the predictability of community labels using different
node-level features (node features, degree, and multi-hop neighborhood structure), ensuring graphs
contain learnable signals for downstream tasks. Cross-Graph Consistency metrics evaluate whether
community identities remain semantically consistent across different graph instances through feature
centroid similarity, structural pattern correlation, and degree ranking preservation. Detailed definitions
and implementation details for all metrics are provided in Appendix I.

Parameter Sensitivity Analysis. We generate 100 distinct graph families—30 graphs each—with
completely randomized parameter configurations sampled uniformly across broad ranges (further
details in Appendix H). This stress-tests the framework’s robustness by capturing parameter inter-
actions at extreme values rather than nominal operating points. In practice, to do so we assess
parameter-metric relationships using Pearson correlations on family-level means, reporting only
statistically significant correlations (p < 0.05). The correlation heatmap of Figure 2 shows the
parameter (y-axis) responsiveness across all validation metrics (x-axis).

Validation Results. Graph property metrics (left panel in 2) show expected strong correlations:
parameters precisely control homophily and average degree, with slight deviations under extreme
settings reflecting our multiplicative edge generation process. Signal strength metrics (middle panel
in 2) confirm theoretical expectations: cluster variance controls feature signals, homophily/degree
enhance structure signals, and fewer communities simplify classification. Cross-graph consistency
metrics (right panel in 2) provide the strongest validation of our hierarchical design, with propensity
variance governing structure consistency, degree separation controlling degree consistency, and cluster
variance determining feature consistency. A detailed analysis of the parameter validation results, as
well as individual parameter effect plots, are provided in Appendix Section J.

This comprehensive analysis demonstrates that our generation framework successfully translates user-
specified parameters into measurable, controllable graph properties without significant unexpected
correlations, validating its suitability for systematic graph learning evaluation.

4.4 SCALABILITY Table 1: GraphUniverse generation stats.

Avg. number Time per Throughput
of nodes graph (sec) (graphs/sec)
10 0.002 449.7
100 0.023 42.8
500 0.349 2.9
1000 1.309 0.8

GraphUniverse demonstrates linear scaling across
graph sizes, enabling efficient large-scale evaluation.
Table 1 shows generation performance measured on an

6
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AMD Ryzen 7 5700U CPU processor (single-threaded),
averaged over 100 graphs.

4.5 INTERACTIVE EXPLORATION TOOL

To complement the open-source package, we also provide an interactive Streamlit application for code-
free exploration of the GraphUniverse generator (https://graphuniverse.streamlit.
app/). The app allows users to define a generation universe, tune the family parameters (e.g.,
homophily, degree distribution), and instantly visualize the resulting graphs, their properties and
validation metrics Furthermore, generated graph families can be downloaded as a PyTorch Geometric
InMemoryDataset object.

5 BENCHMARKING

The ability to generate diverse graph families with fine-grained control over their properties opens
up countless avenues for systematic model evaluation. To demonstrate this potential, we present a
benchmarking suite designed to probe three fundamental research questions (RQ) of inductive perfor-
mance, generalization and robustness in modern GNNs. This investigation, while comprehensive,
represents just one of the many possible explorations that GraphUniverse makes possible.

5.1 EXPERIMENTAL SETUP

Implementation. All experiments are conducted using the TopoBench benchmarking frame-
work (Telyatnikov et al., 2025), which we extend with a custom GraphUniverse loader to sys-
tematically define and iterate over graph generation parameters.1 Across our benchmarking, we
evaluate models in both inductive and transductive settings on two distinct tasks: node-level com-
munity detection (classification) and graph-level triangle counting (regression). Unless otherwise
specified, we consider a set of fixed dataset generation parameters—such as the number of graphs in
inductive settings (1000), or the number of nodes in transductive ones (1000)—to ensure a consistent
baseline across experiments (defaults lists in Appendix M.1).

Models. We evaluate a diverse set of architectures representing major paradigms in contemporary
graph learning (a brief description of each of them can be found in Appendix M.2): DeepSet (Zaheer
et al., 2017), GraphMLP (Hu et al., 2021), GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton
et al., 2017), GIN (Xu et al., 2019), GATv2 (Brody et al., 2022), TopoTune (Papillon et al., 2025),
Neural Sheaf Diffusion (Bodnar et al., 2022), and GPS (Rampášek et al., 2022) (see Appendix M.2).

Hyperparameter Optimization. For each model-dataset configuration, we conduct comprehensive
grid search hyperparameter optimization using architecture-specific parameter grids detailed in the
Appendix M.3. Each configuration is evaluated across 3 different dataset instantiations generated
with the same input parameters but different data random seeds, with the configuration achieving the
highest mean validation performance selected for final test evaluation.

Evaluation Metrics. We report test accuracy and mean absolute error (MAE) for community
detection and triangle counting tasks, respectively (averaged across 3 random data seeds with
standard deviations).2 For both inductive and transductive experiments, we consider a 70/15/15
training/val/test split.

5.2 RQ1: DO GRAPH LEARNING MODELS PERFORM DIFFERENTLY IN THE INDUCTIVE
SETTING, IN FUNCTION OF KEY VARIED GRAPH PROPERTIES?

Motivation. Existing synthetic graph generation models (GraphWorld (Palowitch et al., 2022))
only allow for benchmarking models on single graphs in transductive settings, but real applications
require generalization to unseen graphs with different properties.

1Code and config. files to reproduce all experiments will be made publicly available upon acceptance.
2Accuracy is appropriate given uniform community size distributions enforced across all graph families.
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Figure 3: A) Inductive (graph families of 1000 graphs) versus transductive (single graphs) test
accuracy on community detection across different graph properties, with each architecture indi-
vidually optimized. B) Distribution shift analysis: best-performing inductive models evaluated on
graph families with shifted properties from the same Universe. Plots show accuracy changes under
distributional shifts, with x-axis indicating the original training domain. N/A indicates shifts beyond
feasible parameter bounds.

Experimental Design. We systematically vary three fundamental graph properties across families
of 1000 graphs each: homophily range ([0.0, 0.1], [0.4, 0.6], [0.9, 1.0]), average degree range ([1, 5],
[5, 10], [10, 20]), and cluster variance (basically feature noise, setting as options 0.2, 0.5 and 0.8),
keeping all other graph family parameters at default values. We directly compare these inductive
results against equivalent single-graph transductive evaluation using GraphWorld-style generation
(with mean property of corresponding inductive setting). Figure 3.A reports on the results. Appendix
L extends the homophily analysis to specific heterophilic GNN architectures.

Insight 1: Distinct Model Ranking Profiles Across Settings. We observe a striking divergence in
model performance rankings between the inductive and transductive settings (Fig. 3.A). While GPS
and non-message passing architectures (Deepset, GraphMLP) consistently achieve top and bottom
performances, respectively, other architectures show clear setting-dependent strengths. For example,
Neural Sheaf Diffusion excels inductively but falters transductively, suggesting its topological biases
aid generalization across graphs. Conversely, GIN dominates transductively but fails inductively,
indicating its success may stem from memorizing a single graph’s structure. These shifts reveal that
transductive performance is not always a reliable proxy for a model’s ability to generalize.

Insight 2: Transductive Setting Amplifies Graph Property Effects While increasing graph
homophily and average degree improves performance in both settings, these benefits are significantly
amplified in the transductive paradigm. As seen in Figure 3.A, the performance gap between low and
medium homophily or degree configurations is far more pronounced transductively. This suggests that
when models have access to the entire graph structure during training, they can better exploit favorable
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Figure 4: Left: baseline accuracy on original graphs. Right: performance changes (△) when
evaluating on larger graphs (+200, +500 nodes). Triangle counting uses normalized MAE by average
graph size N . Out-of-memory error for NSD in largest graphs (+500).

properties. Consequently, transductive evaluation may overestimate a model’s true sensitivity to these
structural characteristics.

Insight 3: Performance Directly Correlates with Feature Quality. As expected, increasing
cluster variance—a parameter that only injects noise into node features without affecting graph
structure—consistently degrades performance for all models.

5.3 RQ2: HOW ROBUST ARE GRAPH LEARNING MODELS UNDER DISTRIBUTION SHIFTS?

Motivation. Deployed models must handle property distribution shifts between training and test
data, where target graphs exhibit different structural properties than those seen during training.
Understanding how performance degrades under controlled property shifts is crucial for graph
foundation model development.

Experimental Design. Using optimal model configurations identified in the inductive experiments
of RQ1, we evaluate performance degradation under controlled shifts. That is, for each baseline
property setting (homophily, average degree, cluster variance), we generate, using the same Universe,
a new test family with systematic shifts: ±0.1 homophily, ±4 average degree, and ±200 nodes
per graph. The optimal models from RQ1 are evaluated on the shifted families. This provides a
systematic characterization of each architecture’s sensitivity to different types of distribution shifts.

Key Insight: Model Robustness is Context-Dependent, Not Universal. Our experiments (Fig.
3.B) reveal that model robustness is not an intrinsic property but emerges from specific interactions
between a model’s architecture and the graph’s properties. We found that identical distributional shifts
can produce opposite effects depending on the training regime; for example, increasing homophily
can harm a model’s performance in a low-homophily setting but improve it in a medium one. This
exposes architecture-specific vulnerabilities: GIN proves highly sensitive to degree shifts in low-
degree graphs, while models like GraphSAGE show a counterintuitive performance drop when
homophily is increased from a low baseline. These findings suggest that models often achieve high
performance through narrow specialization on training regimes rather than robust generalization,
highlighting the critical need for training data diversity.

5.4 RQ3: DO MODELS TRAINED ON SMALL GRAPHS GENERALIZE TO BIGGER GRAPHS?

Motivation. Real-world deployment often requires models trained on smaller graphs to handle larger
instances. Understanding size generalization is critical for practical scalability of graph learning
models. While we focused up until now on node-level community detection, we also evaluate triangle
counting as a structural graph-level task, though our framework supports other graph-level tasks.

Experimental Design. We evaluate generalization across graph sizes using two complementary tasks.
For community detection (node-level, local task), we train on graphs ranging from 50 to 200 nodes,
then evaluate on families (from the same Universe) with 250-400 and 550-700 nodes. For triangle
counting (graph-level, global task), we follow the same size progression.

Key Insight: Graph-level MPNNs Fail to Generalize to Larger Graphs. We can see (Fig. 4) that
node-level tasks (community detection) show minimal sensitivity to graph size (2% degradation)

9
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due to local neighborhood aggregation, except for GPS and NSD which suffer minor drops from
their more global components (positional encodings, attention). Graph-level tasks (triangle counting)
initially show only GPS, NSD, and GIN effectively solving the task, but while GPS and NSD maintain
performance when scaling to larger graphs, GIN fails to generalize, suggesting traditional MPNNs
overfit to training graph sizes.

5.5 RQ4: DOES GRAPHUNIVERSE ACCURATELY PREDICT REAL-WORLD MODEL
PERFORMANCE?
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Figure 5: Model ranking correlations between real datasets
and equivalent synthetic datasets. Rankings are computed via
bootstrap analysis, with correlations calculated on mean rank-
ings. GraphUniverse (blue) shows consistently higher align-
ment with real-world model rankings compared to Graph-
World (orange) across both raw performance (Pearson) and
rank-based (Spearman) metrics. ”Without Baselines” ex-
cludes DeepSet and GraphMLP to avoid overestimation.

Motivation. A critical question for
any synthetic benchmark is whether
insights gained extend to real-world
performance. We demonstrate that
GraphUniverse effectively predicts
model behavior on real, inductive
datasets, providing stronger alignment
than single-graph approaches.

Experimental Design. For five
real-world inductive datasets (OGBG-
MolHIV (Hu et al., 2020), AQSOL
(Dwivedi et al., 2023), ZINC (Gómez-
Bombarelli et al., 2018), NCI1, and
IMDB-MULTI (Morris et al., 2020)),
we extract key structural properties
and generate two synthetic equiva-
lents: (1) a GraphUniverse equiv-
alent matching property distributions
(5th-95th percentiles), and (2) a
GraphWorld equivalent using mean
values in a single graph. We map
dataset-specific communities (e.g., atom types for molecules, degree-based clustering for IMDB-
MULTI) to enable fair comparison. We train models on original tasks for real-world datasets and
community detection for synthetic datasets. After optimizing the same suite of models as in previous
RQs, we compute model rankings via bootstrap analysis (1000 iterations) and assess correlation
between mean synthetic and real rankings. Full extraction details are in Appendix K.1.

Key Insight: GraphUniverse Provides Superior Real-World Alignment. Figure 5 shows GraphU-
niverse achieves substantially higher correlations with real datasets than GraphWorld. We analyze
both all models and graph-aware models separately, as non-message-passing baselines (DeepSet,
GraphMLP) consistently underperform across all settings, artificially inflating correlations. Focusing
on message-passing models reveals that GraphUniverse shows positive correlations for all datasets
while GraphWorld shows negative correlations for half. Model-level analysis in Figures 10 and 11
of Appendix K.2 confirms that GraphUniverse accurately captures how model rankings vary across
datasets with different structural properties. These results validate GraphUniverse as a meaningful
proxy for real-world evaluation, particularly for rapid prototyping and systematic studies.

6 CONCLUDING REMARKS

We introduce GraphUniverse, a synthetic graph generation framework designed to address a critical
gap in graph learning: the systematic evaluation of inductive generalization. By generating graph
families with consistent semantics and tunable structural and feature properties, GraphUniverse pro-
vides the scalable, controlled data required to rigorously assess a model’s ability to generalize across
diverse and unseen graphs (moving beyond single-graph transductive settings of existing approaches).
Our experiments, which reveal valuable insights into model robustness and generalization, serve as a
powerful demonstration of the framework’s capabilities. We release GraphUniverse as an open-source
tool to unlock new research directions in the principled development and validation of both existing
and novel architectures—including potential applications in graph foundation model research, though
such extensions would require additional development beyond our current framework.
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REPRODUCIBILITY STATEMENT

All code for graph generation and framework validation is available at: https://anonymous.
4open.science/r/GraphUniverse-3458. We intend to release the framework as a PyPI
package upon acceptance. All experiments can be reproduced using the TopoBench framework
Telyatnikov et al. (2025), whose GraphUniverse integration and training scripts will be made publicly
available upon acceptance.
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Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. Good: A graph out-of-distribution benchmark.
Advances in Neural Information Processing Systems, 35:2059–2073, 2022.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social Networks, 5(2):109–137, 1983. ISSN 0378-8733. doi: https://doi.org/
10.1016/0378-8733(83)90021-7. URL https://www.sciencedirect.com/science/
article/pii/0378873383900217.

11

https://anonymous.4open.science/r/GraphUniverse-3458
https://anonymous.4open.science/r/GraphUniverse-3458
http://jmlr.org/papers/v18/16-480.html
http://jmlr.org/papers/v18/16-480.html
https://openreview.net/forum?id=nDFpl2lhoH
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=LzMWMJlxHg
https://www.sciencedirect.com/science/article/pii/0378873383900217
https://www.sciencedirect.com/science/article/pii/0378873383900217


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue Gao. Graph-mlp: Node
classification without message passing in graph. arXiv preprint arXiv:2106.04051, 2021.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks.
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 83(1):016107, 2011.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Divyansha Lachi, Mehdi Azabou, Vinam Arora, and Eva Dyer. Graphfm: A scalable framework for
multi-graph pretraining. arXiv preprint arXiv:2407.11907, 2024.

Ting Wei Li, Qiaozhu Mei, and Jiaqi Ma. A metadata-driven approach to understand graph neural
networks. Advances in Neural Information Processing Systems, 36:15320–15340, 2023.

Christopher Morris, Nils Morten Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020.

John Palowitch, Anton Tsitsulin, Brandon Mayer, and Bryan Perozzi. Graphworld: Fake graphs
bring real insights for gnns. In Proceedings of the 28th ACM SIGKDD conference on knowledge
discovery and data mining, pp. 3691–3701, 2022.

Mathilde Papillon, Guillermo Bernardez, Claudio Battiloro, and Nina Miolane. Topotune: A
framework for generalized combinatorial complex neural networks. In Forty-second International
Conference on Machine Learning, 2025.
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A USE OF LARGE LANGUAGE MODELS (LLMS) IN PAPER WRITING

We drafted all content ourselves and then used LLMs to improve grammar, rephrase text, and shorten
extensive sections. The models are used as editorial tools to help make our writing clearer and more
concise.

B DISCUSSION ON ROLE AND POTENTIAL IMPACT IN GRAPH FOUNDATION
MODEL DEVELOPMENT

While our primary contribution focuses on systematic inductive evaluation, GraphUniverse has
potential relevance to graph foundation model (GFM) development. This section outlines two
potential applications.

B.1 SYSTEMATIC EVALUATION TESTBED

GraphUniverse enables rapid generation of diverse graph families for comprehensive GFM assessment
across controlled distribution shifts. Unlike static benchmarks, our framework allows systematic
robustness evaluation by generating unlimited scenarios with known variations in structural properties
(homophily, density, degree distributions). This provides a precise, low-cost method for identifying
architectural vulnerabilities and understanding failure modes, directly addressing concerns about
current evaluation practices raised in recent position papers.

B.2 DATA AUGMENTATION POTENTIAL

Our framework could potentially be extended to serve as a sophisticated data augmentation tool
for GFM pre-training. By fitting GraphUniverse parameters to match statistical properties of target
domains, researchers could generate novel but realistic graph instances that preserve essential
structural relationships. This aligns with successful synthetic data strategies in computer vision and
NLP, where augmentation has proven valuable for improving model robustness Tobin et al. (2017);
Wang et al. (2023).

The key strength of this approach would be leveraging our framework’s flexibility to generate datasets
covering data modalities completely unseen in original training sets. By systematically varying
homophily levels, density, and graph sizes beyond those present in real datasets, researchers could
potentially reduce overfitting to specific dataset characteristics and train more general models capable
of robust performance across diverse graph types.

B.3 LIMITATIONS AND FUTURE DIRECTIONS

These applications represent potential future directions rather than validated capabilities, with several
concrete challenges requiring resolution. First, identifying meaningful ’communities’—the building
blocks of our framework—in real-world datasets presents domain-specific challenges. While some
datasets naturally provide community structure (e.g., atom types in molecular data), others would
require sophisticated clustering approaches, potentially incorporating positional information or
employing a two-stage process: initial unlabeled pre-training followed by clustering on learned
embeddings to fit the data generator.

Second, realistic feature generation would require careful fitting to real data distributions, most
straightforwardly achieved by computing per-community, per-dimension statistics (means and stan-
dard deviations) and sampling accordingly. Our current DC-SBM foundation may require extension
to more sophisticated generators to fully capture the complexity needed for realistic augmentation
across diverse domains.

Nevertheless, recent GFM surveys explicitly call for these types of evaluation and generation capabil-
ities, suggesting clear alignment with community needs and representing a promising line of future
work Wang et al. (2025); Bechler-Speicher et al. (2025).
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C BERNOULLLI FORMULATION OF SIMPLE DC-SBMS

Poisson multigraph. In the classical DC-SBM (Karrer & Newman, 2011), edges are Poisson
counts

Aij ∼ Poisson(λij), λij = θiθjΛbibj , (4)
with per-community normalization

∑
i∈r θi = 1. The expected block edge totals are then

E[Mrs] =

{
Λrs, r ̸= s,
1
2Λrr, r = s.

(5)

Collapsed Poisson simple graph. If we form a simple graph by collapsing multi-edges,

Ãij = 1{Aij ≥ 1}, (6)

then
Pr[Ãij = 1] = 1− e−λij . (7)

Since 1− e−x < x for x > 0, the collapsed model systematically underestimates edge probabilities
and thus block totals, except in the extremely sparse regime where 1− e−λij ≈ λij .

Bernoulli simple graph. Following the approach of Rohe et al. (2018), we can define edges directly
as Bernoulli trials,

Aij ∼ Bernoulli
(
min

(
1, θiθjPbibj

))
, (8)

with per-community mean-one normalization

1

|Vr|
∑
i∈r

θi = 1. (9)

The expected block edge totals are then:

• For r ̸= s: E[Mrs] = Prs

∑
i∈r

∑
j∈s θiθj

• For r = s: E[Mrr] =
1
2Prr

∑
i∈r

∑
j∈s,j ̸=i θiθj (excluding self-loops)

Under the normalization constraint, these simplify to:

• For r ̸= s: E[Mrs] = Prs|Vr||Vs|
• For r = s: E[Mrr] =

1
2Prr|Vr|(|Vr| − 1)

Equivalence. To match the Poisson multigraph block expectations, we set:

Prs =
Λrs

|Vr||Vs|
(r ̸= s), Prr =

Λrr

|Vr|(|Vr| − 1)
(r = s). (10)

However, as noted by Rohe et al. (2018), this equivalence only holds when the resulting probabilities
satisfy θiθjPbibj ≤ 1 for all i, j. When this constraint is violated, we apply clipping to ensure valid
Bernoulli probabilities:

edge probability = min(1, θiθjPbibj ), (11)
which introduces a systematic deviation from the Poisson block structure in dense regimes.

Theoretical justification. The theoretical foundation for this approach follows directly from
Theorem 3 in Rohe et al. (2018). Their result shows that in sparse regimes where λij = O(αn/n)
for some sequence αn, there exists a coupling between the thresholded Poisson graph and the direct
Bernoulli graph such that

E∥t(Ã)−B∥2F
E∥B∥2F

= O(αn/n), (12)

where t(Ã) represents the thresholded Poisson graph and B represents the direct Bernoulli graph.
This establishes that the two approaches are asymptotically equivalent in sparse settings.
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Summary. The Bernoulli DC-SBM with clipping preserves the interpretability of edge probabilities
and avoids the systematic underestimation of the collapsed Poisson approach, while providing exact
control over the simple graph structure. The theoretical equivalence established by Rohe et al.
(2018) validates this approach in sparse regimes, while the controlled deviation from Poisson block
expectations due to clipping represents a principled trade-off that enables direct generation of simple
graphs with desired structural properties.

D DISCUSSION ON THE LIMITATIONS OF DEGREE-CORRECTED STOCHASTIC
BLOCK MODELS AS DATA GENERATOR

The DC-SBM formulation underlying GraphUniverse carries inherent limitations that merit explicit
discussion. We categorize these limitations into two types, each with different implications for our
framework’s applicability and future development.

D.1 READILY EXTENSIBLE LIMITATIONS

Several limitations stem from design choices made for experimental simplicity and interpretability.
Features such as deterministic community membership, discrete non-overlapping communities, and
uniform community size distributions could readily be implemented as extensions to our current
framework. We deliberately chose these simplifications to maintain clear experimental control and
focus on core structural phenomena that are easily identifiable, controllable, and translatable to
real-world settings.

For researchers interested in studying specific phenomena like overlapping communities, gradual
community transitions, or hierarchical community structures, our framework provides a solid founda-
tion that can be extended while preserving the systematic control that makes synthetic benchmarks
scientifically valuable.

D.1.1 IMPLEMENTING OVERLAPPING COMMUNITIES

To illustrate the extensibility of our framework, we outline how overlapping communities could be
implemented through two additional universe-level parameters:

Co-occurrence Count Distributions: For each community k, define a discrete probability distribu-
tion over the number of additional communities a node can belong to. This could be implemented
as user-defined distributions or generated using negative binomial distributions with controllable
parameters for mixing probability and distribution shape. Setting all distributions to concentrate on
zero recovers the current non-overlapping scenario.

Community Mixing Matrix: A symmetric K ×K matrix M where each row sums to 1, controlling
how membership is distributed among overlapping communities. Entry Mi,j represents the relative
strength of membership in community j when a node’s primary assignment is to community i.

The extension process would work as follows:

1. Assign each node a primary community as before

2. Sample the number of additional communities from the co-occurrence distribution

3. Randomly select additional communities and use the mixing matrix to determine member-
ship weights

4. Compute final node behavior as weighted combinations—edge probabilities become
weighted by both nodes’ membership vectors, degree factors are determined by the dominant
community membership, and features are drawn as weighted combinations from respective
community centroids
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Formally, if node i has membership vector πi ∈ [0, 1]K with
∑K

k=1 πi,k = 1, then:

Pij = min

(
1, θiθj

K∑
r=1

K∑
s=1

πi,rπj,sPscaled[r, s]

)
(13)

θi = θi,k∗ where k∗ = argmax
k

πi,k (14)

xi ∼ N

(
K∑

k=1

πi,kµk, σ
2I

)
(15)

This approach preserves all existing framework properties while enabling systematic control over
community overlap patterns, demonstrating how our hierarchical design facilitates principled exten-
sions.

D.2 FUNDAMENTAL LIMITATIONS

More significant limitations arise from our inability to directly control complex motif-driven structures,
geometric arrangements, or specific higher-order patterns commonly found in real-world networks.
The DC-SBM cannot generate graphs with predetermined triangular motifs, star patterns, or geometric
constraints, representing a fundamental constraint on the types of graph structures our framework can
produce.

This limitation could potentially bias our evaluation toward models that perform well on community-
structured data while potentially penalizing architectures designed for other graph topologies. How-
ever, our Research Question 4 (Section 5.5) experiments provide encouraging evidence that despite
these structural constraints, GraphUniverse-generated datasets effectively predict real-world model
performance across diverse tasks, including molecular property prediction that depends heavily on
complex functional groups and higher-order chemical structures (Wu et al., 2023).

D.3 IMPLICATIONS AND FUTURE DIRECTIONS

The transferability we observe suggests that community-centric evaluation captures sufficient funda-
mental graph learning capabilities—the interplay between local structure, features, and connectivity
patterns—for meaningful model assessment across diverse domains. Nevertheless, extending our
framework to incorporate more sophisticated generative models while maintaining systematic experi-
mental control represents a valuable direction for future work, particularly for applications requiring
finer control over specific structural motifs or geometric properties.

E SCALING RAW PROPENSITY TO BERNOULLI PROBABILITY MATRIX WITH
DESIRED EXPECTED HOMOPHILY AND AVERAGE DEGREE

To introduce controllable heterogeneity, we generate a raw propensity matrix P̃ ∈ Rk×k
≥0 as

P̃rs = 1 + ξrs, ξrs ∼ N (0, (2ϵ)2), ϵ ∈ [0, 1], (16)

where ϵ controls the variance of the perturbation. Entries are clipped to [0, 2] and symmetrized by
setting P̃rs = P̃sr. When ϵ = 0 the matrix reduces to the all-ones matrix, while larger values of ϵ
yield increasing heterogeneity across communities.

Scaling to Target Density and Homophily The raw propensity matrix P̃ only specifies relative
propensities. Given a graph with n nodes with a uniform distribution of k communities, we want
to transform it into a valid probability matrix P ∗ ∈ [0, 1]k×k that achieves a user-specified average
degree d and homophily level h.

Let

Sdiag =

k∑
r=1

P̃rr, Soff =

k∑
r,s=1
r ̸=s

P̃rs.
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We first apply two scaling factors αdiag, αoff > 0 to obtain

P ′
rs =

{
αdiag · P̃rr, r = s,

αoff · P̃rs, r ̸= s.
(17)

The ratio of diagonal to off-diagonal mass is then∑
r P

′
rr∑

r ̸=s P
′
rs

=
αdiagSdiag

αoffSoff
.

We now enforce the target homophily constraint by stating enforcing that this ratio equals h/(1− h),
which yields the constraint

αdiag

αoff
=

h

1− h
· Soff

Sdiag
. (18)

Up to this point we are not yet working with actual probabilities so we can scale the diagonal by
setting αdiag == 1 and calculating αoff by solving equation 18 and scale the off-diagonal by this
value.

Next we impose the average degree constraint and scale to obtain actual edge probabilities. Let n be
the number of nodes and let the target edge density be

ρtarget =
d

n− 1
. (19)

We apply a global scaling factor β > 0 to obtain the final matrix

P ∗ = βP ′, (20)

where β is chosen such that the mean entry of P ∗ equals ρtarget, i.e.

β =
n2ρtarget∑

r,s P
′
rs

. (21)

Finally, we clip entries of P ∗ to the interval [0, 1] to ensure valid Bernoulli probabilities.

The resulting matrix P ∗ satisfies three properties: (i) it preserves the relative heterogeneity induced by
P̃ , (ii) it achieves the specified homophily ratio between intra- and inter-community connections, and
(iii) it yields an expected average degree of d up to sampling fluctuations. This construction allows
graphs to be generated at arbitrary density and homophily levels without discarding the fine-grained
structure encoded in P̃ , which is essential for controlled multi-graph family generation.

F DETAILS OF COMMUNITY-COUPLED DEGREE FACTORS

For completeness we record the precise definitions used in the degree–community coupling mecha-
nism.

Overall procedure. The coupling process consists of four steps: (1) sample power-law degree
factors independently, (2) sort them in ascending order, (3) assign sorted factors to nodes based on
community-specific rank sampling, and (4) apply global normalization.

Power-law degree factor generation. We first generate n independent degree factors from a
power-law distribution with exponent α:

θ
(0)
i ∼ PowerLaw(α), i = 1, . . . , n

These are then sorted to obtain the ordered sequence (θ(1), . . . , θ(n)) with θ(1) ≤ θ(2) ≤ · · · ≤ θ(n).

Community rank centers. Each community k is assigned a degree center δk ∈ [−1, 1] that maps
linearly to a preferred mean rank:

µk =
1 + δk

2
(n− 1)

Thus δk = −1 corresponds to rank µk = 0 (lowest-degree regime), δk = 0 to rank µk = (n− 1)/2
(middle-degree regime), and δk = +1 to rank µk = n− 1 (highest-degree regime).
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Rank sampling and assignment. For each node i in community c(i), we sample a rank index ℓi
from a truncated Gaussian distribution:

ℓi ∼ N (µc(i), σ
2) truncated to [1, n]

Node i is then assigned degree factor θi = θ(ℓi).

Variance interpolation. The sampling variance is set as

σ2 = σ2
min + (1− ρ)(σ2

max − σ2
min),

where ρ ∈ [0, 1] is the degree separation parameter. Here σmax = n corresponds to nearly uniform
assignments with strong overlap across communities.

Minimal variance. To prevent degenerate overlaps when communities are spread apart in degree
space, we set

σmin = max
(
1, min

k ̸=k′

|µk−µk′ |
6

)
,

which ensures sufficient separation whenever the community centers µk are far apart.

Normalization. In the classical Bernoulli DC-SBM, degree factors are normalized within each
community:

1

nr

∑
i: bi=r

θi = 1 ∀r.

In our construction we instead apply a single global normalization

1

n

n∑
i=1

θi = 1,

so that the average degree factor is one across all nodes. This choice preserves the relative placement
of communities in the degree spectrum, though it does not guarantee exact per-community calibration.
Empirically we observe that the global normalization suffices for maintaining the target average
degree (see Section 4.3).

G CONNECTIVITY CORRECTION ALGORITHM

When the initial edge sampling results in disconnected components, we employ a greedy algorithm to
restore connectivity while minimally perturbing the intended block structure. The procedure operates
as follows:

Algorithm Overview: We iteratively connect the smallest disconnected component to the main graph
by selecting edges that best align with the target probability matrix Psub. After each edge addition,
we recompute connected components and repeat until the graph becomes fully connected.

Connection Selection: For each potential edge (i, j) between communities c(i) and c(j), we
calculate a score based on the current deviation between actual and expected inter-community edge
probabilities:

• If the actual probability is below the expected value (actualc(i),c(j) < Psub[c(i), c(j)]),
adding an edge reduces this negative deviation (preferred option).

• If the actual probability exceeds expectations, we select connections that minimize further
deviation.

Deviation Calculation: We maintain a normalized actual probability matrix where edge counts are
divided by the maximum possible edges between community pairs, then scaled to match the total
mass of Psub for fair comparison.

This approach optimally balances connectivity requirements with structural fidelity: it improves the
match to the target block structure when possible (by connecting under-connected community pairs)
and minimizes degradation when connectivity necessitates violating the intended structure, thereby
preserving the statistical properties of the generated graph family to the greatest extent possible.
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H CORE PARAMETER ALLOWED SAMPLING RANGES FOR VALIDATION
EXPERIMENT

Table 2: Parameter sampling ranges for randomized validation experiments

Parameter Type Sampling Range

Universe Level
Edge Propensity Variance (ϵ) Continuous [0.0, 1.0]
Feature Dimension Discrete [10, 100]
Center Variance (σ2

center) Continuous [0.1, 1.0]
Cluster Variance (σ2

cluster) Continuous [0.1, 1.0]

Family Level
Min Node Count (nmin) Discrete [50, 400]
Max Node Count (nmax) Discrete [100, 1000]
Min Communities (kmin) Discrete [2, 15]
Max Communities (kmax) Discrete [4, 15]
Homophily Range (hmin, hmax) Range [0.0, 1.0]
Average Degree Range (dmin, dmax) Range [2.0, 20.0]
Degree Separation Range (ρmin, ρmax) Range [0.0, 1.0]
Power Law Exponent Range (αmin, αmax) Range [1.5, 4.5]

For parameters that represent ranges themselves (e.g., Homophily Range, Average Degree Range),
we sample the range bounds from the specified limits and then generate individual range spans
with widths between 5% and 20% (randomly drawn) of the parameter space, ensuring meaningful
variation while maintaining practical constraints. All experiments use a fixed universe size of K = 15
communities. Results shown in Table 2.

Note: For paired parameters (min/max node count and communities), the code ensures logical
constraints where maximum values exceed minimum values by appropriate margins.

I VALIDATION METRICS IMPLEMENTATION DETAILS

We organize our validation metrics into three categories that capture different aspects of generation
quality. An overview table of all validation metrics is given in Table 3:

I.1 GRAPH PROPERTY METRICS

These metrics verify that generated graphs match their target structural specifications:

Homophily: Fraction of edges within communities: h =
∑

(i,j)∈E 1[c(i) = c(j)]/|E|. This directly
validates whether the target homophily level is achieved.

Average Degree: Mean node degree across the graph, validating that edge density scaling produces
the intended connectivity level.

Degree Tail Ratio: Ratio of 99th percentile to mean degree (τ99 = d99/d̄), capturing heavy-tailedness
of the degree distribution and validating power-law parameter effects.

Generation Time: Wall-clock time per graph instance, assessing computational efficiency.

Mean Probability Matrix Deviation: This metric quantifies how well the realized graph structure
matches the target community connection patterns. For each graph, we compute the deviation between
the actual probability matrix Aactual and the expected matrix Psub:

1. Calculate actual edge probabilities between communities i and j:

Aactual[i, j] =

{ edge counti,j
ni(ni−1) if i = j

edge counti,j
ni·nj

if i ̸= j
(22)
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where ni is the size of community i and edge counti,j is the number of edges between
communities i and j.

2. Compute mean absolute deviation: deviation = 1
k2

∑
i,j |Aactual[i, j]−Psub[i, j]|

I.2 SIGNAL STRENGTH METRICS

These metrics assess whether within each graph we can find meaningful, learnable community
structure through different node-level predictive signals:

All signal metrics use Random Forest classification with the following configuration: 100 estimators,
unlimited depth, minimum 2 samples per split, minimum 1 sample per leaf. Data is split 70/30
train/test with stratification to ensure all communities appear in both sets. Performance is measured
using macro F1-score.

Feature Signal: Uses node features xi directly as input to predict community labels.

Degree Signal: Uses node degree di as single-dimensional input.

Structure Signal: For each node v, construct feature vector fv ∈ R3k by concatenating community
neighbor counts at distances 1, 2, and 3:

fv = [n(1)
v ,n(2)

v ,n(3)
v ]

where n
(d)
v = [n

(d)
v,1, n

(d)
v,2, . . . , n

(d)
v,k] and n

(d)
v,c is the number of neighbors of node v in commu-

nity c at exactly distance d. For example, with 5 communities, if node v has neighbors in com-
munities [1,1,2,4,4,4] at distance 1, [2,2,3,5,5,5,5] at distance 2, and [1,4,4] at distance 3, then
fv = [2, 1, 0, 3, 0, 0, 2, 1, 0, 4, 1, 0, 0, 2, 0].

I.2.1 CROSS-GRAPH CONSISTENCY METRICS

These metrics evaluate whether community identities remain semantically consistent across different
graph instances within a family:

Structure Consistency: For each graph g, compute

consistencyg =
1

k

k∑
i=1

ρSpearman(P̃i,:,A
(g)
actual,i,:)

where ρSpearman denotes Spearman rank correlation, P̃i,: is row i of the universe propensity matrix
restricted to participating communities, and A(g)

actual,i,: is the corresponding row of the actual probability
matrix.

Degree Consistency: Combines within-graph and cross-graph consistency:

consistencyg =
1

2

(
ρ
(g)
within + ρ(g)cross

)
where ρ

(g)
within = ρSpearman(d̄

(g), δC(g)) compares average degrees per community d̄(g) with universe
degree centers δC(g) , and

ρ(g)cross =
1∑

g′ ̸=g wg,g′

∑
g′ ̸=g

wg,g′ · ρSpearman(s
(g), s(g

′))

where s(g) ∈ [0, 1]K is the percentile signature for graph g with s
(g)
c =

rank(d̄(g)
c )−1

|C(g)|−1
for participating

communities and s
(g)
c = NaN otherwise, wg,g′ = |{c : s(g)c ̸= NaN ∧ s

(g′)
c ̸= NaN}| is the overlap

weight, and the correlation is computed only over non-NaN entries.

Feature Consistency: Average pairwise cosine similarity between community centroids:

consistency =
2

N(N − 1)

N−1∑
g=1

N∑
g′=g+1

1

k

k∑
c=1

µ
(g)
c · µ(g′)

c

∥µ(g)
c ∥∥µ(g′)

c ∥

where N is the number of graphs and µ
(g)
c is the centroid of community c in graph g.
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Category Metric Description

Graph
Property

Homophily Fraction of edges within communities: h =
∑

(i,j)∈E 1[c(i) =

c(j)]/|E|
Average degree Mean node degree, validating edge density scaling
Degree tail ratio 99 Ratio of 99th percentile to mean degree: τ99 = d99/d̄

Generation time Wall-clock time per graph instance
Mean Probability Ma-
trix Deviation

Average deviation between realized and target community edge
probability matrices (Psub)

Signal
Strength

Feature signal Per-graph, node-level community predictability via Random Forest
(macro F1) using node features xi as predictor

Structure signal Per-graph, node-level community predictability via Random Forest
(macro F1) using k-hop neighbors label counts (k ∈ {1, 2, 3}) as
predictor.

Degree signal Per-graph, node-level Community predictability via Random Forest
(macro F1) using node degree di as predictor.

Cross-Graph
Consistency

Feature consistency Average pairwise cosine similarity between community feature
centroids across graphs

Structure consistency Spearman correlation between universe propensity matrix P̃ and
realized edge probabilities

Degree consistency Rank correlation of community degree orderings across graphs

Table 3: Validation metrics for evaluating GraphUniverse generation framework.

J EXPANDED VALIDATION RESULT ANALYSIS

Detailed Validation Result Analysis. The correlation heatmap (Figure 2) demonstrates compre-
hensive parameter control across all validation metrics, revealing both expected relationships and
theoretically interpretable effects.

Graph Property Metrics (first panel) show expected strong correlations with some additional
insights. Input parameters precisely control observed homophily and average degree, while power-law
exponent governs degree tail heaviness and node count correlates with generation time. We observe
minor statistically significant effects on generation time from other parameters, likely reflecting
computational complexity variations. Notably, increasing node count reduces probability matrix
deviation, suggesting that larger graphs experience fewer random sampling effects due to improved
statistical power. Slight deviations from target edge probability matrices under high average degree
and degree separation parameters reflect the multiplicative edge generation process, where stronger
degree factor effects naturally influence connection patterns.

Signal Strength Metrics (second panel) demonstrate strict adherence to theoretical expectations at
the single-graph level, where Random Forest classifiers predict community labels within each graph
instance. Cluster variance directly controls feature signal strength by determining feature separability
between communities. The negative correlation between community count and all signal metrics
reflects the fundamental difficulty of multi-class classification: distinguishing between two commu-
nities is inherently easier than discriminating among many, leading to higher F1 scores with fewer
classes given similar discriminative power. Homophily’s positive correlation with structure signal has
a clear mechanistic explanation: when neighbors predominantly share the same community label,
neighborhood composition becomes a highly predictive feature for node classification. This relation-
ship—where averaging neighborhood representations provides strong community signals—likely
explains the effectiveness of simple GNNs like GCN in homophilic settings. Similarly, average
degree enhances structure signal by providing more neighborhood information, giving classifiers
richer structural context for community prediction.

Cross-Graph Consistency Metrics (third panel) provide the strongest validation of our hierar-
chical design. The intended universe-level signals are present and tightly controllable: propensity
variance governs structure consistency, degree separation controls degree consistency, and cluster
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variance determines feature consistency. The negative correlation between community count and
consistency metrics reflects increased sensitivity to random effects when computing correlations
across many classes, where small sampling variations can more easily perturb rank orderings. We
observe a theoretically justified trade-off between degree separation and propensity variance effects
on edge probability deviation, emerging from our multiplicative edge generation process where
Pij = θiθjPscaled[c(i), c(j)], causing these parameters to modulate different components of the same
generative mechanism.

J.1 INDIVIDUAL PARAMETER-VALIDATION PLOTS

Please see figures below.

(a) Randomized Parameter Validation of Edge Propen-
sity Variance parameter. Top left shows Pearson cor-
relation and statistical significance level (NS, not sta-
tistically significant).

(b) Randomized Parameter Validation of Cluster Vari-
ance parameter. Top left shows Pearson correlation
and statistical significance level (NS, not statistically
significant).
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(a) Randomized Parameter Validation of Homophily
Range parameter. Top left shows Pearson correlation
and statistical significance level (NS, not statistically
significant).

(b) Randomized Parameter Validation of Average De-
gree Range parameter. Top left shows Pearson corre-
lation and statistical significance level (NS, not statis-
tically significant).

(a) Randomized Parameter Validation of Node Count
range parameter. Top left shows Pearson correlation
and statistical significance level (NS, not statistically
significant).

(b) Randomized Parameter Validation of Communities
Participating Per Graph Range parameter. Top left
shows Pearson correlation and statistical significance
level (NS, not statistically significant).
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(a) Randomized Parameter Validation of Degree Sepa-
ration Range parameter. Top left shows Pearson corre-
lation and statistical significance level (NS, not statis-
tically significant).

(b) Randomized Parameter Validation of Power Law
Range parameter. Top left shows Pearson correlation
and statistical significance level (NS, not statistically
significant).

K REAL-WORLD DATASET VALIDATION

K.1 EQUIVALENT DATASET PARAMETER EXTRACTION

To establish correspondence between real-world datasets and their synthetic equivalents, we developed
a systematic parameter extraction pipeline that maps dataset characteristics to GraphUniverse and
GraphWorld generation parameters.

K.1.1 COMMUNITY DEFINITION STRATEGY

The extraction process begins by identifying a suitable notion of “community” for each dataset, which
varies based on available features:

• Molecular datasets (NCI1, MUTAG, AQSOL, OGBG-MolHIV): We use atom types as
natural communities, extracted via argmax on one-hot encoded features or directly from
atomic number features.

• IMDB-MULTI: Lacking node features or labels, we perform degree-based clustering using
K-means on node degree and clustering coefficient features, with optimal K determined via
silhouette scoring.

K.1.2 PARAMETER MAPPING METHODOLOGY

For each dataset, we extract:

1. Graph size distribution: Number of nodes across all graphs

2. Average degree distribution: Mean degree per graph

3. Community structure: Number of unique communities per graph and total unique commu-
nities

4. Homophily: Fraction of edges connecting nodes in the same community
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For GraphUniverse, we use the 5th-95th percentile range of each property to capture the full
distribution while avoiding outliers. The universe size K is set to the maximum of (i) the 90th
percentile of communities needed to cover 90% of nodes, and (ii) the maximum communities per
graph, ensuring sufficient diversity.

For GraphWorld, following their single-graph paradigm, we use mean values for all properties. Both
K and communities per graph are set to the dataset’s mean unique communities per graph. However,
for fairness, we set the graph size to 1000 instead of the average of the real dataset’s graph sizes,
which in general are too small in an inductive dataset to train a model on.

K.1.3 EXTRACTED PARAMETERS

Table 4 presents the extracted parameters for all datasets. Note that GraphUniverse captures the
heterogeneity of real datasets through ranges, while GraphWorld reduces this to point estimates.

Table 4: Extracted parameters from real datasets and their synthetic equivalents. GraphUniverse uses
5th-95th percentile ranges; GraphWorld uses mean values.

Nodes Avg. Degree Homophily Communities/Graph Universe
Dataset #Graphs GU Range GW GU Range GW GU Range GW GU Range GW K
OGBG-MolHIV 41,127 [13, 46] 1000 [2.00, 2.50] 2.14 [0.32, 0.84] 0.61 [2, 5] 3 5/3
AQSOL 9,833 [10, 36] 1000 [1.60, 2.25] 1.98 [0.15, 0.92] 0.59 [2, 5] 2 5/2
IMDB-MULTI 1,500 [10, 31] 1000 [4.67, 17.00] 8.10 [0.35, 1.00] 0.80 [2, 5] 2 5/2
NCI1 4,110 [15, 59] 1000 [2.00, 2.50] 2.16 [0.38, 0.82] 0.62 [2, 5] 3 5/3
ZINC 10,000 [16, 31] 1000 [2.00, 2.50] 2.14 [0.32, 0.71] 0.52 [3, 6] 4 6/4

Notes: GU = GraphUniverse, GW = GraphWorld. For Universe K, we show both values (GraphU-
niverse/GraphWorld) when they differ. For all experiments except the IMDB-MULTI one, other
generation parameters (edge propensity variance, cluster variance, degree separation) are set to
mid-range values (0.5) for consistency across experiments. For the IMDB-MULTI one, since it does
not have any node-features, we set the feature signal to zero in equivalent dataset (center variance of
0.01, cluster variance of 1.0) and the degree separation, now being the main identifier for community
detection, to a range of 0.9 to 1.0.

K.2 DETAILED REAL-WORLD ALIGNMENT ANALYSIS

Figure 10 provides a detailed model-level analysis of ranking correlations between synthetic and
real-world datasets. For each of the six datasets, we plot individual model rankings computed via
bootstrap analysis (1000 iterations) to quantify uncertainty in rank estimates. In this plot we omitted
the baseline models, since these artificially inflate correlation. This effect is displayed in Figure 11,
where the DeepSet and GraphMLP models are included.

The results confirm that GraphUniverse preserves real-world model ranking patterns across diverse
datasets. GraphUniverse (top row) achieves strong positive Spearman correlations, demonstrating
that models maintaining similar relative performance in both synthetic and real settings. In contrast,
GraphWorld (bottom row) shows poor alignment with multiple negative correlations, failing to
capture how model performance varies across different graph structures. This ranking preservation is
crucial for practitioners who need to select architectures based on synthetic benchmark results, as
GraphUniverse reliably predicts which models will perform well on real-world tasks.
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Figure 10: Model ranking correlations between real and synthetic datasets. Each point represents
a model’s rank (1=best) with error bars showing bootstrap standard deviation (1000 iterations).
GraphUniverse (top row) demonstrates strong rank preservation, while GraphWorld (bottom row)
shows poor alignment including negative correlations. The red line shows linear fit to mean ranks,
with the diagonal gray line indicating perfect correlation. Non-message passing models (DeepSet and
GraphMLP) are omitted to focus on graph-aware architectures, as they consistently underperform
and artificially inflate correlations.
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Figure 11: Model ranking correlations between real and synthetic datasets. Each point represents a
model’s rank (1=best) with error bars showing bootstrap standard deviation (1000 iterations). The red
line shows linear fit to mean ranks, with the diagonal gray line indicating perfect correlation. Non-
message passing models (DeepSet and GraphMLP) are incleded, artificially inflating correlations,
especially for the GraphWorld case (bottom row).

L HETEROPHILY-SPECIALIZED ARCHITECTURES EVALUATION

To further validate our framework’s ability to capture nuanced architectural differences across
graph properties, we extend our benchmarking to include models that have shown effectiveness
in heterophilic settings: Frequency Adaptive Graph Convolutional Network (FAGCN) (Bo et al.,
2021), H2GCN (Zhu et al., 2020), and ChebNet (Tang et al., 2024). While FAGCN and H2GCN
were explicitly designed for heterophilic graphs, ChebNet’s spectral approach using Chebyshev
polynomials has demonstrated strong empirical performance in low-homophily settings, making it a
valuable addition to our analysis.

L.1 EXPERIMENTAL SETUP

We evaluate FAGCN, H2GCN, and ChebNet alongside our original model suite across five homophily
levels (0.05, 0.25, 0.5, 0.75, 0.95) in the transductive setting (GraphWorld style) and three homophily
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ranges ([0.0,0.1], [0.4,0.6], [0.9,1.0]) in the inductive setting (GraphUniverse style). All other
experimental parameters remain consistent with our main benchmarking protocol (Section 5.1),
including hyperparameter optimization procedures and evaluation metrics.

The hyperparameter grid used in optimization of these heterophily-specialized models is displayed in
Table 5.

L.2 RESULTS AND ANALYSIS

Figure 12 presents the performance of heterophily-specialized models compared to our baseline
architectures across the homophily spectrum.

Our results reveal surprising differences between evaluation paradigms:

Transductive Performance: As expected, H2GCN and ChebNet demonstrate superior performance
in the most heterophilic regimes (0.05-0.25), validating their design principles for heterophilic graphs.
Their advantage gradually diminishes as homophily increases, with performance converging to
baseline levels at high homophily (0.95). Notably, FAGCN underperforms relative to expectations,
suggesting that its frequency-adaptive mechanisms may not translate effectively to our synthetic
community detection task.

Inductive Performance: In contrast, none of the heterophily-specialized models maintain their
advantages in the inductive setting. Performance differences across homophily levels become less
pronounced, and specialized architectures show no clear superiority over standard message-passing
networks like GAT and GraphSAGE. This finding suggests that the benefits of heterophily-specific
designs may be diminished when models must generalize to entirely new graph instances rather than
leveraging global structural patterns within a single graph.

This experiment further validates GraphUniverse’s capacity to reveal architectural behaviors that
remain hidden in traditional single-graph evaluations. Architectural advantages observed in trans-
ductive settings may not transfer to inductive scenarios, emphasizing the importance of evaluation
paradigm choice.

Table 5: Hyperparameter grid search space for heterophily-specialized models.

Model Hyperparameter Search Space (Grid)
ChebNet feature encoder.out channels {32, 64}

feature encoder.proj dropout {0.3}
backbone.num layers {2, 4}
backbone.K {2, 3, 5}
backbone.normalization {sym, rw}
backbone.dropout {0.2, 0.4}
readout.hidden layers {[16], []}
readout.dropout {0.3}

FAGCN feature encoder.out channels {32, 64}
feature encoder.proj dropout {0.3}
backbone.num layers {2, 4}
backbone.eps {0.0, 0.1, 0.2}
backbone.normalize {True, False}
backbone.dropout {0.2, 0.4}
readout.hidden layers {[16], []}
readout.dropout {0.3}

H2GCN feature encoder.out channels {32, 64}
feature encoder.proj dropout {0.3}
backbone.num layers {2, 4}
backbone.k {2, 3}
backbone.use relu {True, False}
backbone.dropout {0.2, 0.4}
readout.hidden layers {[16], []}
readout.dropout {0.3}
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Figure 12: Performance comparison of heterophily-specialized models (FAGCN, H2GCN, ChebNet)
against baseline architectures across varying homophily levels in inductive and transductive settings.
Error bars represent the standard deviation of the test performance across different random seeds.

M FURTHER EXPERIMENTAL DETAILS

This appendix provides supplementary details regarding the experimental setup used in this work to
ensure reproducibility.

M.1 GRAPH GENERATION PARAMETERS

Table 6 specifies the default generation parameters used for both the primary inductive setting and the
baseline transductive setting. The universe parameters define the underlying semantic space (e.g.,
number of communities, feature characteristics), while the family parameters control the structural
properties of the sampled graphs. Note the key differences: the inductive setting generates a large
family of smaller, varied graphs, whereas the transductive setting generates a single, large graph with
fixed properties.

M.2 BENCHMARKED MODEL ARCHITECTURES

This section provides a brief overview of the models included in our experimental evaluation.

GraphMLP & DeepSet These models serve as non-message-passing baselines. DeepSet is a
permutation-invariant architecture for learning on sets, ignoring all structural information (Zaheer
et al., 2017). GraphMLP basically extends DeepSet by incorporating graph structure during training
via a neighborhood contrastive loss, which encourages linked nodes to have similar representa-
tions (Hu et al., 2021).

Graph Convolutional Network (GCN) The GCN is a foundational GNN architecture that learns
node representations by efficiently aggregating feature information from its immediate neighbors
through a spectral-based graph convolution (Kipf & Welling, 2017).

GraphSAGE Short for Graph SAmple and aggreGatE, this model provides a framework for
inductive node embedding (Hamilton et al., 2017). Instead of training on the entire graph, it learns
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aggregation functions on a fixed-size sample of a node’s neighborhood, allowing it to generalize to
unseen nodes and graphs.

Graph Isomorphism Network (GIN) The GIN is a powerful GNN designed to be as discriminative
as the Weisfeiler-Lehman (WL) graph isomorphism test (Xu et al., 2019). It achieves this by using an
MLP to update node features, making it highly effective for tasks requiring a strong understanding of
graph structure.

Graph Attention Network v2 (GATv2) GATv2 (Brody et al., 2022) is an improved version
of the original GAT model (Veličković et al., 2018) that uses a modified attention mechanism to
make it strictly more expressive. By assigning different importance weights to different nodes in a
neighborhood, both GAT and GATv2 can focus on the most relevant parts of the graph for a given
task,

Neural Sheaf Diffusion (NSD) NSD generalizes message passing to cellular sheaves, which are
topological structures capable of representing more complex relationships (Bodnar et al., 2022). This
allows it to capture richer structural and relational information than standard GNNs.

TopoTune TopoTune is a framework designed to systematically generalize any GNN into a topo-
logical neural network, making higher-order structures accessible for learning (Papillon et al., 2025).
It operates by taking a GNN as input and using it as a building block within a more expressive
architecture called a Generalized Combinatorial Complex Network (GCCN). This is achieved by
expanding a higher-order structure (like a simplicial or cell complex) into a collection of graphs,
which are then processed by an ensemble of synchronized GNNs. This approach democratizes
topological deep learning by allowing practitioners to easily ”upgrade” existing GNNs to reason
about complex, multi-way relationships beyond simple edges.

GPS (Graph Transformer) The GPS model combines the expressive power of transformers with
standard message-passing GNNs (Rampášek et al., 2022). By integrating local structural information
with global attention mechanisms and positional encodings, it aims to capture a wide range of
dependencies in the graph, making it a very powerful and flexible architecture.

M.3 HYPERPARAMETER OPTIMIZATION

For each model, we leverage the TopoBench infrastructure (Telyatnikov et al., 2025) to perform an
extensive grid search to identify optimal hyperparameter configurations, optimizing for the highest
mean accuracy on a held-out validation set (over three dataset seeds). Table 7 details the complete
search space used for every hyperparameter of each model (following TopoBench logic of feature
encoder, backbone and readout modules), providing a basis for the reproducibility of our experiments.
Unless otherwise specified in Table 7, we note that sum is the by default pooling method. Full scripts
and configuration files will be publicly available upon acceptance.

Remark. It should be noted that these spaces were refined based on preliminary, larger-scale grid
searches; we pruned parameter options that consistently showed a negligible or detrimental impact on
performance to focus on the most influential hyperparameters. Furthermore, to limit the combinatorial
explosion of the search space, parameters such as batch size and optimizer settings were fixed. These
values were informed by previous benchmarks in TopoBench and TopoTune (Papillon et al., 2025);
for example, we used the Adam optimizer with a learning rate of 0.001 and set the batch size to 32
for all inductive experiments.

M.4 HARDWARE DETAILS

The hyperparameter search is executed on a Linux machine with 256 cores, 1TB of system memory,
and 4 NVIDIA H100 GPUs, each with 94GB of GPU memory.
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Table 6: Default GraphUniverse generation parameters for Inductive and Transductive settings.
Differences are highlighted in bold.

Inductive Value Transductive Value
Universe Parameters

Number of communities (K) 10 10
Feature Dimension 15 15
Center Variance (σ2

center) 0.2 0.2
Cluster Variance (σ2

cluster) 0.5 0.5
Edge Propensity Variance (ϵ) 0.5 0.5
Seed 42 42

Family Parameters
Number of graphs 1000 1
Min Node Count (nmin) 50 1000
Max Node Count (nmax) 200 1000
Min Communities (kmin) 4 10
Max Communities (kmax) 6 10
Homophily Range (hmin, hmax) [0.4, 0.6] [0.5, 0.5]
Average Degree Range (dmin, dmax) [1.0, 5.0] [2.5, 2.5]
Degree Separation Range (ρmin, ρmax) [0.5, 0.8] [0.5, 0.5]
Degree distribution power law power law
Power Law Exponent Range (αmin, αmax) [2.0, 2.5] [2.5, 2.5]
Seed (Inherited from Universe)
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Table 7: Hyperparameter grid search space for each model.

Model Hyperparameter Search Space (Grid)
GCN feature encoder.out channels {32, 64}

backbone.num layers {2, 4}
backbone.dropout {0.2, 0.4}
readout.hidden layers {[16], []}

GIN feature encoder.out channels {32, 64}
backbone.num layers {2, 4}
backbone.dropout {0.2, 0.4}
readout.hidden layers {[16], []}

GraphSAGE feature encoder.out channels {32, 64}
backbone.num layers {2, 4}
backbone.dropout {0.2, 0.4}
readout.hidden layers {[16], []}

GAT feature encoder.out channels {32, 64}
backbone.num layers {2, 4}
backbone.heads {2, 4, 8}
backbone.dropout {0.0, 0.2}
readout.hidden layers {[16], []}

GPS feature encoder.out channels {32, 64}
backbone.num layers {2, 4}
backbone.heads {4}
backbone.dropout {0.2, 0.4}
backbone.attn type {multihead, performer}
transforms.encodings {RWSE, LapPE}
readout.hidden layers {[16], []}

NSD feature encoder.out channels {32, 64}
backbone.num layers {2, 4, 6}
backbone.dropout {0.2, 0.4}
backbone.sheaf type {bundle, diag}
transforms.encodings {RWSE, LapPE}
readout.hidden layers {[16], []}

GraphMLP feature encoder.out channels {32, 64}
backbone.order {2, 4}
backbone.dropout {0.2, 0.4}
readout.hidden layers {[16], []}

DeepSet feature encoder.out channels {32, 64}
readout.hidden layers {[64, 32], [32, 16], [16]}
readout.dropout {0.2, 0.4}

TopoTune model type {cell, simplicial}
feature encoder.out channels {32, 64}
tune gnn {GCN, GIN, GAT, GraphSAGE}
backbone.layers {2, 4}
readout.pooling type {mean, sum}
backbone.neighborhoods {10 predefined topological operator sets}
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