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Abstract

Understanding the internal mechanism of multi-001
modal large language models (LLMs) is be-002
coming increasingly critical for continuous im-003
provements in both academia and industry. In004
this paper, we propose a novel method to iden-005
tify key neurons for interpretability — how006
multi-modal LLMs bridge visual and textual007
concepts for captioning. Our method improves008
conventional works upon efficiency and applied009
range by removing needs of costly gradient010
computation. Based on those identified neu-011
rons, we further design a multi-modal knowl-012
edge editing method, beneficial to mitigate sen-013
sitive words or hallucination. For rationale of014
our design, we provide theoretical assumption.015
For empirical evaluation, we have conducted016
extensive quantitative and qualitative experi-017
ments. The results not only validate the effec-018
tiveness of our methods, but also offer insight-019
ful findings that highlight three key properties020
of multi-modal neurons: sensitivity, specificity021
and causal-effect, to shed light for future re-022
search. We will release code upon acceptance.023

1 Introduction024

Recently, large language models (LLMs) have re-025

ceived much attention and become foundation mod-026

els in many natural language processing applica-027

tions (Touvron et al., 2023a; Taori et al., 2023;028

Chiang et al., 2023; Geng et al., 2023). Following029

the success, researchers in the area of computer vi-030

sion have extended the input modality to both text031

and image, namely multi-modal LLMs, showing032

remarkable performance in various visual under-033

standing tasks (Liu et al., 2023; Dai et al., 2023; Ye034

et al., 2023a,b). However, the underlying mecha-035

nism of how multi-modal LLMs interpret different036

modalities of features beyond these tasks remains037

unclear. It hinders in-depth investigation and poses038

risks in model applications, such as producing mis-039

leading outputs without insight into decisions or040

propagating biases through automatic captions.041

There are two main types of methods on LLMs’ 042

interpretability. The first group targets probing 043

various abilities through well-designed external 044

tasks (Olsson et al., 2022; Merullo et al., 2023; 045

Huang et al., 2023; Duan et al., 2023). Another 046

line of works, instead, attempt to reveal the inter- 047

nal states, by finding the processes of how LLMs 048

understand and interpret textual inputs to form a 049

response (Meng et al., 2022, 2023; Dai et al., 2022; 050

Merullo et al., 2023). Among them, an interesting 051

finding shows that LLMs’ ability to understand tex- 052

tual information mainly comes from feed-forward 053

networks (FFNs). Furthermore, Schwettmann et al. 054

(2023) identify key neurons from FFNs, namely 055

multi-modal neurons. These neurons play an im- 056

portant role in understanding images and generat- 057

ing textual descriptions. However, the identification 058

process is inefficient and limited in applied range, 059

due to costly gradient computation. Besides, their 060

theoretical rationale, empirical characteristics, and 061

potential application remains under-exploration. 062

To address the issues, we propose a novel 063

method for multi-modal neuron identification. We 064

define a contribution score based on the activation 065

output in FFNs, which is consistent with the proba- 066

bility distribution when predicting. As our method 067

do not need access to the model gradients, we im- 068

prove efficiency while ensuring effectiveness. 069

Based on the identified neurons, we further pro- 070

pose a multi-modal knowledge editing method as a 071

potential application. We achieve the goal of edit- 072

ing a specific concept to another designative con- 073

cept (e.g., in Figure 1(i), ‘dog’ is edited to ‘mouse’), 074

by changing the probability distribution of outputs. 075

Without additionally training the entire model or 076

requiring access to model gradients, our method al- 077

lows for an efficient, timely and resource-efficient 078

editing of little part of the model parameters. 079

For empirical characteristics, we have designed 080

metrics and conducted extensive experiments, 081

which highlight three critical properties of multi- 082
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L27.U2461: [dog, dogs, Dog, dog, pu]
L22.U8444: [dog, dogs, Dog, dog, pu]
L30.U9214: [pu, dog, Pu, dogs, Dog]
L17.U2406: [animal, Animal, animals, dogs, Anim]
L06.U5351: [dogs, dog, Dog, dog, pu]

LLaVA: a large, fluffy white dog laying on a
               wooden deck.

LLaVA: a cat, likely a photograph, shows a
               part of a and a part of a, possibly a 
               cat, in a close-up shot.

LLaVA: a large mouse with a white face and
               brown body is laying on a wooden
               deck.

(b)

(c)

(d)

... ...

Perturbation

Knowledge editing

Target concept: mouse

Multi-modal LLMOriginal image

Heatmap

Original output
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(ii)

Figure 1: (i) Multi-modal neurons in FFN within multi-modal LLM. We develop a method to (a) identify multi-
modal neurons and confirm that they can encode specific concepts from (b) images to (c) texts and (d) causally
affect model output. (ii) Architecture of layer l in Transformer-based LLM.

modal neurons: (1) Sensitivity (§3.3). Multi-modal083

neurons are sensitive to particular concepts. Once084

they are activated by some regions of the input im-085

age, they are responsible for generating related tex-086

tual concepts. More importantly, these neurons are087

invariant in visual translation to different inputs. (2)088

Specificity (§3.4). Although different multi-modal089

neurons can be activated by the same concepts, they090

are selectively active for these concepts and hardly091

respond to others. (3) Causal-Effect (§3.5). Multi-092

modal neurons and the associated concepts have093

causal-effect and are significantly susceptible. We094

perturb and edit the identified multi-modal neurons,095

which leads to significant changes in outputs.096

Our contributions can be summarized as follows:097

• We propose a new method for identifying098

multi-modal neurons in Transformer-based099

multi-modal LLMs.100

• We propose a multi-modal knowledge editing101

method based on the multi-modal neurons.102

• We highlight three critical properties of multi-103

modal neurons by designing four quantitative104

evaluation metrics and extensive experiments.105

2 Method106

We first define neurons in the LLM (§2.1), and then107

define a contribution score for neurons identifica-108

tion (§2.2). Furthermore, we propose a multi-modal109

knowledge editing method based on identified neu-110

rons (§2.3) and introduce several evaluation metrics111

to evaluate multi-modal neurons (§2.4).112

2.1 Neurons in Transformer-Based LLM113

A multi-modal LLM typically consists of an image114

encoder, a textual LLM, and an adaptor to align the115

above two modules. Following previous works (Dai116

et al., 2022; Wang et al., 2022; Schwettmann et al., 117

2023), we research neurons within FFNs in textual 118

LLM, as they carry two-thirds of the parameters 119

and are proven to play a critical role in understand- 120

ing textual and visual features. As illustrated in 121

Figure 1(ii), we denote the hidden states at layer l 122

as hl, FFN output as ml and self-attention output 123

as al, respectively. And ml can be calculated by: 124

ml = Wl
out σ

(
Wl

in

(
al + hl−1

))
, (1) 125

where h0 is embedding vector of input, σ is activa- 126

tion function, Wl
in is the first linear layer and Wl

out 127

is the second linear layer in FFN. And we omit the 128

normalization in Eq. 1 for the sake of brevity. 129

For simplicity, let Ol = σ
(
Wl

in

(
al + hl−1

))
, 130

where the i-th element is the activation output of 131

the i-th neuron. We denote each neuron in the LLM 132

as (Ll.Ui) in subsequent experiments. For instance, 133

(L20.U188) denotes the 188-th neuron at layer 20. 134

2.2 Identifying Multi-Modal Neurons 135

We now propose a contribution score that indicates 136

a neuron’s contribution to a modal-independent 137

concept. That is, if the score is high, the neuron 138

should be activated with a high probability when 139

taking in the visual concept and generating the 140

textual concept. We first formally define the com- 141

putational method for it and then prove its validity. 142

Let M be the LLM, x be the sequence of input 143

tokens and y be the output sequence. The function 144

of LLM can be written as: y = M(x). 145

We assume the model is about to output token 146

t ∈ y, whose probability is maximum among the 147

vocabulary. Then we define the contribution score 148

of the neuron ui at layer l to the token t as sli,t: 149

sli,t = Ql(i, t) , (2) 150
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where Ql = WuW
l
out ◦ T

(
Ol

−1

)
∈ Rdm×v, Wu151

is the unembedding matrix to decode last hidden152

states, T (·) is the transpose of the input matrix,153

Ol
−1 is activation output at the last token, dm is in-154

termediate size, v is vocab size and ◦ is an element-155

wise product with broadcasting mechanism.156

To prove rationality and effectiveness of Eq. 2157

and explain why we define Ql in the manner de-158

scribed above, we try to disassemble and deduce159

the generation procedure of LLM. When a L layer160

LLM is generating a new token t ∈ y, the probabil-161

ity distribution of output can be denoted as follows:162

t = argmax
(
Wuh

L
−1

)
163

= argmax
(
Wu

(
aL−1 +mL

−1 + hL−1
−1

))
164

= argmax

(
L∑
l=1

(
Wum

l
−1 +Wua

l
−1

)
165

+Wuh
0
−1

)
166

= argmax

(
L∑
l=1

(
WuW

l
outO

l
−1 +Wua

l
−1

)
167

+Wuh
0
−1

)
, (3)168

where Wu is the unembedding matrix, hL
−1 is the169

output of the last token at the last layer L, and170

Ol
−1 = σ

(
Wl

in

(
al−1 + hl−1

−1

))
∈ Rdm is activa-171

tion function output at the last token at layer l.172

In Eq. 3, WuW
l
outO

l
−1 represents FFN part and173

Wua
l
−1 represents self-attention part. Following174

§2.1, we empirically focus on the FFN and omit175

the remaining parts. We regard oli, the i-th element176

of Ol
−1, as the activation of the i-th neuron at the177

last token at layer l, and WuW
l
out as a new un-178

embedding matrix at each layer. The function of179

WuW
l
out is to project the activation of the neurons180

onto a distribution of the token vocabulary.181

To further evaluate the individual contribution of182

each neuron, we disassemble the matrix multiplica-183

tion of WuW
l
out and Ol

−1 in Eq. 3 as follows:184

WuW
l
outO

l
−1 =

∑
T
(
WuW

l
out ◦ T

(
Ol

−1

))
,

(4)
185

where
∑

(·) represents summing rows of the input.186

Now we can see Ql in Eq. 4, which is consistent187

with the probability distribution when predicting.188

We regard Ql(i, j) as a contribution score that the i-189

th neuron at layer l contributes to the j-th token. We190

provide a more detailed explanation in Appendix A.191

Algorithm 1: Knowledge Editing
Data: Source token t0, target token t1, neurons set S,

modelM, unembedding matrix Wu, penalty
weight β, learning rate α, epochs ϵ

Result: Edited model M̃
1 for sj ∈ S do
2 l, i← location of sj ;
3 oli ← activation function output of sj ;
4 w← i-th row of Wl

out;
5 v0 ← t0-th column of Wu;
6 v1 ← t1-th column of Wu;
7 initialize ∆w;
8 w′ ← w +∆w;
9 loss ← oli(w

′v0 −w′v1) + β · ||∆w||2;
10 ∆w∗ ← gradient descent(∆w, loss, α, ϵ);
11 W̃l

out ← add ∆w∗ to the i-th row of Wl
out;

12 M̃ ← replace Wl
out with W̃l

out inM;
end

13 return M̃;

Based on Eq. 2, we compute the score of each 192

neuron for every noun token in the model output. 193

Then we rank all scores of neurons across all lay- 194

ers within the model by the descending order and 195

regard the top neurons as multi-modal neurons. Im- 196

plementation details can be found in Appendix B.1 197

2.3 Multi-Modal Knowledge Editing 198

Following previous works (Mitchell et al., 2022; 199

Meng et al., 2022, 2023) on unimodal knowledge 200

editing, we aim at controlling the textual output. In 201

specific, our goal is to replace a source token with 202

a target token in the output without changing the 203

remaining content. We propose an algorithm (see 204

Algorithm 1) to intervene some parameters based 205

on the identified multi-modal neurons. 206

We denote top multi-modal neurons of source 207

token t0 as S . For each multi-modal neuron sj ∈ S , 208

we first get its location (l, i), which means the i-th 209

neuron at layer l, and then we record its activation 210

function output oli. Let w be the i-th row of Wl
out, 211

v0 be the t0-th column of Wu, v1 be the t1-th col- 212

umn of Wu and w′ be the edited w, respectively. 213

Our goal is to prompt the probability of generat- 214

ing token t1 higher than token t0, which is equiv- 215

alent to make oliw
′v1 larger than oliw

′v0, so we 216

define a loss function as below: 217

loss = oli(w
′v0 −w′v1) + β · ||∆w||2 , (5) 218

where β is penalty weight and ||∆w||2 is a L2- 219

norm constraint as a penalty to avoid the editing is 220

too drastic and affects generating other tokens. 221

By applying Gradient Descent (Robbins and 222

Monro, 1951), we acquire an optimal ∆w∗. We 223
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then add ∆w∗ to the i-th row of Wl
out and replace224

the original Wl
out with the new Wl

out in model M.225

Note that our algorithm is independent from the226

model, and the solution procedure does not need227

to additionally train or infer the entire model. Ac-228

cordingly, this allows for an efficient, timely and229

resource-efficient editing of the model parameters.230

2.4 Evaluation Metrics231

After identifying multi-modal neurons, in order to232

comprehensively evaluate the effectiveness of them233

with quantitative indicators, we measure several234

evaluation metrics from multiple perspectives.235

Semantic Sensitivity To verify if neurons are236

sensitive to textual concepts, we align neurons237

with natural language. The more similar the238

top tokens are to the textual concept, the more239

sensitive the neurons are. Therefore, we mea-240

sure BERTScore (Zhang et al., 2020), Mover-241

Score (Zhao et al., 2019) and BLEURT (Sellam242

et al., 2020) between each textual concept and top-243

10 tokens that corresponding neurons represent.244

Region Invariance To verify if neurons are sen-245

sitive to visual concepts, we measure the propor-246

tion of invariant neurons when shuffling the image247

patches. Specifically, for each textual concept in248

each image, we denote the original top-k multi-249

modal neurons as Sk. We randomly shuffle the in-250

put sequence of image patches of LLM, and equally251

identify top-k multi-modal neurons, denoted as S ′
k.252

A higher degree of similarity between Sk and S ′
k253

indicates stronger region invariance. We calculate254

the ratio of invariant neurons as below:255

rk =
|Sk ∩ S ′

k|
|Sk|

, (6)256

and record a mean score across all images.257

Cross-Images Invariance We aim at figuring258

out whether the same neurons would be identified259

in different images, which is called cross-images260

invariance. We randomly select N different images261

from the dataset that all contain a given concept c.262

Then, we separately identify the top-k neurons of263

these images and pick out neurons in common. We264

calculate the ratio of common neurons by:265

sCII =
|S1

k ∩ S2
k ∩ · · · ∩ SN

k |
k

, (7)266

where Sj
k is top-k multi-modal neurons of image j.267

Specificity We then verify if neurons are specific268

to textual concepts — only activated for some re-269

lated tokens, but inactivated for other tokens. For- 270

mally, we pick out n images, and separately iden- 271

tify their top-1 multi-modal neuron, denoted as S. 272

For each neuron (l, i) in S , we provide a set of con- 273

cepts T , where |T | = m, and calculate scores to 274

each of them. Then we record a mean score across 275

neurons in S and concepts in T , denoted as S@m: 276

S@m =
1

n ·m
∑

(l,i)∈S

∑
t∈T

sli,t . (8) 277

We choose two sets of concepts T : related con- 278

cepts and random concepts. Related concepts are 279

concepts with top probability to each neuron in 280

S, while random concepts are randomly selected 281

from the vocabulary. If multi-modal neurons pos- 282

sess specificity, scores to related concepts will sig- 283

nificantly outperform those to random concepts. 284

3 Experiments 285

3.1 Investigation Setup 286

We use LLaVA (Liu et al., 2023), InstructBLIP (Dai 287

et al., 2023) and mPLUG-Owl2 (Ye et al., 2023b) 288

as our research models, three widely-use models 289

for visual semantic understanding task. And we 290

conduct all experiments on 1000 images that are 291

randomly sampled from SBU Captions Dataset (Or- 292

donez et al., 2011), a dataset consists of more than 293

1 million images from Flickr. We compare our 294

method with Multimodal Neurons (abbreviated as 295

Mmns) (Schwettmann et al., 2023), a technique 296

for detecting multimodal neurons that map visual 297

features to corresponding text. Furthermore, we 298

establish a baseline (abbreviated as Base) that sim- 299

ply selects neurons with higher activations at the 300

last token for basic comparison. Details about the 301

implementations can be found in appendix B.1. 302

3.2 Identifying Multi-Modal Neurons 303

We employ methodology described in §2.2 to iden- 304

tify multi-modal neurons. Figure 2 shows the dis- 305

tribution of unique multi-modal neurons. We can 306

see that our multi-modal neurons widely occur in 307

higher layers, which is consistent with previous 308

works (Wang et al., 2022; Dai et al., 2022). 309

3.3 Are Multi-Modal Neurons Sensitive to 310

Certain Concepts? 311

We now discuss whether multi-modal neurons are 312

sensitive to certain concepts from four perspectives: 313

(1) Whether multi-modal neurons correspond to vi- 314

sual concepts (§3.3.1). (2) Whether multi-modal 315
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Figure 2: Distribution of unique multi-modal neurons
per layer, chosen by different number of neurons with
top contribution scores for each image.

neurons correspond to textual concepts (§3.3.2).316

(3) Whether the correspondence between multi-317

modal neurons and semantic concepts remains con-318

stant despite changes in the same image (§3.3.3).319

(4) Whether the correspondence between multi-320

modal neurons and semantic concepts remains con-321

stant despite changes in different images (§3.3.4).322

3.3.1 Tracing Focus of Neurons in Images323

We take the activations of multi-modal neurons at324

image patch tokens, scale them by bilinear inter-325

polation, and plot the heatmap and binary mask.326

Implementation details are shown in appendix B.2.327

As the square root of the number of image patch328

tokens in InstructBLIP and mPLUG-Owl2 is irra-329

tional, we only conduct experiments on LLaVA.330

Table 1 shows an example. We can see that multi-331

modal neurons mainly focus on image regions that332

containing corresponding concepts, and pay less333

attention to other unrelated area. They reliably high-334

light the semantically pertinent areas throughout.335

3.3.2 Textual Meanings of Neurons336

We then verify whether our multi-modal neurons337

can represent textual meanings. Considering the338

multiplication of the unembedding matrix and the339

second layer of FFN is regarded as a projection340

Image & Original output

LLaVA: a man wearing a yellow
hat and smiling.

Concept Heatmap & Binary mask
Top-1 Top-10 Top-100 Top-1000

man

hat

Table 1: Heatmap and binary mask results of an ex-
ample image. We plot each heatmap by using scaled
mean activations across top-k neurons, where k =
1, 10, 100, 1000, and plot binary mask by thresholding
mean activations above the 95% percentile, respectively.

from the activation of the neurons to probability 341

distributions of the token vocabulary, we empiri- 342

cally sort rows correspond to multi-modal neurons 343

and pick out the top-10 tokens as each neuron rep- 344

resents. We report an example in Table 2. We can 345

find that the baseline and Mmns choose the neurons 346

that are hardly correlated with concepts, whereas 347

our method can more precisely identify neurons 348

representing semantic meanings in comparison to 349

them. More examples are shown in appendix C.2. 350

To provide stronger evidence, we measure met- 351

rics of semantic sensitivity mentioned in §2.4. Ta- 352

ble 3 shows the mean results. Our method achieve 353

higher scores than Mmns and baseline, which 354

demonstrates that our selected neurons are more 355

consistent with corresponding concepts. 356

3.3.3 Region Invariance of Neurons 357

To quantify the region invariance of the neurons, we 358

calculate the ratio of invariant neurons in top-k neu- 359

rons when shuffling (see Eq. 6). The mean results 360

are shown in Figure 3. Our method significantly 361

receives higher ratios of the invariant neurons than 362

Mmns, which indicates our selected multi-modal 363

neurons possess a stronger region invariance. 364
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Image Model Method Top neurons Top tokens

LLaVA: a church with a steeple,
surrounded by snow, is
captured in the photo.

InstructBLIP: a church with snow
on the ground.

mPLUG-Owl2: a church with a per-
son shoveling snow
in front of it.

LLaVA

Base
L39.U212 [‘’, ‘1’, ‘-’, ‘\n’, ‘(’]
L24.U5916 [‘arin’, ‘Kennedy’, ‘dy’, ‘dy’, ‘PF’]
L39.U5925 [‘ ’, ‘—-’, ‘—–’, ‘________’, ‘____’]

Mmns
L24.U10906 [‘dex’, ‘igung’, ‘nomin’, ‘pill’, ‘pill’]
L9.U4426 [‘,’, ‘.’, ‘bird’, ‘bird’, ‘-’]
L20.U3864 [‘oka’, ‘backwards’, ‘рем’, ‘iono’, ‘차’]

Ours
L31.U9192 [‘church’, ‘Church’, ‘churches’, ‘Kirche’, ‘Kirchen’]
L34.U8761 [‘religious’, ‘Relig’, ‘relig’, ‘religion’, ‘Catholic’]
L39.U9669 [‘Church’, ‘Luther’, ‘Bishop’, ‘Orth’, ‘church’]

InstructBLIP

Base
L31.U10656 [‘:(’, ‘:-)’, ‘:)’, ‘anyway’, ‘solves’]
L31.U7742 [‘restored’, ‘Accessor’, ‘overwrite’, ‘reuse’, ‘ ： ’]
L31.U6024 [‘textt’, ‘archivi’, ‘zvuky’, ‘tématu’, ‘lês’]

Mmns
L28.U2212 [‘etwork’, ‘окру’, ‘⋆’, ‘ ’, ‘Dob’]
L4.U10613 [‘Хронологиjа’, ‘Archivlink’, ‘←↩’, ‘◦’, ‘▶’]
L17.U3575 [‘’, ‘ ’, ‘Â’, ‘[...]’, ‘mals’]

Ours
L29.U7331 [‘Church’, ‘church’, ‘churches’, ‘Kirche’, ‘Kirchen’]
L27.U7707 [‘Christ’, ‘christ’, ‘Christ’, ‘Christ’, ‘Christians’]
L21.U1413 [‘church’, ‘церков’, ‘churches’, ‘Church’, ‘Religion’]

mPLUG-Owl2

Base
L31.U1373 [‘’, ‘in’, ‘\n’, ‘(’, ‘.’]
L31.U7491 [‘apparently’, ‘either’, ‘threaten’, ‘towards’, ‘storing’]
L31.U1563 [‘archivi’, ‘Kontrola’, ‘Хронологиjа’, ‘’, ‘’]

Mmns
L15.U8368 [‘yard’, ‘ill’, ‘go’, ‘mouse’, ‘ments’]
L19.U1434 [‘snow’, ‘ice’, ‘Snow’, ‘winter’, ‘Winter’]
L13.U420 [‘church’, ‘Church’, ‘ric’, ‘cho’, ‘uti’]

Ours
L25.U911 [‘faith’, ‘religion’, ‘relig’, ‘religious’, ‘Relig’]
L29.U5136 [‘Church’, ‘church’, ‘churches’, ‘Kirche’, ‘chiesa’]
L31.U7266 [‘religious’, ‘Relig’, ‘prayer’, ‘spiritual’, ‘pray’]

Table 2: An example result shown with top-3 neurons selected by different methods. We report results of the concept
church. For each neuron, we record its top-5 relative tokens.

Model Method BS MS BRT

LLaVA
Base 0.236 0.664 0.086

Mmns 0.652 0.678 0.100
Ours 0.794 0.730 0.214

InstructBLIP
Base 0.626 0.656 0.071

Mmns 0.339 0.663 0.089
Ours 0.726 0.706 0.160

mPLUG-Owl2
Base 0.360 0.664 0.068

Mmns 0.620 0.675 0.101
Ours 0.730 0.715 0.183

Table 3: Results of metrics including BERTScore (BS),
MoverScore (MS) and BLEURT (BRT). For each image,
we select top-10 multi-modal neurons for each concept,
and we record the mean metrics across all concepts. We
ultimately calculate means across all images.

3.3.4 Cross-Images Invariance of Neurons365

As for cross-images invariance, same neurons shall366

occur in different images that carry similar seman-367

tic information. To verify cross-images invariance368

of multi-modal neurons, we calculate the ratio of369

common neurons by Eq. 7. The results of Mmns370

and our method are shown in Figure 4. Our multi-371

modal neurons significantly outperform Mmns.372

Specifically, our method achieves common neuron373

ratios over 20% in LLaVA and mostly over 40% in374

InstructBLIP and mPLUG-Owl2, which is substan-375

tially higher than Mmns that attain ratios mainly376

under 10% in LLaVA, under 30% in InstructBLIP377

and under 20% in mPLUG-Owl2. We report more378

results with different N and k in appendix C.4.379
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Figure 3: Ratios of the invariant neurons in top-k neu-
rons before and after shuffling. For each image, we
record the mean ratio across concepts that both exist in
original caption and caption generated by shuffled im-
age patches, and then calculate means across all images.

3.4 Are Multi-Modal Neurons Specific? 380

For multi-modal neurons, claiming indiscriminate 381

sensitivity to all concepts does not sufficiently 382

demonstrate their functional role within the model. 383

As such, we investigate their specificity. We record 384

the scores of multi-modal neurons that correspond 385

to their specific textual meanings when encoding 386

other different concepts in the same image. Figure 387

5 shows an example. Additional examples are pro- 388

vided in appendix C.5. We can see that when encod- 389
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a reception desk, a potted
plant, and a large wall mu-
ral featuring angels.

an
ge

ls

de
sk

ho
te

l

lo
bb

y

m
ur

al

pl
an

t

re
ce

pt
io

n

w
al

l

angels
(L38.U6066)

desk
(L35.U6063)

hotel
(L30.U6814)

lobby
(L29.U8469)

mural
(L38.U8031)

plant
(L27.U8060)

reception
(L32.U3407)

wall
(L35.U10298)

0.18 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.01 1.00 0.01 0.00 0.01 0.01 0.01 0.01

0.01 0.01 0.33 0.01 0.01 0.01 0.03 0.02

0.01 0.01 0.00 0.32 0.01 0.01 0.03 0.03

0.01 0.01 0.01 0.01 0.51 0.01 0.01 0.01

0.00 0.01 0.01 0.01 0.01 0.14 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.29 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.27

LLaVA

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Heatmap of the scores (after normalization) of
multi-modal neurons corresponding to specific concepts
when encoding different contents in an example im-
age. The x-axis represents concepts in the given image,
and y-axis represents the top-1 neuron corresponding
to each concept, respectively. Darker blocks indicate
higher scores, which means higher relevance.

ing a specific concept, the top-1 multi-modal neu-390

ron receives a higher score than irrelevant concepts.391

We also adopt a metric to quantify the specificity of392

neurons (see §2.4). The results are shown in Table393

4, from which we can find that neurons significantly394

get higher scores to those related concepts than to395

unrelated concepts, proving their specificity.396

3.5 Do Multi-Modal Neurons Causally Affect397

Output?398

Perturbation Study Previous works (Mitchell399

et al., 2022; Meng et al., 2022, 2023) have shown400

that applying directional editing to FFNs signifi-401

cantly change the model output. Inspired by these,402

we try to perturb multi-modal neurons. Specifically,403

for each concept in each image, we add a Gaussian404

noise (µ = 0 and σ = 0.5) to the i-th row of the405

Model Type S@1 S@5 S@10 S@50

LLaVA Related 3.549 2.920 2.333 0.467
Random 0.018 0.012 0.014 0.003

InstructBLIP Related 2.504 2.133 1.774 0.355
Random 0.005 0.007 0.008 0.002

mPLUG-Owl2 Related 1.949 1.637 1.295 0.259
Random 0.002 0.003 0.003 0.001

Table 4: Average scores that multi-modal neurons con-
tribute to related concepts and random concepts. We
report average scores with m = 1, 5, 10, 50, which are
denoted as S@1, S@5, S@10 and S@50, respectively.

Image & Original output

LLaVA: a tree with many branches and
leaves, set against a blue sky.

Concept Perturbed model output

tree
a Hamon’s Garden, featuring a Hamon’ the S the Hamon’s
Garden, featuring a Hamon’s the S the Hamon’s ...

branches ameshupelageaameshupelageaamesh...

leaves
a tree with branches spread out, surrounded by tree branches
and Homosassa, Florida, and the things around it.

sky
a tree with leaves, possibly a palm tree, with a large and
sturdy trunk, surrounded by a large, vibrant, and colorful
body of leaves.

random a tree with many branches and leaves, set against a blue sky.

Table 5: Perturbation results of LLaVA. For each con-
cept in the image, we only perturb the top-5 multi-modal
neurons. For comparison, we report a result of perturb-
ing the same number of random chosen neurons.

second layer of FFN at layer l. Table 5 shows an 406

example when perturbing neurons in LLaVA. We 407

can see that perturbing multi-modal neurons really 408

makes a difference in model output, while simply 409

perturbing few random neurons has no impact. Fur- 410

thermore, we note that applying perturbation on 411

neurons sometimes makes the corresponding token 412

disappear in output and provides some new tokens, 413

while sometimes results in meaningless output (e.g., 414

in Table 5, when we perturb concepts ‘leaves’ and 415

‘sky’, the model can generate fluent output with- 416

out ‘leaves’ and ‘sky’, but it is confused when we 417

perturb concepts ‘tree’ and ‘branches’). The for- 418

mer phenomenon piques our curiosity regarding 419

the potential possibility that a well-designed alter- 420

ation may substitute for Gaussian noise to enable 421

knowledge editing of model output. 422

Knowledge Editing We hypothesize that replac- 423

ing the Gaussian noise with an elaborate alteration 424

can achieve a knowledge editing. Accordingly, we 425

design an efficient algorithm (see Algorithm 1) that 426

edits weights of the second layer of FFNs. Table 427
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Image & Original output

LLaVA: a white cat sleeping in a tree.
InstructBLIP: a white cat sleeping in a tree.
mPLUG-Owl2: a white cat sleeping on a tree branch.

Model Target Edited model output

LLaVA

monkey a white monkey sleeping in a tree.

clock a white clock sitting on a tree stump.

iPhone a white iPhone lying on a tree stump.

food a white food in a tree.

InstructBLIP

monkey a white monkey sleeping in a tree.

clock a white clock sleeping in a tree.

iPhone a white iPhone 3Gs sitting on a tree stump.

food a white food sleeping in a tree.

mPLUG-Owl2

monkey a white monkey sleeping on a tree branch.

clock a clock clocking in a tree trunk.

iPhone a white iPhone sitting on a tree branch.

food a white food food sleeping on a tree branch.

Table 6: Knowledge editing results of an example. We
choose to edit concept cat to 4 target concepts. Target
concepts are in bold in the edited model output.

6 shows an example, where we guide the model428

to generate a different concept from the original429

concept. We find that model drops the source con-430

cept and successfully generates the target concept,431

which did not appear in original output. To prove432

effectiveness of our method, we evaluate the edited433

model on other different images, as shown in Ta-434

ble 7. We find that when we input another image435

that contains the same source concept, the edited436

model will identify it and generate the target con-437

cept, while an unrelated image will not be affected.438

4 Related Work439

Identifying Neurons in Deep Neural Networks440

There has been growing interest in interpreting441

and analyzing the inner workings of deep neural442

networks. Prior works have sought to character-443

ize what types of information are encoded in in-444

dividual neurons. Koh et al. (2020) proposes a445

technique for identifying “concept neurons” that446

detect semantic concepts in vision models. Dai et al.447

(2022) discusses the discovery of “knowledge neu-448

rons” which encode specific commonsense knowl-449

edge automatically learned during pre-training,450

while Wang et al. (2022) proposes a method to451

identify “skill neurons” in pre-trained Transformer-452

based language models that are heavily involved in453

specific tasks. Recently, Schwettmann et al. (2023)454

introduces a procedure for identifying “multimodal455

neurons”, which explain how LLMs convert visual456

Source concept: bird

Image Target Edited LLaVA’s output

(a)

None a bird walking on the beach near the water.

cat a cat walking on the beach near the water.

horse
a horse on the beach, walking through the
water and enjoying the waves.

(b)

None
a bird, possibly a pigeon, standing in a pud-
dle of water on a city street.

cat a cat sitting in a puddle of water.

horse a horse in a pond, surrounded by leaves and
water.

(c)

None
a river flowing through a rocky area, with a
waterfall and a rocky cliff.

cat
a river flowing through a rocky area, with a
waterfall and a rocky cliff.

horse
a river flowing through a rocky area, with a
waterfall and a rocky cliff.

Table 7: Edited LLaVA’s output of different images. We
select bird as source concept, choose cat and horse as
target concept (None means no editing), and modify
model parameters based on image (a). We then test the
edited model on another two images, where image (b)
contains the source concept bird and image (c) doesn’t.

representations into corresponding texts. 457

Analysing Pre-Trained Transformers With the 458

proposal of the Transformer (Vaswani et al., 2017) 459

architecture, Transformer-based models have at- 460

tracted a large amount of studies. Prior works have 461

focused on the function and mechanism of self- 462

attention modules (Voita et al., 2019; Clark et al., 463

2019; Hao et al., 2021), while some works em- 464

phasize the significance of feed-forward layers in 465

Transformer (Press et al., 2020; Geva et al., 2021; 466

Dai et al., 2022). Among these, some works probe 467

Transformer representations to quantify their en- 468

coding of linguistic information (Peters et al., 2018; 469

Niven and Kao, 2019; Yun et al., 2019). 470

5 Conclusion 471

We propose a new method to identify multi-modal 472

neurons in Transformer-based multi-modal LLMs. 473

We also introduce a knowledge editing approach 474

based on the identified neurons, which achieves 475

a knowledge editing from a specific token to an- 476

other designative token. We highlight three critical 477

properties of multi-modal neurons by four well- 478

designed quantitative evaluation metrics through 479

extensive experiments. Both quantitative and quali- 480

tative experiments validate the explanatory powers 481

of our multi-modal neurons. This work provides il- 482

luminating perspectives on multi-modal LLMs and 483

stimulates additional explanatory artificial intelli- 484

gence studies emphasizing model interpretability. 485
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Limitations486

While this work provides new insights into in-487

terpreting multi-modal large language models,488

there are several limitations that should be ac-489

knowledged: (1) We only conduct experiments on490

LLaVA, InstructBLIP and mPLUG-Owl2, while491

other Transformer-based models may also be pos-492

sible to be explained by our multi-modal neurons.493

Besides the Transformer architecture, it is still un-494

clear whether neurons exist in other multi-modal495

large language models based on different archi-496

tectures and requires further explorations. (2) We497

only focus on neurons in feed-forward networks in498

Transformer and omit other parts like the neurons499

in self-attention heads, which may also contribute500

to identify image features and generate output. (3)501

When analysing multi-modal neurons, we only con-502

sider the role of a single neuron. We expect future503

works can explore how multiple neurons jointly504

influence the model. (4) As our multi-modal knowl-505

edge editing method is based on changing the prob-506

ability distribution of the generated token, we only507

achieve a transformation from a single source to-508

ken to another single designative token, which is509

still insufficient, since there are a large amount of510

words consist of multiple tokens. Further address-511

ing these limitations through broader and more512

methodologically rigorous studies would help ad-513

vance knowledge in interpretability of multi-modal514

large language models.515
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A Supplementary Explanation731

In § 2.2, we illustrate how to identify multi-modal732

neurons in Transformer-based LLMs. We now pro-733

vide some additional details here.734

In Eq. 2, we use matrix Ql to define the contri-735

bution score. From the dimensional perspective of736

Ql, since Ql ∈ Rdm×v, where dm is intermediate737

size and v is vocab size, each element in Ql can be738

regarded as a contribution of each neuron at layer l739

to each token in the vocabulary. For instance, the740

contribution of the i-th neuron ui at layer l to token741

t is derived from the i-th row and t-th column of Ql742

(i.e. Ql(i, t)). From the perspective of the meaning743

of Ql, Ql is consistent with the probability distri-744

bution when predicting, where we prove it through745

Eq. 3 and Eq. 4.746

In Eq. 3, we disassemble the generation proce-747

dure of the LLM. We first decompose the hidden748

states at the last layer hL
−1 into three parts: self-749

attention output aL−1, FFN output mL
−1 and hidden750

states at the previous layer hL−1
−1 (Line 1 to Line751

2). Then hL−1
−1 can be further decomposed through752

layers until we get the embedding vector of input753

h0
−1 (Line 2 to Line 3). Ultimately, we replace754

ml
−1 with Wl

outO
l
−1 (Line 3 to Line 4). Note that755

we have omitted layer normalization operations756

in Eq. 3 through approximate assumptions for the 757

sake of brevity. 758

In Eq. 4, we disassemble the multiplication 759

of WuW
l
out and Ol

−1. The dimensionality of 760

WuW
l
out is dm × v. We aim at obtaining a ma- 761

trix that can indicate the contribution from each 762

neuron to each token. Accordingly, we adopt an 763

element-wise product with broadcasting mecha- 764

nism between WuW
l
out and T

(
Ol

−1

)
, keeping the 765

original dimensionality unchanged. 766

We mainly focus on the last token outputs 767

in Eq. 2, Eq. 3 and Eq. 4. The rationale be- 768

hind our approach is that an autoregressive Trans- 769

former (Vaswani et al., 2017) will generate the 770

new token at the position of the last input token. 771

Therefore, analyzing the last token can help us un- 772

derstand the principles underlying the model gen- 773

eration process. 774

B Implementation Details 775

B.1 Identifying Multi-Modal Neurons 776

For model LLaVA (Liu et al., 2023), we choose 777

the version whose base LLM is LLaMA-2-13B- 778

Chat (Touvron et al., 2023b) and visual encoder is 779

ViT-L/14 (Radford et al., 2021). Each input image 780

is resized to (224, 224) and encoded into a sequence 781

[z1, · · · , zp] of dimensionality 1024, where p = 782

256. Then a projection layer transforms sequence 783

[z1, · · · , zp] into image prompts [x1, · · · , xp] of di- 784

mensionality 5120. The image prompts will be con- 785

catenated into the textual prompts and received by 786

LLaVA. 787

For model InstructBLIP (Dai et al., 2023), we 788

choose the version that employs image encoder 789

including ViT-g/14 (Fang et al., 2023) and a Q- 790

former (Li et al., 2023), and adopts Vicuna-7B (Chi- 791

ang et al., 2023) as the LLM. Similar to LLaVA, 792

each image is encoded into a sequence [z′1, · · · , z′q], 793

where q = 256. And then the sequence is sent into 794

the Q-former to get the extracted image features 795

[z1, · · · , zp] of dimensionality 768, where p = 796

32. Then a projection layer transforms sequence 797

[z1, · · · , zp] into image prompts [x1, · · · , xp] of di- 798

mensionality 4096. 799

Model mPLUG-Owl2 (Ye et al., 2023b) uti- 800

lizes ViT-L/14 (Radford et al., 2021) as visual en- 801

coder and LLaMA-2-7B (Touvron et al., 2023b) 802

as LLM. Different from LLaVA and InstructBLIP, 803

mPLUG-Owl2 adopts a visual abstractor after the 804

visual encoder, which transforms image features 805

[z1, · · · , zp] of dimensionality 1024 into image 806
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prompts [x1, · · · , xp] of dimensionality 4096.807

We adopt “Describe the image in few words.” as808

query prompts in all models. Note that for better809

captioning results, we add a text prefix “An image810

of” after the textual prompts.811

We use greedy search when generating captions812

for each image, which means the token with the813

highest probability will be selected at each step.814

We calculate the contribution score sli,t for each815

nominal token t in the generated caption, and rank816

all contribution scores across all layers within the817

model by the descending order to select top neurons818

as multi-modal neurons.819

It should be noted that while we can calculate820

scores for all tokens generated by the model, some821

tokens may not be readily describable from the822

image content alone. Therefore, for the purpose of823

clearer explanation, our analysis focuses only on824

tokens corresponding to nouns. If a noun consists825

of multiple tokens, we select the first token as being826

representative of that noun. To identify all nouns in827

the caption, we use Stanford CoreNLP (Manning828

et al., 2014), a tool for natural language processing829

in Java, by a python wrapper 1.830

We compare our method with Multimodal Neu-831

rons (Schwettmann et al., 2023), which calculates832

the attribution scores to select neurons. In their833

method, an attribution score is obtained for each834

image patch and neuron. For fair comparisons in835

our experiments, we modify this by taking the max-836

imum attribution score across patches for each neu-837

ron. This modification avoids unnecessary repeti-838

tion while maintaining the interpretability of the839

neuron attributions.840

Furthermore, we established a baseline approach841

that solely considers the activations of neurons at842

the last input token as contribution scores, selecting843

those neurons exhibiting higher levels of activation844

as contributory neurons.845

We run the experiments on NVIDIA RTX846

1080Ti, NVIDIA RTX 2080Ti and NVIDIA RTX847

3090 GPUs, and it takes about 500 GPU hours.848

B.2 Tracing Focus of Neurons in Images849

Following previous works on feature visualiza-850

tion (Bau et al., 2017; Schwettmann et al., 2023),851

we are curious about where neurons focus their at-852

tention. To trace focus of neurons in images, we853

employ a visualization approach described below.854

We denote the size of input images as di × di.855

1https://github.com/Jason3900/corenlp_client

Assuming that after passing through the image en- 856

coder, there are p image tokens input into the LLM. 857

We assume that p can be square rooted. For each 858

multi-modal neuron, we take its activations at im- 859

age tokens and reshape them into a
√
p×√

p matrix. 860

And then we scale them to di × di by bilinear inter- 861

polation. Now the scaled activations and the input 862

images have the same size. For each image, we first 863

plot a heatmap by using a mean scaled activation 864

across top-k neurons and put it over the image. We 865

then threshold the mean scaled activations above 866

the 95% percentile to produce a binary mask and 867

also combine it with the original image. 868

Since the square root of the number of image 869

patch tokens (i.e.
√
p) in InstructBLIP and mPLUG- 870

Owl2 is irrational, we only trace focus of neurons 871

using LLaVA. 872

B.3 Targeted Editing 873

For most images, we empirically pick out the top- 874

5 multi-modal neurons as S, initialize ∆w as 0, 875

and set the learning rate α as 0.001, the iteration 876

epochs ϵ as 1000 and the penalty weight β as 4, 877

respectively. 878

C More Experiment Results 879

We report more experiment results and show more 880

cases here to confirm our conclusion convincingly. 881

C.1 Tracing Focus of Neurons in Images 882

We report heatmap and binary mask results of ex- 883

amples in Table 8. Each heatmap is plotted by us- 884

ing scaled mean activations across top-k neurons, 885

where k = 1, 10, 50, 100, 500, 1000, and each bi- 886

nary mask is plotted by thresholding mean activa- 887

tions above the 95% percentile, respectively. 888

C.2 Textual Meanings of Neurons 889

Table 9 shows examples. For each concept in the 890

caption, we report its multi-modal neurons with 891

their corresponding top-tokens and contribution 892

scores. 893

C.3 Region Invariance of Neurons 894

In Table 10, we report some example results of 895

captions and multi-modal neurons before and after 896

shuffling the input sequence of image patches. 897

C.4 Cross-Image Invariance of Neurons 898

To confirm the cross-image invariance of multi- 899

modal neurons, in Figure 6, we report the ratio 900

of the common neurons in top-k neurons across 901
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N images that contain the same concepts, where902

N = 2, 3, 4, 5 and k = 10, 100, 1000, respectively.903

C.5 Specificity of Neurons904

To verify the specificity of multi-modal neurons, in905

Figure 7, we report some examples of the heatmap906

of the scores of multi-modal neurons correspond-907

ing to specific concepts when encoding different908

concepts.909

C.6 Perturbing Multi-Modal Neurons910

Table 11 shows results of perturbing top-5 multi-911

modal neurons and 5 randomly selected neurons.912

C.7 Targeted Editing913

Table 12 shows additional examples of targeted914

editing results.915
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Image & Original output

LLaVA: a small owl perched on a metal pole in a grassy field.

Concept Heatmap & Binary mask
Top-1 Top-10 Top-50 Top-100 Top-500 Top-1000

owl

metal

pole

field
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Image & Original output

LLaVA: a box filled with empty beer bottles, sitting on the sidewalk.

Concept Heatmap & Binary mask
Top-1 Top-10 Top-50 Top-100 Top-500 Top-1000

box

beer

bottles

sidewalk
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Image & Original output

LLaVA: a beautiful lake surrounded by mountains, with a boat floating on the water.

Concept Heatmap & Binary mask
Top-1 Top-10 Top-50 Top-100 Top-500 Top-1000

lake

mountains

boat

water

Table 8: Heatmap and binary mask results of example images. We plot each heatmap by using scaled mean
activations across top-k neurons, where k = 1, 10, 50, 100, 500, 1000, and plot binary mask by thresholding mean
activations above the 95% percentile, respectively.
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Image Model Concept Top neurons Top tokens Score

LLaVA: a small red motorcy-
cle parked on the grass
near a beach.

InstructBLIP: a motorcycle parked
on the grass near the
ocean.

mPLUG-Owl2: a motorcycle parked
on the grass near the
ocean.

LLaVA

motorcycle

L34.U12567 [‘motor’,‘Motor’,‘mot’,‘b’,‘mot’] 0.906
L33.U6828 [‘mot’,‘Mot’,‘mot’,‘motiv’,‘Motor’] 0.850
L25.U11735 [‘motor’,‘tennis’,‘hockey’,‘basketball’,‘football’] 0.641
L24.U5729 [‘vehicle’,‘vehicles’,‘aircraft’,‘boat’,‘motor’] 0.591
L27.U11389 [‘mot’,‘motor’,‘Mot’,‘Motor’,‘mot’] 0.533

grass

L25.U5542 [‘grass’,‘woods’,‘leaf’,‘forest’,‘bush’] 2.039
L32.U12094 [‘grass’,‘aupt’,‘itza’,‘ustration’,‘inx’] 1.873
L30.U1365 [‘la’,‘La’,‘La’,‘la’,‘wn’] 1.526
L20.U7408 [‘grass’,‘garden’,‘gard’,‘草’,‘veget’] 1.150
L29.U7377 [‘gr’,‘Gr’,‘Grant’,‘gr’,‘grant’] 1.145

beach

L36.U13537 [‘Coast’,‘coast’,‘beach"’,‘Beach’,‘ocean’] 2.984
L30.U13327 [‘be’,‘be’,‘Be’,‘BE’,‘aches’] 0.704
L21.U13303 [‘beach’,‘coast’,‘Beach’,‘Coast’,‘shore’] 0.607
L21.U11114 [‘sw’,‘Sw’,‘sw’,‘pool’,‘Sw’] 0.505
L39.U11294 [‘flying’,‘sea’,‘aer’,‘Sea’,‘jet’] 0.502

InstructBLIP

motorcycle

L34.U12567 [‘motor’,‘Motor’,‘mot’,‘b’,‘mot’] 0.906
L33.U6828 [‘mot’,‘Mot’,‘mot’,‘motiv’,‘Motor’] 0.850
L25.U11735 [‘motor’,‘tennis’,‘hockey’,‘basketball’,‘football’] 0.641
L24.U5729 [‘vehicle’,‘vehicles’,‘aircraft’,‘boat’,‘motor’] 0.591
L27.U11389 [‘mot’,‘motor’,‘Mot’,‘Motor’,‘mot’] 0.533

grass

L25.U5542 [‘grass’,‘woods’,‘leaf’,‘forest’,‘bush’] 2.039
L32.U12094 [‘grass’,‘aupt’,‘itza’,‘ustration’,‘inx’] 1.873
L30.U1365 [‘la’,‘La’,‘La’,‘la’,‘wn’] 1.526
L20.U7408 [‘grass’,‘garden’,‘gard’,‘草’,‘veget’] 1.150
L29.U7377 [‘gr’,‘Gr’,‘Grant’,‘gr’,‘grant’] 1.145

ocean

L36.U13537 [‘Coast’,‘coast’,‘beach"’,‘Beach’,‘ocean’] 2.984
L30.U13327 [‘be’,‘be’,‘Be’,‘BE’,‘aches’] 0.704
L21.U13303 [‘beach’,‘coast’,‘Beach’,‘Coast’,‘shore’] 0.607
L21.U11114 [‘sw’,‘Sw’,‘sw’,‘pool’,‘Sw’] 0.505
L39.U11294 [‘flying’,‘sea’,‘aer’,‘Sea’,‘jet’] 0.502

mPLUG-Owl2

motorcycle

L30.U9081 [‘Motor’,‘motor’,‘mot’,‘mot’,‘Mot’] 2.236
L29.U7834 [‘autom’,‘Autom’,‘automat’,‘Autom’,‘motor’] 0.824
L21.U7122 [‘bi’,‘Bi’,‘cy’,‘cycle’,‘cycle’] 0.650
L26.U6941 [‘passenger’,‘車’,‘vehicle’,‘passengers’,‘vehicles’] 0.468
L25.U8004 [‘motor’,‘Motor’,‘mot’,‘undle’,‘overflow’] 0.413

grass

L27.U5003 [‘grass’,‘ass’,‘ersion’,‘mitt’,‘比’] 1.614
L22.U10525 [‘sand’,‘Sand’,‘dust’,‘gra’,‘grass’] 0.708
L31.U2642 [‘forest’,‘Forest’,‘tree’,‘Tree’,‘Tree’] 0.433
L20.U2081 [‘field’,‘Hay’,‘Field’,‘hay’,‘fields’] 0.390
L21.U819 [‘tur’,‘grass’,‘Tur’,‘sod’,‘bl’] 0.329

ocean

L30.U4330 [‘sea’,‘marine’,‘Sea"’,‘Marine’,‘ocean’] 1.953
L22.U10714 [‘sea’,‘ocean’,‘Sea’,‘Ocean’,‘Atlantic’] 1.123
L23.U8790 [‘sand’,‘beach’,‘be’,‘Beach’,‘Sand’] 0.542
L23.U8326 [‘water’,‘water’,‘Water’,‘waters’,‘水’] 0.520
L21.U6004 [‘coast’,‘Coast’,‘sea’,‘ocean’,‘tid’] 0.439
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Image Model Concept Top neurons Top tokens Score

LLaVA: a small figurine, pos-
sibly a toy or a model,
is displayed on a green
surface, possibly a ta-
ble or a grassy area.

InstructBLIP: a miniature figurine
with a knife.

mPLUG-Owl2: a small figurine of
a man holding a
knife.

LLaVA

figurine

L36.U8273 [‘figure’,‘Fig’,‘Figure’,‘figures’,‘Fig’] 2.572
L24.U12276 [‘stat’,‘statue’,‘sculpt’,‘Stat’,‘stat’] 1.161
L18.U4770 [‘mini’,‘figure’,‘figures’,‘figur’,‘model’] 1.014
L38.U10971 [‘figure’,‘figures’,‘Figure’,‘Fig’,‘figured’] 0.833
L38.U2195 [‘Хронологиjа’,‘Kontrola’,‘konn’,‘Audiod’,‘techni’] 0.627

toy

L39.U98 [‘to’,‘to’,‘To’,‘To’,‘TO’] 2.121
L32.U6038 [‘Toy’,‘To’,‘Toast’,‘TO’,‘To’] 1.298
L39.U212 [‘’,‘1’,‘-’,‘\n’,‘(’] 1.101
L38.U184 [‘to’,‘to’,‘To’,‘到’,‘into’] 0.890
L39.U11820 [‘externas’,‘’,‘a’,‘(’,‘,’] 0.754

model

L39.U3149 [‘models’,‘model’,‘models’,‘model’,‘Model’] 2.893
L23.U1705 [‘mini’,‘model’,‘models’,‘model’,‘Model’] 1.705
L24.U12276 [‘stat’,‘statue’,‘sculpt’,‘Stat’,‘stat’] 0.914
L18.U4770 [‘mini’,‘figure’,‘figures’,‘figur’,‘model’] 0.710
L39.U4397 [‘mode’,‘Mode’,‘Model’,‘MODE’,‘Mode’] 0.639

surface

L37.U10337 [‘Sur’,‘Sur’,‘sur’,‘surface’,‘surfaces’] 3.676
L30.U2704 [‘qu’,‘sil’,‘background’,‘emb’,‘Sil’] 0.620
L36.U3279 [‘surface’,‘face’,‘面’,‘faces’,‘fac’] 0.492
L35.U8250 [‘surface’,‘surfaces’,‘superficie’,‘superfic’,‘повер’] 0.439
L34.U6951 [‘soft’,‘fi’,‘bra’,‘pla’,‘soft’] 0.438

table

L23.U1705 [‘mini’,‘model’,‘models’,‘model’,‘Model’] 0.458
L19.U13612 [‘tables’,‘table’,‘wall’,‘sink’,‘chair’] 0.429
L26.U10793 [‘table’,‘Table’,‘tables’,‘table’,‘TABLE’] 0.369
L32.U1205 [‘table’,‘Table’,‘Scanner’,‘Table’,‘table’] 0.328
L18.U4770 [‘mini’,‘figure’,‘figures’,‘figur’,‘model’] 0.321

area

L35.U2653 [‘Area’,‘area’,‘area’,‘Area’,‘areas’] 1.570
L31.U12802 [‘area’,‘Area’,‘zone’,‘region’,‘area’] 0.630
L37.U2420 [‘region’,‘region’,‘regions’,‘Region’,‘Region’] 0.494
L25.U12317 [‘places’,‘cave’,‘homes’,‘environments’,‘Places’] 0.388
L31.U9217 [‘rug’,‘car’,‘blank’,‘felt’,‘fel’] 0.332

InstructBLIP

figurine

L27.U10783 [‘figure’,‘figures’,‘Figure’,‘figure’,‘Fig’] 0.824
L31.U5983 [‘beside’,‘beneath’,‘populated’,‘centered’,‘aligned’] 0.620
L31.U3824 [‘anyway’,‘жовт’,‘frequ’,‘whenever’,‘meant’] 0.590
L31.U8541 [‘Unterscheidung’,‘archivi’,‘Hinweis’,‘zvuky’,‘burgo’] 0.585
L31.U6958 [‘analyz’,‘recognized’,‘Student’,‘participated’,‘analyt’] 0.540

knife

L27.U1255 [‘kn’,‘Kn’,‘kn’,‘Bla’,‘Knight’] 5.137
L29.U835 [‘K’,‘Kid’,‘kernel’,‘k’,‘kne’] 1.061
L18.U2218 [‘pen’,‘pen’,‘pens’,‘sword’,‘rod’] 0.726
L25.U9447 [‘um’,‘Um’,‘flash’,‘flash’,‘pen’] 0.716
L31.U8169 [‘CR’,‘PK’,‘EX’,‘BR’,‘HT’] 0.679

mPLUG-Owl2

figurine

L20.U1471 [‘doll’,‘oll’,‘ted’,‘figur’,‘dollars’] 0.698
L31.U4677 [‘closer’,‘semantics’,‘mind’,‘totalité’,‘minds’] 0.405
L31.U9439 [‘theoret’,‘’,‘Complex’,‘influenced’,‘stabil’] 0.301
L15.U3991 [‘doll’,‘model’,‘statue’,‘figures’,‘representation’] 0.283
L22.U10518 [‘models’,‘figures’,‘models’,‘figure’,‘cav’] 0.274

man

L27.U5003 [‘man’,‘man’,‘Man’,‘Man’,‘mann’] 1.614
L22.U10525 [‘man’,‘Man’,‘Man’,‘man’,‘mann’] 0.708
L31.U2642 [‘man’,‘Man’,‘man’,‘Man’,‘MAN’] 0.433
L20.U2081 [‘man’,‘boy’,‘челове’,‘hombre’,‘raste’] 0.390
L21.U819 [‘Man’,‘Man’,‘manual’,‘man’,‘manual’] 0.329

knife

L27.U2163 [‘kn’,‘Kn’,‘kn"’,‘Knight’,‘cheval’] 3.330
L26.U2228 [‘kn’,‘Kn’,‘kn’,‘Knight’,‘scope’] 3.117
L21.U9295 [‘carry’,‘revol’,‘carried’,‘carrying’,‘kn’] 0.707
L19.U8668 [‘gun’,‘guns’,‘gun’,‘Gun’,‘sword’] 0.404
L31.U913 [‘archivi’,‘textt’,‘hyp’,‘immediately’,‘separ’] 0.390
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Image Model Concept Top neurons Top tokens Score

LLaVA: a plant with red flowers
hanging from it, possibly
a Venus flytrap, is dis-
played in a greenhouse.

InstructBLIP: a pitcher plant
hanging from a tree.

mPLUG-Owl2: a pitcher plant
hanging from a
ceiling in a green-
house.

LLaVA

plant

L27.U8060 [‘plant’,‘Plant’,‘plant’,‘plants’,‘planta’] 1.087
L29.U9056 [‘shr’,‘bush’,‘Bush’,‘plant’,‘plants’] 0.962
L28.U11440 [‘flow’,‘blo’,‘Flow’,‘blo’,‘Flow’] 0.621
L27.U498 [‘branch’,‘Branch’,‘branches’,‘branch’,‘bush’] 0.600
L25.U11504 [‘roots’,‘root’,‘Root’,‘root’,‘leaves’] 0.502

flowers

L28.U11440 [‘flow’,‘blo’,‘Flow’,‘blo’,‘Flow’] 1.447
L20.U11853 [‘flower’,‘flowers’,‘flor’,‘Flor’,‘花’] 1.277
L27.U13027 [‘pet’,‘pod’,‘leaves’,‘pet’,‘bud’] 0.990
L27.U498 [‘branch’,‘Branch’,‘branches’,‘branch’,‘bush’] 0.675
L27.U3452 [‘fol’,‘flowers’,‘leaves’,‘fol’,‘leaf’] 0.551

flytrap

L39.U1989 [‘FI’,‘fo’,‘fig’,‘fer’,‘float’] 0.913
L36.U7481 [‘F’,‘Ф’,‘フ’,‘Ф’,‘Fest’] 0.678
L36.U6716 [‘file’,‘フ’,‘fake’,‘flower’,‘File’] 0.625
L28.U7379 [‘vol’,‘flight’,‘flow’,‘fle’,‘fl’] 0.558
L38.U998 [‘Fred’,‘Frederick’,‘Freder’,‘Fon’,‘Fen’] 0.530

greenhouse

L30.U1994 [‘blo’,‘green’,‘Blo’,‘blo’,‘green’] 2.258
L39.U3579 [‘red’,‘green’,‘red’,‘yellow’,‘blue’] 1.122
L39.U9915 [‘white’,‘silver’,‘brown’,‘blue’,‘gold’] 1.086
L28.U8699 [‘green’,‘ho’,‘Green’,‘green’,‘tunnel’] 0.836
L29.U11697 [‘Green’,‘Green’,‘Blue’,‘Brown’,‘Black’] 0.420

InstructBLIP

pitcher

L28.U7071 [‘pitch’,‘ML’,‘ML’,‘itch’,‘baseball’] 3.258
L31.U3824 [‘anyway’,‘жовт’,‘frequ’,‘whenever’,‘meant’] 0.414
L31.U9856 [‘P’,‘Pet’,‘Pan’,‘По’,‘П’] 0.407
L31.U8541 [‘Unterscheidung’,‘archivi’,‘Hinweis’,‘zvuky’,‘burgo’] 0.406
L31.U157 [‘.’,‘\n’,‘and’,‘jú’,‘shares’] 0.336

plant

L27.U8513 [‘plant’,‘Plant’,‘plant’,‘plants’,‘planta’] 4.895
L22.U7930 [‘plant’,‘plants’,‘plant’,‘Plant’,‘gard’] 3.105
L23.U1593 [‘plant’,‘plants’,‘Plant’,‘plant’,‘Bonn’] 0.627
L23.U7557 [‘Garden’,‘Gard’,‘garden’,‘gard’,‘plant’] 0.539
L31.U5946 [‘whites’,‘contribute’,‘alongside’,‘dawn’,‘upon’] 0.500

tree

L22.U7930 [‘plant’,‘plants’,‘plant’,‘Plant’,‘gard’] 1.845
L19.U7918 [‘trees’,‘tree’,‘forest’,‘trees’,‘tree’] 0.658
L29.U8371 [‘Tree’,‘landscape’,‘Tree’,‘trees’,‘tree’] 0.650
L25.U441 [‘wood’,‘Wood’,‘wooden’,‘wood’,‘woods’] 0.586
L20.U947 [‘roots’,‘root’,‘branches’,‘branch’,‘fruit’] 0.561

mPLUG-Owl2

pitcher

L27.U9072 [‘pitch’,‘ML’,‘ML’,‘itch’,‘ml’] 0.540
L31.U6404 [‘designated’,‘partially’,‘swing’,‘direct’,‘potentially’] 0.310
L31.U3644 [‘－’,‘kick’,‘—’,‘timing’,‘ban’] 0.295
L31.U8384 [‘kick’,‘...’,‘confront’,‘Mongo’,‘further’] 0.267
L24.U4842 [‘éric’,‘CAA’,‘schaften’,‘rinn’,‘inta’] 0.237

plant

L24.U4652 [‘plant’,‘Plant’,‘plant’,‘plants’,‘node’] 2.779
L23.U10661 [‘blo’,‘flow’,‘Flow’,‘flow’,‘flowers’] 1.422
L21.U9554 [‘seed’,‘botan’,‘seed’,‘Plant’,‘plant’] 0.403
L22.U9083 [‘botan’,‘Botan’,‘flower’,‘plant’,‘Plant’] 0.400
L30.U702 [‘plant’,‘subject’,‘Plant’,‘plant’,‘ak’] 0.366

ceiling

L20.U3762 [‘walls’,‘wall’,‘floor"’,‘ce’,‘wall’] 0.582
L17.U1877 [‘ce’,‘walls’,‘wall’,‘Ce’,‘Wall’] 0.380
L21.U4447 [‘vent’,‘Vent’,‘vent’,‘du’,‘ce’] 0.316
L23.U4000 [‘flo’,‘Flo’,‘float’,‘ground’,‘float’] 0.303
L31.U9617 [‘Zyg’,‘behaviour’,‘etc’,‘Datos’,‘Gest’] 0.251

greenhouse

L28.U2667 [‘Green’,‘green’,‘Green"’,‘green’,‘зе’] 3.994
L31.U210 [‘yellow’,‘green’,‘red’,‘blue’,‘brown’] 1.497
L26.U253 [‘green’,‘green’,‘Green’,‘gre’,‘Green’] 0.390
L31.U9558 [‘pes’,‘tex’,‘davon’,‘flex’,‘scal’] 0.381
L21.U9554 [‘seed’,‘botan’,‘seed’,‘Plant’,‘plant’] 0.303

Table 9: Multi-modal neurons with their corresponding top tokens and their contribution scores. For each concept in
the caption, we report the top-5 neurons with the top-5 highest probability of tokens.
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Image Original Shuffled
a tree with white flowers in a field, sur-
rounded by a dirt road and a fence.

tree:
[L28.U9085, L36.U1422, L22.U171, L27.U8824]
flowers:
[L28.U11440, L20.U8129, L27.U13027, L27.U498]
field:
[L34.U12955, L28.U1085, L25.U5542, L39.U7153]
dirt:
[L39.U8730, L31.U526, L39.U212, L35.U1480]
road:
[L39.U8637, L26.U1456, L37.U12619, L29.U224]
fence:
[L27.U12313, L38.U5969, L37.U2453, L39.U212]

a tree with white flowers in a field, sur-
rounded by a dirt road and a fence.

tree:
[L28.U9085, L36.U1422, L22.U171, L27.U8824]
flowers:
[L28.U11440, L20.U8129, L27.U13027, L27.U498]
field:
[L34.U12955, L28.U1085, L25.U5542, L39.U7153]
dirt:
[L31.U526, L39.U8730, L39.U212, L35.U1480]
road:
[L39.U8637, L26.U1456, L37.U12619, L29.U224]
fence:
[L27.U12313, L38.U5969, L37.U2453, L39.U212]

a plate of meat, including steak and a side
of vegetables, is presented.

plate:
[L33.U350, L23.U8551, L22.U9849, L19.U13764]
meat:
[L25.U9753, L29.U859, L23.U8551, L37.U11136]
steak:
[L37.U577, L25.U9753, L28.U10409, L22.U384]
vegetables:
[L37.U6234, L25.U3659, L38.U7433, L23.U8551]

a plate of meat, including steak and mashed
potatoes, accompanied by a side of vegeta-
bles.

plate:
[L33.U350, L23.U8551, L22.U9849, L19.U13764]
meat:
[L25.U9753, L29.U859, L23.U8551, L22.U3753]
steak:
[L37.U577, L25.U9753, L28.U10409, L22.U384]
vegetables:
[L25.U3659, L37.U6234, L23.U8551, L25.U8838]

a young girl standing in a doorway of a build-
ing, possibly a school, with a brick wall.

girl:
[L39.U5692, L28.U12204, L39.U364, L37.U9680]
doorway:
[L22.U9920, L27.U235, L21.U1052, L26.U10562]
brick:
[L29.U10814, L39.U8576, L25.U10651, L33.U10983]
wall:
[L35.U10298, L29.U9350, L29.U2530, L25.U10651]

a young girl standing in front of a stone wall,
possibly a brick wall, with a doorway.

girl:
[L39.U5692, L28.U12204, L39.U364, L37.U9680]
doorway:
[L22.U9920, L29.U2530, L25.U5313, L25.U10438]
brick:
[L29.U10814, L24.U9050, L25.U10651, L33.U10983]
wall:
[L35.U10298, L29.U2530, L29.U9350, L19.U10353]

a group of men in a room, celebrating and
cheering while holding up their arms and
fists.

men:
[L39.U5989, L29.U5763, L35.U8027, L29.U11953]
room:
[L38.U7800, L30.U6814, L29.U10611, L21.U8512]
arms:
[L23.U4494, L38.U10666, L24.U4501, L39.U5889]
fists:
[L38.U5969, L37.U2453, L39.U212, L36.U8631]

a group of men in a room, celebrating and
cheering while holding up their arms and
fists.

men:
[L39.U5989, L29.U5763, L35.U8027, L29.U11953]
room:
[L38.U7800, L30.U6814, L29.U10611, L21.U8512]
arms:
[L23.U4494, L38.U10666, L24.U4501, L26.U2293]
fists:
[L38.U5969, L37.U2453, L39.U212, L36.U8631]

a man standing on a street corner, holding
an Italian flag, and waving it while a police
officer watches him.

man:
[L34.U3689, L39.U12617, L28.U9293, L34.U6857]
street:
[L39.U8140, L26.U1456, L26.U12900, L17.U5764]
corner:
[L38.U9436, L23.U12251, L28.U4161, L26.U8916]
flag:
[L25.U6794, L24.U6437, L23.U8268, L19.U12464]
police:
[L27.U7931, L31.U9142, L23.U2072, L35.U8410]
officer:
[L27.U7931, L23.U2072, L21.U3591, L39.U7884]

a man standing on a street corner, holding
an Italian flag and waving it, while a police
officer watches him from a car.

man:
[L34.U3689, L39.U12617, L28.U9293, L34.U6857]
street:
[L39.U8140, L26.U1456, L26.U12900, L17.U5764]
corner:
[L38.U9436, L23.U12251, L28.U4161, L26.U8916]
flag:
[L25.U6794, L19.U12464, L24.U6437, L23.U8268]
police:
[L27.U7931, L31.U9142, L23.U2072, L35.U8410]
officer:
[L27.U7931, L23.U2072, L21.U3591, L39.U7884]

Table 10: Example results of captions and multi-modal neurons before and after shuffling the input sequence of
image patches, respectively. We just record the concepts that appear both in original and shuffled captions from
LLaVA, and for each concept, we report its top-4 multi-modal neurons.
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Figure 6: Ratio of the common neurons in top-k neurons selected by Mmns and our method. We report N = 2, 3, 4, 5
and k = 10, 100, 1000 for model LLaVA, InstructBLIP and mPLUG-Owl2.
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LLaVA: a cat wearing a
birthday hat and eating a
snack, possibly a cookie,
while sitting on a table.

InstructBLIP: a cat laying
on a table with a birthday
hat on its head.

mPLUG-Owl2: a cat wear-
ing a birthday hat and a
person feeding it.
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moon and sun design.

InstructBLIP: a clock on
a building with a metal
frame.

mPLUG-Owl2: a clock
with a sun and moon de-
sign on it.
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ers, and the words “Before
You” written on it.

InstructBLIP: the eiffel
tower with the words,
ivonne book one before
you.

mPLUG-Owl2: a book
cover with the title “Be-
fore You” and a picture
of the Eiffel Tower in the
background.
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front of a computer, with
a TV in the background,
and a keyboard on his lap.

InstructBLIP: a man sit-
ting in front of a com-
puter monitor.

mPLUG-Owl2: an older
man sitting in front of
a television, watching a
woman on the screen.
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Figure 7: Heatmaps of the scores (after normalization) of multi-modal neurons corresponding to specific semantics
when encoding different semantics. For each image, we report the result of the top-1 multi-modal neuron. In each
heatmap, the x-axis represents concepts in the given image, and y-axis represents the top-1 neuron corresponding to
each concept, respectively. Darker blocks indicate higher scores, which means higher relevance.
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Image Concept Perturbed model output

LLaVA: a tall apartment
building with bal-
conies and a tree in
the background.

apartment a multilevelishiigledishiigledishiigledishiigledishi...

building a white and blue building with a balcony and a tree in the
background.

balconies a building with eradicated trees in the background, with erad-
icated trees on eradicated trees on 2200.

tree a white building with a balcony and a chair on it.

background a tall apartment building with balconies and a tree in front of
it.

random a tall apartment building with balconies and a tree in the
background.

LLaVA: a mountainous land-
scape with a village
in the valley, fea-
turing a grassy field
and a road.

landscape a mountain range with a village in the valley, surrounded by
a green field.

village a mountain with a small town or village located at its base,
surrounded by a lush green field.

valley a mountain with a lush green field in the background, sur-
rounded by a village.

field a mountain with a village in the valley below, surrounded by
a lush green countryside.

road a mountainous landscape with a village in the valley, sur-
rounded by a lush green field.

random a mountainous landscape with a village in the valley, featur-
ing a grassy field and a road.

LLaVA: a large tower with
a ball on top, stand-
ing next to a street
light.

tower a large, white building with a light on a black background,
with a lighted street lamp in the foreground.

ball a tall building with a light on top, possibly a light tower, and
a street light nearby.

street a large white building with a clock tower, a street light, and a
city skyline in the background.

light
a tall tower with a large sphere on top, a building with a large
sphere on top, and a building with a large sphere on top, all
located in a city.

random a large tower with a ball on top, standing next to a street light.

LLaVA: a man hanging from
a tree branch while
wearing a hat.

man a person hanging from a tree branch, possibly participating
in a tree-climbing activity or adventure.

tree a man hanging from a tree, possibly on a rope or a swing,
with a sky background.

branch a man hanging from a suspended rope in a tree in the out-
doors.

hat a person hanging from a tree branch, possibly participating
in a ropes course or a similar activity.

random a man hanging from a tree branch while wearing a hat.

Table 11: Perturbation results of example images. For each concept in the image, we pick out top-5 multi-modal
neurons and each add a Gaussian noise to perturb them. We also report results of perturbing 5 randomly selected
neurons for comparison.
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Image Source Target Edited model output

LLaVA: a small white
dog standing on
a tiled floor.

dog

mouse a mouse in a pink dress, standing on a tiled floor.

bag a white bag bag bag, or a white bag with a pink stripe, is standing
on a tiled floor.

dinosaur a small white sauce dinosaur (dino) or a small white sauce-covered
dinosaur toy is standing on a tiled floor.

baby a baby white baby, wearing a pink dress, standing on a tiled floor.

floor

bed a small white dog wearing a pink dress, standing on bed in a
bedroom.

chair a small white dog wearing a pink dress, standing on chair in a
chair, and looking at the camera.

tree a small white dog standing on a tree tree in a tree-lined area.

beach a small white dog, possibly a Maltese, wearing a pink dress and
standing on the beach.

table a small white dog wearing a pink dress, standing on a table.

ship a small white dog standing on a ship shipment.

LLaVA: a man standing
in a forest, sur-
rounded by trees
and a large rock.

man

woman a woman standing in a forest, surrounded by trees and rocks.

baby a baby in a forest, surrounded by trees and rocks.

girl a girl standing in a forest, surrounded by trees and rocks.

stone a stone wall or rock formation in a forest, with a stone cave or a
rocky outcropping, and a stone wall with a stone door.

forest

mountain a man standing in a mountainous mountain area, surrounded by
trees and rocks.

garden a man standing in a garden with a large rock and a tree.

water a man standing in a waterlogged area, surrounded by a waterfall
and a rocky cliff.

city a man standing in a city park, surrounded by trees and a large rock
formation.

desert a man standing in a deserted desert area, surrounded by trees and
a large rock.

hall a man standing in a hallway of a cave, surrounded by rocks and
trees.

trees

wild a man standing in front of a wild, wild rock formation, surrounded
by wildlife and a forest trees.

flowers a man standing in a forest, surrounded by flowers and flowers in
the background.

cloud a man standing in front of a cloudy sky, surrounded by a forest
trees and cloudy sky.

rock

house a man standing in a forest, surrounded by trees and a large house.

tower a man standing in a forest, surrounded by trees and a towering
tower towering over him.

building a man standing in a forest, surrounded by trees and a large building.

ball a man standing in a forest, surrounded by trees and a large ball of
moss.

bear a man standing in a forest, surrounded by trees and bushes, with a
large bear bear nearby.

human a man standing in a forest, surrounded by trees and a large human-
like figure made of leaves.
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Image Source Target Edited model output

LLaVA: a red flower with
a butterfly on it,
sitting on a leafy
plant.

flower

head a head of a red and white plant with a butterfly on it.

book a red book with a white butterfly on it, placed on a bookshelf.

road a red roadside plant with a white butterfly on it.

vehicle a red vehicle with a white butterfly on top of it.

stream a red and white flowering plant with a butterfly on stream.

salt a salt and pepper plant with a salt and pepper salt shaker on top of
it.

butterfly

insect a flower with insect wings on it, sitting on a plant.

light a light red flower with white petals, sitting on a leafy plant, and
surrounded by light rain.

rain a red flower with rain drops on it, sitting on a leafy plant.

plant

tree a tree tree with a red flower and a butterfly on it.

wall a red flower with a butterfly on it, sitting on a wall.

ground a red flower with a butterfly on it, sitting on a ground with green
leaves.

bowl a red flower with a butterfly on it, sitting on a bowl bowl of water.

tower a towering tower of red flowers planted in a towering tower of
green towering tower.

park a red flower with a butterfly on it, sitting on a park bench.

cup a red flower with a butterfly on it, sitting on a cup.

LLaVA: a bridge over a
body of water,
with a boat pass-
ing underneath it.

bridge

floor a floor with a view of a floor, a car, and a floor with a view of a
car.

tree a tree-lined road with a tree in the foreground, a tree in the middle,
and a tree in the background.

building a building with a large building in the background, a boat on the
water, and a building on the water.

bed a bed with a view of a bedroom and a bedroom window with a
view of a bed.

hill a hillside overlooking a hill with a hillside road and a hillside hill.

water

beach a bridge over a beach, with a boat in the background and a car
driving on the bridge.

heaven a bridge over heavenly blue heaven, with a boat passing underneath
it.

fire a bridge over a large body of fire, with a boat in the background.

snow a bridge over snowy mountains, with a boat traveling underneath
it.

city a bridge over a large body of city, with a boat visible in the distance.

boat

plane a bridge over a body of water, with a plane flying in the back-
ground.

vehicle a bridge over a body of water, with a vehicle driving on it, and a
vehicle on the other side of the bridge.

horse a horse-drawn carriage traveling on a bridge over a body of water.

moon a bridge over a body of water, with a moon in the background.

sun a sunny day with a bridge over a body of water, with a sunny sky
in the background.

Table 12: Targeted editing results of example images. For each source concept in the image, we artificially transform
it to other target concepts. Target concepts are in bold in the edited model output.

25


