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Abstract

Recognizing the physical states of objects and their transformations within videos
is crucial for structured video understanding and enabling robust real-world appli-
cations, such as robotic manipulation. However, pretrained vision-language models
often struggle to capture these nuanced dynamics and their temporal context, and
specialized object state recognition frameworks may not generalize to unseen ac-
tions or objects. We introduce SAGE (State-Action Graph Embeddings), a novel
framework that offers a unified model of physical state transitions by decompos-
ing states into fine-grained, language-described visual concepts that are sharable
across different objects and actions. SAGE initially leverages Large Language
Models to construct a State-Action Graph, which is then multimodally refined
using Vision-Language Models. Extensive experiments show that our method
significantly outperforms baselines, generalizes effectively to unseen objects and
actions in open-world settings. SAGE improves the prior state-of-the-art by as
much as 14.6% on novel state recognition with less than 5% of its inference time.

1 Introduction

If we turn the recipe book 100 Ways of Cooking Eggs (Filippini, 1892) into videos, can a modern
computer vision algorithm successfully understand all of them? The answer to this question is not as
straightforward as it might appear. On one hand, the same objects can exhibit a vast range of visual
appearances and physical states (e.g., a whole egg versus a scrambled egg), especially when human
actors interact with them. On the other hand, off-the-shelf detection and segmentation systems tend
to focus on high-level object categories, largely overlooking their underlying physical states and
dynamic transformations. We aim to develop a unified framework to jointly recognize object physical
states and their temporal evolutions from visual cues, by learning from unlabeled instructional videos.
We believe that understanding object states offers a powerful, object-centric abstraction for modeling
world dynamics. This understanding is essential for structured video comprehension of objects,
actions, and skills, and for enabling robots to perceive, predict, and plan when interacting with the
physical world, thus providing a promising pathway for robots to learn from human behaviors.

A natural initial approach to achieve fine-grained understanding of object states might be to leverage
vision-language models (VLMs), which provide detailed language descriptions for visual data
from which object states could potentially be extracted. However, Newman et al. (2024) recently
demonstrated that a naive application of state-of-the-art VLMs often fails to adequately recognize
object physical states. Alternatively, prior work has explored the use of instructional videos, which
are rich in object state transformations, to enhance model training. However, these approaches often
model object states as discrete categories (Souček et al., 2024), or train specialist models conditioned
on actions (Souček et al., 2022; Xue et al., 2024), making it challenging for them to generalize to
novel states belonging to unseen objects or actions. This highlights a critical need for models that can
learn a more flexible and generalizable representation of object states and their dynamics.
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Figure 1: Illustration of state-action graph embedding (SAGE) construction and its application for
object state recognition: Given an action, we ask LLM to describe the initial, transitioning, end
states and their associated visual concepts. Whereas prior work recognizes states for specific actions,
we recognize object states and actions through visual concepts in SAGE. It enables our model to
generalize to unseen objects / actions which share similar visual concepts with known ones.

We introduce SAGE (State-Action Graph Embeddings), a framework that leverages multimodal
pre-trained knowledge, as in VLMs, yet is able to learn effectively from unlabeled videos, a strategy
adopted by aforementioned work on object state recognition. Our key inspiration is that in order to
achieve generalizable object state recognition, the model needs to be specific about how a physical
concept is rendered visually. As illustrated in Figure 1, SAGE decomposes an object state into a
collection of fine-grained visual concepts with language descriptions. Some of them (e.g., juicy
interior) are shared across objects and actions, facilitating generalization, others (e.g., white pith)
are unique, capturing fine-grained nuances of various physical states for the same objects. In SAGE,
individually, each action node (a verb-object pair) is connected to three types of state nodes: initial,
transitioning, and end states. Each of these state nodes is, in turn, connected to a set of visual concept
nodes that describe it. When considered together, visual concept nodes shared by different actions
become connected, forming a comprehensive graph of visual concepts, states, and actions. We embed
each concept node with multimodal knowledge from VLMs, where visually similar concepts are
embedded nearby, even when some of them are unseen during training. An action node is represented
by the direction from the initial state to end state in embedding space. We construct the initial SAGE
graph using a pre-trained Large Language Model (LLM), allowing nodes for novel actions or objects
to be added automatically. We then refine this graph based on multimodal information from a VLM
(e.g., assessing if a concept is visually recognizable) and by prioritizing concepts that are shared
across a greater number of actions. Once constructed, we train a video transformer model to predict
the text embeddings of these visual concepts from video frames, which are subsequently decoded
into a sequence of object state and optionally action predictions.

We conduct comprehensive experiments to evaluate our approach on existing object state recognition
benchmarks. To make our observations scientifically rigorous, we carefully re-implement the baseline
approaches using the same pre-trained vision encoder, and also compare with their reported results
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for reference. We evaluate our method on ChangeIt and HowToChange benchmarks with known and
novel objects. To further evaluate the model generalizability, we introduce a more challenging setup
where both the action and the object in the video are unseen during training. We perform extensive
ablation studies showing the contributions of individual design choices in SAGE. Our method
demonstrates strong object state recognition performance, especially when generalized to novel
objects and actions. Notably, SAGE outperforms the prior state-of-the-art (Xue et al., 2024) across
all benchmarks, yielding as much as 14.6% relative precision improvement on state recognition for
objects and actions unseen during training, and requiring less than 5% of its inference time when action
is not provided during evaluation. Our project website is https://brown-palm.github.io/SAGE.

2 Related Work

Object states are defined as the physical and functional properties of objects (Liu et al., 2017; Newman
et al., 2024). Understanding them allows models to capture the compositionality of objects and
their attributes (Misra et al., 2017; Isola et al., 2015; Purushwalkam et al., 2019). Recognizing
and localizing object states is essential for video understanding, as objects tend to exhibit an even
broader range of state variations (Filippini, 1892), and actions can often be represented as state
transformations (Wang et al., 2016; Fathi and Rehg, 2013; Alayrac et al., 2017). Additionally, object
states provide valuable cues for skill determination (Doughty et al., 2018) and goal completion (Deng
et al., 2020), which are crucial for real-world tasks such as robotic manipulation (Gao et al., 2024).

Prior work has introduced foundation models (Radford et al., 2021; Alayrac et al., 2022; Jia et al.,
2021; Wang et al., 2022; Xu et al., 2021) for vision-language understanding, pre-trained on large-
scale image/video and caption datasets to learn a unified representation of visual features and
textual information. These models have demonstrated remarkable performance across various
visual recognition and reasoning tasks. However, they struggle with recognizing object states in
images (Newman et al., 2024) and videos (Souček et al., 2022; Xue et al., 2024), as their training
objectives often neglect object state transformations. To recognize object states in videos, prior work
(Souček et al., 2022, 2024; Xue et al., 2024) has proposed to train classifiers to predict the object states
for each frame. However, these methods usually require knowing the action or object information
during training and struggle with generalizing to novel actions or objects due to lacking unified
representation of object states. We solve these issues by proposing State-Action Graph Embeddings
to jointly represent object states and actions via visual concepts.

Visual concepts which represent the primitive features (e.g., colors) of objects have been widely
utilized in visual computing. The visual concepts can enable visual models generalize composi-
tionally (Farhadi et al., 2009; Nagarajan and Grauman, 2018; Stein et al., 2024) and enhance their
interpretability (Koh et al., 2020; Espinosa Zarlenga et al., 2022). Previous research (Menon and
Vondrick, 2022; Pratt et al., 2023; Zang et al., 2025) demonstrates that pre-trained VLMs, such as
CLIP (Radford et al., 2021), can learn visual concepts and perform zero-shot recognition based on
them. The concepts can be discovered by pre-trained LLMs (Yang et al., 2023; Zang et al., 2025). In
this work, we explore how visual concepts can be leveraged to represent object states.

3 Method

As illustrated in Figure 2, the input to our framework is a sequence of uniformly sampled video
frames encoded by a pre-trained, frozen vision encoder. The action (a verb-object pair) that causes
the object state transition can be provided as input (as used by prior work), or otherwise predicted by
our framework. The outputs are categorical predictions for all frames, each of which belongs to one
of initial state, transitioning state, end state, and background. Unless otherwise specified, we follow
the standard setup and assume that each video contains a single action, which can be relaxed when
temporal action localization is applied as a pre-processing step.

3.1 Base Model

We first contextualize the encoded visual embeddings vt from all video frames by first linearly
projecting them to obtain ht, which are fed to a temporal Transformer to produce the output embedding
Zt. An optional token hCLS is reserved for action prediction and transformed into ZCLS. All outputs
are projected into the discrete state / action spaces, where cross-entropy losses are computed on
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Figure 2: Overview of the training pipeline: Video frames are first encoded individually with a
pre-trained and frozen vision encoder, which are then contextualized with a temporal Transformer.
We decode the object states by measuring the cosine similarities of the predicted embedding Zt and
the possible state or action embeddings from SAGE.

all frames and the action prediction for model training. Frames that deemed as not containing the
object of interest by a VLM are filtered out as background. The overall training objective of our
model is a weighted sum of the object state recognition loss and action recognition loss across all
non-background frames, i.e., L = Lstate + αLact.

Specialist versus Generalist: As illustrated in the left side of Figure 1, a specialist model is trained
to predict the object states for specific actions or objects, hence not generalizable to novel actions by
design. A user needs to specify the input action to select which specialist model to use. A generalist,
on the other hand, is trained to predict all object states, even for those unseen during training. This
may be implemented by treating initial/transitioning/end states for all objects equivalently, which
ignores the significant inter-class variations; also alternatively, by dynamically constructing the output
projections (i.e., by concatenating template embeddings of all possible object states) given the action
information, which is adopted by our proposed framework.

Learning from Unlabeled Videos: While each video in the training dataset is paired with a
video-level action label, there is a lack of frame-level annotation necessary for calculating the
losses. Following the standard convention, we estimate the noisy “pseudo” object state labels by
computing the cosine similarity between frame visual embeddings and state text embeddings using
a pre-trained, frozen VLM. We further propose to refine the pseudo labels by applying a temporal
constraint (i.e., initial state → transitioning state → final state), which is implemented as a constrained
Viterbi decoding algorithm (Viterbi, 1967). The decoding process is implemented through dynamic
programming with restricted state transitions.

3.2 State-Action Graph Embeddings

We introduce State-Action Graph Embeddings (SAGE) to dynamically construct the state and action
embeddings used by the base model to decode object states and actions for generalizable recognition.
SAGE first decomposes an action into a state transformations, it then describes each state with a
collection of visual concepts, forming a tree structure. Intuitively, we want to advocate the selection
of visually distinctive concepts, which capture the nuance of fine-grained object states visually, as
well as concepts shared by multiple object states, which facilitate the generalization towards unseen
objects. The concept nodes shared by multiple states are merged, forming a densely-connected graph.
In addition, both the state nodes and action nodes should be embedded, so that they can be used for
the base model for prediction.

Graph Construction: To construct a vocabulary of object states, we query an LLM to identify the
initial, transitioning, and end states associated with each action in the dataset. For example, the three
object states involved in “slicing lemon” include “whole lemon”, “slicing lemon”, and “sliced lemon”.
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Figure 3: The graph structure of SAGE before and after refinement. We zoom in on a subregion of
the graph for demonstration. After refinement, the graph includes more shared visual concepts.

To extract the visual concepts of the object states, we leverage the LLM again to generate descriptive
attributes for each object state. Given an object state s and a prompt such as “What are the useful
visual features to distinguish a {state name} {object name}?”, along with in-context examples, the
LLM generates a set of visual concepts Cs that characterize the object state.

Node Embedding: Instead of directly encoding the object state names and action names, we first
derive the embeddings of all the visual concepts and then leverage them to compute embeddings
for the object states and actions. Ideally, visually similar concepts should be embedded nearby in
the text space, further enhancing the generalizability of our framework. As such, we first encode
each visual concept as a distributed embedding using the text encoder Etext of a pre-trained VLM.
We then represent an object state as the average of its visual concept embeddings, i.e., R(s) =
1

|Cs|
∑

c∈Cs
Etext(c). Since visual concepts are shared across different object states, this formulation

provides a unified embedding space, enabling our model to generalize across various object state
transformations, including unseen states. Inspired by prior work on relation encoding (Bordes et al.,
2013) and state-based action recognition (Wang et al., 2016), we compute the action embeddings as
the difference between the embeddings of its end and initial object states, which naturally accounts
for object-specific variations, as the same action might have different visual features for different
objects (e.g. “boiling egg” and “boiling pasta”).

By integrating object states and actions within the state-action graph, our approach captures both their
visual attributes and dynamic transformations. The proposed SAGE embeddings enable a structured
representation of actions while preserving the compositional nature of object states. This facilitates a
more generalizable understanding of object state transitions across different actions.

Multimodal Graph Refinement: We propose refining the graph structure to incorporate visual
concepts that are reliably recognized by the model to enhance object state recognition accuracy, as
well as concepts that are commonly shared across different object states to improve generalizability.
Given an object state, we first generate an over-complete concept list with an LLM. We then rank these
concepts based on their VL similarity scores with the video frames containing the object state. For
a concept c, the score is calculated as 1

|F |
∑

f∈F cos_sim(Etext(c), Zf ), where F is the set of video
frames containing the object state. We select the top-ranked ones as they are most reliably recognized
by the model. To further promote generalizability, we prioritize concepts that are shared across
multiple object states. We enforce that at least half of the selected concepts are shared. Specifically,
to select k concepts, we first select the top-ranked shared concepts until

⌈
k
2

⌉
are selected and then

select remaining top-ranked concepts. In practice, we select the top 5 concepts for each object state
and ensure that at least 3 of them are shared. We then construct a new graph with the selected visual
concepts. An illustration of SAGE before and after refinement is shown in Figure 3.

3.3 Inference

We follow a two-step inference which first predicts a video-level action label, and then decode the
object states with SAGE graph. The first step is skipped when the action is provided as input.

Action Recognition: We first identify the object of interest in the video. Each object o is represented
by the average embedding of all its associated states in SAGE. We then compute the similarity
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between the object embedding and the embeddings of all video frames. The object of interest is
selected as the one with the highest cumulative similarity to the video frames. Next, we predict the
action in the video. For all actions potentially associated with the identified object based on the SAGE
knowledge graph, we compute the similarity between each action embedding and the video-level
embedding ZCLS, and select the action a∗ with the highest similarity score.

Object State Recognition: For each frame t, we compute the similarities between its representation
Zt and the state embeddings R(s), and then a probability distribution over object states after softmax.
The only difference is that we now narrow our scope of object states to only the initial, transitioning,
and end states of the action a∗ instead of all the object states in SAGE. We then apply the Viterbi
decoding over the state predictions to predict the object states following the temporal order in SAGE.

4 Experiment

4.1 Experimental Setup

Datasets: We evaluate our method on two object state recognition benchmarks, ChangeIt (Souček
et al., 2022) and HowtoChange (Xue et al., 2024), which consist of videos depicting single actions.
The task is to predict the physical state of the object of interest in every frame given the action. While
SAGE can support state recognition from multi-action videos, by replacing the video-level action
classification step with temporal action localization, to the best of our knowledge there is no publicly
available benchmark with multiple objects and actions for evaluation purposes.

Baselines: We compare our method with LookForTheChange (LFC) (Souček et al., 2022), Multi-
TaskChange (MTC) (Souček et al., 2024) and VidOSC (Xue et al., 2024), which are the state-of-the-art
methods for object state recognition in single-action videos. LFC and VidOSC train separate special-
ized models for different objects / actions. MTC trains a unified model for all objects and actions
given a known vocabulary. We also evaluate zero-shot VLMs, including CLIP (Radford et al., 2021),
VideoCLIP (Xu et al., 2021), and InternVideo (Wang et al., 2022) for object state recognition.

To ensure a fair comparison, we use the same pre-trained VLM, CLIP ViT-L-14 (Radford et al., 2021),
which is fine-tuned with the pseudo labels and videos from HowtoChange, as the vision backbone
and pseudo-label generator for both the baselines and our method. The fine-tuning helps our method
better recognize the objects and actions from videos, by utilizing noisy, automatically generated
supervision from the speech modality, which we hope can improve the generalization performance at
object state level. To understand the performance benefits when a better video-language model is
used, we also train our model with VideoCLIP and compare it with the reported performance of the
baselines (Xue et al., 2024; Souček et al., 2022, 2024) in Section 4.5.

Evaluation Metrics: Following Souček et al. (2022, 2024), we evaluate the methods in Precision@1
on the ChangeIt dataset. In this dataset, state precision refers to the precision of initial and end
states, while action precision corresponds to the precision of transitioning states. We rename the
metric as Trans. Pre@1 to avoid confusion. On the HowToChange dataset, we follow Xue et al.
(2024) and evaluate the F-1 score, Precision, and Precision@1. See the Appendix for their detailed
definition. While the object and action ground truth labels are available in the test set, they are
optionally provided to the model according to the evaluation setup. The use of ground truth action and
object annotation as privileged information is indicated in Table 1. When not provided, our method
infers them directly from videos as described in Section 3.3. For the remaining tables, we follow the
protocol from Xue et al. (2024) where action information is provided but the object label is not.

Implementation: We sample video frames at 1 FPS as in baselines (Xue et al., 2024; Souček et al.,
2022, 2024). Frame embeddings are extracted by the vision encoder of the fine-tuned CLIP ViT-L-14
(Radford et al., 2021) (except in Section 4.5) and projected by a linear layer. We then process them
using a three-layer Transformer (512-dimensional hidden states, four attention heads) followed by
another linear projection layer to obtain frame representations. The action loss weight α is 0.1. We
train the models using the AdamW optimizer with 1e−4 learning rate and 1e−4 weight decay. We
use a batch size of 32 on ChangeIt and 128 on HowToChange. We train our model for 10 epochs
on each dataset. These hyper-parameters are optimized according to validation performance. In the
state-action graph construction, we use OpenAI GPT-4o-mini-2024-07-18 as the LLM to generate
5 visual concepts for each object state. We also experiment with an open-weight model, Qwen3-32B,
and find the performance differences are negligible compared to GPT-4o.
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Table 1: Known object state recognition performance on ChangeIt and HowToChange. SAGE
outperforms the baselines across different settings. The unified versions of baseline models suffer
substantial performance degradation, whereas our model not only mitigates this issue but even
surpasses specialized baseline models. *: Unified version implemented by us.

Methods Privileged Info Unified ChangeIt HowToChange
Action Object Model State Pre@1 Trans. Pre@1 F1 Pre Pre@1

CLIP (Radford et al., 2021) ✓ ✓ ✓ 0.30 0.63 0.27 0.27 0.48
VideoCLIP (Xu et al., 2021) ✓ ✓ ✓ 0.33 0.59 0.37 0.40 0.48
InternVideo (Wang et al., 2022) ✓ ✓ ✓ 0.27 0.57 0.30 0.31 0.47
LFC (Souček et al., 2022) ✓ ✓ ✗ 0.30 0.63 0.30 0.30 0.36
SAGE (ours) ✓ ✓ ✓ 0.57 0.85 0.39 0.45 0.58
VidOSC (Xue et al., 2024) ✓ ✗ ✗ 0.52 0.83 0.37 0.40 0.53
SAGE (ours) ✓ ✗ ✓ 0.53 0.83 0.37 0.42 0.55
LFC* ✗ ✗ ✓ 0.25 0.52 0.24 0.26 0.31
VidOSC* ✗ ✗ ✓ 0.41 0.67 0.29 0.32 0.42
MTC (Souček et al., 2024) ✗ ✗ ✓ 0.47 0.75 0.32 0.35 0.45
SAGE (ours) ✗ ✗ ✓ 0.51 0.81 0.34 0.39 0.52

Table 2: Open-world evaluation results on ChangeIt and HowtoChange. The MTC method cannot
generalize to novel actions or objects because its classification heads are fixed for the states of known
objects. SAGE shows robust performance in the open-world setting, while baseline models degrade
significantly on unseen actions or objects. *: Results from the best specialized models.

(a) Evaluation with known actions and novel objects.

Methods
ChangeIt HowtoChange
Novel Obj Novel Obj

State Pre@1 Trans. Pre@1 F1 Pre Pre@1

LFC* 0.25 0.54 0.27 0.27 0.32
VidOSC 0.43 0.71 0.32 0.35 0.48
SAGE (ours) 0.49 0.78 0.34 0.39 0.50

(b) Evaluation with novel actions and novel objects.

Methods
ChangeIt HowtoChange

Novel Obj & Act Novel Obj & Act

State Pre@1 Trans. Pre@1 F1 Pre Pre@1

LFC* 0.21 0.48 0.23 0.22 0.27
VidOSC* 0.27 0.59 0.25 0.28 0.37
SAGE (ours) 0.45 0.70 0.31 0.35 0.45

Model Training and Time: We train the model with 8× NVIDIA V100 GPUs. It takes 30 minutes
to extract visual embeddings for HowToChange and 3.5 hours for ChangeIt. The training takes about
30 minutes for HowToChange and 8 hours for ChangeIt.

4.2 Evaluation on Object State Recognition

We evaluate our method and baselines on both known and novel objects and actions. Prior work
(Souček et al., 2022, 2024; Xue et al., 2024) trains separate specialized models for different objects
or actions, and thus struggles to generalize to novel objects and actions. In this work, SAGE enables
us to train a unified model for all objects and actions and generalize to novel objects and actions.

Known Objects and Actions: As shown in Table 1, naively extending baseline methods into unified
models results in significant performance degradation. We reimplement the unified versions of the
baselines by putting state prediction heads for all known actions and objects and on a shared backbone.
With SAGE, our unified model with comparable number of parameters significantly outperforms the
generalist baselines, and even outperforms the specialists. More importantly, while baseline models
require the privileged information of actions and objects as inputs, our model can make precise object
state recognition without knowing the action and object in the video during evaluation.

Novel Objects and Actions: We evaluate our model with novel objects as explored in prior work, and
propose a more challenging setup where both the action and the object in the video are novel. Among
the baseline methods, LFC and MTC cannot generalize to novel objects and actions because they
rely on fixed-dimension classification heads trained specifically for seen object state transformations.
Similarly, VidOSC cannot generalize to novel actions. To estimate their generalization ability and
make a comparison, we follow Xue et al. (2024) and measure their performance upper bounds by
enumerating all of their specialist models and pick the one with the best performance using the
ground truth labels. Tables 2 reports the model performance on novel objects and novel actions. Our
model maintains comparable performance on unseen objects and actions as it does on seen ones,
whereas baseline models suffer significant performance drops.
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Table 3: Parameter numbers and inference runtime of different methods on the HowtoChange dataset.
When actions and objects are unknown, the specialized methods such as LFC and VidOSC must run
all expert models and select the best one, which significantly increases the computational cost.

Methods #Params per Model #Models Runtime w/ Known Actions and Objects (s) Runtime w/ Unknown Actions and Objects (s)

LFC (Souček et al., 2022) 4.2M 409 18.2 7278.4
VidOSC (Xue et al., 2024) 10.5M 20 33.8 612.7
MTC (Souček et al., 2024) 8.1M 1 24.5 24.5
SAGE (Ours) 10.9M 1 29.7 29.7

Table 4: Comparison of SAGE before and after refinement on HowToChange.

Graph # Concepts Known Novel

F1 Pre Pre@1 F1 Pre Pre@1

SAGE (before refinement) 5 0.37 0.42 0.55 0.31 0.35 0.45
SAGE (before refinement) 15 0.36 0.42 0.54 0.30 0.34 0.44
SAGE (after refinement) 5 0.38 0.42 0.58 0.33 0.39 0.50

Efficiency Analysis: We compare the parameter numbers and runtimes on the HowToChange dataset
of our model and baselines. We compare their inference time on 8× NVIDIA V100 GPUs. As
shwon in Table 3, when the privileged information of actions and objects is not provided, our method
show significant advantages in inference efficiency. Unlike specialized baselines that must run all
specialized models and select the best one (following Xue et al. (2024)), our approach uses a single
general model for all actions and objects, resulting in substantially reduced computational cost.

These findings demonstrate that our method enables the training of foundation models for object state
recognition, paving the way for more scalable and generalizable solutions.

4.3 SAGE Graph Refinement

We evaluate our SAGE refinement strategy for both known and novel object states. To validate the
effectiveness of our concept selection method, we compare the performance of original SAGE, SAGE
with over-complete concepts and the refined SAGE with selected concepts. As shown in Table 4, the
proposed refinement significantly improve the generalizability of SAGE.

In Figure 3, we illustrate the local SAGE graph structures of five object states before and after
refinement. The refined graph incorporates more visual concepts that are shared across different
object states, enabling the model to recognize novel object states by leveraging common concepts
learned from known object states. Especially, before graph refinement, concepts that should be shared
by multiple states might not be correctly assigned to these states (e.g., “juice seep out” in Figure 3).

Table 5: Ablation studies on different technical designs in our method. We report the Pre@1 scores
and their performance differences (△) compared to the complete model.

Methods
ChangeIt HowToChange

% Pre@1 (△) % Pre@1 (△)

Seen Novel Obj Novel Obj & Act Seen Novel Obj Novel Obj & Act

W/o Textual Representation 49.8 (-11.6) N/A N/A 46.4 (-8.4) N/A N/A
W/o Visual Descriptions 56.8 (-4.6) 50.3 (-6.8) 48.4 (-7.0) 50.7 (-4.1) 42.9 (-6.8) 38.8 (-6.5)
W/o Joint Training 62.3 (+0.9) 54.6 (-2.5) 47.9 (-4.1) 55.5 (+0.7) 48.2 (-1.5) 41.9 (-3.4)
W/o Dynamic State Locating 58.9 (-2.5) 53.7 (-3.4) 48.8 (-3.2) 51.8 (-3.0) 45.4 (-4.3) 41.3 (-4.0)

4.4 Ablation Studies

We analyze the effectiveness of our proposed method through ablation studies by removing each
component of SAGE at a time. The results are shown in Table 5.

State Text Embedding: We remove the text embeddings of object states by not using the cosine
similarity between language and vision representations for state recognition. Instead, we treat object
states as discrete categories. The results indicate that removing textual representations significantly
degrades model performance and disables it to work on unseen objects and actions.
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Table 6: Evaluating SAGE with different VLMs. We observe that our approach is reasonably robust
with respect to the choice of vision and text encoders.

ChangeIt HowtoChange
State Pre@1 Action Pre@1 F1 Pre Pre@1

SAGE + CLIP 0.51 0.81 0.34 0.39 0.52
SAGE + SigLIP 0.53 0.82 0.34 0.42 0.56
SAGE + MetaCLIP 0.54 0.82 0.36 0.43 0.56

Table 7: Comparison between our model with VideoCLIP as pre-trained VLM and the reported
results of baselines. Our model achieves slightly better performance than all baselines on seen objects
and significantly outperform all baselines on novel objects.

Methods
ChangeIt ChangeIt (Open-world) HowToChange

State
Pre@1

Action
Pre@1

State Pre@1 Trans. Pre@1 F1 (%) Precision (%) Pre@1 (%)
seen novel seen novel seen novel seen novel seen novel

LFC Souček et al. (2022) 0.35 0.68 0.36 0.25 0.77 0.68 30.3 28.7 32.5 30.0 37.2 36.1
MTC (Souček et al., 2024) 0.49 0.80 0.41 0.22 0.72 0.62 33.9 29.9 38.5 34.1 43.1 38.8
VidOSC (Xue et al., 2024) 0.57 0.84 0.56 0.48 0.89 0.82 46.4 43.1 46.6 43.7 60.7 58.2
SAGE (Ours) 0.60 0.89 0.59 0.55 0.89 0.87 46.4 44.7 47.5 46.3 63.6 61.2

Visual Concept Descriptions: We replace the visual concept descriptions with object state names to
obtain the state embeddings, and keep the pseudo labels consistent for fair comparison. The results
show that removing visual concepts leads to the largest performance drop on unseen objects and
actions. This suggests that visual descriptions provide crucial reasoning cues for recognizing object
states, especially when generalizing to novel objects and actions.

Jointly Training with Action Recognition: We remove the action recognition objective during train-
ing. Although this objective does not improve seen state recognition, it enhances the generalizability
to unseen objects and actions. This is because unseen object states and actions may share similar
relationships to seen ones, which could be learned by joint training with action recognition.

Viterbi Temporal Decoding: Instead of training the model with pseudo labels decoded with temporal
constraints, we train it with pseudo labels generated by CLIP as in Xue et al. (2024). The results show
that removing Viterbi decoding in pseudo label preparation leads to a significant drop in performance,
suggesting that temporal constraints helps improve recognition, particularly for generalization.

Vision-Language Models: Finally, we explore the use of different vision-language models to
showcase the robustness of our method. We adopt the visual and text encoders from SigLIP (Zhai
et al., 2023), which enhances CLIP’s training objective, and from MetaCLIP (Xu et al., 2024), which
refines CLIP’s training data quality. We evaluate in the most challenging setting where both the action
and object information are unknown. In Table 6, we observe moderate improvements when SigLIP
and MetaCLIP are used, indicating the image encoder is not the main performance bottleneck.

4.5 Comparison with Reported SOTA Results

For thorough comparison, we train our model by preplacing CLIP with VideoCLIP adopted by prior
work, and compare SAGE with the reported results in baselines (Souček et al., 2022, 2024; Xue
et al., 2024). Table 7 shows that our unified model can perform consistently better than the reported
state-of-the-art results from specialized models.

4.6 Qualitative Results

We demonstrate in Figure 4 the top-1 frame predictions of our model for videos with known and
novel objects and states. For each video, we identify the top-1 frame for the initial, transitional, and
final object states by selecting the frame with the highest embedding similarity to the corresponding
state. We also display the visual concepts with the highest embedding similarity to each top-1 frame.
The results suggest that our model can accurately recognize the object states for both known and
novel objects and actions.
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Known Objects/Actions Novel Objects/Actions

Top  
Predicted  
Concepts

Initial State
Whole Pineapple

Transitioning State
Pineapple under Cutting

End State
Cut Pineapple

Hard, spiky texture

Green and yellowish-brown

Cylindrical shape

Knife contacting surface

Juicy, yellow interior

Spiky skin attached to the cut

Juicy cur surface

Yellow flesh

Moist, glossy  appearance

Initial State
Whole Durian

Transitioning State
Durian under Cutting

End State
Cut Durian

Hard, spiky texture

Large and oval

Yellow-brown

Knife contacting surface

Reveal white interior

Spiky skin attached to the cut

Smooth, soft appearance

Yellow flesh

Rounded shape

Initial State
Whole Drangon-fruit

Transitioning State
Dragon-fruit under Peeling

End State
Peeled Drangon-fruit

Pink or red skin

Oval shape

Curled peel flaps

Manipulated by hands

Curled peel flaps

White flesh exposed

White flesh exposed

Oval shape

Small, black seeds

Initial State
Whole Mangosteen

Transitioning State
Mangosteen under Peeling

End State
Peeled Mangosteen

Deep Purple

Round shape

Thick, leathery skin

Manipulated by hands

White flesh exposed

Color contrast

White flesh exposed

Bright white

Detached from the rind

Top  
Predicted  
Concepts

Initial State
Chocolate Bar

Transitioning State
Chocolate under Grating

End State
Grated Chocolate

Deep brown

Solid blocks

Rectangular shape

Solid blocks

Fine particles

Manipulated by hands

Fine and flaky particles

Deep brown

Shavings of curly texture

Initial State
Unscraped Coconut

Transitioning State
Coconut under Scraping

End State
Scraped Coconut

Brown fibrous texture

Whole, white flesh

Whole, round shell

Coconut shavings falling

Fine Particles

Metal or Wooden scraper

Fine and flaky particles

Shavings of curly texture

Smooth, concave interior

Top  
Predicted  
Concepts

Cutting Paneapple

Peeling Dragon-fruit

Grating Chocolate Scraping Coconut

Peeling Mangosteen

Cutting Durian

Top  
Predicted  
Concepts

Initial State
Whole Pineapple

Transitioning State
Pineapple under Cutting

End State
Cut Pineapple

Brown, seared crust

Whole, solid piece

Thick, round shape

Knife contacting surface

Red or pink on the cuts

Juicy cut surfaces

Clean, straight edge

Evenly sick slices

Red or pink on the cuts

Initial State
Whole Durian

Transitioning State
Durian under Cutting

End State
Cut Durian

Whole, solid piece

White Stripe

Intact fillet

Knife contacting surface

Partially cut slices

Exposed internal texture

Clean, sharp cut edges

Evenly sick slices

Consistently orange-pink 

Slicing Steak Slicing Samon

Figure 4: Examples of the top-1 frames and top-aligned visual concepts predicted by our model for
the initial, transitional, and end states in the videos. In the action and object labels, text in green
indicates known objects or actions and text in red indicates novel ones. In the visual concepts, the
green concepts are shared across different object states while the red concepts are wrongly predicted.

5 Conclusion

In this paper, we propose a novel framework to build unified models for recognizing object states in
videos. We leverage pre-trained LLMs and VLMs to build State-Action Graph Embeddings (SAGE)
that decomposes object states into visual concepts. The graph structure where different objects and
actions share the same visual concepts enables the model to generalize to novel objects and actions.
Our model outperforms all baselines on two widely used object state transformation benchmarks,
especially for open-world settings where both objects and actions are novel.

Limitations: Our approach is evaluated on ChangeIt and HowToChange benchmarks, both contain
a single action in each video. Although SAGE may be naturally generalized to handle videos with
multiple non-overlapping actions via temporal action localization, it cannot directly support the
scenario where multiple objects are undergoing state transformations concurrently.

We further envision two natural directions for future work: First, despite our effort to build a unified
model for diverse objects and actions in different scenarios, our model is designed solely for object
state and action recognition. Integrating the success of SAGE into a vision foundation model would be
ideal as recognizing object physical state is a fundamental task of visual perception. Second, it would
be highly impactful to apply our approach for downstream tasks such as tracking objects that undergo
state transformations, or even temporal abstraction and skill discovery for robotic applications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We discuss in detail the contribution and scope of this paper in the Abstract
and Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in conclusions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose the implementation details including model architectures, hyper-
parameters and pre-trained models we used in Section 4.1. Researchers can reproduce our
results with the provided information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit the code in supplementary documents with the README file
describing the steps to reproduce the results. We use the public datasets for experiments.
The link of these datasets are provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the hyperparameters and optimizers information in Section 4.1.
We provide the details of the datasets in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We perform the Student T-test to evaluate the statistical significance of the
main results. The results are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe the compute resources we use for training and inference in
Section 4.1 and Section 4.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
It does not include human subjects. The datasets are publicly available and do not have ethic
concerns. The research does not have potential harmful consequences.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss in the introduction how the proposed method can potentially benefit
real-world machine learning applications such as robotics. We do not identify any potential
negative impacts the proposed method can bring.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper uses pre-trained Vision-Language models and Large-Language
Models. All of these models are properly cited. The datasets this paper uses are publicly
available and properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe in detail how we use the LLM to construct the core component
(SAGE) of this model in Section 3.2.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Evaluation Metrics

On the ChangeIt dataset, we follow Souček et al. (2022, 2024) and report State Precision@1 for
initial and end states, and Transition Precision@1 for the transitioning state. Note that the transition
precision was referred to as action precision in prior works (Souček et al., 2022, 2024). We rename it
here to avoid confusion. For each of the initial/transitioning/end states, the video frame with the top
one probability predicted by a model is retrieved, where the precision is calculated as the percentage
of corrected retrieved frames across all videos. Since the frame sampling strategy would affect the
collection of candidate frames, we follow the same 1-FPS uniform sampling strategy as prior work so
that the results are comparable.

Additionally, on the HowToChange dataset, we follow Xue et al. (2024) to evaluate the F-1 score,
Precision, and Precision@1. The definition of Precision@1 is the same as Precision@1 in ChangeIt ,
except that the initial/transitioning/end states are jointly considered in this metric. Since Precision@1
only considers the top retrieved frames, F-1 score and Precision are used, both of which are computed
over all sampled videos frames. We calculate the F-1 score and Precision for each of the initial,
transitioning, and end states and report their average over the three states. Similarly, we use the same
frame sampling strategy since the metrics are defined with respect to all sampled frames.

B SAGE Construction Details

We construct SAGE by querying the LLM to first provide the name of initial, transitioning and end
states for an action and then provide the visual concepts for each state. In practice, we use OpenAI
GPT-4o-mini-2024-07-181 as the LLM and add in-context examples in the prompts to guide it. In
the following, we provide an instance of the prompts for generating the states and visual concepts.
We skip the in-context examples below for conciseness.

Prompt template for generating state names:

Q: What are the initial, transitional, and end states of a(n) {object}
during the action {action}?

For example:

Q: What are the initial, transitional, and end states of a lemon during the
action slicing lemon?
A:
- whole lemon
- lemon under slicing
- sliced lemon

Prompt for generating visual concepts:

Q: What are the visual features for distinguishing a(n) {initial state
name}, a(n) {transitional state name} and a(n) {end state name}?

For example:

Q: What are the visual features for distinguishing a whole lemon, a lemon
under slicing and a sliced lemon?
A:
Whole lemon:
- spherical shape
- bright yellow color
- slightly dimpled texture
- smooth surface
- evenly distributed color
Lemon during slicing:
- manipulated by hands

1https://platform.openai.com/docs/models/gpt-4o-mini
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Action: Slicing lemon

Initial state
Whole lemon

Transitioning state
Lemon under Slicing

End state
Sliced lemon

Uniformed yellow

Spherical shape

Slightly dimpled texture

Knife contacting surface

Surface deformation

Visible juice

Circular shape

Juice vesicles

White pith and outer skin

Provide the initial, transitional and end states for [slicing] an [lemon].

Provide the useful visual features to distinguish a [whole, slicing, sliced] [lemon].

LLM 

LLM 

Figure A1: Illustration of how the state-action graph is constructed for a single action slicing lemon
with a frozen LLM. See details in Section B.

- knife contacting surface
- surface deformation
- juice beginning to escape
- distinct cut line forming
Lemon after slicing:
- circular shape
- juicy interior
- white pith and outer skin
- exposed flesh glistening
- broken surface texture

We can obtain the object state names and visual concepts by parsing the LLM generated answers
and collecting the visual concepts into a list. We observe that the answers consistently follow the
in-context examples so individual concepts can be extracted by splitting over the dash (“-“) sign. We
further merge similar concepts according to the CLIP text embeddings. Two concepts are considered
as similar if their cosine similarity over the text embeddings is higher than 0.9. We merge greedily
until no concepts have similarity higher than 0.9. We use the pre-trained, frozen CLIP ViT-L-14
text encoder, and normalize the extracted embeddings. As discussed in the method section, object
state embeddings are calculated by averaging their corresponding visual concept embeddings. We
normalize the state embedding again after taking the average.

C Dataset Details

We provide the details of the ChangeIt and HowToChange datasets in Table A8. These datasets
consist of instructional videos for daily tasks beyond cooking (e.g., dyeing T-shirt). HowToChange
contains a diverse set of objects, including a subset of novel objects that do not appear in the training
set, making it suitable for evaluating the generalization ability of models. ChangeIt features a wider
variety of actions and longer video sequences.
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Table A8: Statistics of ChangeIt and HowToChange datasets.
Datasets #Objects #Actions #Videos #Training #Evaluation Avg. Duration (s)

ChangeIt 42 27 35,095 34,428 667 276
HowToChange 134 20 41,499 36,075 5,424 41

Table A9: Statistical significance of the object state recognition performance between our method
and the baseline methods. We report p-values and statistical significance. Results marked with ✓
indicate statistical significance (p < 0.05).

Methods
ChangeIt ChangeIt (Open-world) HowToChange

State
Pre@1

Action
Pre@1

State Pre@1 Trans. Pre@1 F1 (%) Precision (%) Pre@1 (%)
seen novel seen novel seen novel seen novel seen novel

SAGE v.s. LFC Souček et al. (2022) 6.1e-20 (✓) 1.0e-20 (✓) 4.1e-17 (✓) 4.9e-29 (✓) 5.4e-09 (✓) 9.6e-17 (✓) 1.3e-66 (✓) 5.9e-67 (✓) 3.1e-57 (✓) 2.2e-68 (✓) 1.9e-166 (✓) 9.3e-151 (✓)
SAGE v.s. MTC (Souček et al., 2024) 5.5e-05 (✓) 5.6e-06 (✓) 4.9e-11 (✓) 3.2e-35 (✓) 4.7e-15 (✓) 1.1e-25 (✓) 3.0e-40 (✓) 3.5e-57 (✓) 2.9e-21 (✓) 2.1e-38 (✓) 1.3e-101 (✓) 2.2e-120 (✓)
SAGE v.s. VidOSC (Xue et al., 2024) 2.7e-01 (✗) 7.5e-03 (✓) 2.7e-01 (✗) 1.1e-02 (✓) 1.0e+00 (✗) 1.2e-02 (✓) 1.0e+00 (✗) 9.3e-02 (✗) 3.5e-01 (✗) 6.5e-03 (✓) 1.8e-03 (✓) 1.4e-03 (✓)

D Statistical Significance

We conduct Students’ T-test to evaluate the statistical significance of the result of our main experiments
in Table 6. The results are shown in Table A9. Our model significantly outperforms LFC and MTC
for both known and novel objects and significantly outperforms VidOSC for novel objects.
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