
Published in Transactions on Machine Learning Research (02/2025)

Combating Inter-Task Confusion and Catastrophic
Forgetting by Metric Learning and Re-Using a Past
Trained Model

Sayedmoslem Shokrolahi 20ss184@queensu.ca
Department of Electrical and Computer Engineering
Queen’s University

Il-Min Kim ilmin.kim@queensu.ca
Department of Electrical and Computer Engineering
Queen’s University

Reviewed on OpenReview: https: // openreview. net/ forum? id= jRbKsQ3sYO

Abstract

Despite the vast research on class-incremental learning (IL), the critical issues have not yet
been fully addressed. In this paper, utilizing metric learning, we tackle two fundamental
issues of class-incremental learning (class-IL), inter-task confusion and catastrophic forget-
ting, which have not been fully addressed yet in the literature. To mitigate the inter-task
confusion, we propose an innovative loss by utilizing the centroids of previously learned
classes as negatives and current data samples as positives in the embedding space, which re-
duces overlaps between the classes of the current and past tasks in the embedding space. To
combat catastrophic forgetting, we also propose that the past trained model is stored and re-
used for generating past data samples for only one previous task. Based on this, we further
propose a novel knowledge distillation approach utilizing inter-class embedding clusters,
intra-class embedding clusters, and mean square embedding distances. Extensive experi-
ments performed on MNIST, CIFAR-10, CIFAR-100, Mini-ImageNet, and TinyImageNet
show that our proposed exemplar-free metric class-IL method achieves the state-of-the-art
performance, beating all baseline methods by notable margins. We release our codes as the
supplementary materials.

1 Introduction

Incremental learning (IL) is the learning paradigm in which the model learns from sequential input data
without accessing all past data. In any IL, a fundamental goal is to remember all seen experiences as much
as possible at each point in time. In practice, however, IL easily suffers from a critical issue of catastrophic
forgetting (CF) French (1999); De Lange et al. (2021); Zhou et al. (2024) that model entirely or substantially
forgets what it has already learned. This poses a significant challenge in IL scenarios, as the model needs to
adapt to new information without undermining its previously acquired knowledge.

IL settings can be largely categorized into (i) task-based and (ii) task-free van de Ven et al. (2021). The
task-based approach itself includes task-IL, domain-IL, and class-IL van de Ven et al. (2021). In task-IL
problems, the task identity is always available in training and test, making it the easiest setting in IL. In both
domain-IL and class-IL settings, task identity is not provided at the test time. Particularly, in the class-IL,
the model must infer the task identity during the test phase, which is not a requirement of the domain-IL.
Meanwhile, the task identities are inaccessible during the training and inference phase in task-free cases.

In class-IL, which we focus on in this paper, not all performance degradation can be attributed solely to
the phenomenon of catastrophic forgetting. Another significant factor contributing to performance decline

1

https://openreview.net/forum?id=jRbKsQ3sYO

Published in Transactions on Machine Learning Research (02/2025)

Figure 1: Training of the proposed method. To learn the current task without over-fitting, actual current
data Dk are supplied to the trainable encoder Mk to construct triplet loss, Ltri. To avoid inter-task confusion,
using the stored centroids of the past classes, Ωk−1, as negative samples in conjunction with positive samples
extracted from the current dataset Dk, we construct the inter-task confusion regularizer, LT CR. To tackle
the catastrophic forgetting, we design KD loss LKD by supplying the synthetic past data Gk to both Mk

and the stored (fixed) past encoder Mk−1 three main losses. In the test phase, the trained encoder Mk is
extracted and used as the nearest mean classifier (NCM).

is the confusion between the current task and past tasks, called the inter-task confusion (ITC) Masana
et al. (2022); Huang et al. (2022; 2023); Nori & KIM (2024). Inter-task confusion arises in class-incremental
learning (class-IL) when a model struggles to differentiate between classes belonging to different tasks during
testing. This occurs because the classes from distinct tasks are never seen together during training, and
the model is not explicitly taught to distinguish between them. As a result, the learned features are not
optimized to discriminate across tasks, leading to confusion when all tasks are evaluated together without
access to task-specific identifiers. For instance, while each task’s classes are trained separately to distinguish
their own categories, the discrepancy between classes from different tasks remains unresolved, resulting
in misclassifications across tasks. This phenomenon becomes particularly evident when task-IDs must be
inferred at test time.

Although these two concepts often have not been clearly distinguished in the literature, the ITC and the CF
should be treated separately because the former refers to the confusion between the current and past tasks,
whereas the latter refers to forgetting the past tasks. Further analysis of the impact of these two concepts
on performance is presented in Subsection 4.5.

In recent works on IL, many researchers have proposed various approaches to improve the performance of
class incremental learning by tackling CF. Mitigating CF can implicitly reduce ITC with different degrees,
e.g., a replay base method with infinite memory should be able to address both CF and ITC. However, we
argue that tackling ITC explicitly will potentially improve the performance further in realistic scenarios.
Representative methods so far could be categorized into four main groups De Lange et al. (2021): (i) replay
methods, (ii) regularization-based methods, (iii) parameter isolation methods, and (iv) hybrid methods. In
the replay methods, part of the data from previous tasks are stored or past data are synthesized to alleviate
catastrophic forgetting Rebuffi et al. (2017); Chaudhry et al. (2019). In the regularization-based methods,
regularization terms are added to the loss function, possibly combined with the approach of knowledge
distillation (KD) Rannen et al. (2017). In the parameter isolation methods, the parameters of the model are
controlled to address the issue of forgetting by preventing interference between the current task and past
tasks Serra et al. (2018).

Our proposed approach, shown in Fig. 1, can be categorized as the hybrid method combining regularization
and generative replay in the class-IL setting. In our scheme, we aim to (i) mitigate the inter-task confusion

2

Published in Transactions on Machine Learning Research (02/2025)

and (ii) combat catastrophic forgetting, while we use the triplet loss Ltri to train the model Mk for the
current task using the current actual data Dk, only which we are assumed to directly access.

First, we pay a special attention to the confusion between the classes of different tasks, i.e., the inter-task
confusion Masana et al. (2022), which results in significant performance degradation in the class-IL. To
overcome this challenge, we propose a novel regularization term, LT CR, using the embedding centroids of
previously learned classes as negative samples and the embeddings of the data samples of the current task as
positive samples. The current model Mk is trained such that current classes are located away from previous
classes in the embedding space using the positive and negative samples.

Second, catastrophic forgetting is a critical issue in any IL including class-IL. To mitigate the catastrophic
forgetting, we store the past model Mk−1 trained in the last task time k − 1 and use it (while freezing it)
to train the current model Mk in two ways. We first use Mk−1 to synthesize past data samples belong to
the very last task Gk, which will be used for training Mk. Note that we do not store any actual samples of
previous tasks; instead, we synthesize past data samples by storing and re-using a past trained (now, fixed)
model. We also use Mk−1 as the teacher to teach the current model Mk, the student. This is based on
the inspiration that, from the perspective of the past knowledge, Mk−1 is the model having such knowledge
whereas Mk is the model to be trained to learn such knowledge. For efficient knowledge distillation (KD)
of the past task from Mk−1 to Mk, we will design a new loss, LKD, by fully exploiting the properties of
embedding structures in class-IL. The main contributions of our work can be summarized as follows:

• Using the centroids of previously learned classes as negative samples, we design a regularization term
customized to overcome inter-task confusion.

• We propose a highly effective KD method in the embedding space to combat catastrophic forgetting.
To this end, we also propose a method for synthesizing past data samples by storing and re-using
a past trained model Mk−1. Using Mk−1, at current task k, we only generate samples belong to
(k − 1)-th task.

• Extensive simulations are performed, which demonstrate that our proposed scheme achieves the
state-of-the-art performance in the setting of class-IL.

2 Related works

2.1 Regularization, Replay, and KD in IL

In IL, we must prevent over-fitting in each new task and, at the same time, we must stop forgetting past
tasks. For the purpose of reducing forgetting in IL, general regularization methods used for handling over-
fittings such as dropout Goodfellow et al. (2013) and early stopping Maltoni & Lomonaco (2019) might be
used; but they are not very effective in IL. Instead, searching for important weights to keep them unchanged
with regularization terms is a more effective way Bühlmann & Van De Geer (2011).

With advances in generative models, generative replay methods grab enormous attention in IL scenarios.
A parallel generator and a solver model were used in Shin et al. (2017) to create synthetic images as
replay data in the IL case. More complex issues were investigated in the brain-inspired method van de Ven
et al. (2020). They used generated representations in the replay phase instead of using synthetic images.
Cost-Free IL PourKeshavarzi et al. (2022) proposed a memory recovery method that helped the current
network remember past information without storing data. Error sensitivity modulation experience replay
(ESMER) Sarfraz et al. (2023), proposes that the model should prioritize learning from smaller losses to
minimize significant feature drift, adjusting learning rates dynamically based on error consistency.

Transferring learned knowledge from the already trained neural network to a new raw network is proved to
be useful in many machine learning applications. Most of the solutions for this kind of knowledge transfer
are based on the concept of KD Hinton et al. (2015). In IL, the distillation of knowledge could be performed
across tasks, and various methods used KD-based transfer learning Schwarz et al. (2018); Dhar et al. (2019);
Bhat et al. (2024); Chen et al. (2024); Liang & Li (2024).

3

Published in Transactions on Machine Learning Research (02/2025)

2.2 Soft-Max Classifiers and Metric Learning in IL

The goal of deep metric learning is to train a differentiable model fθ(·) : X → Rp that maps input domain X
to a (compressed) embedding domain Rp together with a distance metric d ∈ R such a way that similar data
samples result in a small distance and dissimilar data samples produce a large distance. To this end, loss
functions in metric learning need to be properly designed to find similarities/dissimilarities between samples
in the embedding space.

In most static learning scenarios (i.e., the standard non-IL scenarios), using softmax loss in classification
problems has proved to provide firm performance. When it comes to IL, however, there exists an inherent
deficiency in softmax loss, because softmax loss is essentially focused on drawing lines (i.e., decision bound-
aries) between different classes in the embedding space. Fig. 2(a) shows the embeddings of two different
classes in task 1. In task 1, because the actual data samples of the two classes are available for training,
we can draw a line between the two classes, which is denoted by decision boundary 1. In the next task
time (task 2), which is shown in Fig. 2(b), new actual data samples for two new classes are provided for
training; so, it is again possible to draw a line between the two new classes, denoted by decision boundary
2. However, because the past data samples of task 1 are not accessible anymore, it is difficult to draw the
optimal line, denoted by the ideal decision boundary, that distinguishes all the four classes seen so far. Such
optimal boundary could be drawn only if all the data samples including the past classes were accessible. This
is a fundamental limitation of the approach based on softmax classifiers. We note that softmax loss does
not directly (or explicitly) try to minimize the size of each cluster of embeddings nor maximize the distance
between clusters of embeddings in the embedding space. The fundamental difference between static learning
and IL is that, in IL, we do not know where the new embedding clusters will be placed in the embedding
space in the future tasks. For this reason, softmax loss might not be the best approach in IL.

In IL, an alternative approach is to use deep metric learning with a similarity/dissimilarity loss function
such as a triplet loss. Minimizing the triplet loss encourages putting the same class data samples closer to
each other and putting different class data samples farther from one another, in the embedding space, which
results in a smaller size of each embedding cluster of each class and a larger distance between embedding
clusters of different classes. Fig. 3(a) shows two embedding clusters of two classes in task 1. In task 1, by
optimizing the triplet loss, the size of each cluster is minimized and the distance between the two clusters is
maximized. As shown in Fig. 3(b), in task 2, two new embedding clusters of two new classes are introduced
to the embedding space. Again, by using the triplet loss on the data samples of the two new classes (but
not on the data samples of the past two classes), the size of each of the two new clusters is minimized and
the distance between the two new clusters is maximized. Then, the chances that any of the two new clusters
happen to overlap with any of the old clusters become small in the metric learning, because each of the four
clusters was/is minimized, and two clusters in each task were/are separated as much as possible. This is the
reason why the approach of metric learning is inherently more suitable for IL.

The triplet loss uses three instances: (i) an anchor (xa), (ii) a positive data sample (xp) having the same label
as the anchor, and (iii) a negative data sample (xn) having a different label. Considering a distance metric
d(i, j) on the embedding space (e.g., squared Euclidean distance), the triplet loss is defined as Ltri(x) =
max(0, d(xa, xp) − d(xa, xn) + m) for a single triplet input (xa, xp, xn). The goal is to satisfy d(xa, xp) −
d(xa, xn) +m < 0, which means making d(xa, xp) smaller than d(xa, xn) by a predefined margin m. During
inference, we use the nearest class mean (NCM) classifier Yu et al. (2020).

3 Proposed Scheme

3.1 Incremental Learning Formulation

At the initial stage, a model M0 is trained from scratch in the standard non-incremental manner using
training dataset D0 containing C0 classes in a classification application. Then new datasets Dk, each having
additional new C classes, are sequentially collected and supplied to the model Mk one by one so that Mk

is trained only on Dk at each task in the incremental manner for k = 1, . . . ,K, where K is the total
number of incremental tasks. The current model Mk does not have any access to the actual past data, Di,
i = 0, 1, . . . , k − 1.

4

Published in Transactions on Machine Learning Research (02/2025)

(a) Embeddings of two classes
in task 1.

(b) Extra embeddings of two additional classes are
added in task 2.

Figure 2: Softmax classifiers.

(a) Embeddings of two classes in task 1. (b) Extra embeddings of two additional
classes are added in task 2.

Figure 3: Metric learning approach.

For performance evaluation in the test phase, we use the average accuracy and forgetting, which are the
widely adopted standard performance metric in IL Chaudhry et al. (2019; 2018a); Yu et al. (2020). After
training all K tasks, the average accuracy AK is given by AK = 1

K

∑K
j=1 aK,j , where ai,j is the test accuracy

of the model that has been incrementally trained from task 1 to i on the held-out test set of task j.

Forgetting is defined for the j-th task after the model has been trained incrementally up to task k, where
k > j, as in Chaudhry et al. (2018a): ok

j = maxl∈{1,...,k−1}(al,j − ak,j), ∀j < k. Considering ok
j ∈ [−1, 1],

defined for j < k, as our focus lies on quantifying forgetting across preceding tasks, and ak,j is the test

5

Published in Transactions on Machine Learning Research (02/2025)

accuracy of the model that has been incrementally trained on the held-out test set of task j. Furthermore,
by standardizing against the count of previously encountered tasks, the average forgetting at the k-th task
is denoted as Ok = 1

k−1
∑k−1

j=1 o
k
j .

3.2 Overview of Our Proposed Method

The fundamental idea of our proposed method is to intelligently control the sizes and positions of embeddings
of the classes of the current task considering the embedding locations of the past tasks in the embedding
space to (i) avoid inter-task confusion and (ii) prevent catastrophic forgetting. The overall structure is
illustrated in Fig. 1. Our proposed model is composed of two encoders (Mk and Mk−1), the current input
dataset (Dk), the set of stored centroids of the past classes (Ωk−1), and the generated dataset (Gk) of the
past data samples. At the current task k, the encoder denoted by Mk is trained by using Dk, Ωk−1, and
Gk, whereas the other encoder indicated by Mk−1, which was trained in the last task k − 1 and has been
stored, is fixed. Note that, in Ωk−1, only a single centroid (not multiple samples) for each past class is
stored, which must be stored for NCM. In our proposed method, the current model Mk is trained by Ltri to
learn the current task using the embeddings Hk which are produced when the dataset Dk of the actual data
samples for the current task are supplied as input. To be more precise, Hk = [h1

k, . . . , h
b
k] ∈ Rp×b denotes

the normalized embedding matrix produced by trainable student model Mk using real current task dataset.
The dimension of embedding space is p and batch size is b.

To address the intertask confusion, we introduce LT CR, through which Mk learns how to avoid any confusion
between the current task and the past tasks utilizing previously stored embedding centroids of past classes
(Ωk−1) as negatives in conjunction with Hk as positives.

The other critical issue is to combat catastrophic forgetting. To this end, we use a data generator that is
composed of input x̂ (this is initialized as random noises) and the previously trained (now, fixed) encoder
Mk−1 in order to generate the synthetic images Gk of the classes of the past task(s). These synthesized past
images in Gk are used by Mk−1 and Mk such that Mk−1 (as the teacher having strong knowledge of Gk)
teaches Mk (as the student who has not learned Gk yet) about the past knowledge Gk. Specifically, Gk is
supplied as the inputs to both encoders, Mk and Mk−1, to produce the embeddings Zk and Z ′

k, respectively.
These embeddings are used together to construct the KD loss, LKD. Note that the (fixed) encoder Mk−1
is used for two different purposes in the current task: (i) to generate the synthetic images Gk of the past
classes and (ii) to teach Mk the past knowledge as a teacher. Overall, the proposed total loss function for
training Mk is composed of three main terms:

LMk
= Ltri + λ1LT CR + LKD, (1)

where Ltri is the triplet loss used to train the current model Mk with the current available data Dk (for
implementation details, see Appendix), and the other two losses, LT CR and LKD, are explained in more
detail in what follows.

3.3 Inter-task Confusion Regularizer, LT CR, to Combat Inter-task Confusion

This loss, LT CR, is proposed to avoid any confusion between the current task and any past tasks. Ideally,
class-IL must be able to accurately differentiate between classes across tasks as well as between classes within
each task. In class-IL, however, it is very challenging for the model to effectively discriminate between the
classes across tasks because the model is distinctively trained for each individual task. This fundamental
challenge is inevitable because the model cannot see the data for the classes together in training when they
belong to different tasks. This challenge in class-IL, known as inter-task confusion Masana et al. (2022), is
illustrated in Fig. 4(b). Note that the triplet loss focuses solely on each task one by one, meaning that it does
not make any effort to avoid collision between the cluster of a class belonging to the current task and that
of another class belonging to any of the past tasks, which results in inter-task confusion. To mitigate this
inter-task confusion, we propose a regularization term that is specifically designed for the class-IL paradigm.

The fundamental idea of our proposed scheme is that, in metric learning, the cluster centroids are anyway
stored in the course of training to be leveraged later for inference and this information can be effectively used

6

Published in Transactions on Machine Learning Research (02/2025)

(a) In the current task, triplet loss de-
creases (the green arrows) the cluster size
of each class and increases (the red ar-
row) the inter-cluster distances between
any two classes of the current task in the
embedding space.

(b) The clusters of classes of the current
task and those of past tasks might overlap
in the embedding space, which is inter-
task confusion. This cannot be mitigated
by triplet loss.

(c) Inter-task Confusion Regularizer,
LT CR, increases the inter-cluster dis-
tance between classes of different tasks
in the embedding space. Specifically,
the distances between the data samples
(the hollow diamonds and crosses) of
the classes of the current task and the
centroids (the black squares) of the
classes of all past tasks are increased
(the orange arrows) by LT CR in the
embedding space.

Figure 4: Triplet loss, inter-task confusion phenomenon, and inter-task confusion regularizer.

to mitigate inter-task confusion. Specifically, we propose a new loss, LT CR, which utilizes cluster centroids
of the classes of all past tasks as negative samples while the positive samples are the randomly selected data
points with noise in every class of the current task. In other words, the positives are a random subset of
embeddings Hk which are produced when the dataset Dk of the actual data samples for the current task are
supplied as input to trainable model Mk. This loss encourages the distance between the data samples of the
current classes and the centroids of the past classes in the past tasks to be larger than a predefined margin
mT CR in order to effectively avoid the overlap between classes across distinct tasks, thereby addressing
inter-task confusion, as shown in Fig. 4(c). Mathematically, the loss is given by

LT CR = max
(
0,mT CR − d(xp, µv′)

)
, ∀v′ ∈ Ωk−1, (2)

where xp denotes the positive samples. Also, µv′ indicates the negative samples, which are the centroids of
the class v′, and Ωk−1 is the set of class indices from the first task up to task k−1. To facilitate increasing the
distance effectively, as in the triplet loss, we use a margin mT CR. The size of a mini-batch for constructing
LT CR is the same as in the triplet loss, which is b.

3.4 KD loss, LKD, to Combat Catastrophic Forgetting

This loss, LKD, is proposed to address the issue of catastrophic forgetting. It is composed of three innovative
knowledge distillation loss terms for transferring the knowledge of the previous tasks that had been learned
by Mk−1 (the teacher) to the current model Mk (the student) as follows:

LKD = λ2L
mse
KD + λ3(Lintra

KD + Linter
KD), (3)

7

Published in Transactions on Machine Learning Research (02/2025)

where λ2 and λ3 are hyper-parameters to control the impact of each term. To construct these three KD
losses, we utilize the synthetic data Gk of the last task as inputs to both Mk and Mk−1. Therefore, we will
begin by detailing the process of generating Gk in the following subsection. Subsequently, each of the three
KD losses will be explained one by one.

3.4.1 Generating Past Synthetic Data Gk

In IL, one of the most effective approaches to prevent catastrophic forgetting is to access some of the
previous data in training. This approach, called the replay strategy, is classified into two types: (i) coreset
replay Rebuffi et al. (2017) and (ii) generative replay Sun et al. (2021). In the approach of coreset replay,
by storing small amount of actual previous data samples, IL is facilitated. However, this approach cannot
be adopted when data privacy matters. In this case, the other approach of generative replay might be
considered. GANs are a popular model to be used as generative models in IL Lesort et al. (2019); Cong
et al. (2020). Variational autoencoders (VAEs) are also valuable as a generative model in both supervised and
unsupervised IL Caselles-Dupré et al. (2021); Kemker & Kanan (2017). In the setting of class-IL, however,
incrementally training generative models such as GANs or VAEs can be challenging because the training
data is presented incrementally. Indeed, as discussed in van de Ven et al. (2020), in the class-IL setting,
generative replay works well for small data sets (e.g., MNIST LeCun et al. (1998)), but scaling it up to non-
small ones (e.g., CIFAR-100 Krizhevsky (2009), TinyImageNet Le & Yang (2015)) is not straightforward.
Also, because such incremental training of generative models is typically distinct from incremental training
of the discriminative model performing classification, the overall training complexity goes up. To address
these issues, in this paper, we propose a more scalable and effective approach for generative replay without
additionally training a dedicated separate generative model.

The core idea of the proposed replay approach is to store and re-use a previously trained model for generating
synthetic past images. Specifically, the model Mk−1 that was trained in the last task time k − 1 is stored
and used for the purpose of generating past data samples, which in turn are used to help the training of the
current model Mk, as shown in Fig. 1. Note that we do not introduce any separate or distinct generator
such as GANs or VAEs for generating past data samples; instead, at each task time, we store a single (past
trained) model and re-use it for the training of the next model. Here, the critical question is how to generate
past data samples using a trained discriminator Mk−1, which is discussed in the following.

For generating class-conditional synthetic images using a (fixed) trained model, in Yin et al. (2020), a very
effective method, called the Deep-Inversion, was proposed. In this paper, we also follow the approach of Yin
et al. (2020) for generating class-conditional synthetic images. The fundamental idea of Yin et al. (2020) is
to minimize the distances of the means and the distances of the variances between the actual images x ∈ D
and the synthesized (generated) images x̂ ∈ G. In training, x̂ is initialized by random (Gaussian) noise and
gradually updated to get close to the actual image, x. Mathematically, for a model that was trained on D,
the following regularization term Rb(x̂) is used Yin et al. (2020):

Rb(x̂) =
∑

l

∥ ψl(x̂) − E(ψl(x)|D) ∥ +
∑

l

∥ σ2
l (x̂) − E(σ2

l (x)|D) ∥, (4)

where ψl(x̂) and σ2
l (x̂) are the mini-batch-wise mean and variance, respectively, at the lth convolutional

layer when the input to the (fixed) model is x̂. In the same way, ψl(x) and σ2
l (x) are defined for x. In the

setting of IL, however, it is not possible to exactly determine ψl(x) and σ2
l (x), because the model does not

have any access to the original past dataset D. Nevertheless, E(ψl(x)|D) and E(σ2
l (x)|D) can be estimated

by the stored past trained (fixed) model, because the running average statistics are actually stored in the
widely-used BatchNorm layers of the model.

In our proposed method, the technique of Yin et al. (2020) cannot be directly used, because we work in
the embedding space. To make it work in our proposed method, we change the structure of the model Yin
et al. (2020) and we use a different overall loss function. Our approach involves generating class-conditional
images in the embedding space by utilizing the embedding centroid of each class. We adopt minimizing
the Euclidean distance between the input noise and the class embedding centroids as one term of the loss
function (instead of using the softmax layer and cross-entropy as in Yin et al. (2020)), and the regularization

8

Published in Transactions on Machine Learning Research (02/2025)

term in (4) as the second term. Overall, using the fixed model (i.e., the past trained model Mk−1), the
synthetic images Gk are constructed for a target class by the following optimization:

min
x̂
LG = min

x̂
(dist(x̂, µ) + λbRb(x̂)) , (5)

where µ is the embedding centroid for the target class of the last task, λb is the scale for the regularization
loss, and dist(i, j) is Euclidean distance.

As shown in the past data generator block of Fig. 1, for training the current model Mk, the generator is
composed of the input image x̂ (initialized by the noise) and the fixed (stored) model Mk−1 that was trained
in the last task time k− 1. In principle, using the model Mk−1, one might attempt to generate the synthetic
images for all past classes from the very first task time to the last task time k− 1, because ideally Mk−1 had
learned all classes up to task k − 1. However, it turns out that such an approach does not work well due to
unavoidable forgetting of the past knowledge.

From our experiments, we found that the best IL performance was achieved when Mk−1 was used to generate
the synthetic images of the last task time k − 1 only, compared to the case of synthetic images of the last
task time k − 1 and any older tasks. The benefit of generating the synthetic images of the last task time
k−1 only is that the computational complexity required for generating synthetic past images is substantially
lower, which makes our proposed scheme scalable.

Based on our extensive experiments, we found that the subjective image quality of synthetic images is
important only up to a certain extent (i.e., truly high-quality images are not required) when using them
in our proposed KD method, allowing us to reduce the number of iterations for generating images without
significant performance loss. The average accuracy of our proposed IL method versus the number of iterations
used for generating past synthetic images for CIFAR-10 is shown in Fig. 5(a). As can be seen, increasing
the number of iterations beyond 40 does not further improve the average accuracy of our scheme. In this
paper, therefore, we set the number of iterations to 40 for CIFAR-10 and 80 for all the rest datasets (as
opposed to 3,000 as in Yin et al. (2020)), of which computing complexity is not high. In Fig. 5(b), forty
eight samples of generated synthetic images with a ResNet-18 network trained on CIFAR-10 are illustrated.
We consider three different iteration number for generating each 16 synthetic images including 20, 40, and
1000 iterations. In this simulation, our setting is λb = 10 with Adam optimization and the learning rate
of 0.06. The superior visual quality of synthetically generated images is apparent with 1000 iterations
(bottom 16 images in Fig. 5(b)), surpassing the quality observed with 40 iterations (middle 16 images in
Fig. 5(b)). However, it is crucial to note that achieving such high pixel-level quality is not a necessity for
our proposed method. Our primary focus lies in capturing the overall distribution within our knowledge
distillation approach.

Additionally, our experiments show that the number of required synthetic images is much fewer than the
actual images. Based on the experiments, we choose the amount of synthetic data for the last task to be
only 25% of the actual data for the current task. It effectively addresses the issue of generation time, which
also contributes to training time. To the best of our knowledge, in the literature, no generative replay-based
IL method has used such a scalable generating process by re-using a previously stored model both as a
lightweight generator and a teacher to distill past knowledge into the current model simultaneously. The
impact of varying ratios of synthetic images is presented in Appendix A.1.

3.4.2 MSE Regularization Term, Lmse
KD

Using the synthesized past images Gk, we introduce a regularization term, which is inspired by self-supervised
learning. Minimizing the distance between two embeddings of two differently augmented versions of a single
input has proved to be a powerful strategy in self-supervised learning Bardes et al. (2022). Inspired by this,
we propose to use a similar loss term, namely, the Mean Square Euclidean (MSE) distance regularization
term, Lmse

KD . Our idea is to prevent the knowledge learned in the last task from being forgotten by minimizing
the distance between two embeddings produced respectively by the last model Mk−1 (teacher) and current
model Mk (student) for the same last data Gk. Specifically, we supply the same input Gk (i.e., the synthetic
images for the last task) to the current trainable model Mk and the stored (fixed) last model Mk−1. For
training of Mk, we then minimize the distance between the two sets of embeddings produced by those two

9

Published in Transactions on Machine Learning Research (02/2025)

20 40 80 300 500 1000

of iterations

0

10

20

30

40

50

60

70

80

90

100

A
v
e
ra

g
e
 A

c
c
u
ra

c
y
 (

%
)

(a) Average accuracy for the different number of iterations for CIFAR-
10 using our proposed method. The results indicate that the number
of iterations does not have to be very large.

(b) Forty eight generated synthetic images (32×32) for
three different number of iterations: (i) 20 iterations
is top 16 images, (ii) 40 iterations is middle 16 im-
ages, and (iii) 1000 iterations is bottom 16 images. A
ResNet-18 is trained on CIFAR-10.

Figure 5: Synthetic images versus the number of iterations.

models. This way, in the embedding space, the current model Mk will learn the knowledge of the embedding
positions that had been learned by Mk−1 for the images Gk of the last task k − 1.

To mathematically formulate the loss, let Z̃k = [z̃1
k, . . . , z̃

n
k] ∈ Rp×n denote the un-normalized embedding

matrix produced in the current task time k by the trainable model Mk when the inputs are the synthetic
images, Gk. Similarly, Z̃ ′

k = [z̃′1
k , . . . , z̃

′n
k] ∈ Rp×n represents the un-normalized embedding matrix produced

in the current task time k by the fixed last model Mk−1 when the inputs are the same synthetic images, Gk.
The vector z̃j

k is the p-dimensional un-normalized embedding vector obtained by model Mk when the input
is the jth synthetic image xj ∈ Gk in a mini-batch composed of n images. The column vector z̃

′j
k is defined

in the same way, but by Mk−1. Our proposed regularization term is the element-wise MSE distance between
the two embedding matrices, Lmse

KD = 1
n ∥Z̃k − Z̃ ′

k∥2 = 1
n

∑n
j=1 ∥ z̃j

k − z̃
′j
k ∥

2
.

Alternatively, one might try to use different distance measures such as mean absolute error (MAE) or cosine
dissimilarity losses. However, based on our simulations, MSE exhibited the best performance. For the
detailed simulation results, see Fig. 9 in Section 4.4.

3.4.3 Intra-class and Inter-class Regularization Terms, Lintra
KD and Linter

KD

In order to further mitigate the catastrophic forgetting, we propose two additional loss terms, through which
the past model Mk−1 teaches Mk how to not forget the knowledge of the past data in the embedding space,
as illustrated in Fig. 6. Specifically, the intra-class loss and the inter-class loss are designed respectively by
constructing intra-class and inter-class embedding scatters at the level of each mini-batch. Let Gi,k ⊆ Gk

denote the subset of Gk that contains the synthetic images of the ith class only (in the last task), i = 1, . . . , C,
where C is the number of classes in Gk (i.e., the number of classes for the last task, k − 1). Letting |Gi,k|
denote the number of images in Gi,k, we use Zi,k = [z1

i,k, . . . , z
|Gi,k|
i,k] ∈ Rp×|Gi,k| to represent the normalized

embedding matrix produced by the current model Mk when the inputs are the synthetic images in Gi,k. The
vector zj

i,k represents the p-dimensional normalized embedding vector produced by Mk when the input is
the jth image of class i in Gi,k. The class mean of the embedding vectors zj

i,k for class i is determined by:
µi,k = 1

|Gi,k|
∑|Gi,k|

j=1 zj
i,k. We will construct scatter vectors at the level of mini-batches, each of which is of size

10

Published in Transactions on Machine Learning Research (02/2025)

(a) Embeddings produced (in the current task time k) by
Mk−1 using the synthetic images Gk for the three classes of
the last task, k − 1. Intra-class scatter matrices S

′intra
i,k and

inter-class scatter matrices S
′inter
i,k are shown.

(b) Embeddings produced (in the current task time k) by Mk

using the synthetic images Gk for the three classes of the last
task, k − 1. Intra-class scatter matrices Sintra

i,k and inter-class
scatter matrices Sinter

i,k are shown. To prevent forgetting the
knowledge learned by Mk−1, we minimize the displacements
from S

′intra
k to Sintra

k , and from S
′inter
k to Sinter

k , over two
consecutive task times.

Figure 6: Knowledge distillation through intra-class and inter-class losses.

n. Recall that each mini-batch contains the synthetic images only for c classes (not C). Then the mini-batch
mean over c classes is given by µk = 1

c

∑c
i=1 µi,k.

At the mini-batch level, we now define the inter-class scatter Sinter
i,k in the current task time k, which is

constructed from the outputs of Mk, for the synthetic images Gk of the classes in the last task k − 1 as
Sinter

i,k = (µi,k − µk), i = 1, . . . , c. In the same manner, S′inter
i,k is defined as the inter-class scatter, which is

constructed in the current task time k from the outputs of Mk−1, for the images Gk of the classes in the last
task k − 1. In order to transfer the knowledge from Mk−1 (teacher) to Mk (student) about the embedding
cluster distances among different classes learned in the last task k−1, we design the inter-class regularization
term Linter

KD by penalizing the change from S
′inter
i,k to Sinter

i,k as follows:

Linter
KD =

c∑
i=1

∥ Sinter
i,k − S

′inter
i,k ∥ . (6)

The second part of the information that we try to keep unchanged in learning the kth task is the intra-class
scatter denoted as Sintra

i,k . The Sintra
i,k is constructed in the current task time k from the outputs of Mk, for

the images Gk of the classes in the last task k − 1: Sintra
i,k =

∑|Gi,k|
j=1 (zj

i,k − µi,k), i = 1, . . . , c.

Similarly, S′intra
i,k is defined as the intra-class scatter, constructed in the current task time k from the outputs

of Mk−1, for the images Gk of the classes in the last task k − 1. Our goal in the intra-class loss, denoted
as Lintra

KD , is to penalize the change from S
′intra
i,k to Sintra

i,k in order to transfer the knowledge (from Mk−1 to
Mk) about the embeddings within each class learned in the last task k − 1.

Lintra
KD =

c∑
i=1

∥ Sintra
i,k − S

′intra
i,k ∥ . (7)

As shown in (1), the final training mini-batch-wise loss LMk
is the combination of the triplet loss, Ltri,

inter-task confusion regularizer, LT CR, and the KD loss composed of the three proposed KD loss terms
Lmse

KD , Lintra
KD , and Linter

KD as in (3).

4 Experiments

4.1 Experimental Setting

Datasets: The five most widely used datasets are selected. MNIST Deng (2012) and CIFAR-
10 Krizhevsky (2009) includes ten classes, which are divided into five disjoint tasks, resulting in two classes

11

Published in Transactions on Machine Learning Research (02/2025)

per task. Mini-ImageNet Vinyals et al. (2016) is composed of 100 classes, and following Gu et al. (2022),
we split 100 classes into ten disjoint tasks, including ten classes in each task. CIFAR-100 Krizhevsky (2009)
has 100 classes and two methods for splitting this dataset are used: (i) the entire dataset is divided into ten
disjoint tasks, with 10 classes per task, (ii) half of the classes are used for the first task, and the remaining
half classes for the rest phases as in Zhu et al. (2021; 2022). TinyImageNet Le & Yang (2015) contains
200 classes and half of the classes are used for the first task as in Zhu et al. (2021; 2022).

Baselines: For performance comparison, we first consider a simple method of fine-tuning only the cur-
rent model using the conventional triplet loss, which can be considered as a performance lower bound.
We also compare our method with the following state-of-the-arts (SOTAs): LwF Li & Hoiem (2018),
EWC++ Chaudhry et al. (2018a), AGEM Chaudhry et al. (2018b), ER Chaudhry et al. (2019),
GSS Aljundi et al. (2019b), MIR Aljundi et al. (2019a), ASER_µ Shim et al. (2021), SCR Mai et al.
(2021), Gen. van de Ven et al. (2021), CF-IL PourKeshavarzi et al. (2022), Semi Michel et al. (2022),
MGI Gu et al. (2022), SDC Yu et al. (2020), Pass Zhu et al. (2021), and S-SRE Zhu et al. (2022), ES-
MER Sarfraz et al. (2023), IMEX-Reg Bhat et al. (2024), CW-DPPER Chen et al. (2024), LODE Liang
& Li (2024).

Implementation details: As the trainable encoder, Mk, we use a ResNet-18 with the classifier part and
the fully-connected layer removed as in Mai et al. (2021). Therefore, the embedding dimension p is equal
to 512. All the baseline methods except the Gen. van de Ven et al. (2021) and CF-IL PourKeshavarzi
et al. (2022) are evaluated with NCM. To comply with the majority of the baselines, Adam is used as the
optimizer with a learning rate 1e−6 and weight decay of 0.0001. The total number of epochs is 50 for each
task. The mini-batch size b for constructing the triplet loss Ltri and the inter-task confusion regularizer
LT CR is b = 64. The mini-batch size n for constructing the three KD losses is n = 16. This means that,
for constructing the total loss LMk

in each mini-batch, the total number of synthetic images is one-fourth of
the current (new) actual images. Every individual mini-batch (whether from Dk or Gk) is set to contain the
samples only for c different classes, where c = 2 for CIFAR-10 and MNIST. For CIFAR-100, Mini-ImageNet,
and TinyImageNet we set c = 4. This means that each mini-batch of size b = 64 drawn from Dk contains
32 actual images for each class of both CIFAR-10 and MNIST, 16 actual images for each class of CIFAR-
100, Mini-ImageNet, and TinyImageNet. Also, each mini-batch of size n = 16 drawn from Gk contains 8
synthetic images for each class of CIFAR-10 and MNIST, 4 synthetic images for each class of CIFAR-100,
Mini-ImageNet, and TinyImageNet. Hyper-parameters in our method are: λ1 = 0.2, λ2 = 0.8, λ3 = 0.4, and
λb = 10 for CIFAR-10, MNIST, and CIFAR-100. For Mini-ImageNet and TinyImageNet we set λ1 = 0.1,
λ2 = 0.3, λ3 = 0.2, and λb = 15 (see Appendix A.1 for the details).

Learning of the initial task in IL is non-incremental since there is nothing before it. Therefore, we use
softmax loss only in the initial non-incremental step because softmax proved its power in static offline
learning. For the non-incremental step, we use SGD with a learning rate of 0.001, momentum of 0.9, weight
decay of 0.0005, and mini-batch size of 256 for all datasets. After completing the training of the initial non-
incremental step, we remove the classifier part and use only the encoder part in the remaining incremental
tasks. As a regularization method, we add some controlled noise to the triplets in the embedding space,
akin to classical regularization methods, with the goal of reducing overfitting. We refer to this technique as
"noisy triplet loss" in our simulation results (see Appendix A.3 for the details).

4.2 Comparison Results

In terms of average accuracy AK , our proposed method is compared to all mentioned baselines in the class-IL
setting. Table 1 presents the experimental findings pertaining to equal splitting datasets, which means the
number of classes is the same in all tasks. We used the repository 1 to replicate the results for the baseline
methods: LwF Li & Hoiem (2018), EWC++ Chaudhry et al. (2018a), AGEM Chaudhry et al. (2018b),
ER Chaudhry et al. (2019), GSS Aljundi et al. (2019b), MIR Aljundi et al. (2019a), ASER_µ Shim et al.
(2021), and SCR Mai et al. (2021), within a controlled experimental framework. In all experiments, the data
splits and the random seeds used for class selection were consistent across trials, with the reported results
representing the average of 10 different seeds (task orderings). Additionally, we reproduced the average

1https://github.com/RaptorMai/online-continual-learning

12

https://github.com/RaptorMai/online-continual-learning

Published in Transactions on Machine Learning Research (02/2025)

accuracy shown in Table 1 for the methods ESMER Sarfraz et al. (2023), IMEX-Reg Bhat et al. (2024),
CW-DPPER Chen et al. (2024), and LODE Liang & Li (2024), using the same data splits and task orderings.
However, for the methods Gen. van de Ven et al. (2021),CF-IL PourKeshavarzi et al. (2022), Semi Michel
et al. (2022), andMGI Gu et al. (2022), we were unable to replicate the results based on the available source
code; consequently, we extracted the results directly from the respective original papers. Symbol † indicates
that the numerical results are directly copied from the original papers and ‘⋆’ denotes that the results are
not available in those original papers. Whether each method stores any actual past data samples or not
is denoted by ‡ and ⋄, where ⋄ indicates that no actual past data samples are stored and ‡ represents the
coreset replay-based methods. These results have been compared with the baselines that adopt the same
data-splitting approach.

The results of our proposed method were derived from ten independent runs with ten different class orderings.
From the results, we can see that our proposed method outperforms all baselines by notable margins,
achieving the state-of-the-art (SOTA) performance. Even compared to Gen. van de Ven et al. (2021) which
requires multiple models as many as the number of classes (e.g., 100 models for CIFAR-100), our method
works better despite that we use only two models, (trainable) Mk and (stored and fixed) Mk−1, irrespective
of the total number of classes. The memory requirements for each method are also provided to offer better
insights.

Table 2 presents the findings regarding an increased number of tasks and the comparison with prior research
that utilized half of the classes in the initial task. Notably, the results show that our proposed method
outperforms previous approaches by a significant margin as the number of tasks increases. Although most
Class-IL studies use average accuracy as their primary metric, we also analyze final task accuracy, denoted
as Alast, in Table 3 for the same number of classes in all tasks setting to provide additional insights. This
comparison reveals that our method generally outperforms existing approaches in final task performance.

Table 1: Average accuracy, AK (%), after finishing the final task. Our method considerably outperforms
all methods, including the coreset replay-based methods on all three datasets. The ‘MS-10’, ‘MS-100’, and
‘MS-Mini’ denote the memory size (MB) for CIFAR-10, CIFAR-100, Mini-ImageNet respectively.

Schemes MNIST CIFAR-10 CIFAR-100 Mini-ImageNet MS-10 MS-100 MS-Mini

K = 5 K = 5 K = 10 K = 10
Joint training⋄ 98.1±0.06 83.9±0.6 74.3±1.2 72.1±0.2 ⋆ ⋆ ⋆

Fine-tune⋄ 18.2±0.1 16.9±1.1 5.4±0.9 4.3±0.9 42.6 42.6 42.6
_LwF⋄ 23.2±0.1 19.3±0.2 13.8±0.4 8.6±0.5 42.6 42.6 42.6

_EWC++ ⋄ 55.2±0.1 17.9±0.3 5.7±0.2 4.2±0.3 140.4 140.6 140.6
_AGEM‡ 64.7±0.3 27.8±1.2 14.3±0.3 11.7±0.5 108.9 108.9 199.4

_ER‡ 67.1±1.1 47.1±0.9 27.6±1.1 20.8±1.2 46.9 48.4 57.4
_GSS‡ 69.8±0.2 46.7±1.6 26.8±0.4 21.0±1.1 95.1 95.1 104.2
_MIR‡ 71.8±0.30 49.3±1.2 27.3±1.0 21.8±1.0 95.1 108.9 198.4

_ASERµ ‡ 75.5±0.2 50.3±1.0 29.3±0.5 22.1±0.2 62.1 62.1 152.6
_SCR‡ 79.2±0.2 65.7±0.6 37.5±0.5 35.3±0.3 48.3 52.9 89.1
Gen.⋄ 93.79±0.08 † 56.0±0.04 † 49.5±0.06 † ⋆ 99.2 99.2 ⋆

CF-IL⋄ 95.3±0.15 75.34 † ⋆ ⋆ 59.2 ⋆ ⋆
Semi‡ 92.3±0.10 57.9±1.1 † 38.9±0.5 † ⋆ 96.8 102.3 ⋆
MGI‡ 90.8±0.30 52.1±2.5 † 24.1±0.8 † 19.1±0.9 † 96.2 99.8 135.4

ESMER‡ 93.5±0.2 71.2±0.4 50.6±0.4 45.9±1.1 94.2 94.2 97.8
IMEX-Reg‡ 95.7±0.10 74.7±0.1 49.9±0.3 46.1±0.9 98.9 98.9 102.5

CW-DPPER‡ 91.8±0.2 67.8±0.8 49.6±0.5 49.8±0.1 99.7 99.7 135.9
LODE‡ 95.5±0.9 76.5±0.7 51.6±0.9 52.9±0.4 49.7 63.9 59.7

Our method⋄ 96.1±0.8 76.9±0.8 54.8±0.9 54.2±1.2 50.4 53.4 59.2

Evaluating forgetting Ok serves as an additional measure to assess the extent to which a model loses infor-
mation after learning new knowledge. The lower forgetting values are the lesser forgetting concerning earlier
tasks. The results of average accuracy and forgetting after each task are summarized in Table 4. We can see
a huge margin between fine-tuning and our method regarding forgetting values in all three datasets.

To gain deeper insights into the model’s performance on individual tasks, we generated confusion matrices
for each task for CIFAR-10 with 5 equal tasks. These matrices provide a visual representation of the model’s

13

Published in Transactions on Machine Learning Research (02/2025)

Table 2: Average accuracy, AK (%), after finishing the final task setting half of the classes for the first task.
Schemes CIFAR-100 TinyImageNet

K = 5 K = 10 K = 20 K = 5 K = 10 K = 20
Joint training⋄ 74.32 74.32 74.32 66.81 66.81 66.81

SDC Yu et al. (2020)⋄ 56.77† 57.00† 58.90† ⋆ ⋆ ⋆
Pass Zhu et al. (2021)⋄ 63.47† 61.84† 58.09† 49.55† 47.29† 42.07†

S-SRE Zhu et al. (2022)⋄ 65.88† 65.04† 61.70† 50.39† 48.93.1† 48.17†
LODE Liang & Li (2024)⋄ 65.88† 65.04† 61.70† 50.39† 48.93† 48.17†

Our method⋄ 66.15±0.10 65.82±0.30 64.35±0.70 55.32±1.2 54.90±1.5 54.10±1.4

Table 3: Final task accuracy, Alast (%).
Schemes CIFAR-100 TinyImageNet

K = 5 K = 10 K = 20 K = 5 K = 10 K = 20
Joint training⋄ 74.32 74.32 74.32 66.81 66.81 66.81

SCR Mai et al. (2021)‡ 31.22 28.65 26.10 29.15 27.45 23.11
ESMER Sarfraz et al. (2023)‡ 49.90† 48.77 47.35 48.85 47.30 48.40
IMEX-Reg Bhat et al. (2024)‡ 50.10 48.54 46.25 49.65 46.64 41.34

LODE Liang & Li (2024)⋄ 51.00 46.31 46.00 50.20 46.80 45.11
Our method⋄ 51.25 49.67 47.83 50.76 47.13 44.85

Table 4: Forgetting (%) and average accuracy (%) after each task for our method, LODE, and the lower
bound (i.e., fine-tuning).

Method Metric CIFAR-10
k 1 2 3 4 - - - - -

Fine tuning Forgetting 9.5 12.2 15.7 28.6 - - - - -
Accuracy 50.9 40.0 30.0 16.9 - - - - -

LODE Liang & Li (2024) Forgetting 4.2 8.4 5.1 9.4 - - - - -
Accuracy 90.5 81.9 79.8 75.4 - - - - -

Our method Forgetting 4.6 4.7 5.4 11.1 - - - - -
Accuracy 88.1 83.3 81.1 75.9 - - - - -

Method Metric CIFAR-100
k 1 2 3 4 5 6 7 8 9

Fine tuning Forgetting 3.8 12.1 7.0 7.9 10.2 11.4 5.9 4.3 4.0
Accuracy 69.8 54.4 49.1 41.8 32.2 20.0 14.6 9.1 6.5

LODE Liang & Li (2024) Forgetting 5.0 10.0 9.2 2.7 1.5 1.2 1.2 1.7 9.4
Accuracy 86.3 74.1 67.3 64.7 62.8 61.1 60.4 58.4 51.5

Our method Forgetting 5.3 8.6 3.2 2.9 2.6 2.2 1.0 1.7 4.1
Accuracy 82.2 71.8 69.5 66.7 63.4 60.2 59.6 57.5 54.5

Method Metric Mini-ImageNet
k 1 2 3 4 5 6 7 8 9

Fine tuning Forgetting 12.1 18.9 14.5 5.3 9.3 4.8 5.4 3.5 2.1
Accuracy 51.5 32.1 20.0 18.9 11.0 9.8 6.1 5.5 5.2

LODE Liang & Li (2024) Forgetting 8.7 9.7 4.8 3.4 3.0 3.1 2.0 9.7 9.1
Accuracy 79.3 70.8 64.4 62.6 59.2 56.0 54.1 50.0 48.80

Our method Forgetting 11.1 6.2 3.4 3.7 2.2 2.3 2.0 4.2 6.6
Accuracy 76.8 71.4 66.8 64.8 62.3 59.9 58.0 56.2 55.3

classification accuracy across different classes within each task. Fig. 7 shows the confusion matrices for all 5
tasks, where Uj,k presents the confusion matrix obtained from model Mk, which was trained on task k and
then tested on classes for tasks 0 to j, j ≤ k. By examining the confusion matrices, we can see the patterns of
misclassification arising from both catastrophic forgetting and task-confusion. Table 5 illustrates the order of

14

Published in Transactions on Machine Learning Research (02/2025)

classes for each task. From the visualization in Fig. 7, it is evident that the highest correct classification for
Uj,k occurs when k = j. However, it is noteworthy that the worst classification is not necessarily associated
with the initial classes (i.e., j ≪ k) suggesting the significance of the class ordering.

Table 5: The labels of classes associated with each task. Classes marked in bold represent the classes present
at that task number. For instance, in task k = 2, the current classes are {0, 3}, and previous classes are
{4, 2, 7, 6}.

Task# (k) Categories
0 4 2 - - - - - - - -
1 4 2 7 6 - - - - - -
2 4 2 7 6 0 3 - - - -
3 4 2 7 6 0 3 5 8 - -
4 4 2 7 6 0 3 5 8 9 1

It can be clearly seen that controlling the position of embeddings in the embedding space through our
proposed losses is very effective for mitigating inter-task confusion and combating catastrophic forgetting,
which leads to superior performance to all those baselines. Furthermore, our results echo the claim of Mai
et al. (2021); Yu et al. (2020) that, in IL, using metric learning with NCM classifiers could be a better choice
than softmax classifiers.

4.3 Ablation Study on LMk

In this subsection, more experiments are conducted to reveal the effect of each term of our loss LMk
in (1).

We present the results of ablation experiments for inter-task confusion regularization, knowledge distillation
(MSE, intra-class, and inter-class), and their collective impact on four distinct datasets. With the exception
of TinyImageNet, where we allocate half of the total classes to the initial non-incremental task, all other
datasets are configured with an equal distribution of classes in each task.

Effect of inter-task confusion regularization, LT CR: To gauge the impact of LT CR on the performance,
we set λ1 = 0. The intention behind incorporating this term LT CR is to prevent overlap across the current
classes and those classes that have been learned earlier, thereby mitigating the occurrence of inter-task
confusion. The average accuracy is represented in the third row of Table 6. Looking at Table 6, it becomes
evident that eliminating the inter-task confusion regularizer leads to a decline of no less than 1.1% across all
datasets. Further insight into the impact of this term on individual intermediate tasks is provided in Fig. 8
(depicted by the yellow curve), illustrating a heightened prominence of the influence of LT CR as the number
of tasks increases.

Effect of the MSE loss, Lmse
KD : To assess how Lmse

KD affects the performance, we assign a value of λ2 = 0,
(i.e., total loss is LMk

= Ltri + λ1LT CR + λ3(Lintra
KD + Linter

KD)). The objective of this term is to minimize
the Euclidean distance between the embeddings of the current under-training model, denoted as Mk (the
student), and the previously stored fixed model Mk−1 (the teacher) when the input comprises data generated
from a prior task. This approach compels Mk to acquire knowledge about past tasks from the teacher model
Mk−1, thereby mitigating the phenomenon of catastrophic forgetting.

The fourth row of Table 6 displays the performance after completing the final task across all datasets.
Upon comparison with the outcomes of the LT CR, it becomes evident that the influence of this term is
more pronounced. Removing it results in a performance decrease of around 3%. Additionally, in Fig. 8, a
comparison is made between employing the MSE loss term and not using it (i.e., setting λ2 = 0) for each
incremental task. The significance of the MSE loss becomes evident in the outcomes as the number of tasks
increases.

Effect of the intra- and inter-class losses, Lintra
KD and Linter

KD : We set λ3 = 0, to see the impact of
our proposed intra- and inter-class losses on the average accuracy. The fifth row of Table 6 displays the
results of the performance evaluation following the completion of the final task. It is evident that intra-
and inter-class losses play a pivotal role in our suggested loss function. Its significance is underscored by a
reduction of up to 10% in the average accuracy upon its removal. This term embodies our key strategy for

15

Published in Transactions on Machine Learning Research (02/2025)

(a) U0,0. (b) U0,1. (c) U1,1.

(d) U0,2. (e) U1,2. (f) U2,2.

(g) U0,3. (h) U1,3. (i) U2,3.

(j) U3,3. (k) U0,4. (l) U1,4.

(m) U2,4. (n) U3,4. (o) U4,4.

Figure 7: Confusion matrix Uj,k, j = 0, . . . , 4, k = 0, . . . , 4, using CIFAR-10

mitigating catastrophic forgetting, achieved through the innovative preservation of the positional relationship
of previously learned classes within the embedding space. Moreover, looking at Fig. 8, the drop in the average

16

Published in Transactions on Machine Learning Research (02/2025)

Table 6: Average accuracy, AK (%), after finishing the final task for ablation experiments. The mean and
standard deviation (STD) are reported from ten individual runs with ten different orderings of the classes.

Schemes CIFAR-10 CIFAR-100 Mini-ImageNet TinyImageNet
K = 5 K = 10 K = 10 K = 20

Fine-tune 24.7±0.8 37.2±1.2 10.0±0.85 6.5±1.1

Our method when λ1 = 0 75.7±1.2 52.8±0.8 53.1±1.1 53.0±0.95

Our method when λ2 = 0 74.8±0.92 49.5±0.85 51.0±1.0 51.1±0.9

Our method when λ3 = 0 70.1±0.9 44.8±0.8 49.1±1.2 48.4±0.95

Our method 76.9±0.8 54.8±0.9 54.2±1.2 54.1±1.4

1 2 3 4

Incremental Task

0

10

20

30

40

50

60

70

80

90

100

A
v
e
ra

g
e
 A

c
c
u
ra

c
y
 (

%
)

CIFAR-10

1 2 3 4 5 6 7 8 9

Incremental Task

0

10

20

30

40

50

60

70

80

90

100

A
v
e
ra

g
e
 A

c
c
u
ra

c
y
 (

%
)

CIFAR-100

1 2 3 4 5 6 7 8 9

Incremental Task

0

10

20

30

40

50

60

70

80

90

100

A
v
e
ra

g
e
 A

c
c
u
ra

c
y
 (

%
)

Mini-ImageNet

0 2 4 6 8 10 12 14 16 18 20

Incremental Task

0

10

20

30

40

50

60

70

80

90

100

A
v
e
ra

g
e
 A

c
c
u
ra

c
y
 (

%
)

TinyImageNet

Figure 8: Average accuracy, Ak (%), for ablation experiments for all four datasets (best viewed in color).
Only the incremental tasks (or states) are plotted.

accuracy is noticeable for each incremental task when λ3 = 0, which means the two losses play an essential
role in all datasets.

4.4 Ablation Study on MSE Loss, Lmse

This section delves into the effects of various loss configurations on Mean Square Euclidean (MSE) loss. To
assess this, we substituted mean absolute error (MAE) and cosine dissimilarity for MSE loss in our KD loss
framework, evaluating their impact on CIFAR-100 and TinyImageNet with a total number of tasks K = 10.
Fig. 9 illustrate the outcomes, indicating that MSE consistently produces the optimal results. However, it
is noteworthy that even with alternative configurations, our method surpasses most state-of-the-art. Thus,
while our approach performs admirably across different loss setups, a meticulously crafted configuration can
lead to a notable performance enhancement as evidenced in our ablation study.

4.5 Ablation Analysis of CF and ITC to Performance Degradation

In this subsection, we aim to analyze the extent of performance reduction caused by CF and ITC inde-
pendently. CF refers to the phenomenon in continual learning where a model, when trained sequentially
on new tasks, experiences a significant decline in performance on previously learned tasks. This occurs as
the parameters optimized for new tasks overwrite or interfere with the representations learned for earlier
tasks. In contrast, ITC arises when the model struggles to differentiate between tasks, resulting in incorrect
predictions that combine knowledge from multiple tasks. While CF primarily affects the retention of prior
knowledge, ITC underscores difficulties in task discrimination. Thus, the proportion of ITC can be quantified
using the following metric:

ITC = (Accuracy given task-IDs) − (Accuracy without task-IDs). (8)

17

Published in Transactions on Machine Learning Research (02/2025)

MAE Cosine Dissimila ity MSE
Diffe ent losses

0

10

20

30

40

50

60

70

Av
e

ag
e

ac
cu

 a
cy

 (%
)

CIFAR-100

(a) The impact of different configurations of the Lmse

on the final average accuracy Ak%, for the CIFAR-100
dataset.

MAE Cosine Dissimilari y MSE
Differen losses

0

10

20

30

40

50

60

Av
er

ag
e

ac
cu

ra
cy

 (%
)

TinyImageNe

(b) The impact of different configurations of the Lmse

on the final average accuracy Ak%, for the TinyIma-
geNet dataset.

Figure 9: The effects of various loss configurations on MSE loss.

Fig. 10 illustrates the performance degradation caused by CF and ITC for our method, compared to fine-
tuning and two recent approaches. As shown, our method effectively mitigates both ITC (indicated by the
red values next to the red arrows) and CF (indicated by the black values next to the black arrows) more
efficiently than the compared methods.

(a) The values of CF and ITC on the final average
accuracy Ak%, for the CIFAR-10 dataset.

(b) The values of CF and ITC on the final average
accuracy Ak%, for the TinyImageNet dataset.

Figure 10: Analysis of CF and ITC to Performance Degradation (legend provided in (a)).

4.6 Ablation Study on Architectures

For further experimental results, we investigated additional network architectures, as shown in Table 7. From
the table, it is evident that as the size of the network increases, the average accuracy improves. However,
the improvement observed for CIFAR-100 is less pronounced compared to TinyImageNet.

4.7 Ablation Study on Memory-Agnostic Measure

In this subsection, we present results for a memory-agnostic measure proposed by Zhou et al. (2024) and Zhou
et al. (2023). This metric calculates the area under the performance-memory curve (AUC). To evaluate this
metric, we computed the average accuracy of various methods across a range of memory sizes, from small

18

Published in Transactions on Machine Learning Research (02/2025)

Table 7: Average accuracy, AK (%) for different networks.
Architecture CIFAR-100 TinyImageNet

K = 10 K = 20
ResNet-18 65.82±0.3 54.10±1.4

ResNet-34 66.10±0.25 54.85±0.75

ResNet-50 66.25±0.22 55.11±0.52

to large, by adjusting the exemplar size for all methods while using a single benchmark backbone, as in Mai
et al. (2021). Fig. 11 illustrates the performance-memory curve for CIFAR-100, while Table 8 provides the
AUC values for average performance-memory (AUC-A). Both Fig. 11 and Table 8 reveal that beyond a
memory size of 44 MB (when the number of generated images exceeds 1k), the performance of our method
stabilizes. This demonstrates that our method is more scalable and extendable compared to other evaluated.

Figure 11: The average accuracy of various methods is evaluated over a range of memory sizes, from small
to large. All three compared exemplar-based methods utilize a benchmark backbone, as in Mai et al. (2021).
To ensure fair comparison, memory costs are aligned by adding exemplars to the compared methods. For
our method, the number of generated images is adjusted to match different memory size requirements.

Table 8: Memory-agnostic performance measures (AUC-A)
Schemes CIFAR-100

K = 10
ASERµ Shim et al. (2021) 311.9

SCR Mai et al. (2021) 453.9
LODE Liang & Li (2024) 698.5

Our method 760.3

5 Conclusion

In this paper, we ventured into the realm of class-incremental learning (class-IL), utilizing the potent tool of
metric learning. Instead of storing any actual past data samples, we stored and re-used a single past-trained
encoder in a recursive manner to generate the past synthetic images. Leveraging these synthesized images,
we introduced three novel rules, or metric KD regularizers, designed to mitigate the issue of catastrophic
forgetting, where previous knowledge is lost when learning new classes. Additionally, we incorporated an
inter-task confusion regularizer to alleviate the overlap among distinct classes within the embedding space.
Experimental results showed the superior performance of our approach compared to many recent approaches.

19

Published in Transactions on Machine Learning Research (02/2025)

References
Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin, and Lu-

cas Page-Caccia. Online continual learning with maximal interfered retrieval. In Advances in Neural
Information Processing Systems, volume 32, pp. 11849–11860. Curran Associates, Inc., 2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for online
continual learning. In Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019b.

Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance regularization for
self-supervised learning. In International Conference on Learning Representations. OpenReview.net, 2022.

Prashant Shivaram Bhat, Bharath Chennamkulam Renjith, Elahe Arani, and Bahram Zonooz. IMEX-reg:
Implicit-explicit regularization in the function space for continual learning. Transactions on Machine
Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=p1a6ruIZCT.

Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: methods, theory and applica-
tions. Springer Science & Business Media, 2011.

Hugo Caselles-Dupré, Michael Garcia-Ortiz, and David Filliat. S-trigger: Continual state representation
learning via self-triggered generative replay. In 2021 International Joint Conference on Neural Networks
(IJCNN), pp. 1–7, 2021.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian walk
for incremental learning: Understanding forgetting and intransigence. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 532–547, 2018a.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with a-gem. arXiv preprint arXiv:1812.00420, 2018b.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K Dokania,
Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual learning. arXiv
preprint arXiv:1902.10486, 2019.

Shuai Chen, Mingyi Zhang, Junge Zhang, and Kaiqi Huang. Exemplar-based continual learning via con-
trastive learning. IEEE Transactions on Artificial Intelligence, 2024.

Yulai Cong, Miaoyun Zhao, Jianqiao Li, Sijia Wang, and Lawrence Carin. Gan memory with no forgetting.
Advances in Neural Information Processing Systems, 33:16481–16494, 2020.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(7):3366–3385, July 2021.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa. Learning without
memorizing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5138–5146, 2019.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences, 3(4):
128–135, April 1999.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.

Yanan Gu, Xu Yang, Kun Wei, and Cheng Deng. Not just selection, but exploration: Online class-incremental
continual learning via dual view consistency. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7442–7451, 2022.

20

https://openreview.net/forum?id=p1a6ruIZCT

Published in Transactions on Machine Learning Research (02/2025)

Geoffrey Hinton, Oriol Vinyals, and Jeff. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015.

Bin Huang, Zhineng Chen, Peng Zhou, Jiayin Chen, and Zuxuan Wu. Resolving task confusion in dynamic
expansion architectures for class incremental learning. In AAAI Conference on Artificial Intelligence,
2022. URL https://api.semanticscholar.org/CorpusID:255340983.

Bingchen Huang, Zhineng Chen, Peng Zhou, Jiayin Chen, and Zuxuan Wu. Resolving task confusion in
dynamic expansion architectures for class incremental learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pp. 908–916, 2023.

Ronald Kemker and Christopher Kanan. FearNet: Brain-inspired model for incremental learning. arXiv
preprint arXiv:1711.10563, 2017.

A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, Department of
Computer Science, University of Toronto, 2009.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015. URL https://api.
semanticscholar.org/CorpusID:16664790.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-Ortiz, Andrei Stoian, and David Filliat. Generative
models from the perspective of continual learning. In International Joint Conference on Neural Networks
(IJCNN), pp. 1–8, 2019.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 40(12):2935–2947, December 2018.

Yan-Shuo Liang and Wu-Jun Li. Loss decoupling for task-agnostic continual learning. Advances in Neural
Information Processing Systems, 36, 2024.

Zheda Mai, Ruiwen Li, Hyunwoo J. Kim, and Scott Sanner. Supervised contrastive replay: Revisiting the
nearest class mean classifier in online class-incremental continual learning. IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3584–3594, 2021.

Davide Maltoni and Vincenzo Lomonaco. Continuous learning in single-incremental-task scenarios. Neural
Networks, 116:56–73, August 2019.

Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost Van De Wei-
jer. Class-incremental learning: survey and performance evaluation on image classification. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 45(5):5513–5533, May 2022.

Nicolas Michel, Romain Negrel, Giovanni Chierchia, and Jean-François Bercher. Contrastive learning for
online semi-supervised general continual learning. arXiv preprint arXiv:2207.05615, 2022.

Milad Khademi Nori and IL MIN KIM. Task confusion and catastrophic forgetting in class-incremental
learning: A mathematical framework for discriminative and generative modelings. In Advances in Neural
Information Processing Systems, 2024. URL https://openreview.net/forum?id=Tj5wJslj0R.

Mozhgan PourKeshavarzi, Guoying Zhao, and Mohammad Sabokrou. Looking back on learned experiences
for class/task incremental learning. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=RxplU3vmBx.

Amal Rannen, Rahaf Aljundi, Matthew B. Blaschko, and Tinne Tuytelaars. Encoder based lifelong learning.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1320–1328, 2017.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL: Incremental
classifier and representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2001–2010, 2017.

21

https://api.semanticscholar.org/CorpusID:255340983
https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:16664790
https://openreview.net/forum?id=Tj5wJslj0R
https://openreview.net/forum?id=RxplU3vmBx

Published in Transactions on Machine Learning Research (02/2025)

Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Error sensitivity modulation based experience replay:
Mitigating abrupt representation drift in continual learning. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=zlbci7019Z3.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye Teh,
Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual learning. In
International Conference on Machine Learning, pp. 4528–4537. PMLR, 2018.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic forgetting
with hard attention to the task. In International Conference on Machine Learning, pp. 4548–4557. PMLR,
2018.

Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott Sanner, Hyunwoo Kim, and Jongseong Jang. Online class-
incremental continual learning with adversarial shapley value. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 9630–9638, 2021.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay.
In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Wenju Sun, Jing Zhang, Danyu Wang, Yangli-ao Geng, and Qingyong Li. Ilcoc: An incremental learning
framework based on contrastive one-class classifiers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3580–3588, 2021.

Gido M van de Ven, Hava T Siegelmann, and Andreas S Tolias. Brain-inspired replay for continual learning
with artificial neural networks. Nature Communications, 11(1):1–14, August 2020.

Gido M van de Ven, Zhe Li, and Andreas S Tolias. Class-incremental learning with generative classifiers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3611–3620,
2021.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching
networks for one shot learning. In Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Niraj K Jha, and
Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8715–8724, 2020.

Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling Jui, and
Joost van de Weijer. Semantic drift compensation for class-incremental learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6982–6991, 2020.

Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: Towards memory-
efficient class-incremental learning. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=S07feAlQHgM.

Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Class-incremental
learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation and self-
supervision for incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 5871–5880, 2021.

Kai Zhu, Wei Zhai, Yang Cao, Jiebo Luo, and Zheng-Jun Zha. Self-sustaining representation expansion
for non-exemplar class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9296–9305, 2022.

22

https://openreview.net/forum?id=zlbci7019Z3
https://openreview.net/forum?id=S07feAlQHgM

Published in Transactions on Machine Learning Research (02/2025)

A Appendix

A.1 Choosing Hyper-parameters

In this subsection, we examine the choice of the number of synthetic images and the values for the loss term
coefficients in equations (1) and (3) across different simulation setups. Fig. 12 shows the final accuracy of
our method on CIFAR-100 using various amounts of synthetic images. It is evident that beyond one-fourth
of the real dataset, performance improvement becomes negligible. Therefore, we set the number of synthetic
images to one-fourth of the real data for each task across all simulation settings.

12.5% 25% 50% 100%
Percentage of syn he ic images

0

10

20

30

40

50

60

70

Av
er

ag
e

ac
cu

ra
cy

 (%
)

CIFAR-100

Figure 12: The effect of different numbers of synthetic images on the final average for the CIFAR-100 dataset.

Table 9 presents the results of performance evaluations across various loss term coefficient values in (1)
and (3). The determination of final coefficients follows a specific approach. Through empirical observations,
it was identified that employing significantly distinct values for λ1 and λ2, or setting λ1 = λ2 with λ1 > λ3,
results in poor accuracy. Conversely, opting for λ1 = λ2 and selecting λ3 > λ1 yields improved performance,
and the specific value assigned to λ1 has minimal impact on the ultimate classification accuracy, as long as
it satisfies the constraint 0 < λ1 < 1.

Table 9: Impact of hyper-parameters in (1) and (3) on average accuracy, AK (%).
Schemes TinyImageNet CIFAR-100

λ1 λ2 λ3 AK λ1 λ2 λ3 AK

Our method

0.1 0.1 0.2 52.88 0.1 0.1 0.2 64.00
0.2 0.2 0.3 54.20 0.2 0.2 0.3 64.65
0.3 0.3 0.4 54.00 0.3 0.3 0.4 64.28
0.4 0.4 0.5 53.72 0.4 0.4 0.5 64.20
0.2 0.2 0.5 54.55 0.2 0.2 0.5 64.96
0.2 0.2 0.6 54.40 0.2 0.2 0.6 65.14
0.2 0.2 0.4 54.92 0.2 0.2 0.7 65.60
0.2 0.2 0.3 54.15 0.2 0.2 0.8 65.85
0.1 0.1 0.4 53.91 0.2 0.2 0.9 65.52
0.1 0.1 0.5 53.25 0.1 0.1 0.8 64.83

The hyper-parameter λb in equation (3) controls the weight of the feature distribution regularization term
in DeepInversion. A well-balanced setting ensures effective alignment of feature statistics without excessive

23

Published in Transactions on Machine Learning Research (02/2025)

regularization, thereby enhancing generalization and improving model performance. To identify the proper
value of λb, we conducted experiments varying it across the range [5, 10, 15, 20, 50]. The results, summarized
in Table 10, demonstrate that higher-resolution datasets typically require larger values of λb for better
performance.

Table 10: The effect of λb on Average accuracy, AK (%).
λb CIFAR-100 TinyImageNet

K = 10 K = 20
λb = 5 54.6±0.3 53.9±1.1

λb = 10 54.8±0.9 53.8±0.9

λb = 15 54.5±0.6 54.1±1.4

λb = 20 54.1±0.7 53.9±1.2

λb = 50 53.6±0.6 53.3±1.4

A.2 Computation Efficiency Analysis

The additional component of our method, compared to baseline approaches without data generation (e.g.,
fine-tuning, LwF, and EWC), is the generation of synthetic samples during training. Hence, to evaluate the
computational efficiency of our approach, we measured the time required to generate a batch of 16 images
across different image sizes using a single NVIDIA V100 GPU. The experiments were conducted over 10
independent trials, with each trial running 100 iterations. The average time per batch was recorded using
the Python time module, and the results are summarized in Table 11. Even for high-resolution images
(224×224×3), the generation process demonstrated acceptable computational efficiency, requiring only 3.38
seconds per batch. This indicates that the training complexity, even for large image sizes, is not a significant
issue in practice.

Table 11: Computation efficiency for generating a batch of 16 images with 100 iterations on a single NVIDIA
V100 GPU.

Image Size Mean Time per Batch (seconds)
32×32×3 2.06
64×64×3 2.11
84×84×3 2.34

224×224×3 3.38

A.3 Noisy Triplet Loss

The term Ltri in (1) is a triplet loss used to learn the current task. In this paper, we use a very simple,
yet effective way to construct the triplet loss for mitigating over-fitting while learning the current task. In
general, when the model learns how to make the distances between anchor-positive pairs smaller than those
of anchor-negative pairs, the learning process will stop; however, this does not necessarily prevent the model
from being over-fitted. In our proposed scheme, as a regularization method, we add noise to some of the
embeddings in order to alleviate over-fitting. To be more precise, let H̃k = [h̃1

k, . . . , h̃
b
k] ∈ Rp×b denote the

un-normalized embedding matrix produced by Mk and let Hk = [h1
k, . . . , h

b
k] ∈ Rp×b denote its normalized

version with hj
k = h̃j

k

∥h̃j
k

∥
where ∥.∥ denotes l2 norm. We add noise to some normalized embeddings hj

k so that
the pairwise distances for triplets become randomly different in each mini-batch. Specifically, we randomly
select a subset of the normalized embeddings in each mini-batch. Then we add Gaussian noise to the selected
hj

k, followed by creating triplets. This helps the network to learn the features with a lower risk of over-fitting
while fulfilling the triplet loss inequality.

For generating noisy triplets, as the added noise, we choose zero-mean Gaussian noise w with variance σ2,
i.e., w ∼ N (0, σ2). The noise variance, σ2, is an essential hyper-parameter. Based on our experiments, we

24

Published in Transactions on Machine Learning Research (02/2025)

1 2 3 4 5 6 7 8 9

Incremental Task

0

10

20

30

40

50

60

70

80

90

100

A
v
e
ra

g
e
 A

c
c
u
ra

c
y
 (

%
)

Fine tuning + standard triplet loss (no noise)

Fine tuning + noisy triplet (10%)

Fine tuning + noisy triplet (25%)

Fine tuning + noisy triplet (50%)

Fine tuning + noisy triplet (75%)

Fine tuning + noisy triplet (100%)

Figure 13: Average accuracy obtained by fine-tuning ResNet-18 using the classical triplet loss and noisy
triplet loss with five different portions of noisy triplets in each mini-batch. The model is trained on CIFAR-
100 (best viewed in color). NCM is used in the test time, the results indicate a significant improvement in
the final task (about 30%) using noisy triplet loss.

find that it should be less than 0.01 for all datasets. In the simulations, we set σ2 = 0.005 for CIFAR-10
and σ2 = 0.01 for all three CIFAR-100, Mini-ImageNet, and TinyImageNet.

One interesting (and important) question is whether the noisy triplet loss is still effective for general IL
(i.e., other than our proposed IL method). To answer the question, we compare the noisy triplet loss and
the standard (traditional) triplet loss in the baseline IL setting in which vanilla fine-tuning is used in each
task. In the simulation, we train a single encoder, a ResNet-18, on CIFAR-100. The squared Euclidean
distance is utilized as the distance metric in the triplet loss. The performance of the traditional triplet loss
and noisy triplet loss is compared in Fig. 13, in which the average accuracy is plotted for the case of no
noise and for the case of adding noise to 10% of embeddings, 25% of embeddings, 50% of embeddings, 75%
of embeddings, and 100% of embeddings. The effectiveness of noisy triplet loss is clear from Fig. 13, and the
best performance is achieved when the noise is added to 25% of the embeddings. The accuracy improvement
is about 30% at the end of the training (i.e., at the incremental task of 9).

25

	Introduction
	Related works
	Regularization, Replay, and KD in IL
	Soft-Max Classifiers and Metric Learning in IL

	Proposed Scheme
	Incremental Learning Formulation
	Overview of Our Proposed Method
	Inter-task Confusion Regularizer, LTCR, to Combat Inter-task Confusion
	KD loss, LKD, to Combat Catastrophic Forgetting
	Generating Past Synthetic Data Gk
	MSE Regularization Term, LKDmse
	Intra-class and Inter-class Regularization Terms, LKDintra and LKDinter

	Experiments
	Experimental Setting
	Comparison Results
	Ablation Study on LMk
	Ablation Study on MSE Loss, Lmse
	Ablation Analysis of CF and ITC to Performance Degradation
	Ablation Study on Architectures
	Ablation Study on Memory-Agnostic Measure

	Conclusion
	Appendix
	Choosing Hyper-parameters
	Computation Efficiency Analysis
	Noisy Triplet Loss

