

000 001 002 003 004 005 006 007 008 009 010 GRAPHUNIVERSE: ENABLING SYSTEMATIC EVALUA- TION OF INDUCTIVE GENERALIZATION

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 A fundamental challenge in graph learning is understanding how models generalize
 012 to new, unseen graphs. While synthetic benchmarks offer controlled settings for
 013 analysis, existing approaches are confined to single-graph, transductive settings
 014 where models train and test on the same graph structure. Addressing this gap, we
 015 introduce GraphUniverse, a framework for generating entire families of graphs
 016 to enable the first systematic evaluation of inductive generalization at scale. Our
 017 core innovation is the generation of graphs with persistent semantic communities,
 018 ensuring conceptual consistency while allowing fine-grained control over structural
 019 properties like homophily and degree distributions. This enables crucial but under-
 020 explored robustness tests, such as performance under controlled distribution shifts.
 021 Benchmarking a wide range of architectures—from GNNs to graph transformers
 022 and topological architectures—reveals that strong transductive performance is a
 023 poor predictor of inductive generalization. Furthermore, we find that robustness
 024 to distribution shift is highly sensitive not only to model architecture choice but
 025 also to the initial graph regime (e.g., high vs. low homophily). **Beyond benchmark-
 026 ing, GraphUniverse’s flexibility and scalability can facilitate the development of
 027 robust and truly generalizable architectures.** An interactive demo is available at
 028 <https://graphuniverse.streamlit.app/>.

029 1 INTRODUCTION

030 Graph learning has emerged as a powerful paradigm for learning from relational data across diverse
 031 domains, from drug discovery (Wong et al., 2024) and fraud detection (Cheng et al., 2025) to
 032 knowledge graphs (Galkin et al., 2023). Graph Neural Networks (GNNs) (Scarselli et al., 2008), with
 033 its countless variants (Gilmer et al., 2017; Kipf & Welling, 2017; Hamilton et al., 2017; Xu et al.,
 034 2019; Veličković et al., 2018), have demonstrated remarkable success in extending deep learning
 035 frameworks to graph-structured data, achieving competitive performance on tasks ranging from node
 036 classification to graph-level prediction. However, unlike the transformative leap from task-specific
 037 models to general-purpose architectures observed in natural language processing and computer vision,
 038 graph learning remains largely limited to specialized, task-specific models with limited evidence of
 039 robust generalization and scaling capabilities.

040 Recent analyses argue that progress in graph learning is hindered by a flawed benchmarking culture.
 041 Bechler-Speicher et al. (2025), for instance, critiques the field’s excessive focus on incremental gains
 042 on weak benchmarks, which often fail to outperform simpler non-graph baselines. They also highlight
 043 a scarcity of large-scale, diverse datasets, arguing that these limitations hinder the development of
 044 models that can generalize and scale. Complementing this, Wang et al. (2025) pinpoints critical gaps
 045 in the theoretical understanding of model behavior—particularly concerning robustness to distribution
 046 shifts and generalization guarantees. They identify these theoretical weaknesses as key obstacles
 047 preventing graph models from advancing beyond narrow, task-specific applications.

048 To remedy these issues, both works propose creating better datasets through synthetic generation and
 049 quality-centric curation, alongside developing metrics for generalization, robustness, and trustwor-
 050 thiness. However, existing synthetic generation tools like GraphWorld (Palowitch et al., 2022) are
 051 fundamentally limited in this regard. They generate graphs as isolated, independent instances, which
 052 restricts evaluation to transductive settings where a model trains and tests on the same structure. This
 053 single-graph paradigm makes it impossible to study generalization to unseen graphs and constrains to

054 experiment at scale—precisely the two capabilities identified as critical for building powerful graph
 055 foundation models (Wang et al., 2025).
 056

057 We address this gap with **GraphUniverse**: a framework for generating graph families at scale. Our
 058 contributions can be summarized as follows:

- 059 1. We develop a hierarchical generative model extending Degree Corrected-Stochastic Block Models
 060 (DC-SBMs) (Karrer & Newman, 2011) to an inductive setting with multiple graphs that maintain
 061 semantic consistency—i.e. node identities or community structures persist across different graph
 062 instances—while enabling controlled variation in their structural properties.
- 063 2. We provide an interactive web platform (<https://graphuniverse.streamlit.app/>)
 064 for visualization, exploration, and direct download of generated datasets.
- 065 3. We conduct systematic benchmarking comparing inductive and transductive evaluation across
 066 classical and contemporary graph architectures, revealing differences in model rankings between
 067 paradigms. Additionally, we evaluate model robustness under controlled property shifts, an
 068 analysis only possible with our inductive framework, finding that robustness strongly depends
 069 on both architecture choice and initial graph properties. These findings challenge conventional
 070 assumptions about graph model performance and demonstrate the critical importance of eval-
 071 uation paradigm choice in assessing true model capabilities. **Furthermore, we demonstrate that**
 072 **GraphUniverse-generated datasets can serve as effective proxies for real-world datasets, with**
 073 **model rankings showing strong correlations with those obtained on real data.**
- 074 4. **All GraphUniverse code can be found at: [https://anonymous.4open.science/r/](https://anonymous.4open.science/r/GraphUniverse-3458)**
 075 **GraphUniverse-3458**. Upon acceptance, we will release GraphUniverse as a PyPi package
 076 for programmatic use, as well as publish its full implementation into TopoBench (Telyatnikov
 077 et al., 2025) to easily reproduce and/or expand our experimental results.

078 We envision GraphUniverse as a versatile tool for diverse research applications, from targeted
 079 generalization benchmarks to **large-scale data generation and augmentation for model pre-training**.
 080 While our experiments demonstrate its immediate utility, they represent only a fraction of what is
 081 possible with controllable graph family generation. Thus, we release GraphUniverse to the community
 082 as a flexible framework, inviting extensions and adaptations to explore new frontiers in graph learning.

083 2 RELATED WORK

084 The evaluation of graph learning models has evolved from early, limited-scope benchmarks (Dwivedi
 085 et al., 2023; Morris et al., 2020) to large-scale, real-world datasets. The Open Graph Benchmark
 086 (OGB) (Hu et al., 2020) was a significant step forward, providing standardized protocols on large
 087 graphs that revealed critical challenges in generalization. Subsequently, the GOOD benchmark
 088 (Gui et al., 2022) introduced a focus on out-of-distribution (OOD) generalization by creating splits
 089 designed to test robustness to covariate and concept shifts. However, a fundamental limitation of these
 090 real-world benchmarks is their static nature. The datasets are fixed, the properties of the data splits are
 091 not tunable, and as recent critiques have noted, they often lack sufficient coverage of important graph
 092 properties like heterophily, limiting their utility for systematic model analysis (Bechler-Speicher
 093 et al., 2025).

094 Recognizing the limitations of static datasets, a growing consensus advocates for high-fidelity
 095 synthetic data generation as a path toward more principled and scalable evaluation (Bechler-Speicher
 096 et al., 2025; Wang et al., 2025). The most prominent effort in this direction is GraphWorld (Palowitch
 097 et al., 2022), which uses synthetic generation to study model performance across a space of graph
 098 properties. **Related efforts like CGT (Zaharia et al., 2023) and the metadata-driven approach (Li**
 099 **et al., 2023) provide valuable insights into model behavior by mapping real-world graphs to synthetic**
 100 **equivalents and analyzing performance across graph properties, respectively. While these approaches**
 101 **enable controlled analysis, they remain confined to generating independent, single graphs.** This
 102 restricts evaluation to the transductive setting, where models are tested on the same graph structure
 103 seen during training, and fundamentally prevents the study of a model’s ability to generalize to
 104 entirely new and unseen graphs.

105 The importance of synthetic data extends beyond benchmarking to foundation model development.
 106 GraphFM (Lachi et al., 2024) leverages GraphWorld-style synthetic graphs to expand its pretraining
 107 corpus, though limited to transductive settings, while OpenGraph (Xia et al., 2024) uses LLMs to

108 augment existing datasets—mirroring synthetic data’s established role in computer vision (Tobin et al.,
 109 2017) and NLP (Wang et al., 2023). However, existing graph generation frameworks cannot provide
 110 the inductive generalization and systematic coverage of graph modalities that robust foundation
 111 models require (Bechler-Speicher et al., 2025; Wang et al., 2025)—a capability limited to multi-graph
 112 approaches.

113 GraphUniverse directly addresses these limitations. Unlike static benchmarks, it provides a generative
 114 framework capable of producing unlimited data with fine-grained control over structural properties.
 115 Critically, unlike GraphWorld and other single-graph approaches, it generates entire families of
 116 graphs with shared semantic meaning, enabling systematic study of inductive generalization. **Further-**
 117 **more, our experiments validate that GraphUniverse-generated data closely mirrors real-world model**
 118 **behavior, suggesting its potential as a complementary data source for model development, including**
 119 **pre-training applications.** We present GraphUniverse as an open-source tool that researchers can
 120 extend and adapt for their specific needs, whether for controlled benchmarking or as a basis for more
 121 sophisticated data augmentation strategies **for Graph Foundation Model development, of which a**
 122 **detailed discussion is provided in Appendix B.**

124 3 BACKGROUND

126 Community-based graph generation provides interpretable control over node-level properties and their
 127 relationships, naturally supports community detection tasks, and reflects the modular organization
 128 commonly observed in real-world networks (Fortunato, 2010). This section revisits some previous
 129 works on this topic that GraphUniverse draws inspiration from.

130 Let $G = (V, E)$ be an undirected graph with $|V| = n$ nodes and $A \in \{0, 1\}^{n \times n}$ its adjacency ma-
 131 trix, where $A_{ij} = A_{ji}$ and $A_{ii} = 0$. Let $k \in \mathbb{N}$ be the number of communities and $b_i \in \{1, \dots, k\}$
 132 the community label of node i . We denote by $P \in [0, 1]^{k \times k}$ the (symmetric) block/community
 133 edge probability matrix with entries P_{rs} , with $r, s \in \{1, \dots, k\}$.
 134

136 **Stochastic Block Model (SBM).** SBMs (Holland et al., 1983) generates a graph by first uniformly
 137 sampling labels b_1, \dots, b_n , then drawing edges independently as

$$138 \quad A_{ij} \sim \text{Bernoulli}(P_{b_i b_j}) \quad (1 \leq i < j \leq n).$$

140 SBM is used in two complementary ways; (i) the *inference view*: given a single observed A , estimate
 141 (b, P) ; and (ii) the *generative view* (the one adopted in this work): given (n, P) , sample A .

143 **Degree-Corrected SBM (DC-SBM).** A limitation of SBM is that it enforces homogeneous ex-
 144 pected degrees within a community, since edge probabilities depend only on block membership.
 145 To address this, the original DC-SBM (Karrer & Newman, 2011) implementation introduces node-
 146 specific degree factors $\theta_i > 0$ and a nonnegative block matrix $\Lambda \in \mathbb{R}_{\geq 0}^{k \times k}$. Moreover, they shift
 147 focus from simple graphs to *multigraphs*, i.e. a graph with multi-edges and self-loops. In its original
 148 *Poisson multigraph* form, edges are counts with rates:

$$149 \quad A_{ij} \sim \text{Poisson}(\lambda_{ij}) \quad (i \neq j), \quad \frac{A_{ii}}{2} \sim \text{Poisson}\left(\frac{1}{2} \theta_i^2 \Lambda_{b_i b_i}\right), \quad \text{where } \lambda_{ij} := \theta_i \theta_j \Lambda_{b_i b_j}.$$

151 Imposing a per-group *sum-to-one* normalization on degree factors, i.e. $\sum_{i: b_i=r} \theta_i = 1 \forall r \in$
 152 $\{1, \dots, k\}$, the expected number of edges between communities r and s (counting each undirected
 153 edge once) becomes:

$$155 \quad \mathbb{E}[M_{rs}] = \begin{cases} \Lambda_{rs}, & r \neq s, \\ \frac{1}{2} \Lambda_{rr}, & r = s, \end{cases}$$

157 so Λ controls the total number of edges in a block, while θ redistributes degrees within blocks. This
 158 Poisson formulation is standard in inference-focused works (Karrer & Newman, 2011; Abbe, 2018).
 159

160 **Generative Bernoulli Formulation.** Since the original DC-SBM naturally generate Poisson multi-
 161 graphs, a common approach to get simple graphs from them is to collapse multi-edges into single
 undirected edges and remove self-edges after generation (as done in GraphWorld (Palowitch et al.,

162 (2022)). However, this leads to a systematic but unpredictable mismatch between the input parameters
 163 and the properties of the output graph. Therefore, we choose to work directly with a Bernoulli
 164 reformulation of the DC-SBM algorithm as the basis for our generator (Rohe et al., 2018). Its
 165 justification and precise correspondence with the Poisson DC-SBM are deferred to Appendix C.
 166 Moreover, a discussion of the limitations of relying on DC-SBM models (e.g. lack of higher order
 167 structures) is provided in Appendix D.

4 GRAPHUNIVERSE

172 While DC-SBMs generate individual graphs with controllable community structure, they cannot
 173 support inductive generalization studies due to independent graph generation with weak community-
 174 specific signals. To address this, we introduce a hierarchical generation framework that decouples
 175 global community properties from local graph characteristics, enabling systematic investigation of
 176 model performance across semantically related graph distributions.

4.1 THREE-LEVEL ARCHITECTURE

180 Our framework is organized hierarchically into three levels, each controlling different aspects of
 181 graph generation—see Figure 1.

182 **Universe Level (Global Community Properties).** At the top level, a *Graph Universe* (left panel
 183 in Figure 1) defines a master set of K persistent communities. These communities, assigned at the
 184 node-level, retain stable semantic identities across all generated graphs, specified by:

- 186 • *Structural patterns*: The universe-level edge propensity matrix $\tilde{\mathbf{P}} \in \mathbb{R}^{K \times K}$ encodes relative inter-
 187 community connection strengths. Unlike standard DC-SBMs with uniform block probabilities,
 188 we introduce heterogeneity by generating $\tilde{P}_{rs} = 1 + \xi_{rs}$ where $\xi_{rs} \sim \mathcal{N}(0, (2\epsilon)^2)$ with variance
 189 parameter ϵ . This perturbation is symmetrized and rescaled to preserve target homophily and degree
 190 constraints (details in App. E), yielding fine-grained structural variation across community pairs.
- 191 • *Degree profiles*: A community-specific degree propensity vector $\boldsymbol{\delta} = (\delta_1, \dots, \delta_K) \in [-1, 1]^K$,
 192 with $\delta_k \sim \text{Uniform}(-1, 1)$, determines the characteristic degree propensity of each community.
 193 Unlike standard DC-SBMs where degree factors are independent of community membership, each
 194 δ_k anchors community k in the degree spectrum, with $\delta_k = -1$ corresponding to low-degree node
 195 tendencies and $\delta_k = +1$ to high-degree ones.
- 196 • *Feature distributions*: Community centroids $\boldsymbol{\mu}_k \in \mathbb{R}^d$, for $k \in \{1, \dots, K\}$, are sampled from
 197 $\boldsymbol{\mu}_k \sim \mathcal{N}(\mathbf{0}, \sigma_{\text{center}}^2 \mathbf{I}_d)$, with σ_{center}^2 controlling between-community feature separation. Node
 198 features within each community k are then generated from $\mathcal{N}(\boldsymbol{\mu}_k, \sigma_{\text{cluster}}^2 \mathbf{I}_d)$, where $\sigma_{\text{cluster}}^2$ controls
 199 within-community feature variance.

200 **Family Level (Generation Constraints).** A *Graph Family* (middle panel in Figure 1) specifies
 201 allowed ranges for graph-level parameters while maintaining consistency through the community-
 202 behaviour defined by the universe-level identities:

- 203 • *Structural ranges*: Target homophily $h \in [h_{\min}, h_{\max}]$ and average degree $d \in [d_{\min}, d_{\max}]$.
- 204 • *Size constraints*: Number of nodes $n \in [n_{\min}, n_{\max}]$ and number of participating communities
 205 $k \in [k_{\min}, k_{\max}]$ per graph, with $k_{\max} \leq K$.
- 206 • *Coupling parameters*: Degree separation $\rho \in [\rho_{\min}, \rho_{\max}]$ controls the overlap between community
 207 degree distributions (low ρ yields broad overlap, high ρ yields well-separated distributions), and
 208 degree distribution parameters such as power-law exponent $\alpha \in [\alpha_{\min}, \alpha_{\max}]$.

209 **Graph Level (Instance Generation).** Individual graphs are generated as *Graph Sample* instances
 210 (right panel in Fig. 1), each obtained by sampling specific values from family-level ranges and
 211 inheriting community properties from the universe. The full procedure is described in next section.

4.2 GRAPH INSTANCE GENERATION PROCESS

212 Each graph instance is generated in four phases, as shown in the *Generate Graph* section in Figure 1:

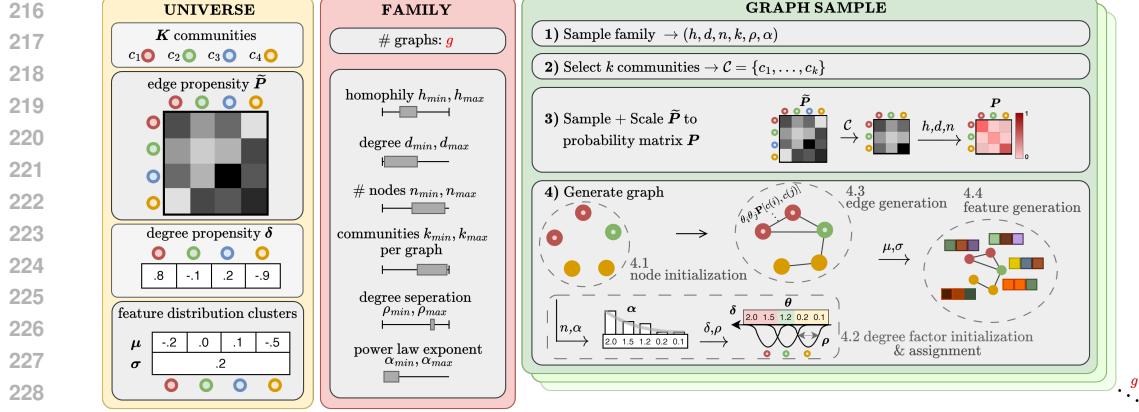


Figure 1: Overview of GraphUniverse generation methodology.

Phase 1: *Parameter Sampling*. Graph-specific parameters are drawn uniformly from family ranges:

$$(n, k, h, d, \rho, \alpha) \sim \text{Uniform}([n_{\min}, n_{\max}] \times \dots \times [\alpha_{\min}, \alpha_{\max}]). \quad (1)$$

Phase 2: *Community Selection*. We randomly select k communities $\mathcal{C} = \{c_1, \dots, c_k\} \subseteq \{1, \dots, K\}$ from the universe to appear in this particular graph.

Phase 3: *Probability Matrix Construction*. We extract the $k \times k$ submatrix

$$\mathbf{P}_{\text{sub}}[i, j] = \mathbf{P}[c_i, c_j], \quad i, j \in \{1, \dots, k\}.$$

To obtain valid Bernoulli probabilities with the sampled graph-level properties, we rescale in two stages: (i) *homophily adjustment*: apply separate scaling factors to diagonal vs. off-diagonal entries so that the within- and between-community ratio matches the target homophily h ; (ii) *density adjustment*: apply a global multiplier so that the mean entry matches the target edge density $d/(n-1)$ for n nodes.

The resulting matrix $\mathbf{P}_{\text{scaled}}$ preserves the heterogeneity of \mathbf{P}_{sub} while satisfying both constraints (see Appendix E).

Phase 4: *Graph Realization with Community Properties*. The final graph is generated as follows:

1. *Node assignment*. Nodes are distributed uniformly across the selected communities \mathcal{C} .
2. *Degree factors*. For each node i in community $c(i)$, we assign a degree factor θ_i by coupling degree distributions to communities. We first sample power-law degree factors and sort them as $(\theta_{(1)}, \dots, \theta_{(n)})$. Each community's degree center $\delta_{c(i)}$ maps to a preferred rank $\mu_{c(i)} = \frac{1+\delta_{c(i)}}{2}(n-1)$, and we assign degree factors by sampling rank indices from $\mathcal{N}(\mu_{c(i)}, \sigma^2)$ truncated to $[1, n]$, where σ^2 is determined by the degree separation parameter ρ . Full details are in Appendix F.
3. *Edge generation*. Each pair (i, j) with $i < j$ is connected independently with probability

$$P_{ij} = \min(1, \theta_i \theta_j \mathbf{P}_{\text{scaled}}[c(i), c(j)]). \quad (2)$$

After sampling, we verify connectivity and connect any disconnected components by adding edges that minimize deviation from the target block structure $\mathbf{P}_{\text{scaled}}$ (details in Appendix G).

4. *Feature generation*. Finally, node features are sampled from community-specific Gaussian distributions:

$$\mathbf{x}_i \sim \mathcal{N}(\boldsymbol{\mu}_{c(i)}, \sigma^2 \mathbf{I}). \quad (3)$$

4.3 VALIDATION OF GRAPHUNIVERSE

To ensure our multiple graph generation framework produces high-fidelity graphs with the intended properties and learnable signals within and across graphs, we conduct a comprehensive validation

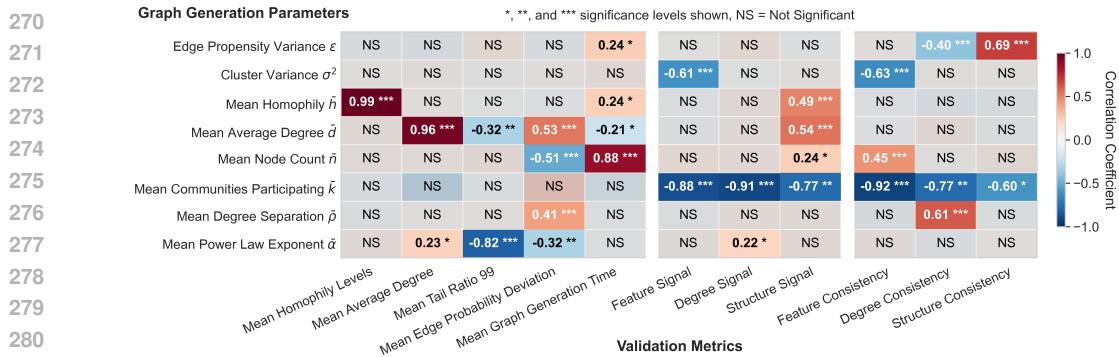


Figure 2: Parameter sensitivity heatmap from 100 randomized graph families with all parameters simultaneously varied across complete ranges. Pearson correlation coefficients are shown with stars indicating significance levels. NS indicates no statistically significant correlation.

study examining how generation parameters affect three critical aspects: graph properties, signal strength, and cross-graph consistency. This systematic analysis serves both to validate the correctness of our implementation and to characterize the parameter space for downstream applications.

Validation Metrics. We define three categories of validation metrics. *Graph Property* metrics verify that generated graphs match target structural characteristics, including homophily levels, average degree, degree distribution tails, and deviations from expected community edge probability matrices. *Signal Strength* metrics assess the predictability of community labels using different node-level features (node features, degree, and multi-hop neighborhood structure), ensuring graphs contain learnable signals for downstream tasks. *Cross-Graph Consistency* metrics evaluate whether community identities remain semantically consistent across different graph instances through feature centroid similarity, structural pattern correlation, and degree ranking preservation. Detailed definitions and implementation details for all metrics are provided in Appendix I.

Parameter Sensitivity Analysis. We generate 100 distinct graph families—30 graphs each—with completely randomized parameter configurations sampled uniformly across broad ranges (further details in Appendix H). This stress-tests the framework’s robustness by capturing parameter interactions at extreme values rather than nominal operating points. In practice, to do so we assess parameter-metric relationships using Pearson correlations on family-level means, reporting only statistically significant correlations ($p < 0.05$). The correlation heatmap of Figure 2 shows the parameter (y-axis) responsiveness across all validation metrics (x-axis).

Validation Results. Graph property metrics (left panel in 2) show expected strong correlations: parameters precisely control homophily and average degree, with slight deviations under extreme settings reflecting our multiplicative edge generation process. Signal strength metrics (middle panel in 2) confirm theoretical expectations: cluster variance controls feature signals, homophily/degree enhance structure signals, and fewer communities simplify classification. Cross-graph consistency metrics (right panel in 2) provide the strongest validation of our hierarchical design, with propensity variance governing structure consistency, degree separation controlling degree consistency, and cluster variance determining feature consistency. A detailed analysis of the parameter validation results, as well as individual parameter effect plots, are provided in Appendix Section J.

This comprehensive analysis demonstrates that our generation framework successfully translates user-specified parameters into measurable, controllable graph properties without significant unexpected correlations, validating its suitability for systematic graph learning evaluation.

4.4 SCALABILITY

GraphUniverse demonstrates linear scaling across graph sizes, enabling efficient large-scale evaluation. Table 1 shows generation performance measured on an

Table 1: [GraphUniverse generation stats.](#)

Avg. number of nodes	Time per graph (sec)	Throughput (graphs/sec)
10	0.002	449.7
100	0.023	42.8
500	0.349	2.9
1000	1.309	0.8

324 AMD Ryzen 7 5700U CPU processor (single-threaded),
 325 averaged over 100 graphs.
 326

327 **4.5 INTERACTIVE EXPLORATION TOOL**
 328

329 To complement the open-source package, we also provide an interactive Streamlit application for code-
 330 free exploration of the GraphUniverse generator ([https://graphuniverse.streamlit.](https://graphuniverse.streamlit.app/)
 331 [app/](https://graphuniverse.streamlit.app/)). The app allows users to define a generation universe, tune the family parameters (e.g.,
 332 homophily, degree distribution), and **instantly visualize the resulting graphs, their properties and**
 333 **validation metrics** Furthermore, generated graph families can be downloaded as a PyTorch Geometric
 334 InMemoryDataset object.

335
 336 **5 BENCHMARKING**
 337

338 The ability to generate diverse graph families with fine-grained control over their properties opens
 339 up countless avenues for systematic model evaluation. To demonstrate this potential, we present a
 340 benchmarking suite designed to probe three fundamental research questions (RQ) of inductive perfor-
 341 mance, generalization and robustness in modern GNNs. This investigation, while comprehensive,
 342 represents just one of the many possible explorations that GraphUniverse makes possible.

343
 344 **5.1 EXPERIMENTAL SETUP**
 345

346 **Implementation.** All experiments are conducted using the TopoBench benchmarking frame-
 347 work (Telyatnikov et al., 2025), which we extend with a custom GraphUniverse loader to sys-
 348 tematically define and iterate over graph generation parameters.¹ Across our benchmarking, we
 349 evaluate models in both inductive and transductive settings on two distinct tasks: node-level com-
 350 munity detection (classification) and graph-level triangle counting (regression). Unless otherwise
 351 specified, we consider a set of fixed dataset generation parameters—such as the number of graphs in
 352 inductive settings (1000), or the number of nodes in transductive ones (1000)—to ensure a consistent
 353 baseline across experiments (defaults lists in Appendix M.1).

354 **Models.** We evaluate a diverse set of architectures representing major paradigms in contemporary
 355 graph learning (a brief description of each of them can be found in Appendix M.2): DeepSet (Zaheer
 356 et al., 2017), GraphMLP (Hu et al., 2021), GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton
 357 et al., 2017), GIN (Xu et al., 2019), GATv2 (Brody et al., 2022), TopoTune (Papillon et al., 2025),
 358 Neural Sheaf Diffusion (Bodnar et al., 2022), and GPS (Rampášek et al., 2022) (see Appendix M.2).

359
 360 **Hyperparameter Optimization.** For each model-dataset configuration, we conduct comprehensive
 361 grid search hyperparameter optimization using architecture-specific parameter grids detailed in the
 362 Appendix M.3. Each configuration is evaluated across 3 different dataset instantiations generated
 363 with the same input parameters but different data random seeds, with the configuration achieving the
 364 highest mean validation performance selected for final test evaluation.

365
 366 **Evaluation Metrics.** We report test accuracy and mean absolute error (MAE) for community
 367 detection and triangle counting tasks, respectively (averaged across 3 random data seeds with
 368 standard deviations).² For both inductive and transductive experiments, we consider a 70/15/15
 369 training/val/test split.

370
 371 **5.2 RQ1: DO GRAPH LEARNING MODELS PERFORM DIFFERENTLY IN THE INDUCTIVE**
 372 **SETTING, IN FUNCTION OF KEY VARIED GRAPH PROPERTIES?**

373
 374 **Motivation.** Existing synthetic graph generation models (GraphWorld (Palowitch et al., 2022))
 375 only allow for benchmarking models on single graphs in transductive settings, but real applications
 376 require generalization to unseen graphs with different properties.

377
 378 ¹Code and config. files to reproduce all experiments will be made publicly available upon acceptance.

²Accuracy is appropriate given uniform community size distributions enforced across all graph families.

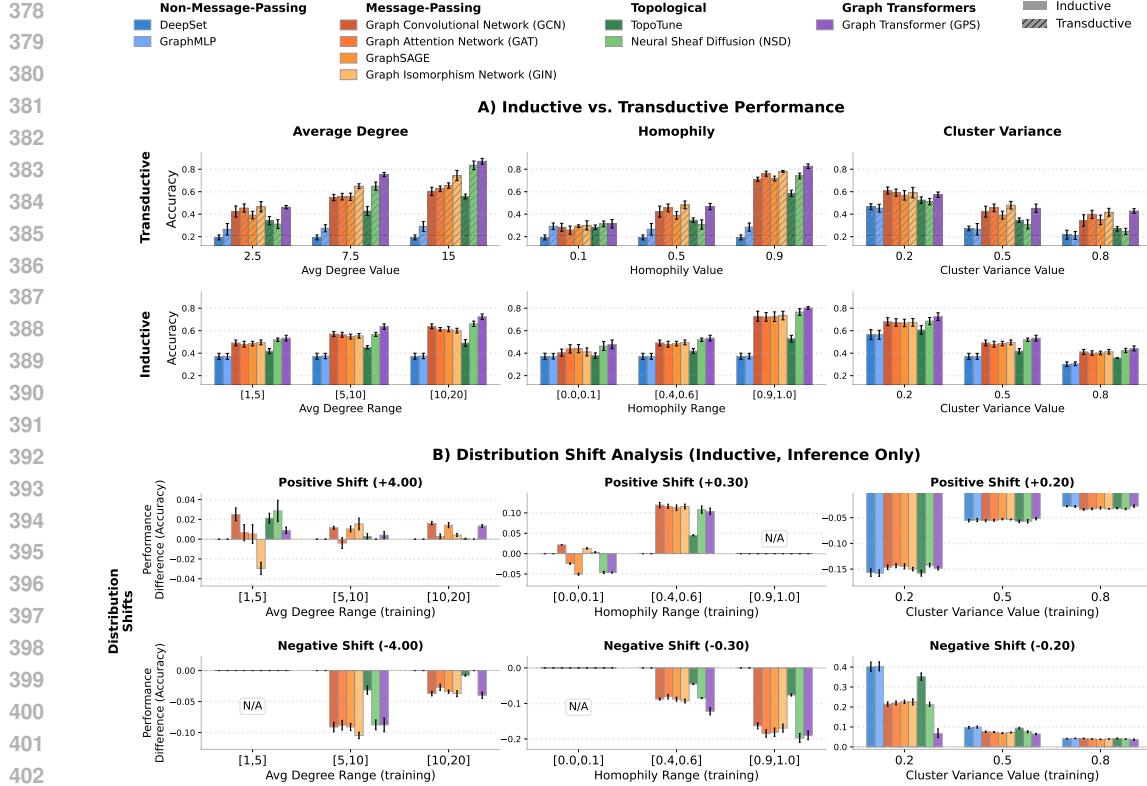


Figure 3: A) Inductive (graph families of 1000 graphs) versus transductive (single graphs) test accuracy on community detection across different graph properties, with each architecture individually optimized. B) Distribution shift analysis: best-performing inductive models evaluated on graph families with shifted properties from the same Universe. Plots show accuracy changes under distributional shifts, with x-axis indicating the original training domain. **N/A** indicates shifts beyond feasible parameter bounds.

Experimental Design. We systematically vary three fundamental graph properties across families of 1000 graphs each: homophily range ($[0.0, 0.1]$, $[0.4, 0.6]$, $[0.9, 1.0]$), average degree range ($[1, 5]$, $[5, 10]$, $[10, 20]$), and cluster variance (basically feature noise, setting as options 0.2, 0.5 and 0.8), keeping all other graph family parameters at default values. We directly compare these inductive results against equivalent single-graph transductive evaluation using GraphWorld-style generation (with mean property of corresponding inductive setting). Figure 3.A reports on the results. [Appendix L](#) extends the homophily analysis to specific heterophilic GNN architectures.

Insight 1: Distinct Model Ranking Profiles Across Settings. We observe a striking divergence in model performance rankings between the inductive and transductive settings (Fig. 3.A). While **GPS** and non-message passing architectures (**Deepset**, **GraphMLP**) consistently achieve top and bottom performances, respectively, other architectures show clear setting-dependent strengths. For example, **Neural Sheaf Diffusion** excels inductively but falters transductively, suggesting its topological biases aid generalization across graphs. Conversely, **GIN** dominates transductively but fails inductively, indicating its success may stem from memorizing a single graph’s structure. These shifts reveal that transductive performance is not always a reliable proxy for a model’s ability to generalize.

Insight 2: Transductive Setting Amplifies Graph Property Effects While increasing graph homophily and average degree improves performance in both settings, these benefits are significantly amplified in the transductive paradigm. As seen in Figure 3.A, the performance gap between low and medium homophily or degree configurations is far more pronounced transductively. This suggests that when models have access to the entire graph structure during training, they can better exploit favorable

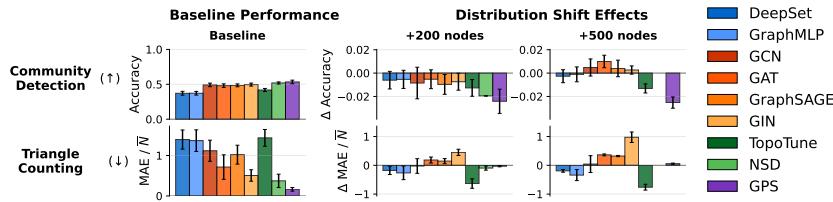


Figure 4: Left: baseline accuracy on original graphs. Right: performance changes (Δ) when evaluating on larger graphs (+200, +500 nodes). Triangle counting uses normalized MAE by average graph size \bar{N} . Out-of-memory error for NSD in largest graphs (+500).

properties. Consequently, transductive evaluation may overestimate a model’s true sensitivity to these structural characteristics.

Insight 3: Performance Directly Correlates with Feature Quality. As expected, increasing cluster variance—a parameter that only injects noise into node features without affecting graph structure—consistently degrades performance for all models.

5.3 RQ2: HOW ROBUST ARE GRAPH LEARNING MODELS UNDER DISTRIBUTION SHIFTS?

Motivation. Deployed models must handle property distribution shifts between training and test data, where target graphs exhibit different structural properties than those seen during training. Understanding how performance degrades under controlled property shifts is crucial for graph foundation model development.

Experimental Design. Using optimal model configurations identified in the inductive experiments of RQ1, we evaluate performance degradation under controlled shifts. That is, for each baseline property setting (homophily, average degree, cluster variance), we generate, using the same Universe, a new test family with systematic shifts: ± 0.1 homophily, ± 4 average degree, and ± 200 nodes per graph. The optimal models from RQ1 are evaluated on the shifted families. This provides a systematic characterization of each architecture’s sensitivity to different types of distribution shifts.

Key Insight: Model Robustness is Context-Dependent, Not Universal. Our experiments (Fig. 3.B) reveal that model robustness is not an intrinsic property but emerges from specific interactions between a model’s architecture and the graph’s properties. We found that identical distributional shifts can produce opposite effects depending on the training regime; for example, increasing homophily can harm a model’s performance in a low-homophily setting but improve it in a medium one. This exposes architecture-specific vulnerabilities: **GIN** proves highly sensitive to degree shifts in low-degree graphs, while models like **GraphSAGE** show a counterintuitive performance drop when homophily is increased from a low baseline. These findings suggest that models often achieve high performance through narrow specialization on training regimes rather than robust generalization, highlighting the critical need for training data diversity.

5.4 RQ3: DO MODELS TRAINED ON SMALL GRAPHS GENERALIZE TO BIGGER GRAPHS?

Motivation. Real-world deployment often requires models trained on smaller graphs to handle larger instances. Understanding size generalization is critical for practical scalability of graph learning models. While we focused up until now on node-level community detection, we also evaluate triangle counting as a structural graph-level task, though our framework supports other graph-level tasks.

Experimental Design. We evaluate generalization across graph sizes using two complementary tasks. For community detection (node-level, local task), we train on graphs ranging from 50 to 200 nodes, then evaluate on families (from the same Universe) with 250–400 and 550–700 nodes. For triangle counting (graph-level, global task), we follow the same size progression.

Key Insight: Graph-level MPNNs Fail to Generalize to Larger Graphs. We can see (Fig. 4) that node-level tasks (community detection) show minimal sensitivity to graph size (2% degradation)

486 due to local neighborhood aggregation, except for **GPS** and **NSD** which suffer minor drops from
 487 their more global components (positional encodings, attention). Graph-level tasks (triangle counting)
 488 initially show only **GPS**, **NSD**, and **GIN** effectively solving the task, but while **GPS** and **NSD** maintain
 489 performance when scaling to larger graphs, **GIN** fails to generalize, suggesting traditional MPNNs
 490 overfit to training graph sizes.

492 5.5 RQ4: DOES GRAPHUNIVERSE ACCURATELY PREDICT REAL-WORLD MODEL 493 PERFORMANCE?

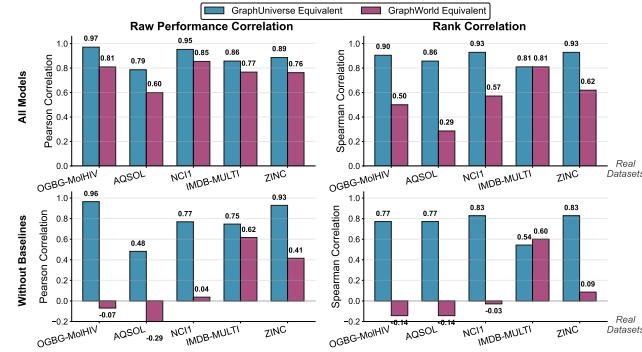
494 **Motivation.** A critical question for
 495 any synthetic benchmark is whether
 496 insights gained extend to real-world
 497 performance. We demonstrate that
 498 GraphUniverse effectively predicts
 499 model behavior on real, inductive
 500 datasets, providing stronger alignment
 501 than single-graph approaches.

502 **Experimental Design.** For five
 503 real-world inductive datasets (OGBG-
 504 MolHIV (Hu et al., 2020), AQSOL
 505 (Dwivedi et al., 2023), ZINC (Gómez-
 506 Bombarelli et al., 2018), NCI1, and
 507 IMDB-MULTI (Morris et al., 2020)),
 508 we extract key structural properties
 509 and generate two synthetic equivalents:
 510 (1) a **GraphUniverse equivalent**
 511 matching property distributions
 512 (5th-95th percentiles), and (2) a
 513 **GraphWorld equivalent** using mean
 514 values in a single graph. We map
 515 dataset-specific communities (e.g., atom types for molecules, degree-based clustering for IMDB-
 516 MULTI) to enable fair comparison. We train models on original tasks for real-world datasets and
 517 community detection for synthetic datasets. After optimizing the same suite of models as in previous
 518 RQs, we compute model rankings via bootstrap analysis (1000 iterations) and assess correlation
 519 between mean synthetic and real rankings. Full extraction details are in Appendix K.1.

520 **Key Insight: GraphUniverse Provides Superior Real-World Alignment.** Figure 5 shows GraphU-
 521 niverse achieves substantially higher correlations with real datasets than GraphWorld. We analyze
 522 both all models and graph-aware models separately, as non-message-passing baselines (DeepSet,
 523 GraphMLP) consistently underperform across all settings, artificially inflating correlations. Focusing
 524 on message-passing models reveals that GraphUniverse shows positive correlations for all datasets
 525 while GraphWorld shows negative correlations for half. Model-level analysis in Figures 10 and 11
 526 of Appendix K.2 confirms that GraphUniverse accurately captures how model rankings vary across
 527 datasets with different structural properties. These results validate GraphUniverse as a meaningful
 528 proxy for real-world evaluation, particularly for rapid prototyping and systematic studies.

529 6 CONCLUDING REMARKS

530 We introduce GraphUniverse, a synthetic graph generation framework designed to address a critical
 531 gap in graph learning: the systematic evaluation of inductive generalization. By generating graph
 532 families with consistent semantics and tunable structural and feature properties, GraphUniverse pro-
 533 vides the scalable, controlled data required to rigorously assess a model’s ability to generalize across
 534 diverse and unseen graphs (moving beyond single-graph transductive settings of existing approaches).
 535 Our experiments, which reveal valuable insights into model robustness and generalization, serve as a
 536 powerful demonstration of the framework’s capabilities. We release GraphUniverse as an open-source
 537 tool to unlock new research directions in the principled development and validation of both existing
 538 and novel architectures—including potential applications in graph foundation model research, though
 539 such extensions would require additional development beyond our current framework.



502 **Figure 5: Model ranking correlations between real datasets and equivalent synthetic datasets.** Rankings are computed via
 503 bootstrap analysis, with correlations calculated on mean rank-
 504 ings. GraphUniverse (blue) shows consistently higher align-
 505 ment with real-world model rankings compared to Graph-
 506 World (orange) across both raw performance (Pearson) and
 507 rank-based (Spearman) metrics. “Without Baselines” ex-
 508 cludes DeepSet and GraphMLP to avoid overestimation.

540 REPRODUCIBILITY STATEMENT
541

542 All code for graph generation and framework validation is available at: <https://anonymous.4open.science/r/GraphUniverse-3458>. We intend to release the framework as a PyPI
543 package upon acceptance. All experiments can be reproduced using the TopoBench framework
544 Telyatnikov et al. (2025), whose GraphUniverse integration and training scripts will be made publicly
545 available upon acceptance.

546
547 REFERENCES
548

549 Emmanuel Abbe. Community detection and stochastic block models: Recent developments. *Journal
550 of Machine Learning Research*, 18(177):1–86, 2018. URL <http://jmlr.org/papers/v18/16-480.html>.

551 Maya Bechler-Speicher, Ben Finkelshtein, Fabrizio Frasca, Luis Müller, Jan Tönshoff, Antoine
552 Siraudin, Viktor Zaverkin, Michael M. Bronstein, Mathias Niepert, Bryan Perozzi, Mikhail Galkin,
553 and Christopher Morris. Position: Graph learning will lose relevance due to poor benchmarks. In
554 *Forty-second International Conference on Machine Learning Position Paper Track*, 2025. URL
555 <https://openreview.net/forum?id=nDFp121hoH>.

556 Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
557 convolutional networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35,
558 pp. 3950–3957, 2021.

559 Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Lio, and Michael Bronstein.
560 Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns.
561 *Advances in Neural Information Processing Systems*, 35:18527–18541, 2022.

562 Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In *International
563 Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=F72ximsx7C1>.

564 Dawei Cheng, Yao Zou, Sheng Xiang, and Changjun Jiang. Graph neural networks for financial
565 fraud detection: a review. *Frontiers of Computer Science*, 19(9):199609, 2025.

566 Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
567 Xavier Bresson. Benchmarking graph neural networks. *Journal of Machine Learning Research*, 24
568 (43):1–48, 2023.

569 Santo Fortunato. Community detection in graphs. *Physics reports*, 486(3-5):75–174, 2010.

570 Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation
571 models for knowledge graph reasoning. In *NeurIPS 2023 Workshop: New Frontiers in Graph
572 Learning*, 2023. URL <https://openreview.net/forum?id=LzMWMJ1xHg>.

573 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
574 message passing for quantum chemistry. In *International conference on machine learning*, pp.
575 1263–1272. Pmlr, 2017.

576 Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
577 Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
578 Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
579 representation of molecules. *ACS central science*, 4(2):268–276, 2018.

580 Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. Good: A graph out-of-distribution benchmark.
581 *Advances in Neural Information Processing Systems*, 35:2059–2073, 2022.

582 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
583 *Advances in neural information processing systems*, 30, 2017.

584 Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
585 First steps. *Social Networks*, 5(2):109–137, 1983. ISSN 0378-8733. doi: [https://doi.org/10.1016/0378-8733\(83\)90021-7](https://doi.org/10.1016/0378-8733(83)90021-7). URL <https://www.sciencedirect.com/science/article/pii/0378873383900217>.

594 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 595 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in*
 596 *neural information processing systems*, 33:22118–22133, 2020.

597

598 Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue Gao. Graph-mlp: Node
 599 classification without message passing in graph. *arXiv preprint arXiv:2106.04051*, 2021.

600 Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks.
 601 *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics*, 83(1):016107, 2011.

602

603 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 604 In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=SJU4ayYg1>.

605

606 Divyansha Lachi, Mehdi Azabou, Vinam Arora, and Eva Dyer. Graphfm: A scalable framework for
 607 multi-graph pretraining. *arXiv preprint arXiv:2407.11907*, 2024.

608

609 Ting Wei Li, Qiaozhu Mei, and Jiaqi Ma. A metadata-driven approach to understand graph neural
 610 networks. *Advances in Neural Information Processing Systems*, 36:15320–15340, 2023.

611

612 Christopher Morris, Nils Morten Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
 613 Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In *ICML 2020*
 614 *Workshop on Graph Representation Learning and Beyond (GRL+ 2020)*, 2020.

615

616 John Palowitch, Anton Tsitsulin, Brandon Mayer, and Bryan Perozzi. Graphworld: Fake graphs
 617 bring real insights for gnns. In *Proceedings of the 28th ACM SIGKDD conference on knowledge*
 618 *discovery and data mining*, pp. 3691–3701, 2022.

619

620 Mathilde Papillon, Guillermo Bernardez, Claudio Battiloro, and Nina Miolane. Topotune: A
 621 framework for generalized combinatorial complex neural networks. In *Forty-second International*
 622 *Conference on Machine Learning*, 2025.

623

624 Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
 625 minique Beaini. Recipe for a general, powerful, scalable graph transformer. *Advances in Neural*
 626 *Information Processing Systems*, 35:14501–14515, 2022.

627

628 Karl Rohe, Jun Tao, Xintian Han, and Norbert Binkiewicz. A note on quickly sampling a sparse
 629 matrix with low rank expectation. *Journal of Machine Learning Research*, 19(77):1–13, 2018.

630

631 F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network
 632 model. *IEEE Transactions on Neural Networks*, 2008.

633

634 Shanshan Tang, Bo Li, and Haijun Yu. Chebnet: efficient and stable constructions of deep neural
 635 networks with rectified power units via chebyshev approximation. *Communications in Mathematics*
 636 *and Statistics*, pp. 1–27, 2024.

637

638 Lev Telyatnikov, Guillermo Bernardez, Marco Montagna, Mustafa Hajij, Martin Carrasco, Pavlo
 639 Vasylenko, Mathilde Papillon, Ghada Zamzmi, Michael T Schaub, Jonas Verhellen, Pavel Snopov,
 640 Bertran Miquel-Oliver, Manel Gil-Sorribes, Alexis Molina, VICTOR GUALLAR, Theodore Long,
 641 Julian Suk, Patryk Rygiel, Alexander V Nikitin, Giordan Escalona, Michael Banf, Dominik Filipiak,
 642 Liliya Imasheva, Max Schattauer, Alvaro L. Martinez, Halley Fritze, Marissa Masden, Valentina
 643 Sánchez, Manuel Lecha, Andrea Cavallo, Claudio Battiloro, Matthew Piekenbrock, Mauricio Tec,
 644 George Dasoulas, Nina Miolane, Simone Scardapane, and Theodore Papamarkou. Topobench: A
 645 framework for benchmarking topological deep learning. *Journal of Data-centric Machine Learning*
 646 *Research*, 2025. URL <https://openreview.net/forum?id=07sTzyEVtY>.

647

648 Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
 649 randomization for transferring deep neural networks from simulation to the real world. In *2017*
 650 *IEEE/RSJ international conference on intelligent robots and systems (IROS)*, pp. 23–30. IEEE,
 651 2017.

652

653 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 654 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 655 2018. URL <https://openreview.net/forum?id=rJXMpikCZ>.

648 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 649 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
 650 *Proceedings of the 61st annual meeting of the association for computational linguistics (volume 1:
 651 long papers)*, pp. 13484–13508, 2023.

652 Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li,
 653 Zhengqing Yuan, Wei Song, Yijun Ma, et al. Graph foundation models: A comprehensive survey.
 654 *arXiv preprint arXiv:2505.15116*, 2025.

655 Felix Wong, Erica J Zheng, Jacqueline A Valeri, Nina M Donghia, Melis N Anahtar, Satotaka Omori,
 656 Alicia Li, Andres Cubillos-Ruiz, Aarti Krishnan, Wengong Jin, Abigail L Manson, Jens Friedrichs,
 657 Ralf Helbig, Behnoush Hajian, Dawid K Fiejtak, Florence F Wagner, Holly H Soutter, Ashlee M
 658 Earl, Jonathan M Stokes, Lars D Renner, and James J Collins. Discovery of a structural class of
 659 antibiotics with explainable deep learning. *Nature*, 626(7997):177–185, February 2024.

660 Zhenxing Wu, Jike Wang, Hongyan Du, Jiang dejun, Yu Kang, Dan Li, Peichen Pan, Yafeng Deng,
 661 Dong-Sheng Cao, Kim Hsieh, and Tingjun Hou. Chemistry-intuitive explanation of graph neural
 662 networks for molecular property prediction with substructure masking. *Nature Communications*,
 663 14, 05 2023. doi: 10.1038/s41467-023-38192-3.

664 Lianghao Xia, Ben Kao, and Chao Huang. Opengraph: Towards open graph foundation models. In
 665 *EMNLP 2024-2024 Conference on Empirical Methods in Natural Language Processing, Findings
 666 of EMNLP 2024*, 2024.

667 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 668 networks? In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ryGs6iA5Km>.

669 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
 670 Alexander J Smola. Deep sets. *Advances in neural information processing systems*, 30, 2017.

671 Kiarash Zahirnia, Yaochen Hu, Mark Coates, and Oliver Schulte. Neural graph generation from
 672 graph statistics. *Advances in Neural Information Processing Systems*, 36:36324–36338, 2023.

673 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
 674 homophily in graph neural networks: Current limitations and effective designs. *Advances in neural
 675 information processing systems*, 33:7793–7804, 2020.

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A USE OF LARGE LANGUAGE MODELS (LLMs) IN PAPER WRITING**
703704 We drafted all content ourselves and then used LLMs to improve grammar, rephrase text, and shorten
705 extensive sections. The models are used as editorial tools to help make our writing clearer and more
706 concise.
707708 **B DISCUSSION ON ROLE AND POTENTIAL IMPACT IN GRAPH FOUNDATION
709 MODEL DEVELOPMENT**
710712 While our primary contribution focuses on systematic inductive evaluation, GraphUniverse has
713 potential relevance to graph foundation model (GFM) development. This section outlines two
714 potential applications.
715716 **B.1 SYSTEMATIC EVALUATION TESTBED**
717719 GraphUniverse enables rapid generation of diverse graph families for comprehensive GFM assessment
720 across controlled distribution shifts. Unlike static benchmarks, our framework allows systematic
721 robustness evaluation by generating unlimited scenarios with known variations in structural properties
722 (homophily, density, degree distributions). This provides a precise, low-cost method for identifying
723 architectural vulnerabilities and understanding failure modes, directly addressing concerns about
724 current evaluation practices raised in recent position papers.
725726 **B.2 DATA AUGMENTATION POTENTIAL**
727728 Our framework could potentially be extended to serve as a sophisticated data augmentation tool
729 for GFM pre-training. By fitting GraphUniverse parameters to match statistical properties of target
730 domains, researchers could generate novel but realistic graph instances that preserve essential
731 structural relationships. This aligns with successful synthetic data strategies in computer vision and
732 NLP, where augmentation has proven valuable for improving model robustness Tobin et al. (2017);
733 Wang et al. (2023).734 The key strength of this approach would be leveraging our framework’s flexibility to generate datasets
735 covering data modalities completely unseen in original training sets. By systematically varying
736 homophily levels, density, and graph sizes beyond those present in real datasets, researchers could
737 potentially reduce overfitting to specific dataset characteristics and train more general models capable
738 of robust performance across diverse graph types.
739740 **B.3 LIMITATIONS AND FUTURE DIRECTIONS**
741742 These applications represent potential future directions rather than validated capabilities, with several
743 concrete challenges requiring resolution. First, identifying meaningful ‘communities’—the building
744 blocks of our framework—in real-world datasets presents domain-specific challenges. While some
745 datasets naturally provide community structure (e.g., atom types in molecular data), others would
746 require sophisticated clustering approaches, potentially incorporating positional information or
747 employing a two-stage process: initial unlabeled pre-training followed by clustering on learned
748 embeddings to fit the data generator.749 Second, realistic feature generation would require careful fitting to real data distributions, most
750 straightforwardly achieved by computing per-community, per-dimension statistics (means and stan-
751 dard deviations) and sampling accordingly. Our current DC-SBM foundation may require extension
752 to more sophisticated generators to fully capture the complexity needed for realistic augmentation
753 across diverse domains.754 Nevertheless, recent GFM surveys explicitly call for these types of evaluation and generation capabili-
755 ties, suggesting clear alignment with community needs and representing a promising line of future
work Wang et al. (2025); Bechler-Speicher et al. (2025).

756 C BERNOULLI FORMULATION OF SIMPLE DC-SBMs 757

758 **Poisson multigraph.** In the classical DC-SBM (Karrer & Newman, 2011), edges are Poisson
759 counts

$$760 \quad A_{ij} \sim \text{Poisson}(\lambda_{ij}), \quad \lambda_{ij} = \theta_i \theta_j \Lambda_{b_i b_j}, \quad (4)$$

761 with per-community normalization $\sum_{i \in r} \theta_i = 1$. The expected block edge totals are then
762

$$763 \quad \mathbb{E}[M_{rs}] = \begin{cases} \Lambda_{rs}, & r \neq s, \\ 764 \quad \frac{1}{2} \Lambda_{rr}, & r = s. \end{cases} \quad (5)$$

766 **Collapsed Poisson simple graph.** If we form a simple graph by collapsing multi-edges,
767

$$768 \quad \tilde{A}_{ij} = \mathbf{1}\{A_{ij} \geq 1\}, \quad (6)$$

769 then

$$770 \quad \Pr[\tilde{A}_{ij} = 1] = 1 - e^{-\lambda_{ij}}. \quad (7)$$

771 Since $1 - e^{-x} < x$ for $x > 0$, the collapsed model systematically underestimates edge probabilities
772 and thus block totals, except in the extremely sparse regime where $1 - e^{-\lambda_{ij}} \approx \lambda_{ij}$.
773

774 **Bernoulli simple graph.** Following the approach of Rohe et al. (2018), we can define edges directly
775 as Bernoulli trials,

$$776 \quad A_{ij} \sim \text{Bernoulli}(\min(1, \theta_i \theta_j P_{b_i b_j})), \quad (8)$$

777 with per-community mean-one normalization

$$779 \quad \frac{1}{|V_r|} \sum_{i \in r} \theta_i = 1. \quad (9)$$

782 The expected block edge totals are then:

- 784 • For $r \neq s$: $\mathbb{E}[M_{rs}] = P_{rs} \sum_{i \in r} \sum_{j \in s} \theta_i \theta_j$
- 785 • For $r = s$: $\mathbb{E}[M_{rr}] = \frac{1}{2} P_{rr} \sum_{i \in r} \sum_{j \in s, j \neq i} \theta_i \theta_j$ (excluding self-loops)

787 Under the normalization constraint, these simplify to:

- 789 • For $r \neq s$: $\mathbb{E}[M_{rs}] = P_{rs} |V_r| |V_s|$
- 790 • For $r = s$: $\mathbb{E}[M_{rr}] = \frac{1}{2} P_{rr} |V_r| (|V_r| - 1)$

792 **Equivalence.** To match the Poisson multigraph block expectations, we set:

$$794 \quad P_{rs} = \frac{\Lambda_{rs}}{|V_r| |V_s|} \quad (r \neq s), \quad P_{rr} = \frac{\Lambda_{rr}}{|V_r| (|V_r| - 1)} \quad (r = s). \quad (10)$$

796 However, as noted by Rohe et al. (2018), this equivalence only holds when the resulting probabilities
797 satisfy $\theta_i \theta_j P_{b_i b_j} \leq 1$ for all i, j . When this constraint is violated, we apply clipping to ensure valid
798 Bernoulli probabilities:

$$799 \quad \text{edge probability} = \min(1, \theta_i \theta_j P_{b_i b_j}), \quad (11)$$

800 which introduces a systematic deviation from the Poisson block structure in dense regimes.
801

802 **Theoretical justification.** The theoretical foundation for this approach follows directly from
803 Theorem 3 in Rohe et al. (2018). Their result shows that in sparse regimes where $\lambda_{ij} = O(\alpha_n/n)$
804 for some sequence α_n , there exists a coupling between the thresholded Poisson graph and the direct
805 Bernoulli graph such that

$$806 \quad \frac{\mathbb{E}\|t(\tilde{A}) - B\|_F^2}{\mathbb{E}\|B\|_F^2} = O(\alpha_n/n), \quad (12)$$

809 where $t(\tilde{A})$ represents the thresholded Poisson graph and B represents the direct Bernoulli graph.
This establishes that the two approaches are asymptotically equivalent in sparse settings.

810 **Summary.** The Bernoulli DC-SBM with clipping preserves the interpretability of edge probabilities
 811 and avoids the systematic underestimation of the collapsed Poisson approach, while providing exact
 812 control over the simple graph structure. The theoretical equivalence established by Rohe et al.
 813 (2018) validates this approach in sparse regimes, while the controlled deviation from Poisson block
 814 expectations due to clipping represents a principled trade-off that enables direct generation of simple
 815 graphs with desired structural properties.

816
 817
**D DISCUSSION ON THE LIMITATIONS OF DEGREE-CORRECTED STOCHASTIC
 819 BLOCK MODELS AS DATA GENERATOR**
 820

821 The DC-SBM formulation underlying GraphUniverse carries inherent limitations that merit explicit
 822 discussion. We categorize these limitations into two types, each with different implications for our
 823 framework’s applicability and future development.

824
 825
D.1 READILY EXTENSIBLE LIMITATIONS
 826

827 Several limitations stem from design choices made for experimental simplicity and interpretability.
 828 Features such as deterministic community membership, discrete non-overlapping communities, and
 829 uniform community size distributions could readily be implemented as extensions to our current
 830 framework. We deliberately chose these simplifications to maintain clear experimental control and
 831 focus on core structural phenomena that are easily identifiable, controllable, and translatable to
 832 real-world settings.

833 For researchers interested in studying specific phenomena like overlapping communities, gradual
 834 community transitions, or hierarchical community structures, our framework provides a solid founda-
 835 tion that can be extended while preserving the systematic control that makes synthetic benchmarks
 836 scientifically valuable.

837
 838
D.1.1 IMPLEMENTING OVERLAPPING COMMUNITIES
 839

840 To illustrate the extensibility of our framework, we outline how overlapping communities could be
 841 implemented through two additional universe-level parameters:

842 **Co-occurrence Count Distributions:** For each community k , define a discrete probability distribu-
 843 tion over the number of additional communities a node can belong to. This could be implemented
 844 as user-defined distributions or generated using negative binomial distributions with controllable
 845 parameters for mixing probability and distribution shape. Setting all distributions to concentrate on
 846 zero recovers the current non-overlapping scenario.

847 **Community Mixing Matrix:** A symmetric $K \times K$ matrix \mathbf{M} where each row sums to 1, controlling
 848 how membership is distributed among overlapping communities. Entry $\mathbf{M}_{i,j}$ represents the relative
 849 strength of membership in community j when a node’s primary assignment is to community i .

850 The extension process would work as follows:

- 851 1. Assign each node a primary community as before
- 852 2. Sample the number of additional communities from the co-occurrence distribution
- 853 3. Randomly select additional communities and use the mixing matrix to determine member-
 854 ship weights
- 855 4. Compute final node behavior as weighted combinations—edge probabilities become
 856 weighted by both nodes’ membership vectors, degree factors are determined by the dominant
 857 community membership, and features are drawn as weighted combinations from respective
 858 community centroids

864 Formally, if node i has membership vector $\pi_i \in [0, 1]^K$ with $\sum_{k=1}^K \pi_{i,k} = 1$, then:
 865

$$866 \quad P_{ij} = \min \left(1, \theta_i \theta_j \sum_{r=1}^K \sum_{s=1}^K \pi_{i,r} \pi_{j,s} P_{\text{scaled}}[r, s] \right) \quad (13)$$

$$867 \quad \theta_i = \theta_{i,k^*} \text{ where } k^* = \arg \max_k \pi_{i,k} \quad (14)$$

$$870 \quad \mathbf{x}_i \sim \mathcal{N} \left(\sum_{k=1}^K \pi_{i,k} \boldsymbol{\mu}_k, \sigma^2 \mathbf{I} \right) \quad (15)$$

871 This approach preserves all existing framework properties while enabling systematic control over
 872 community overlap patterns, demonstrating how our hierarchical design facilitates principled exten-
 873 sions.

874 D.2 FUNDAMENTAL LIMITATIONS

875 More significant limitations arise from our inability to directly control complex motif-driven structures,
 876 geometric arrangements, or specific higher-order patterns commonly found in real-world networks.
 877 The DC-SBM cannot generate graphs with predetermined triangular motifs, star patterns, or geometric
 878 constraints, representing a fundamental constraint on the types of graph structures our framework can
 879 produce.

880 This limitation could potentially bias our evaluation toward models that perform well on community-
 881 structured data while potentially penalizing architectures designed for other graph topologies. How-
 882 ever, our Research Question 4 (Section 5.5) experiments provide encouraging evidence that despite
 883 these structural constraints, GraphUniverse-generated datasets effectively predict real-world model
 884 performance across diverse tasks, including molecular property prediction that depends heavily on
 885 complex functional groups and higher-order chemical structures (Wu et al., 2023).

886 D.3 IMPLICATIONS AND FUTURE DIRECTIONS

887 The transferability we observe suggests that community-centric evaluation captures sufficient funda-
 888 mental graph learning capabilities—the interplay between local structure, features, and connectivity
 889 patterns—for meaningful model assessment across diverse domains. Nevertheless, extending our
 890 framework to incorporate more sophisticated generative models while maintaining systematic experi-
 891 mental control represents a valuable direction for future work, particularly for applications requiring
 892 finer control over specific structural motifs or geometric properties.

900 E SCALING RAW PROPENSITY TO BERNOUlli PROBABILITY MATRIX WITH 901 DESIRED EXPECTED HOMOPHILY AND AVERAGE DEGREE

902 To introduce controllable heterogeneity, we generate a raw *propensity matrix* $\tilde{P} \in \mathbb{R}_{\geq 0}^{k \times k}$ as

$$903 \quad \tilde{P}_{rs} = 1 + \xi_{rs}, \quad \xi_{rs} \sim \mathcal{N}(0, (2\epsilon)^2), \quad \epsilon \in [0, 1], \quad (16)$$

904 where ϵ controls the variance of the perturbation. Entries are clipped to $[0, 2]$ and symmetrized by
 905 setting $\tilde{P}_{rs} = \tilde{P}_{sr}$. When $\epsilon = 0$ the matrix reduces to the all-ones matrix, while larger values of ϵ
 906 yield increasing heterogeneity across communities.

907 **Scaling to Target Density and Homophily** The raw propensity matrix \tilde{P} only specifies relative
 908 propensities. Given a graph with n nodes with a uniform distribution of k communities, we want
 909 to transform it into a valid probability matrix $P^* \in [0, 1]^{k \times k}$ that achieves a user-specified average
 910 degree d and homophily level h .

911 Let

$$912 \quad S_{\text{diag}} = \sum_{r=1}^k \tilde{P}_{rr}, \quad S_{\text{off}} = \sum_{\substack{r,s=1 \\ r \neq s}}^k \tilde{P}_{rs}.$$

918 We first apply two scaling factors $\alpha_{\text{diag}}, \alpha_{\text{off}} > 0$ to obtain
 919

$$920 \quad P'_{rs} = \begin{cases} \alpha_{\text{diag}} \cdot \tilde{P}_{rr}, & r = s, \\ 921 \quad \alpha_{\text{off}} \cdot \tilde{P}_{rs}, & r \neq s. \end{cases} \quad (17)$$

922 The ratio of diagonal to off-diagonal mass is then
 923

$$924 \quad \frac{\sum_r P'_{rr}}{\sum_{r \neq s} P'_{rs}} = \frac{\alpha_{\text{diag}} S_{\text{diag}}}{\alpha_{\text{off}} S_{\text{off}}}. \\ 925$$

926 We now enforce the target homophily constraint by stating enforcing that this ratio equals $h/(1-h)$,
 927 which yields the constraint
 928

$$929 \quad \frac{\alpha_{\text{diag}}}{\alpha_{\text{off}}} = \frac{h}{1-h} \cdot \frac{S_{\text{off}}}{S_{\text{diag}}}. \quad (18)$$

930 Up to this point we are not yet working with actual probabilities so we can scale the diagonal by
 931 setting $\alpha_{\text{diag}} == 1$ and calculating α_{off} by solving equation 18 and scale the off-diagonal by this
 932 value.
 933

934 Next we impose the average degree constraint and scale to obtain actual edge probabilities. Let n be
 935 the number of nodes and let the target edge density be
 936

$$937 \quad \rho_{\text{target}} = \frac{d}{n-1}. \quad (19)$$

938 We apply a global scaling factor $\beta > 0$ to obtain the final matrix
 939

$$940 \quad P^* = \beta P', \quad (20)$$

941 where β is chosen such that the mean entry of P^* equals ρ_{target} , i.e.
 942

$$943 \quad \beta = \frac{n^2 \rho_{\text{target}}}{\sum_{r,s} P'_{rs}}. \quad (21)$$

944 Finally, we clip entries of P^* to the interval $[0, 1]$ to ensure valid Bernoulli probabilities.
 945

946 The resulting matrix P^* satisfies three properties: (i) it preserves the relative heterogeneity induced by
 947 \tilde{P} , (ii) it achieves the specified homophily ratio between intra- and inter-community connections, and
 948 (iii) it yields an expected average degree of d up to sampling fluctuations. This construction allows
 949 graphs to be generated at arbitrary density and homophily levels without discarding the fine-grained
 950 structure encoded in \tilde{P} , which is essential for controlled multi-graph family generation.
 951

952 F DETAILS OF COMMUNITY-COUPLED DEGREE FACTORS

953 For completeness we record the precise definitions used in the degree–community coupling mecha-
 954 nism.
 955

956 **Overall procedure.** The coupling process consists of four steps: (1) sample power-law degree
 957 factors independently, (2) sort them in ascending order, (3) assign sorted factors to nodes based on
 958 community-specific rank sampling, and (4) apply global normalization.
 959

960 **Power-law degree factor generation.** We first generate n independent degree factors from a
 961 power-law distribution with exponent α :
 962

$$963 \quad \theta_i^{(0)} \sim \text{PowerLaw}(\alpha), \quad i = 1, \dots, n$$

964 These are then sorted to obtain the ordered sequence $(\theta_{(1)}, \dots, \theta_{(n)})$ with $\theta_{(1)} \leq \theta_{(2)} \leq \dots \leq \theta_{(n)}$.
 965

966 **Community rank centers.** Each community k is assigned a degree center $\delta_k \in [-1, 1]$ that maps
 967 linearly to a preferred mean rank:
 968

$$969 \quad \mu_k = \frac{1 + \delta_k}{2} (n - 1)$$

970 Thus $\delta_k = -1$ corresponds to rank $\mu_k = 0$ (lowest-degree regime), $\delta_k = 0$ to rank $\mu_k = (n-1)/2$
 971 (middle-degree regime), and $\delta_k = +1$ to rank $\mu_k = n - 1$ (highest-degree regime).
 972

972 **Rank sampling and assignment.** For each node i in community $c(i)$, we sample a rank index ℓ_i
 973 from a truncated Gaussian distribution:

$$974 \quad 975 \quad \ell_i \sim \mathcal{N}(\mu_{c(i)}, \sigma^2) \text{ truncated to } [1, n]$$

976 Node i is then assigned degree factor $\theta_i = \theta_{(\ell_i)}$.

978 **Variance interpolation.** The sampling variance is set as

$$979 \quad 980 \quad \sigma^2 = \sigma_{\min}^2 + (1 - \rho)(\sigma_{\max}^2 - \sigma_{\min}^2),$$

981 where $\rho \in [0, 1]$ is the degree separation parameter. Here $\sigma_{\max} = n$ corresponds to nearly uniform
 982 assignments with strong overlap across communities.

983 **Minimal variance.** To prevent degenerate overlaps when communities are spread apart in degree
 984 space, we set

$$985 \quad 986 \quad \sigma_{\min} = \max\left(1, \min_{k \neq k'} \frac{|\mu_k - \mu_{k'}|}{6}\right),$$

987 which ensures sufficient separation whenever the community centers μ_k are far apart.

989 **Normalization.** In the classical Bernoulli DC-SBM, degree factors are normalized within each
 990 community:

$$991 \quad 992 \quad \frac{1}{n_r} \sum_{i: b_i=r} \theta_i = 1 \quad \forall r.$$

994 In our construction we instead apply a single global normalization

$$995 \quad 996 \quad \frac{1}{n} \sum_{i=1}^n \theta_i = 1,$$

998 so that the average degree factor is one across all nodes. This choice preserves the relative placement
 999 of communities in the degree spectrum, though it does not guarantee exact per-community calibration.
 1000 Empirically we observe that the global normalization suffices for maintaining the target average
 1001 degree (see Section 4.3).

1003 G CONNECTIVITY CORRECTION ALGORITHM

1004 When the initial edge sampling results in disconnected components, we employ a greedy algorithm to
 1005 restore connectivity while minimally perturbing the intended block structure. The procedure operates
 1006 as follows:

1008 **Algorithm Overview:** We iteratively connect the smallest disconnected component to the main graph
 1009 by selecting edges that best align with the target probability matrix \mathbf{P}_{sub} . After each edge addition,
 1010 we recompute connected components and repeat until the graph becomes fully connected.

1012 **Connection Selection:** For each potential edge (i, j) between communities $c(i)$ and $c(j)$, we
 1013 calculate a score based on the current deviation between actual and expected inter-community edge
 1014 probabilities:

- 1015 • If the actual probability is below the expected value ($\text{actual}_{c(i),c(j)} < \mathbf{P}_{\text{sub}}[c(i), c(j)]$),
 1016 adding an edge reduces this negative deviation (preferred option).
- 1017 • If the actual probability exceeds expectations, we select connections that minimize further
 1018 deviation.

1019 **Deviation Calculation:** We maintain a normalized actual probability matrix where edge counts are
 1020 divided by the maximum possible edges between community pairs, then scaled to match the total
 1021 mass of \mathbf{P}_{sub} for fair comparison.

1023 This approach optimally balances connectivity requirements with structural fidelity: it improves the
 1024 match to the target block structure when possible (by connecting under-connected community pairs)
 1025 and minimizes degradation when connectivity necessitates violating the intended structure, thereby
 preserving the statistical properties of the generated graph family to the greatest extent possible.

1026 **H CORE PARAMETER ALLOWED SAMPLING RANGES FOR VALIDATION**
 1027 **EXPERIMENT**
 1028

1029 Table 2: Parameter sampling ranges for randomized validation experiments
 1030

1031 Parameter	1032 Type	1033 Sampling Range
1034 Universe Level		
1035 Edge Propensity Variance (ϵ)	1036 Continuous	[0.0, 1.0]
1037 Feature Dimension	1038 Discrete	[10, 100]
1039 Center Variance (σ_{center}^2)	1040 Continuous	[0.1, 1.0]
1041 Cluster Variance ($\sigma_{\text{cluster}}^2$)	1042 Continuous	[0.1, 1.0]
1043 Family Level		
1044 Min Node Count (n_{\min})	1045 Discrete	[50, 400]
1046 Max Node Count (n_{\max})	1047 Discrete	[100, 1000]
1048 Min Communities (k_{\min})	1049 Discrete	[2, 15]
1050 Max Communities (k_{\max})	1051 Discrete	[4, 15]
1052 Homophily Range (h_{\min}, h_{\max})	1053 Range	[0.0, 1.0]
1054 Average Degree Range (d_{\min}, d_{\max})	1055 Range	[2.0, 20.0]
1056 Degree Separation Range (ρ_{\min}, ρ_{\max})	1057 Range	[0.0, 1.0]
1058 Power Law Exponent Range ($\alpha_{\min}, \alpha_{\max}$)	1059 Range	[1.5, 4.5]

1047 For parameters that represent ranges themselves (e.g., Homophily Range, Average Degree Range),
 1048 we sample the range bounds from the specified limits and then generate individual range spans
 1049 with widths between 5% and 20% (randomly drawn) of the parameter space, ensuring meaningful
 1050 variation while maintaining practical constraints. All experiments use a fixed universe size of $K = 15$
 1051 communities. Results shown in Table 2.

1052 Note: For paired parameters (min/max node count and communities), the code ensures logical
 1053 constraints where maximum values exceed minimum values by appropriate margins.

1055 **I VALIDATION METRICS IMPLEMENTATION DETAILS**

1058 We organize our validation metrics into three categories that capture different aspects of generation
 1059 quality. An overview table of all validation metrics is given in Table 3:

1061 **I.1 GRAPH PROPERTY METRICS**

1063 These metrics verify that generated graphs match their target structural specifications:

1064 **Homophily:** Fraction of edges within communities: $h = \sum_{(i,j) \in E} \mathbb{1}[c(i) = c(j)]/|E|$. This directly
 1065 validates whether the target homophily level is achieved.

1066 **Average Degree:** Mean node degree across the graph, validating that edge density scaling produces
 1067 the intended connectivity level.

1069 **Degree Tail Ratio:** Ratio of 99th percentile to mean degree ($\tau_{99} = d_{99}/\bar{d}$), capturing heavy-tailedness
 1070 of the degree distribution and validating power-law parameter effects.

1071 **Generation Time:** Wall-clock time per graph instance, assessing computational efficiency.

1073 **Mean Probability Matrix Deviation:** This metric quantifies how well the realized graph structure
 1074 matches the target community connection patterns. For each graph, we compute the deviation between
 1075 the actual probability matrix $\mathbf{A}_{\text{actual}}$ and the expected matrix \mathbf{P}_{sub} :

1076 1. Calculate actual edge probabilities between communities i and j :

$$1078 \mathbf{A}_{\text{actual}}[i, j] = \begin{cases} \frac{\text{edge_count}_{i,j}}{n_i(n_i-1)} & \text{if } i = j \\ \frac{\text{edge_count}_{i,j}}{n_i \cdot n_j} & \text{if } i \neq j \end{cases} \quad (22)$$

1080
 1081 where n_i is the size of community i and $\text{edge_count}_{i,j}$ is the number of edges between
 1082 communities i and j .
 1083 2. Compute mean absolute deviation: deviation = $\frac{1}{k^2} \sum_{i,j} |\mathbf{A}_{\text{actual}}[i,j] - \mathbf{P}_{\text{sub}}[i,j]|$

1084 I.2 SIGNAL STRENGTH METRICS
 1085

1086 These metrics assess whether **within** each graph we can find meaningful, learnable community
 1087 structure through different node-level predictive signals:
 1088

1089 All signal metrics use Random Forest classification with the following configuration: 100 estimators,
 1090 unlimited depth, minimum 2 samples per split, minimum 1 sample per leaf. Data is split 70/30
 1091 train/test with stratification to ensure all communities appear in both sets. Performance is measured
 1092 using macro F1-score.

1093 **Feature Signal:** Uses node features \mathbf{x}_i directly as input to predict community labels.

1094 **Degree Signal:** Uses node degree d_i as single-dimensional input.

1095 **Structure Signal:** For each node v , construct feature vector $\mathbf{f}_v \in \mathbb{R}^{3k}$ by concatenating community
 1096 neighbor counts at distances 1, 2, and 3:
 1097

$$\mathbf{f}_v = [\mathbf{n}_v^{(1)}, \mathbf{n}_v^{(2)}, \mathbf{n}_v^{(3)}]$$

1098 where $\mathbf{n}_v^{(d)} = [n_{v,1}^{(d)}, n_{v,2}^{(d)}, \dots, n_{v,k}^{(d)}]$ and $n_{v,c}^{(d)}$ is the number of neighbors of node v in community c at exactly distance d . For example, with 5 communities, if node v has neighbors in communities [1,1,2,4,4] at distance 1, [2,2,3,5,5,5] at distance 2, and [1,4,4] at distance 3, then $\mathbf{f}_v = [2, 1, 0, 3, 0, 0, 2, 1, 0, 4, 1, 0, 0, 2, 0]$.
 1103

1104 I.2.1 CROSS-GRAF CONSISTENCY METRICS
 1105

1106 These metrics evaluate whether community identities remain semantically consistent **across** different
 1107 graph instances within a family:
 1108

1109 **Structure Consistency:** For each graph g , compute

$$\text{consistency}_g = \frac{1}{k} \sum_{i=1}^k \rho_{\text{Spearman}}(\tilde{\mathbf{P}}_{i,:}, \mathbf{A}_{\text{actual},i,:}^{(g)})$$

1110 where ρ_{Spearman} denotes Spearman rank correlation, $\tilde{\mathbf{P}}_{i,:}$ is row i of the universe propensity matrix
 1111 restricted to participating communities, and $\mathbf{A}_{\text{actual},i,:}^{(g)}$ is the corresponding row of the actual probability
 1112 matrix.
 1113

1114 **Degree Consistency:** Combines within-graph and cross-graph consistency:
 1115

$$\text{consistency}_g = \frac{1}{2} \left(\rho_{\text{within}}^{(g)} + \rho_{\text{cross}}^{(g)} \right)$$

1116 where $\rho_{\text{within}}^{(g)} = \rho_{\text{Spearman}}(\bar{\mathbf{d}}^{(g)}, \boldsymbol{\delta}_{\mathcal{C}^{(g)}})$ compares average degrees per community $\bar{\mathbf{d}}^{(g)}$ with universe
 1117 degree centers $\boldsymbol{\delta}_{\mathcal{C}^{(g)}}$, and
 1118

$$\rho_{\text{cross}}^{(g)} = \frac{1}{\sum_{g' \neq g} w_{g,g'}} \sum_{g' \neq g} w_{g,g'} \cdot \rho_{\text{Spearman}}(\mathbf{s}^{(g)}, \mathbf{s}^{(g')})$$

1119 where $\mathbf{s}^{(g)} \in [0, 1]^K$ is the percentile signature for graph g with $s_c^{(g)} = \frac{\text{rank}(\bar{d}_c^{(g)}) - 1}{|\mathcal{C}^{(g)}| - 1}$ for participating
 1120 communities and $s_c^{(g)} = \text{NaN}$ otherwise, $w_{g,g'} = |\{c : s_c^{(g)} \neq \text{NaN} \wedge s_c^{(g')} \neq \text{NaN}\}|$ is the overlap
 1121 weight, and the correlation is computed only over non-NaN entries.
 1122

1123 **Feature Consistency:** Average pairwise cosine similarity between community centroids:
 1124

$$\text{consistency} = \frac{2}{N(N-1)} \sum_{g=1}^{N-1} \sum_{g'=g+1}^N \frac{1}{k} \sum_{c=1}^k \frac{\boldsymbol{\mu}_c^{(g)} \cdot \boldsymbol{\mu}_c^{(g')}}{\|\boldsymbol{\mu}_c^{(g)}\| \|\boldsymbol{\mu}_c^{(g')}\|}$$

1125 where N is the number of graphs and $\boldsymbol{\mu}_c^{(g)}$ is the centroid of community c in graph g .
 1126

Category	Metric	Description
Graph Property	Homophily	Fraction of edges within communities: $h = \sum_{(i,j) \in E} \mathbb{1}[c(i) = c(j)]/ E $
	Average degree	Mean node degree, validating edge density scaling
	Degree tail ratio 99	Ratio of 99th percentile to mean degree: $\tau_{99} = d_{99}/\bar{d}$
	Generation time	Wall-clock time per graph instance
Signal Strength	Mean Probability Matrix Deviation	Average deviation between realized and target community edge probability matrices (P_{sub})
	Feature signal	Per-graph, node-level community predictability via Random Forest (macro F1) using node features \mathbf{x}_i as predictor
	Structure signal	Per-graph, node-level community predictability via Random Forest (macro F1) using k -hop neighbors label counts ($k \in \{1, 2, 3\}$) as predictor.
	Degree signal	Per-graph, node-level Community predictability via Random Forest (macro F1) using node degree d_i as predictor.
Cross-Graph Consistency	Feature consistency	Average pairwise cosine similarity between community feature centroids across graphs
	Structure consistency	Spearman correlation between universe propensity matrix $\tilde{\mathbf{P}}$ and realized edge probabilities
	Degree consistency	Rank correlation of community degree orderings across graphs

Table 3: Validation metrics for evaluating GraphUniverse generation framework.

J EXPANDED VALIDATION RESULT ANALYSIS

Detailed Validation Result Analysis. The correlation heatmap (Figure 2) demonstrates comprehensive parameter control across all validation metrics, revealing both expected relationships and theoretically interpretable effects.

Graph Property Metrics (first panel) show expected strong correlations with some additional insights. Input parameters precisely control observed homophily and average degree, while power-law exponent governs degree tail heaviness and node count correlates with generation time. We observe minor statistically significant effects on generation time from other parameters, likely reflecting computational complexity variations. Notably, increasing node count reduces probability matrix deviation, suggesting that larger graphs experience fewer random sampling effects due to improved statistical power. Slight deviations from target edge probability matrices under high average degree and degree separation parameters reflect the multiplicative edge generation process, where stronger degree factor effects naturally influence connection patterns.

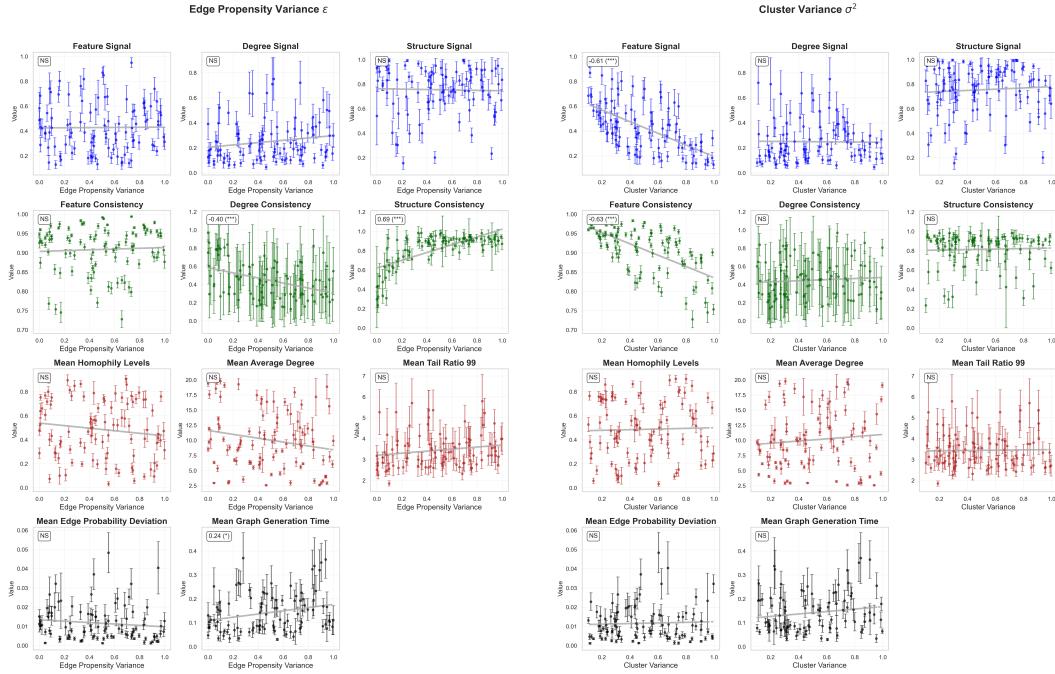
Signal Strength Metrics (second panel) demonstrate strict adherence to theoretical expectations at the single-graph level, where Random Forest classifiers predict community labels within each graph instance. Cluster variance directly controls feature signal strength by determining feature separability between communities. The negative correlation between community count and all signal metrics reflects the fundamental difficulty of multi-class classification: distinguishing between two communities is inherently easier than discriminating among many, leading to higher F1 scores with fewer classes given similar discriminative power. Homophily’s positive correlation with structure signal has a clear mechanistic explanation: when neighbors predominantly share the same community label, neighborhood composition becomes a highly predictive feature for node classification. This relationship—where averaging neighborhood representations provides strong community signals—likely explains the effectiveness of simple GNNs like GCN in homophilic settings. Similarly, average degree enhances structure signal by providing more neighborhood information, giving classifiers richer structural context for community prediction.

Cross-Graph Consistency Metrics (third panel) provide the strongest validation of our hierarchical design. The intended universe-level signals are present and tightly controllable: propensity variance governs structure consistency, degree separation controls degree consistency, and cluster

1188 variance determines feature consistency. The negative correlation between community count and
 1189 consistency metrics reflects increased sensitivity to random effects when computing correlations
 1190 across many classes, where small sampling variations can more easily perturb rank orderings. We
 1191 observe a theoretically justified trade-off between degree separation and propensity variance effects
 1192 on edge probability deviation, emerging from our multiplicative edge generation process where
 1193 $P_{ij} = \theta_i \theta_j P_{\text{scaled}}[c(i), c(j)]$, causing these parameters to modulate different components of the same
 1194 generative mechanism.

J.1 INDIVIDUAL PARAMETER-VALIDATION PLOTS

Please see figures below.



(a) Randomized Parameter Validation of Edge Propensity Variance parameter. Top left shows Pearson correlation and statistical significance level (NS, not statistically significant).

(b) Randomized Parameter Validation of Cluster Variance parameter. Top left shows Pearson correlation and statistical significance level (NS, not statistically significant).

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

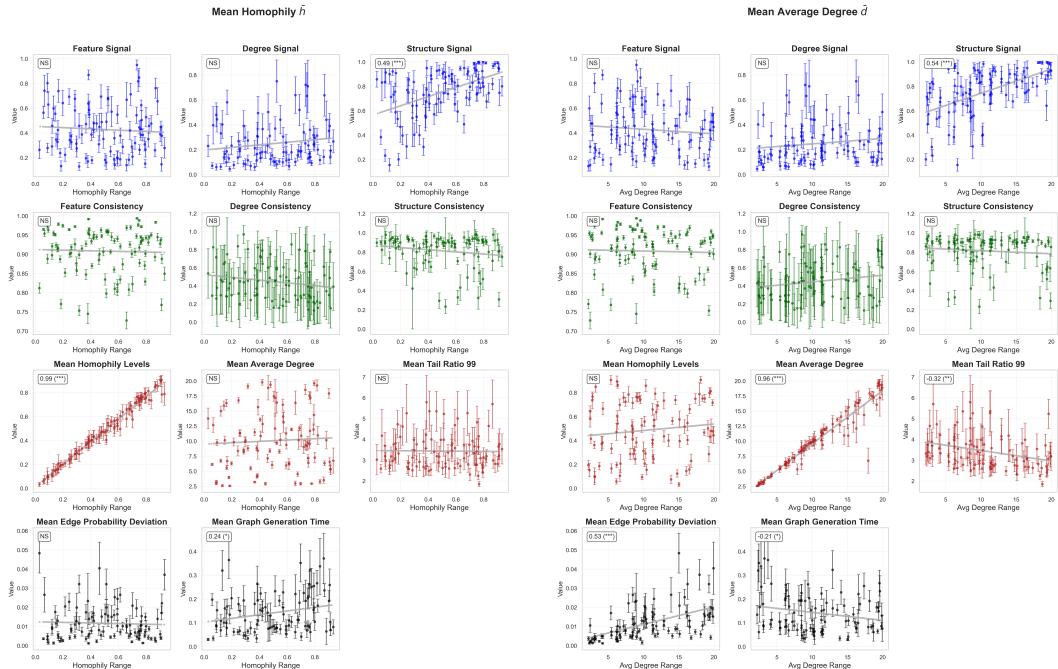
1267

1268

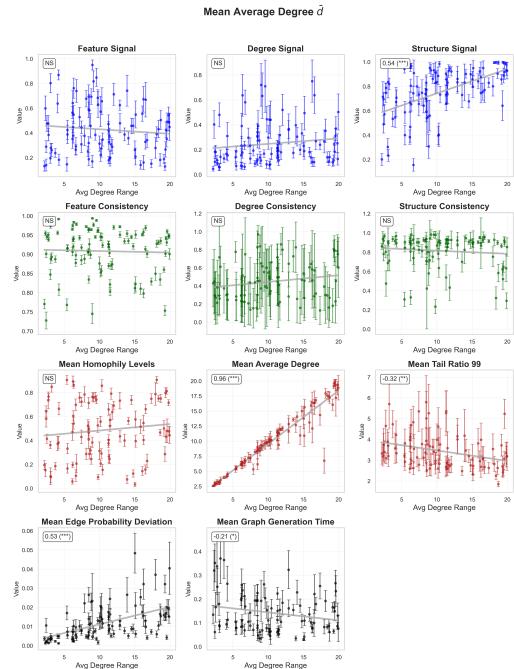
1269

1270

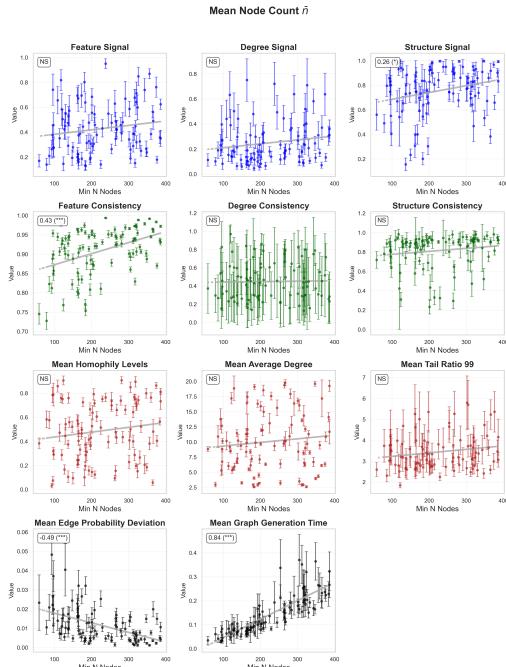
1271



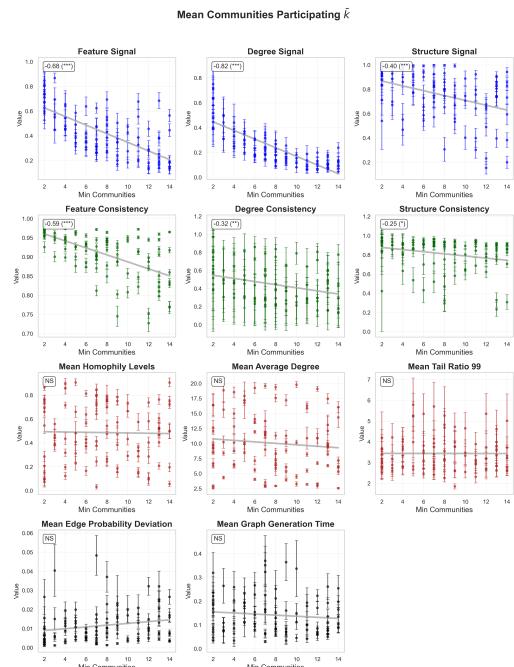
(a) Randomized Parameter Validation of Homophily Range parameter. Top left shows Pearson correlation and statistical significance level (NS, not statistically significant).



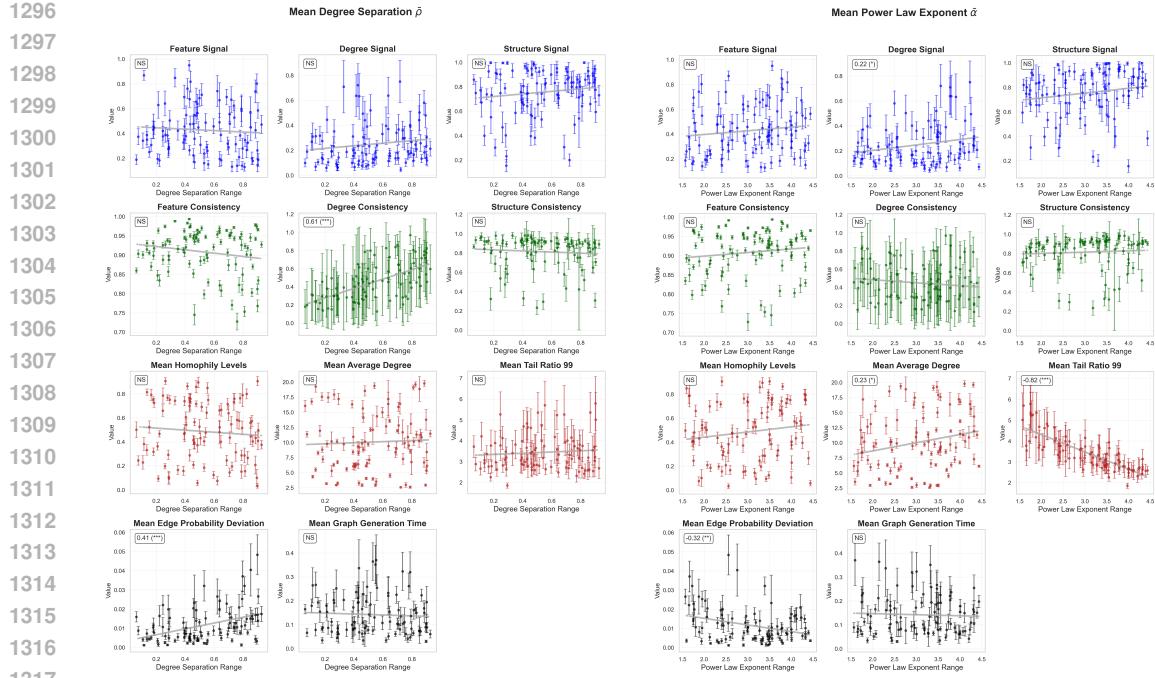
(b) Randomized Parameter Validation of Average Degree Range parameter. Top left shows Pearson correlation and statistical significance level (NS, not statistically significant).



(a) Randomized Parameter Validation of Node Count range parameter. Top left shows Pearson correlation and statistical significance level (NS, not statistically significant).



(b) Randomized Parameter Validation of Communities Participating Per Graph Range parameter. Top left shows Pearson correlation and statistical significance level (NS, not statistically significant).



(a) Randomized Parameter Validation of Degree Separation Range parameter. Top left shows Pearson correlation and statistical significance level (NS, not statistically significant).

(b) Randomized Parameter Validation of Power Law Range parameter. Top left shows Pearson correlation and statistical significance level (NS, not statistically significant).

K REAL-WORLD DATASET VALIDATION

K.1 EQUIVALENT DATASET PARAMETER EXTRACTION

To establish correspondence between real-world datasets and their synthetic equivalents, we developed a systematic parameter extraction pipeline that maps dataset characteristics to GraphUniverse and GraphWorld generation parameters.

K.1.1 COMMUNITY DEFINITION STRATEGY

The extraction process begins by identifying a suitable notion of “community” for each dataset, which varies based on available features:

- **Molecular datasets (NCI1, MUTAG, AQSOL, OGBG-MolHIV):** We use atom types as natural communities, extracted via argmax on one-hot encoded features or directly from atomic number features.
- **IMDB-MULTI:** Lacking node features or labels, we perform degree-based clustering using K-means on node degree and clustering coefficient features, with optimal K determined via silhouette scoring.

K.1.2 PARAMETER MAPPING METHODOLOGY

For each dataset, we extract:

1. **Graph size distribution:** Number of nodes across all graphs
2. **Average degree distribution:** Mean degree per graph
3. **Community structure:** Number of unique communities per graph and total unique communities
4. **Homophily:** Fraction of edges connecting nodes in the same community

1350
 1351 For **GraphUniverse**, we use the 5th-95th percentile range of each property to capture the full
 1352 distribution while avoiding outliers. The universe size K is set to the maximum of (i) the 90th
 1353 percentile of communities needed to cover 90% of nodes, and (ii) the maximum communities per
 1354 graph, ensuring sufficient diversity.

1355 For **GraphWorld**, following their single-graph paradigm, we use mean values for all properties. Both
 1356 K and communities per graph are set to the dataset’s mean unique communities per graph. However,
 1357 for fairness, we set the graph size to 1000 instead of the average of the real dataset’s graph sizes,
 1358 which in general are too small in an inductive dataset to train a model on.

1359 K.1.3 EXTRACTED PARAMETERS

1360 Table 4 presents the extracted parameters for all datasets. Note that GraphUniverse captures the
 1361 heterogeneity of real datasets through ranges, while GraphWorld reduces this to point estimates.

1363 Table 4: Extracted parameters from real datasets and their synthetic equivalents. GraphUniverse uses
 1364 5th-95th percentile ranges; GraphWorld uses mean values.

Dataset	#Graphs	Nodes GU Range	GW	Avg. Degree GU Range	GW	Homophily GU Range	GW	Communities/Graph GU Range	GW	Universe K
OGBG-MolHIV	41,127	[13, 46]	1000	[2.00, 2.50]	2.14	[0.32, 0.84]	0.61	[2, 5]	3	5/3
AQSOI	9,833	[10, 36]	1000	[1.60, 2.25]	1.98	[0.15, 0.92]	0.59	[2, 5]	2	5/2
IMDB-MULTI	1,500	[10, 31]	1000	[4.67, 17.00]	8.10	[0.35, 1.00]	0.80	[2, 5]	2	5/2
NCII	4,110	[15, 59]	1000	[2.00, 2.50]	2.16	[0.38, 0.82]	0.62	[2, 5]	3	5/3
ZINC	10,000	[16, 31]	1000	[2.00, 2.50]	2.14	[0.32, 0.71]	0.52	[3, 6]	4	6/4

1372 **Notes:** GU = GraphUniverse, GW = GraphWorld. For Universe K, we show both values (GraphU-
 1373 niverse/GraphWorld) when they differ. For all experiments except the IMDB-MULTI one, other
 1374 generation parameters (edge propensity variance, cluster variance, degree separation) are set to
 1375 mid-range values (0.5) for consistency across experiments. For the IMDB-MULTI one, since it does
 1376 not have any node-features, we set the feature signal to zero in equivalent dataset (center variance of
 1377 0.01, cluster variance of 1.0) and the degree separation, now being the main identifier for community
 1378 detection, to a range of 0.9 to 1.0.

1380 K.2 DETAILED REAL-WORLD ALIGNMENT ANALYSIS

1381 Figure 10 provides a detailed model-level analysis of ranking correlations between synthetic and
 1382 real-world datasets. For each of the six datasets, we plot individual model rankings computed via
 1383 bootstrap analysis (1000 iterations) to quantify uncertainty in rank estimates. In this plot we omitted
 1384 the baseline models, since these artificially inflate correlation. This effect is displayed in Figure 11,
 1385 where the DeepSet and GraphMLP models *are* included.

1386 The results confirm that GraphUniverse preserves real-world model ranking patterns across diverse
 1387 datasets. GraphUniverse (top row) achieves strong positive Spearman correlations, demonstrating
 1388 that models maintaining similar relative performance in both synthetic and real settings. In contrast,
 1389 GraphWorld (bottom row) shows poor alignment with multiple negative correlations, failing to
 1390 capture how model performance varies across different graph structures. This ranking preservation is
 1391 crucial for practitioners who need to select architectures based on synthetic benchmark results, as
 1392 GraphUniverse reliably predicts which models will perform well on real-world tasks.

1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

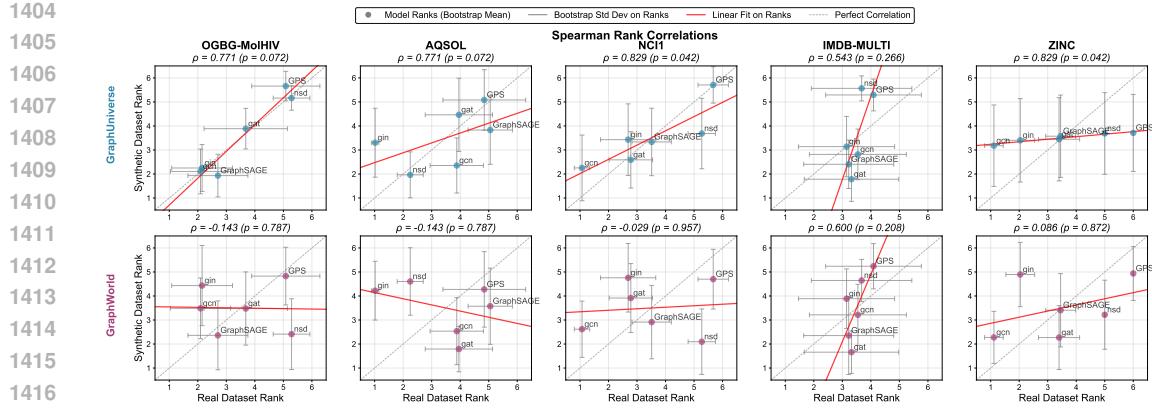


Figure 10: **Model ranking correlations between real and synthetic datasets.** Each point represents a model’s rank (1=best) with error bars showing bootstrap standard deviation (1000 iterations). GraphUniverse (top row) demonstrates strong rank preservation, while GraphWorld (bottom row) shows poor alignment including negative correlations. The red line shows linear fit to mean ranks, with the diagonal gray line indicating perfect correlation. Non-message passing models (DeepSet and GraphMLP) are omitted to focus on graph-aware architectures, as they consistently underperform and artificially inflate correlations.

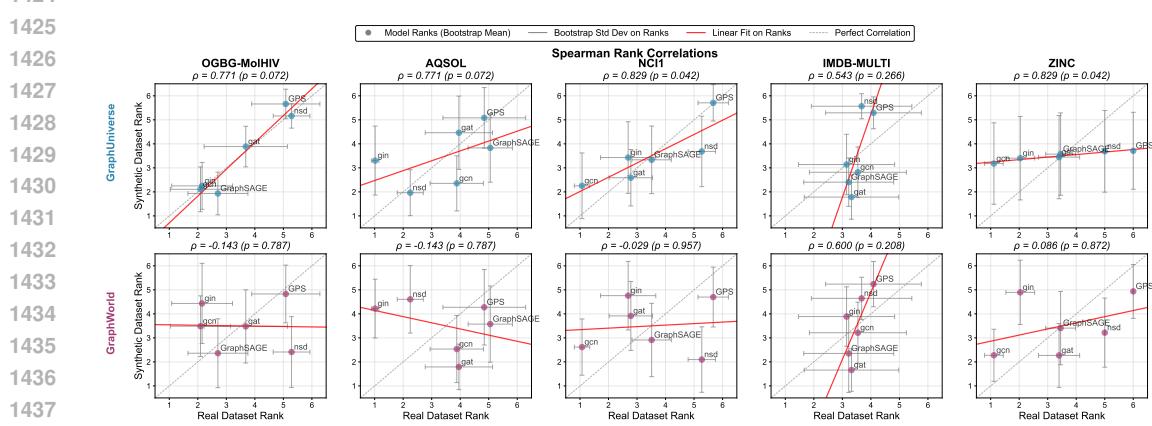


Figure 11: **Model ranking correlations between real and synthetic datasets.** Each point represents a model’s rank (1=best) with error bars showing bootstrap standard deviation (1000 iterations). The red line shows linear fit to mean ranks, with the diagonal gray line indicating perfect correlation. Non-message passing models (DeepSet and GraphMLP) are included, artificially inflating correlations, especially for the GraphWorld case (bottom row).

L HETEROGRAPHY-SPECIALIZED ARCHITECTURES EVALUATION

To further validate our framework’s ability to capture nuanced architectural differences across graph properties, we extend our benchmarking to include models that have shown effectiveness in heterophilic settings: Frequency Adaptive Graph Convolutional Network (FAGCN) (Bo et al., 2021), H2GCN (Zhu et al., 2020), and ChebNet (Tang et al., 2024). While FAGCN and H2GCN were explicitly designed for heterophilic graphs, ChebNet’s spectral approach using Chebyshev polynomials has demonstrated strong empirical performance in low-homophily settings, making it a valuable addition to our analysis.

L.1 EXPERIMENTAL SETUP

We evaluate FAGCN, H2GCN, and ChebNet alongside our original model suite across five homophily levels (0.05, 0.25, 0.5, 0.75, 0.95) in the transductive setting (*GraphWorld* style) and three homophily

ranges ([0.0,0.1], [0.4,0.6], [0.9,1.0]) in the inductive setting (*GraphUniverse* style). All other experimental parameters remain consistent with our main benchmarking protocol (Section 5.1), including hyperparameter optimization procedures and evaluation metrics.

The hyperparameter grid used in optimization of these heterophily-specialized models is displayed in Table 5.

L.2 RESULTS AND ANALYSIS

Figure 12 presents the performance of heterophily-specialized models compared to our baseline architectures across the homophily spectrum.

Our results reveal surprising differences between evaluation paradigms:

Transductive Performance: As expected, **H2GCN** and **ChebNet** demonstrate superior performance in the most heterophilic regimes (0.05-0.25), validating their design principles for heterophilic graphs. Their advantage gradually diminishes as homophily increases, with performance converging to baseline levels at high homophily (0.95). Notably, **FAGCN** underperforms relative to expectations, suggesting that its frequency-adaptive mechanisms may not translate effectively to our synthetic community detection task.

Inductive Performance: In contrast, none of the heterophily-specialized models maintain their advantages in the inductive setting. Performance differences across homophily levels become less pronounced, and specialized architectures show no clear superiority over standard message-passing networks like **GAT** and **GraphSAGE**. This finding suggests that the benefits of heterophily-specific designs may be diminished when models must generalize to entirely new graph instances rather than leveraging global structural patterns within a single graph.

This experiment further validates *GraphUniverse*’s capacity to reveal architectural behaviors that remain hidden in traditional single-graph evaluations. Architectural advantages observed in transductive settings may not transfer to inductive scenarios, emphasizing the importance of evaluation paradigm choice.

Table 5: Hyperparameter grid search space for heterophily-specialized models.

Model	Hyperparameter	Search Space (Grid)
ChebNet	feature_encoder.out_channels	{32, 64}
	feature_encoder.proj_dropout	{0.3}
	backbone.num_layers	{2, 4}
	backbone.K	{2, 3, 5}
	backbone.normalization	{sym, rw}
	backbone.dropout	{0.2, 0.4}
	readout.hidden_layers	{[16], []}
FAGCN	feature_encoder.out_channels	{32, 64}
	feature_encoder.proj_dropout	{0.3}
	backbone.num_layers	{2, 4}
	backbone.eps	{0.0, 0.1, 0.2}
	backbone.normalize	{True, False}
	backbone.dropout	{0.2, 0.4}
	readout.hidden_layers	{[16], []}
H2GCN	feature_encoder.out_channels	{32, 64}
	feature_encoder.proj_dropout	{0.3}
	backbone.num_layers	{2, 4}
	backbone.k	{2, 3}
	backbone.use_relu	{True, False}
	backbone.dropout	{0.2, 0.4}
	readout.hidden_layers	{[16], []}
	readout.dropout	{0.3}

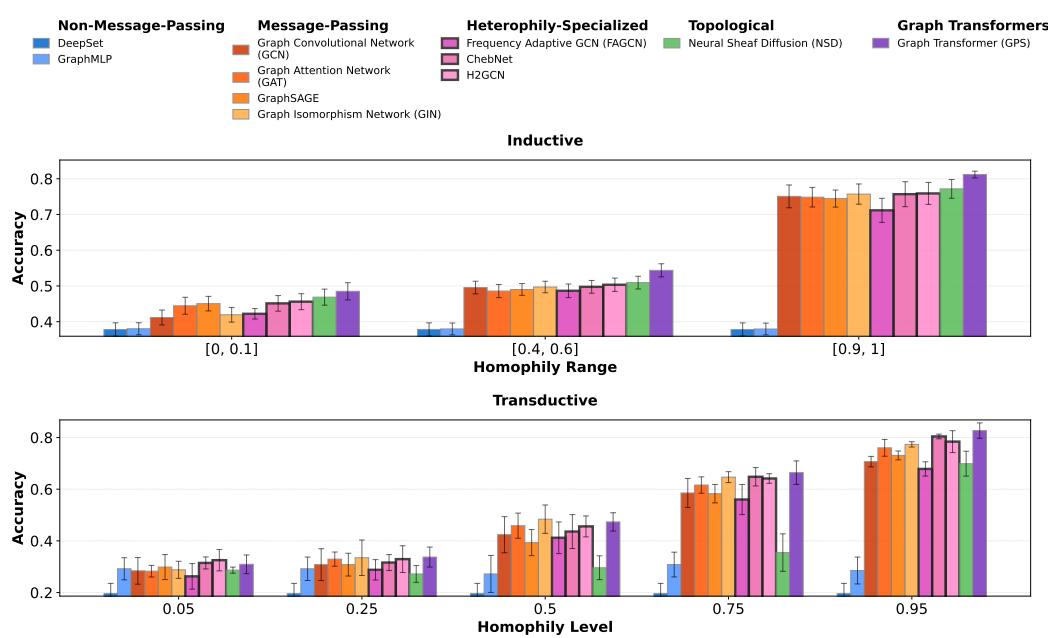


Figure 12: Performance comparison of heterophily-specialized models (FAGCN, H2GCN, ChebNet) against baseline architectures across varying homophily levels in inductive and transductive settings. Error bars represent the standard deviation of the test performance across different random seeds.

M FURTHER EXPERIMENTAL DETAILS

This appendix provides supplementary details regarding the experimental setup used in this work to ensure reproducibility.

M.1 GRAPH GENERATION PARAMETERS

Table 6 specifies the default generation parameters used for both the primary inductive setting and the baseline transductive setting. The universe parameters define the underlying semantic space (e.g., number of communities, feature characteristics), while the family parameters control the structural properties of the sampled graphs. Note the key differences: the inductive setting generates a large family of smaller, varied graphs, whereas the transductive setting generates a single, large graph with fixed properties.

M.2 BENCHMARKED MODEL ARCHITECTURES

This section provides a brief overview of the models included in our experimental evaluation.

GraphMLP & DeepSet These models serve as non-message-passing baselines. **DeepSet** is a permutation-invariant architecture for learning on sets, ignoring all structural information (Zaheer et al., 2017). **GraphMLP** basically extends DeepSet by incorporating graph structure during training via a neighborhood contrastive loss, which encourages linked nodes to have similar representations (Hu et al., 2021).

Graph Convolutional Network (GCN) The GCN is a foundational GNN architecture that learns node representations by efficiently aggregating feature information from its immediate neighbors through a spectral-based graph convolution (Kipf & Welling, 2017).

GraphSAGE Short for Graph SAmpLe and aggreGate, this model provides a framework for inductive node embedding (Hamilton et al., 2017). Instead of training on the entire graph, it learns

1566 aggregation functions on a fixed-size sample of a node’s neighborhood, allowing it to generalize to
 1567 unseen nodes and graphs.
 1568

1569 **Graph Isomorphism Network (GIN)** The GIN is a powerful GNN designed to be as discriminative
 1570 as the Weisfeiler-Lehman (WL) graph isomorphism test (Xu et al., 2019). It achieves this by using an
 1571 MLP to update node features, making it highly effective for tasks requiring a strong understanding of
 1572 graph structure.
 1573

1574 **Graph Attention Network v2 (GATv2)** GATv2 (Brody et al., 2022) is an improved version
 1575 of the original GAT model (Veličković et al., 2018) that uses a modified attention mechanism to
 1576 make it strictly more expressive. By assigning different importance weights to different nodes in a
 1577 neighborhood, both GAT and GATv2 can focus on the most relevant parts of the graph for a given
 1578 task,
 1579

1580 **Neural Sheaf Diffusion (NSD)** NSD generalizes message passing to cellular sheaves, which are
 1581 topological structures capable of representing more complex relationships (Bodnar et al., 2022). This
 1582 allows it to capture richer structural and relational information than standard GNNs.
 1583

1584 **TopoTune** TopoTune is a framework designed to systematically generalize any GNN into a topo-
 1585 logical neural network, making higher-order structures accessible for learning (Papillon et al., 2025).
 1586 It operates by taking a GNN as input and using it as a building block within a more expressive
 1587 architecture called a Generalized Combinatorial Complex Network (GCCN). This is achieved by
 1588 expanding a higher-order structure (like a simplicial or cell complex) into a collection of graphs,
 1589 which are then processed by an ensemble of synchronized GNNs. This approach democratizes
 1590 topological deep learning by allowing practitioners to easily “upgrade” existing GNNs to reason
 1591 about complex, multi-way relationships beyond simple edges.
 1592

1593 **GPS (Graph Transformer)** The GPS model combines the expressive power of transformers with
 1594 standard message-passing GNNs (Rampášek et al., 2022). By integrating local structural information
 1595 with global attention mechanisms and positional encodings, it aims to capture a wide range of
 1596 dependencies in the graph, making it a very powerful and flexible architecture.
 1597

M.3 HYPERPARAMETER OPTIMIZATION

1598 For each model, we leverage the TopoBench infrastructure (Telyatnikov et al., 2025) to perform an
 1599 extensive grid search to identify optimal hyperparameter configurations, optimizing for the highest
 1600 mean accuracy on a held-out validation set (over three dataset seeds). Table 7 details the complete
 1601 search space used for every hyperparameter of each model (following TopoBench logic of feature
 1602 encoder, backbone and readout modules), providing a basis for the reproducibility of our experiments.
 1603 **Unless otherwise specified in Table 7, we note that sum is the by default pooling method.** Full scripts
 1604 and configuration files will be publicly available upon acceptance.
 1605

1606 **Remark.** It should be noted that these spaces were refined based on preliminary, larger-scale grid
 1607 searches; we pruned parameter options that consistently showed a negligible or detrimental impact on
 1608 performance to focus on the most influential hyperparameters. Furthermore, to limit the combinatorial
 1609 explosion of the search space, parameters such as batch size and optimizer settings were fixed. These
 1610 values were informed by previous benchmarks in TopoBench and TopoTune (Papillon et al., 2025);
 1611 for example, we used the Adam optimizer with a learning rate of 0.001 and set the batch size to 32
 1612 for all inductive experiments.
 1613

M.4 HARDWARE DETAILS

1614 The hyperparameter search is executed on a Linux machine with 256 cores, 1TB of system memory,
 1615 and 4 NVIDIA H100 GPUs, each with 94GB of GPU memory.
 1616

1617
 1618
 1619

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636

Table 6: Default **GraphUniverse** generation parameters for Inductive and Transductive settings. Differences are highlighted in bold.

1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657

	Inductive Value	Transductive Value
Universe Parameters		
Number of communities (K)	10	10
Feature Dimension	15	15
Center Variance (σ_{center}^2)	0.2	0.2
Cluster Variance ($\sigma_{\text{cluster}}^2$)	0.5	0.5
Edge Propensity Variance (ϵ)	0.5	0.5
Seed	42	42
Family Parameters		
Number of graphs	1000	1
Min Node Count (n_{\min})	50	1000
Max Node Count (n_{\max})	200	1000
Min Communities (k_{\min})	4	10
Max Communities (k_{\max})	6	10
Homophily Range (h_{\min}, h_{\max})	[0.4, 0.6]	[0.5, 0.5]
Average Degree Range (d_{\min}, d_{\max})	[1.0, 5.0]	[2.5, 2.5]
Degree Separation Range (ρ_{\min}, ρ_{\max})	[0.5, 0.8]	[0.5, 0.5]
Degree distribution	power law	power law
Power Law Exponent Range ($\alpha_{\min}, \alpha_{\max}$)	[2.0, 2.5]	[2.5, 2.5]
Seed	(Inherited from Universe)	

1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674

1675

1676

1677

1678

1679

Table 7: Hyperparameter grid search space for each model.

1680

1681

Model	Hyperparameter	Search Space (Grid)
GCN	feature_encoder.out_channels	{32, 64}
	backbone.num_layers	{2, 4}
	backbone.dropout	{0.2, 0.4}
	readout.hidden_layers	{[16], []}
GIN	feature_encoder.out_channels	{32, 64}
	backbone.num_layers	{2, 4}
	backbone.dropout	{0.2, 0.4}
	readout.hidden_layers	{[16], []}
GraphSAGE	feature_encoder.out_channels	{32, 64}
	backbone.num_layers	{2, 4}
	backbone.dropout	{0.2, 0.4}
	readout.hidden_layers	{[16], []}
GAT	feature_encoder.out_channels	{32, 64}
	backbone.num_layers	{2, 4}
	backbone.heads	{2, 4, 8}
	backbone.dropout	{0.0, 0.2}
	readout.hidden_layers	{[16], []}
GPS	feature_encoder.out_channels	{32, 64}
	backbone.num_layers	{2, 4}
	backbone.heads	{4}
	backbone.dropout	{0.2, 0.4}
	backbone.attn_type	{multihead, performer}
	transforms.encodings	{RWSE, LapPE}
	readout.hidden_layers	{[16], []}
NSD	feature_encoder.out_channels	{32, 64}
	backbone.num_layers	{2, 4, 6}
	backbone.dropout	{0.2, 0.4}
	backbone.sheaf_type	{bundle, diag}
	transforms.encodings	{RWSE, LapPE}
	readout.hidden_layers	{[16], []}
GraphMLP	feature_encoder.out_channels	{32, 64}
	backbone.order	{2, 4}
	backbone.dropout	{0.2, 0.4}
	readout.hidden_layers	{[16], []}
DeepSet	feature_encoder.out_channels	{32, 64}
	readout.hidden_layers	{[64, 32], [32, 16], [16]}
	readout.dropout	{0.2, 0.4}
TopoTune	model_type	{cell, simplicial}
	feature_encoder.out_channels	{32, 64}
	tune_gnn	{GCN, GIN, GAT, GraphSAGE}
	backbone.layers	{2, 4}
	readout.pooling_type	{mean, sum}
	backbone.neighborhoods	{10 predefined topological operator sets}

1724

1725

1726

1727