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Abstract

Deep learning techniques have driven significant progress in various analytical tasks
within 3D genomics in computational biology. However, a holistic understanding
of 3D genomics knowledge remains underexplored. Here, we propose MIX-HIC,
the first multimodal foundation model of 3D genome that integrates both Hi-C
contact maps and epigenomic tracks, which obtains unified and comprehensive
semantics. For accurate heterogeneous semantic fusion, we design the cross-modal
interaction and mapping blocks for robust unified representation, yielding the
accurate aggregation of 3D genome knowledge. Besides, we introduce the first
large-scale dataset comprising over I million pairwise samples of Hi-C contact
maps and epigenomic tracks for high-quality pre-training, enabling the exploration
of functional implications in 3D genomics. Extensive experiments show that MIX-
HIC significantly surpasses existing state-of-the-art methods in diverse downstream
tasks. This work provides a valuable resource for advancing 3D genomics research.

1 Introduction

The three-dimensional (3D) organization of chromosomes within the nucleus plays a pivotal role
in gene regulation and cellular function [} 2]. Key topological features of the 3D genome, such as
chromatin loops that bring distant regulatory elements into close physical proximity with their target
genes, are essential for cell-type-specific transcriptional regulation. High-resolution 3D chromatin
interactions can be quantified through high-throughput chromosome conformation capture (Hi-C)
technique [3]]. Understanding the mechanisms of how the 3D genome influences gene expression can
unveil pivotal insights into cellular functionality, developmental biology, and disease mechanisms [4].

Recently, computational models have emerged as a powerful tool to unravel the intricate associations
between the 3D chromatin structure, epigenome, and transcriptome. Existing approaches predict
various genomic features, including 3D chromatin contact maps [3 16} [7]], chromatin loops [8 9} 101,
and gene expression [[11}[12], often leveraging DNA sequences, Hi-C contact maps and epigenomic
tracks. Though successful, most of these methods are limited to a single specific task and struggle to
integrate the diverse and heterogeneous information of the 3D genome, hindering a comprehensive
understanding of its complex organization.

Recent progress in large-scale foundation models has demonstrated remarkable success in various
fields of computational biology, such as molecular representations [[13}[14], medical imaging [[15} [16],
proteomics [[17, 18], and genomics [[19} 20]. Inspired by these advancements, we aim to develop a
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multimodal foundation model to address the above-mentioned limitations of analyzing 3D genomic
downstream tasks in isolation.

Modeling the multimodal foundation model of 3D genome introduces three key challenges. First,
Hi-C contact maps and epigenomic tracks have inherently distinct characteristics, making integration
difficult. Simply aligning features from the two modalities and projecting them into a unified
latent space would primarily capture modal-invariant knowledge like gene regulatory mechanisms,
which are governed by both chromatin spatial organization and epigenomic tracks. However, this
approach tends to overlook modal-specific characteristics, such as precise chemical modifications
and chromatin states revealed by epigenomic tracks, which are essential factors for fine-grained 3D
genome analysis. This can lead to information loss and degrade downstream task performance (Refer
to Appendix[B|for theoretical analysis). Second, the unified representation from heterogeneous 3D
genomic and epigenomic data must exhibit robust generalization capabilities; otherwise, the model
may struggle to adapt effectively to diverse downstream tasks e.g., generation and regression. Third,
uncovering implicit semantic relationships between 3D genomic and epigenomic data is crucial for
addressing the data scarcity problem in 3D genomics. Especially, the high experimental costs of Hi-C
sequencing in real-world applications limit data accessibility, leading to incomplete representations
and degraded model performance. Pre-training a model to learn implicit multimodal structural
connections offers significant benefits for downstream tasks, particularly when only single-modality
data is available. This enables the model to leverage structural knowledge to compensate for missing
modality semantics, thereby enriching the overall data representation.

Hence, we introduce MIX-HIC, the first multimodal foundation model for 3D genomics to extract
fine-grained knowledge from 3D genome and epigenomic tracks, enabling efficient adaptation to
diverse downstream tasks with superior performance. Specifically, MIX-HIC first incorporates two
distinct encoders to capture the refined features from 3D genome contact maps and epigenomic tracks,
leveraging cell type-specific information for accurate predictions in novel cell types. To address
the challenge of integrating heterogeneous data, we propose a cross-modal interaction block to
capture both modal-invariant and modal-specific representations, regularized by contrastive learning
and orthogonal constraints, preserving both shared and distinctive information across modalities.
Additionally, a cross-modal mapping block facilitates information exchange between modalities,
ensuring robust representation even with single-modality input. To comprehensively capture 3D
genome knowledge, we have curated a large-scale dataset that consists of 1,275,948 pair samples
of Hi-C contact maps and epigenomic tracks for rapid adaptation to downstream tasks through
task-specific decoders. Notably, this is the largest paired dataset for the 3D genome analysis to
date. MIX-HIC is evaluated across diverse downstream tasks, demonstrating its effectiveness and
robustness in comparison to other state-of-the-art methods. In summary, the main contributions are:

* We propose the first 3D genomic multimodal foundation model, integrating Hi-C contact maps
and epigenomic tracks to establish a new paradigm for 3D genome analysis.

e MIX-HIC features a novel architecture with two key components: (1) a cross-modal interaction
block to capture both shared and unique biological patterns across modalities; and (2) a cross-modal
mapping block to enable a reliable complement of missing modality features.

* For holistic representation learning in 3D genome analysis, we present the largest paired dataset
of Hi-C and epigenomic tracks, comprising over 1 million samples.

» Extensive experiments demonstrate that MIX-HIC achieves state-of-the-art performance on three
critical downstream tasks across two cell lines.

2 Related Works
2.1 3D Genome-Related Tasks

This work evaluates the effectiveness of MIX-HIC on three downstream tasks, including Hi-C contact
map prediction, chromatin loop detection, and CAGE-seq expression prediction.

Existing methods for Hi-C contact map prediction from DNA sequences show promise but lack
cross-cell-type generalization [7, 21]. Models like EPCOT [[11]] and C.Origami [6]] improve this by
integrating DNA sequence with cell-type-specific epigenomic tracks. Epiphany [5] offers a more
efficient solution using only the epigenomic tracks.



Chromatin loop detection methods are broadly divided into statistical and supervised learning methods.
Statistical methods like HiCExplorer [22]] and ChromoSight [9] rely on contact frequency distributions
or expert-defined templates to identify loops. Supervised learning methods, including Peakachu [S8]],
DLoopCaller [10] leverage labeled data and sophisticated architectures for loop detection. RefHiC
[23]] employs a coarse-to-fine training strategy that integrates multi-resolution Hi-C contact maps
through contrastive learning mechanisms for model pre-training. However, RefHiC is limited by its
reliance on small-scale data semantics, which hinders its generalizability to other downstream tasks.

CAGE-seq expression prediction typically uses multimodal inputs, including DNA sequences, epige-
nomic tracks, and Hi-C contact maps. Enformer [24] employs transformers for modeling DNA
sequences, while EPCOT [11] integrates DNA sequences and epigenomic tracks with transformers or
long short-term memory (LSTM) [25]. GraphReg [12] integrates epigenomic tracks and Hi-C contact
maps using graph attention networks for expression prediction.

Despite their notable achievements, these methods often exhibit limitations in knowledge transfer
across tasks and fail to fully capture the complex interaction patterns between multimodal data.

2.2 Foundation Models in Computational Biology

The emergence of foundation models has significantly advanced various fields of computational biol-
ogy. For example, EvoRank [26] has demonstrated remarkable capabilities by harnessing extensive
protein sequence datasets to derive latent representations through sequence alignment. VQDNA [19]
employs large-scale DNA sequences to learn adaptive tokenization through vector-quantized code-
books. To capture more comprehensive views of data, multimodal foundation models such as ESM-IF
[27] combine protein sequences and 3D structures to learn functional and structural representations,
advancing protein function design and prediction. Similarly, UniCorn [28]] integrates 2D and 3D
molecular views through contrastive learning, effectively capturing complementary bimodal features.
These foundation models have showcased strong representation learning capabilities of foundation
models, inspiring the development of a universal model capable of effectively addressing various
downstream tasks in the 3D genomic field.

3 Data Processing and Preparation

To distill the comprehensive semantics from Table 1: Summary of pre-training data for MIX-
the 3D genome, we collect and refine a large- HIC, including original and cleaned data counts.
scale dataset for pre-training MIX-HIC, using
publicly available data from the hg38 assem- Cellline | Original | Cleaned | Remain
bly. The Hi-C contact maps are obtained from

the 4DN Data Portaﬂ while the epigenomic I?(?"??l% ;786,‘;]854 13889’,5(3969 ggigj
tracks (ATAC-seq and DNase-seq, which mea- IMR90 471, 557 316, 794 67.2%
sure how ‘open’ or accessible DNA is for tran- WTC11 | 1,032,048 731,519 70.9%
scription), CAGE-seq expression data (which di-

rectg)y quantifies genec:1 actli)vity levels), and CTCF MG NS 2 7 SROH S GO
ChIA-PET [29] chromatin loops (which identify

high-confidence interactions mediated by the key architectural protein CTCF) are downloaded from
the ENCODE Portal ﬂ Due to the high cost of deep sequencing for Hi-C experiments [30]], publicly
available datasets are typically limited to resolutions of 5 kb, 10 kb, or coarser. A 5 kb resolution is a
fine-grained and effective choice for deep learning models [11} [12]. The MIX-HIC model processes
250,000 base pair (bp) genomic windows, a size selected to encompass key regulatory structures like
chromatin loops, ensuring most functional units are fully contained within the inputs [5} 8]. This
results in Hi-C contact maps being represented as 50 x 50 matrices at the 5 kb resolution. To reduce
data variability, epigenomic tracks are averaged over every 100 bps, which generates 2,500-length
sequences. Each bin in the Hi-C matrix corresponds to specific  and y coordinates, representing
two distinct genomic segments. Their respective epigenomic sequences are concatenated into a
5,000-length representation for that bin. Thus, Hi-C contact maps and epigenomic tracks are treated
as images and sequences, respectively. We focus on four cell lines for pre-training, including HepG2,
HCT116, IMR90, and WTC111. To ensure data quality, we filter out windows with fewer than
10% non-zero Hi-C interactions or insufficient contact signals, which is a standard quality control
step to remove uninformative data [8} [10]. Hi-C contact maps are inherently sparse, especially for
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Figure 1: Pre-training stage of MIX-HIC. MIX-HIC employs a dual-encoder architecture to extract
refined features from both Hi-C contact maps and epigenomic tracks. The modal-specific and modal-
invariant representations are learned via contrastive learning and orthogonal constraints within the
cross-modal interaction block. A cross-modal mapping block is developed to further regularize the
bimodal representations and facilitate cross-modal complement. ¢, and ¢ denote the Hi-C contact
map encoder and epigenomic track encoder, respectively.

long-range interactions distant from the diagonal. Including these extremely sparse, low-signal
windows would introduce noise and degrade the model’s training process. As summarized in Table[I]
this filtering process removed approximately 30% of the raw windows. Crucially, a massive and
high-quality dataset of over 1.2 million sample pairs was retained, which is more than sufficient for
robust pre-training. Further details on data processing, reference number, and downstream task data
are provided in Appendix[A]]

4 Methodology
4.1 Self-supervised Pre-training

Self-supervised learning [311132,33]] offers a powerful solution for learning unified and comprehensive
representations from heterogeneous 3D genomic and epigenomic data. By leveraging large-scale
pairwise data during pre-training, MIX-HIC effectively captures inherent biological patterns and
relationships across these bimodal data, significantly enhancing its adaptability to diverse downstream
tasks. As shown in Figure [T] the pre-training phase includes a feature extraction block, cross-
modal interaction block, and cross-modal mapping block. The feature extraction block employs
specialized encoders for epigenomic tracks and Hi-C contact maps, respectively, to generate refined
representations. The learned representations are then fed into the cross-modal interaction block to
learn both modal-specific and modal-invariant features. This learning process is regularized through
a combination of contrastive learning loss and orthogonal loss. Finally, a cross-modal mapping block
further explores latent connections and complementary information between the two modalities.

Feature extraction block. The feature extraction block consists of Hi-C and epigenomic feature
encoders. Given the Transformer’s capability to model long-range dependencies and its flexibility
in capturing both spatial interactions (Hi-C contact maps) and sequential relationships (epigenomic
tracks), we utilize a Transformer-based architecture for robust feature extraction and multimodal
integration. Similar to Vision Transformer (ViT) [34]], the single-channel Hi-C contact map X s €
RIXH>W s first transformed into a sequence of flattened patches X7, € RNV*D. Here, H and W
are the height and width of the Hi-C contact map, both equal to 50. The dimension D =1 x P x P
corresponds to the initial size of each patch, where the patch size P is set to 2. The total number
of these patches N = H x W/P? is the resulting number of patches, which becomes the input
sequence length. In the Hi-C feature encoder, a feedforward network projects these patches into
an embedding X9, € RY*C where C denotes the predefined feature dimension. This embedding
is then refined through three cascaded encoder layers, where each layer consists of T Transformer
blocks followed by a downsampling layer, yielding progressively refined embeddings X i, € R >,
where the sequence length «; is defined as o; = % and the feature dimension C; grows exponentially
as C; = 2'C, with the encoder layer i € {1,2,3}. Finally, a bottleneck layer equipped with T
Transformer blocks is applied to produce the Hi-C contact map embedding X AE} € R*3%Cs,

The epigenomic encoder processes input sequences Xp € RL1*O where L; = 5,000 is the
initial sequence length, and O represents the two epigenomic tracks: ATAC-seq and DNase-seq.



Convolutional layers with max-pooling operations extract an initial embedding X9 € RF2*C where
Ly = 100 corresponds to two genomic segments along both x and y axes in the Hi-C contact map.
Note that processing epigenomic tracks at high resolution (e.g., 100bp) is common practice to avoid
over-smoothing [5} [T1]. Similarly, the embedding X% is processed through three encoder layers,
where each layer consists of 7" Transformer blocks followed by a downsampling layer, resulting in
X}, € RXC where the sequence length 3; = £2 for i € {1,2, 3}. Then, the refined epigenomic
representation X5 € RA3%Cs is also derived from a final bottleneck layer.

Cross-modal interaction block. Conventional multimodal learning architectures [35]] often utilize
contrastive learning to project features from different modalities into a shared embedding space.
However, these modalities inherently contain both homogeneous and heterogeneous information. Di-
rect aligning all features risks losing essential modal-specific characteristics, potentially diminishing
downstream task performance [36,|37]]. This is further analyzed in Theorem 1 as follows.

Theorem 1. Let ¢1 and ¢ be feature encoders for two modalities z1 and zo, respectively. If the
encoded features F* = ¢1(z1) and F? = ¢5(22) are perfectly aligned such that F' = F2, we have:

i%f E,[Lce(h(F', F?),t)] — i}rLl/f Ey[Lcr (R (21, 22),t)] > Ty (1)

Remarks. The information gap I'; := max{U(z1;t), U(22;t)} —min{U (z1;t), U(22;¢)} quantifies
the effectiveness of the modalities in predicting target variable ¢, where U (z;; ) represents the mutual
information. Here, E represents the expectation, ¢ denotes the joint distribution of (z1, 2o, t), LcE is
the cross-entropy loss, and h and k' are prediction functions for features and raw data, respectively.
Theorem 1 demonstrates that perfect alignment results in prediction errors that are suboptimal by at
least I'; compared to using raw modalities directly. This information gap widens when information
content is imbalanced across modalities. The complete proof is provided in Appendix [B]

To address this, our cross-modal interaction block captures both modal-specific and modal-invariant
representations, enabling a more comprehensive understanding of the data. Specifically, we employ
four independent dense networks to process the Hi-C contact map representation X and the
epigenomic representation X 5. This generates the condensed modal-invariant representations
X1, € RwxC2 and XL € RP*C2 as well as the modal-specific representations X5, € R*C2
and Xz S € RAsxC2 The mean poohng operation is then applied along the sequence length dimension,

producing X M X o X > and X =, each with a feature dimension of C. To ensure that the modal-
invariant features capture shared knowledge across modalities, we incorporate a contrastive learning
loss to regularize these representations. We propose a unified contrastive loss function Ly [31]] to
compute the similarity between two modalities A and B as follows:

exp (Aj,Bj)/T
Loair(A,B) === log 2
pi Z_: 7 exp(A;, B.) /7T @

where 7 denotes the temperature, commonly set to 0.07 [38]], J refers to the batch size,(-, ) is the dot
product operation, and .A; and B; represent the embedding of the j-th sample in the mini-batch for
modality A and B, respectively. Finally, the overall contrastive loss is computed as follows:

1 ~ ~ ~ ~
Leon = §(£pair(X}137XJ{4) +£Paif(XZIM7Xé‘))' 3)
Moreover, we introduce an orthogonal constraint to maximize the dissimilarity between modal-
specific and modal-invariant features. This ensures that the modal-specific features capture comple-
mentary information distinct from the shared knowledge represented by the modal-invariant features.
The orthogonal loss L is calculated by minimizing the inner product between these features:

1 ~ ~ ~ ~
Lo =5 (X5 XE0) + (X5 XP)) @
Cross-modal mapping block. Data scarcity, often due to high experimental costs, can lead to
incomplete datasets with missing modalities. Integrating predicted features of a missing modality
with existing modalities can enhance prediction performance [37, 39]. Our cross-modal mapping
block aims to capture the implicit semantic relationships and facilitate knowledge transfer between
modalities to address this issue.



Some downstream tasks require the MIX-HIC to preserve the sequence length of the input features.
However, the differing lengths of Hi-C contact maps and epigenomic tracks pose a challenge for effec-
tive modality transfer. Therefore, we apply 1D adaptive pooling to the concatenated representations
of Hi-C, X§{reat = [XT : X3,] € R**C5 and epigenomic tracks, X §n = [XL : X 7] € RFs*Cs
(where [- : -] denotes concatenation), to align their lengths. This yields the complementary representa-
tions Xypg € RP3%C3 and Xpoy € R¥*Cs a5 follows:

Xk = Fae(Ovoe (X5, Xeom = Fram (Geam (X E"Y)), ©)

where Gypp and Ggovm are 1D adaptive pooling operations. Fyppg and Feay denote dense layers with
the same output dimensions matching their inputs. To ensure these mapped embeddings capture the
relevant information from the target modality, we use a Lmapping 10ss for regularization:

1 ncat 112 ncat |12
Linapping = i(HXMZE — X", + || Xeam — X52"|5)- (6)

Overall, the final loss for self-supervised pre-training is computed as follows:
»Cpretrain = »Ccon + »Corth + »Cmapping~ (7)

4.2 Task-specific Fine-tuning

As depicted in Figure[2] MIX-HIC is a versatile framework capable of processing various kinds of
inputs. Ideally, MIX-HIC takes both the Hi-C contact map and the epigenomic feature profile as
inputs (represented as MIX-HIC-Bimodal), extracting their concatenated features X {9"°* and X £oneat
similar to the feature extraction block used in the self-supervised pre-training stage. However, in
real-world scenarios, a certain modality may be absent for various unforeseen reasons.

Leveraging the powerful representation ability
of pre-training to capture implicit connections
between bimodal data, MIX-HIC incorporates
a cross-modal mapping block to complement
the features of the missing modality using the
information from the available modality. For ex-

Task-specific
Decoder
Downstream Tasks
1) Hi-C Contact Map (MIX-HIC-Infer)

ample, when the Hi-C contact map is missing,
MIX-HIC can infer the missing modality fea-
tures Xgom from the concatenated epigenomic
embedding X £ using Eq. For the Hi-C
contact map prediction task, even if only the
epigenomic tracks are available, the correspond-
ing contact map features Xgpy can still be uti-
lized for prediction (denoted as MIX-HIC-Infer).

Modality-fusion block. We employ 71" stacked
contact map-grounded fusion blocks to learn the
interaction patterns between the bimodal repre-

2) Chromatin Loop (MIX-HIC-Bimodal)
3) CAGE-seq Expression (MIX-HIC-Bimodal)

‘eed Forwar
I Cross-Attention
li Self-Attention

Figure 2: Fine-tuning stage of MIX-HIC. Epige-
nomic features are captured from the pre-trained
encoder, while Hi-C contact map features are ob-
tained either directly from the pre-trained encoder
or through feature mapping based on the epige-
nomic features. MIX-HIC incorporates a modality
fusion block to integrate the bimodal representa-
tions, followed by a task-specific decoder for final

: . icti f ks.
sentations. Each contact map-grounded fusion predictions of downstream tasks

block consists of a self-attention layer, a cross-attention layer, and a feedforward network. The
extracted epigenomic embeddings X £ are first input into the self-attention layer, generating query
embeddings of the cross-attention layer. The contact map embeddings, either X {"* or Xy, serve
as the key and value embeddings, which are then processed through the cross-attention layer. Finally,
a feedforward neural network is applied to produce the fusion embeddings Xpyg. € R73*Cs,

Task-specific prediction block. Three types of decoders are involved in the task-specific prediction
block. The chromatin loop detection task is a binary classification problem. Therefore, the decoder for
this task includes a mean pooling operation along the sequence length axis, followed by a feedforward
network, to classify a given sample as either a chromatin loop or a non-loop.

The CAGE-seq expression task is formulated as a regression problem, aiming to predict 100 values
corresponding to the expression levels of two genomic segments (each of length 50) along x-axis
and y-axis of the Hi-C contact map. The decoder consists of three transformer blocks, with each
followed by an upsampling layer. At each stage, the encoder-derived features X% from the i-th
encoder layer are concatenated with the corresponding i-th layer of decoder outputs X%, from the



preceding stage via skip connections, facilitating feature integration across network depths. Finally,
the decoder output features X, € RZ2*2¢ are processed through two feedforward networks to
generate regression predictions.

To predict the 50 x 50 Hi-C contact maps at 5kb resolution, the decoder output features X, are
obtained similar to the CAGE-seq expression task. These features are then split into two feature
segments X}, € R?*2C and X2 € R50*2C along the length axis. X}, and X2, are unsqueezed
into RP0X1x2C apd R1*50x2C "regpectively, after which element-wise addition and multiplication
operations are applied to generate feature maps of size R°°*°0%2¢  Finally, two layers of feedforward

networks are utilized to predict the Hi-C contact maps.

Training loss. The chromatin loop detection task employs the binary cross entropy (BCE) loss
function, while the Hi-C contact map prediction and CAGE-seq expression prediction tasks use the
mean squared error (MSE) loss function. It should be noted that we normalize CAGE-seq data using
RPGC [40] and Hi-C data using KR [41]] normalization to correct for sequencing depth and systematic
biases, respectively. Subsequently, a log transformation is applied to both datasets. This is critical
for stabilizing variance and compressing the highly skewed distribution of raw counts, ultimately
producing continuous values representing normalized interaction frequencies. Consequently, the
MSE loss becomes an appropriate and robust choice for these continuous values. The MSE and BSE
loss functions can be formulated as follows:

1< R
Lyvse = i ;(% —9;)%, (®)
1 J
Loce = — ]; [y;1log(4;) + (1 — y;) log(1 — ;)] , 9)

where y; and g; represent the true value and the predicted value, respectively.

S Experiments

Implementation details, hyperparameter analysis, and analyses of the model’s biological grounding
and robustness for noise can be referred to Appendix.

5.1 Comparison Results on Downstream Tasks

To demonstrate the effectiveness of MIX-HIC, three downstream tasks are involved in this work, in-
cluding Hi-C contact map prediction, chromatin loop detection, and CAGE-seq expression prediction.
We construct three versions of MIX-HIC: (1) MIX-HIC-Bimodal, which leverages both Hi-C contact
maps and epigenomic tracks through pre-training; (2) MIX-HIC-NonPre, a non-pretrained version
using the same bimodal inputs; and (3) MIX-HIC-Infer, designed to handle missing Hi-C data by
integrating epigenomic track embeddings with inferred Hi-C embeddings. Detailed descriptions of
the compared state-of-the-art methods are given in Appendix|[D|

3D Chromatin Organization Prediction. In this Table 2: Methods comparison for the Hi-C
task, the Hi-C contact maps serve as the target. MIX- contact map prediction task on GM12878 and
HIC-Infer is compared with four state-of-the-art K562 cell lines using R?. The results marked
methods, including Epiphany [3], C.Origami [6]], in bold and underlined denote the best and
and two variants of EPCOT [11l], (i.e. EPCOT- second-best performing methods, respectively.
LSTM and EPCOT-Transformer). For a fair com-

parison, all methods receive the same input as MIX- ~_Methods | om12878 | K62
HIC and are configured with their default parameter ~ Epiphany [5] 0.7970 0.6547
settings. The coefficient of determination (R?) [42] = C-Origami [6] 0.7958 0.7055
is employed as the evaluation metric, since it effec- ~ EPCOT-Transformer [L11 | 0.5409 0.7648
EPCOT-LSTM (IT] 0.7993 0.7840

tively quantifies explained variance in analyses of
long-tailed or sparse data, such as low-probability
long-range interactions in Hi-C.

MIX-HIC-Infer (Ours) 0.8724. 9 59, | 0.8001_ ;%

Table [2] shows the evaluation performance on GM 12878 and K562 cell lines. Compared to other
methods, MIX-HIC-Infer demonstrates superior performance, achieving the highest average R?
values on both GM 12878 and K562 cell lines. Specifically, it outperforms the runner-up method
by approximately 9.3% and 2.1% in R? score on GM12878 and K562, respectively. We note that
the EPCOT variants deliver competitive performance, but they suffer from fluctuations across the
two datasets. Through extensive pre-training on large-scale pairwise datasets, MIX-HIC effectively



Table 3: Methods comparison for the supervised chromatin loop detection task on GM 12878 and
K562 cell lines.

| GM12878 | K562
Methods . ..

‘ Precision Recall Fl1 AUROC ‘ Precision Recall Fl AUROC
Peakachu [§] 0.7763 0.8283 0.8015 0.8766 0.7895 0.7905 0.7900 0.8834
DLoopCaller [10 0.8433 0.8075 0.8250 0.9046 0.8383 0.7526 0.7932 0.8924

MIX-HIC-Bimodal (Ours) | 0.8505, 000 0.8337,075 0.8420..,5 09209, | 0.8521,1 0, 0.8027. 1 0.8267 505 09194, ;0

explores implicit semantic relationships between bimodal data, enabling robust compensation for
missing modality semantics and achieving promising accuracy in Hi-C contact map prediction.

Chromatin Loop Detection. Two supervised machine learning-based methods DLoopCaller [[10]
and Peakachu [8] are used to compare with MIX-HIC-Bimodal. As illustrated in Table E], MIX-
HIC-Bimodal surpasses other machine learning-based methods across all classification metrics on
two datasets. By integrating both epigenomic tracks and Hi-C contact maps, DLoopCaller slightly
outperforms Peakachu, which relies solely on Hi-C contact maps. The enhanced performance of
MIX-HIC can be attributed to the effective self-supervised pre-training, which facilitates the capture
of both modal-invariant and modal-specific information from bimodal representations, in contrast to

the simple concatenation employed by DLoopCaller.
Supported loops vs. Predicted loops

We employ both statistical-based methods, namely T i icaimodst oure
ChromoSight [9] and HiCExplorer [22]], as well as > — ticexpioer

—— Peakachu

machine learning-based methods to annotate loops 4000 | — Chromosiant

across entire chromosomes. The predicted loops = DloopCaller

are further compared with those loops validated by

experimental data from ChIA-PET. Method details

for whole-chromosome chromatin loop annotation 2000

and corresponding results with the quantitative ‘pro- / /

portion’ metric are available in Appendix[A.2land = 100 / // /

[C1] respectively. Figure [3] compares the number

of predicted loops versus the number of loops sup- 0 - 1 i ‘ '
ported by ChIA-PET among various methods on the O e mredienetoope 0%
GM12878 dataset. Among all the methods, machine .

learning-based methods generally predict a higher F}gure 3: ComP arison of the number of pre-
number of loops that are validated by ChIA-PET on  dicted loops with the number of correspond-
the GM 12878 dataset, with MIX-HIC identifying the 1n& ChIA-PET-supported loops across various
most ChIA-PET validated loops while maintaining deep learning methods on GM12878 cell line.
the highest validated proportion. On the K562 dataset,

which contains much less training data compared to GM 12878, the efficacy of machine learning
methods generally declines. Nevertheless, MIX-HIC consistently maintains the highest proportion of
validated loops in comparison with other methods. An example of whole-chromosome chromatin loop
comparison is provided in Appendix[C.2}

CAGE-seq Expression Prediction. MIX-HIC- Table 4: Methods comparison for the CAGE-
Bimodal is pitted against four benchmark methods: seq expression prediction task on GM 12878
two variants of GraphReg (EPI-CNN and EPI-Graph) and K562 cell lines using R2.

[12], as well as two variants of EPCOT (EPCOT-

w
=3
153
k=3

Number of supported loops

N\

LSTM and EPCOT-Transformer) [11]. EPI-CNN re-  Methods | GM12878 | K562

lies solely on epigenomic tracks to predict CAGE-seq  gpi-cNN [12] 07719 0.8033
expression, whereas EPI-Graph enhances this by in-  EPI-Graph (12 0.7965 0.8211
corporating Hi-C contact maps via graph attention net- ~ EPCOT-LSTM [11] 0.4723 0.8704
works for dual-modal modeling. Tabled]showcases ~ EPCOT-Transformer [IL] | 08578 0.8230

MIX-HIC-Bimodal (Ours) | 0.8833. 505 | 0.9077 4 55

the comparison results across two datasets. EPCOT
achieves competitive performance, yet it suffers from
a time-consuming problem due to the process of long-range DNA sequence. MIX-HIC demonstrates
remarkable performance over other benchmark methods across all metrics on both datasets.

Overall, MIX-HIC outperforms state-of-the-art methods across all downstream tasks, with the most
significant improvement (9.3% R?) in Hi-C contact map prediction. Large-scale pre-training enables



robust semantic representations for MIX-HIC, while other methods lack generalizability due to being
narrowly optimized for specific tasks and often show inconsistent performance across datasets.

5.2 Few-shot Chromatin Loops Classification

We conduct a few-shot learning experiment on the

chromatin loops classification task to evaluate the MIXHICBimodal -+ MIXHCNonPre - DioopCallr - Peakach
performance of MIX-HIC under limited training * 1o, emiaers B oo Kooz
data scenarios. Specifically, we fine-tune MIX- 099 e 09
HIC-Bimodal, MIX-HIC-NonPre, DLoopCaller, and gz: 8 gz: —
Peakachu using four different ratios of the training o8] 06

data, ranging from 0.0001 to 0.1. As illustrated in Fig- 08— o5l
ure 4 MIX-HIC-Bimodal consistently outperforms Ratio Rato

other methods across all data ratios. Notably, the per-
formance of most methods remains relatively robust
even with minimal data, primarily stemming from the
powerful and repetitive biological signatures of chro-
matin loops, which make the task tractable for most
models. The performance variations among different
architectures also highlight their inherent data efficiency. For instance, Peakachu, a random forest
model, is inherently stable as it relies on engineered features that are less sensitive to data volume.
In contrast, DLoopCaller’s CNN architecture is more data-hungry and thus shows a steeper decline.
Our MIX-HIC architecture, even without pre-training, proves more data-efficient: the self-attention
mechanism is better suited for capturing the global and long-range dependencies in contact maps
than local CNNs, and its bimodal input provides complementary information, enhancing robustness
even in low-data regimes.

With a training data ratio of 0.1, MIX-HIC-Bimodal achieves an AUROC of about 0.9 on two datasets,
which is competitive with other state-of-the-art methods trained on full datasets. These findings
highlight the robustness and efficiency of MIX-HIC in leveraging pre-trained knowledge to achieve
superior performance even with limited labels.

Figure 4: Few-shot chromatin loop classifi-
cation performance across different training
data ratios. Mean values and standard errors
are calculated over five independent runs with
varying random seeds.

5.3 Robust Performance Across Cell Types

The utﬂiZatiOn Of Cell-type SpeCiﬁC data’ i e., HI-C A Trained on GM12878 & Tested on K562 5 Trained on K562 & Tested on GM12878
d i i k MIX- 099 8% ogg0s 097 08742 (oo
contact maps and epigenomic tracks, empowers 0.8511
HIC to achieve accurate predictions for novel cell §
2

types. We perform a cross-dataset evaluation with the

GM12878 and K562 cell lines on the chromatin loop ool oel
detection task to assess the generalization ability of f@& & & 09@"(’ & &
MIX-HIC. In particular, all the models are trained on &9 & °

one cell line and evaluated on the other. The evalua-  pjgyre 5: Methods comparison for cross-cell-
tion results of cross-cell type prediction are shown in type evaluation.

Figure[5] We note a decrease in performance when all

models are evaluated on external datasets compared to within-dataset testing (see Table3)). Neverthe-
less, MIX-HIC-Bimodal continues to outperform other methods, indicating its strong generalization
ability in real-world scenarios.

5.4 Ablation Study

To evaluate the effectiveness of key components Table 5: AUROC results of ablation studies on loss
in MIX-HIC, we perform ablation studies focus- terms for chromatin loop detection task. Symbols
ing on the proposed loss terms and the represen- ‘v'~ and ‘-’ denote present and absent, respectively.
tation learning ability across multimodal data.

Three critical loss terms are employed during Leon  Lotn  Lmapping | GM12878 | K562
MIX-HIC pre-training (i.e., Lcon, Lo, and v - - 0.9136 0.9099
Lmapping)- We examine the effects of each loss v v ; 0.9183 09156
component. As shown in Table [5] the model

equipped with L., provides a strong baseline. v v v 0.9209 0.91%4




The orthogonal loss enhances discrimination between modal-invariant and modal-specific represen-
tations, contributing about 0.5% AUROC improvement compared to simply feature alignment, as
demonstrated in Theorem 1. Further details for the orthogonal constaint are provided in Appendix|[C.4)]
Although the cross-modal mapping loss provides modest enhancement, it enables missing modality
inference of MIX-HIC. These findings demonstrate that robust multimodal fusion is achieved by
explicitly separating modal-invariant and modal-specific representations using appropriate loss terms.

In addition, we assess the representation learn- Table 6: Ablation results of each modality, with
ing ability of MIX-HIC across three aspects: the values reported as R? (Hi-C contact map predic-
contribution of pre-training, the superiority of tion), AUROC (chromatin loops dectection), and
multimodal over unimodal representations, and  R? (CAGE-seq expression prediction). Symbol
the efficiency of modality completion. For the ‘o’ represents inferred embeddings from the other
Hi-C contact map prediction task, the model is  modality.

trained to predict the contact map using only

1D epigenomic tracks as input. The Hi-C con- Tasks | Epi. Hi-C Prerained | GMI2878 | K562
tact map itself is the Prediction target (output), Hi-C contact map prediction j ; ¥ ‘ 82‘7‘2 ‘ 8;;8‘;
makmg its use as an input featu?e methodolog- T - o536 | 08054
ically invalid. Detailed comparison results ap- VR v 08494 | 0.8226
. - . - v 0.9065 0.9072
pear in T.able [ Thg pre-trained bimodal MIX- Chromatin loops dectection | o . 0913 | 09150
HIC achieves superior performance compared v - 09091 | 0.8850
: . . 0.9209 0.9194

to its non-pre-trained counterpart, confirming ; Y Y !
.. . . - 0.8514 0.8710
pre-training’s benefit for unified representations. cacE oo | ¢ ° v 08684 | 08870

. . . -seq expression prediction

Moreover, while pre-trained bimodal MIX-HIC ey <o - 0.8614 | 0.8755
v v v 0.8833 0.9077

consistently outperforms single-modal variants,
the non-pre-trained bimodal version underperforms compared to using Hi-C data alone for K562
chromatin loop detection due to heterogeneity between bimodal data, highlighting the importance
of learning both modality-specific information and general patterns. Finally, when Hi-C data is un-
available, combining epigenomic embeddings with inferred Hi-C embeddings improves performance
over using epigenomic data alone, validating the cross-modal mapping block’s effectiveness for data
scarcity scenarios.

6 Conclusion

In this work, we present MIX-HIC, a novel multimodal foundation model for diverse 3D genome
downstream tasks by integrating Hi-C contact maps and epigenomic tracks. To facilitate a unified and
comprehensive understanding of 3D genome organization, we construct the largest paired 3D genome
dataset to date, comprising over one million high-quality samples. As the first multimodal foundation
model in this domain, MIX-HIC incorporates two key innovations: (1) a cross-modal interaction
block that jointly learns modal-invariant and modal-specific representations, effectively capturing
both shared and unique biological patterns across modalities; and (2) a cross-modal mapping block
that regularizes the multimodal feature space and enables robust imputation of missing modalities
features, alleviating the practical challenges posed by the high costs of Hi-C contact map acquisition.
Comprehensive experimental results demonstrate that MIX-HIC achieves state-of-the-art performance
on three key downstream tasks across two cell lines.
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A Implementation Details.

In this section, we present the implementation details of MIX-HIC, including data source and
processing, whole-chromosome loop annotation, as well as experimental settings.

Table 7: Data sources and accession numbers from 4DN Data Portal and ENCODE Data Portal.

Cell line | Hi-C | DNaseseq |  ATAC-seq | ChIA-PET | CAGE-seq
GM12878 | 4DNFIIUEGIHD | ENCSROOOEMT | ENCSR095QNB | ENCSR184YZV | ENCSRO0OOCKA
K562 4DNFITUOMFUQ | ENCSRO0OEOT | ENCSR956DNB | ENCSR597AKG | ENCSRO00CIN
HepG2 4DNFICSTCIQZ | ENCSROOOEIV | ENCSRO42AWH | ENCSR411IVB -
HCT116 | 4DNFIXTAS6EE | ENCSROOOENM | ENCSR872WGW | ENCSR278IZK -
IMR90 4DNFIHTTH4MF | ENCSR477RTP | ENCSR2000ML | ENCSRO76TTY -
WTCl1 4DNFIVSCH2CH | ENCSR785ZUI | ENCSR541KFY | ENCSR353ASS -

A.1 Data Source and Processing

Detailed reference numbers for all data sources are provided in Table[7] We download the BAM
files for epigenomic tracks and convert them into bigWig files using deepTools [40] with RPGC
normalization. Two 250 kb epigenomic regions, corresponding to the x-axis and y-axis of a Hi-C
contact map, are first averaged over every 100 bp and transformed using log(z + 1) to reduce data
variability, and then the processed regions are concatenated to form the final epigenomic tracks input
with a length of 5,000. The Hi-C contact maps are binned at 5 kb resolution and normalized using
KR normalization, and then divided into 50 x 50 sub-matrices based on the loci of each sample.

As the first attempt to create the multimodal 3D genome foundation model, we prioritize epigenomic
tracks with ATAC-seq and DNase-seq because they capture the genome’s foundational regulatory
information. While DNase-seq and ATAC-seq have some inherent redundancy, they also offer
complementary insights due to their distinct enzymatic biases. The enzymes’ different cutting biases
cause each assay to detect unique accessible sites, which together yield a more complete accessibility
landscape [43].

The training samples of three downstream tasks are generated using two widely adopted cell lines,
GM 12878 and K562, as described below. First, the Hi-C contact maps and epigenomic tracks within
a 250 kb genomic region upstream and downstream of the gene transcription start site (TSS) are used
to predict CAGE-seq expression, with TSS annotations obtained from previous work [[12]. For this
task, the number of training samples for GM 12878 and K562 are 16,046 and 14,739, respectively.
Second, the same pairwise samples of Hi-C contact maps and epigenomic tracks are used for the
Hi-C contact map prediction task, with the same sample sizes as mentioned above. Third, the positive
chromatin loops (1,344,270 for GM12878 and 137,558 for K562) are derived from the ChIA-PET
data, while an equal number of negative loops are randomly sampled based on two criteria following
prior research [10]: (1) matching the distance distribution of positive samples using the distances
probability density function, and (2) selecting interactions with distances greater than the maximum
distance observed in the positive samples to enhance the diversity of the negative samples. Following
previous work [10} 16} 5], we partition the chromosomes into distinct training, validation, and test sets.
Specifically, chromosomes 10 and 11 serve as the validation set, chromosomes 3, 13, and 17 as the
test set, and the remaining chromosomes are used for model training across three downstream tasks.

A.2 Whole-chromosome Loops Annotation

The well-trained MIX-HIC model is capable of predicting all potential chromatin interactions across
individual chromosomes. The detection of chromatin loops within each chromosome consists of two
key steps: (1) scoring potential chromatin interactions using MIX-HIC and (2) aggregating loops
through a clustering algorithm. First, candidate elements are identified by examining the diagonals
of the raw Hi-C contact matrix, where observed interaction frequencies are statistically compared
to expected values based on a Poisson distribution, retaining only elements with p-values below
0.01. Subsequently, the trained MIX-HIC model is employed to predict loop probability scores, with
scores exceeding 0.5 referred to as candidate loops. These candidates are further grouped to identify
significant loops using a density-based clustering algorithm following [44]]. For each candidate, a
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local density score and a minimum distance metric are computed. Candidates exhibiting low distance
values are subsequently eliminated to minimize redundancy. Cluster centers are determined via a
target-decoy search, ensuring that the false discovery rate remains below 5%. Within each cluster, the
candidate demonstrating the highest local density is designated as the representative loop.

A.3 Experimental Settings

MIX-HIC is developed using Python and PyTorch, and executed on the Ubuntu platform with a Tesla
A100 GPU. MIX-HIC processes input data consisting of 50 x 50 Hi-C contact maps and epigenomic
tracks with a sequence length of 5,000 bps. The architecture is composed of feature encoders,
task-specific decoders, and a modality fusion block. The feature encoders and task-specific decoders
are structured with four layers, each comprising two transformer encoder blocks. Notably, the
epigenomic feature encoder includes an additional preprocessing stage, integrating four convolutional
layers followed by max-pooling operations before the transformer blocks, to effectively process and
condense long sequences. Similarly, the modality fusion block is constructed with two transformer
encoder blocks, ensuring efficient integration of features across modalities.

During the pre-training stage, MIX-HIC is configured with 500 epochs, a learning rate of le-5, and a
batch size of 256. For the CAGE-seq expression prediction task, the predefined feature dimension
C and learning rate are set to 256 and le-4, respectively. For the prediction of Hi-C contact maps
and chromatin loops, these parameters are specified as 128 and 1e-5, respectively. The number of
transformer blocks 7" in each encoder, contact map-grounded fusion block, and decoder is set to
2. Fine-tuning is conducted with a batch size of 64, utilizing the AdamW optimizer [45] with the
momentum parameters /51 and [ initialized to 0.9 and 0.999, respectively. The fine-tuning process
is configured with a maximum of 200 epochs, and an early stopping strategy is employed with a
patience parameter of 20 to prevent overfitting.

B Analysis of Information Gap Between Bimodal Representations.

Simple alignment of multimodal features can result in information loss, which may compromise the
performance of downstream tasks. Under conditions of perfect feature alignment, the prediction
error using aligned features is at least I'; greater than that using the raw inputs. Based on [36], we
generalize the theorem to the case of two modalities as Theorem [I] This theorem implies that if one
modality is more informative than the others (i.e., there exists a significant information gap), perfect
alignment may lead to a substantial increase in prediction error. The underlying reason is that perfect
alignment constrains the aligned features to preserve only the predictive information shared across all
modalities, which may result in the loss of modal-specific information that is potentially critical for
achieving accurate predictions. The proof of this theorem is presented as follows:

Consider the joint mutual information U (F!, F2:¢). Applying the chain rule of mutual information,
we obtain:

U(FYF%t) = U(FYt) + U(F? t[FY) (10)
= U(F?;t) + U(F'; t|F?). (11
Under the condition of perfect alignment between the two features, U (F2; t|F!) = U(F!;t|F?) = 0,
which implies:
U(FL,F%t) = UF';t) = U(F%t). (12)
By applying the data processing inequality [46]:
UF't) < U213 1); U(F*t) < U(zait), (13)
we derive U (F!, F2;t) as follows:
U(F'L,F%t) = min{U(F';1),U(F? )}
< min{U(z1;t),U(z2;1)}
< max{U(z1;t),U(z2;1)}
< Uz, 22;1).
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According to the variational form of conditional entropy H (t|z1, z2) = infy, Ey[Lce(h(z1, 22),t)]
[47] and the definition of mutual information U(X;Y) = H(Y) — H(X|Y'), we can conclude the
theorem as follows:

1%f Eq [,CCE(h(Fl, FQ), t)] — I;ILl/f Eq [LCE(h,(Zl, 2’2), t)]

= H(t|[F',F?) — H(t|z1, z2)

= H(t) = U(F' F?|t) — (H(t) — U(z1, 20|t))
=U(z1, 22;t) — U(Fl,FZ;t)

>T,.

Therefore, although perfect alignment of bimodal features achieves consistency, it risks losing
critical modal-specific information, potentially leading to higher prediction errors, especially when
the information gap between modalities is substantial, as seen in the case of Hi-C contact maps
and epigenomic tracks. To solve this problem, we introduce cross-modal interaction and cross-
modal mapping blocks to capture both modal-invariant and modal-specific features, enabling a more
comprehensive representation of bimodal data. The effectiveness of this approach is validated through
extensive ablation studies.

C Additional Experimental Results.

C.1 Proportion of Validated Loops versus Predicted Loops

We define the quantitative metric ‘proportion’ as the ratio of experimentally validated loops to
computationally predicted loops [44]. Table[8|presents a comparative analysis of chromatin interaction
loops identified through ChIA-PET experiments and those predicted by different approaches. MIX-
HIC exceeds runner-up methods by 28% and 9% proportion on GM12878 and K562 datasets,
respectively.

Table 8: Comparison of ChIA-PET-supported loops with those identified by various deep learning
methods.

Methods | GM12878 | K562

‘ Validated Loops  Predicted Loops ~ Proportion ‘ Validated Loops  Predicted Loops ~ Proportion
HiCExplorer 1358 2688 0.51 765 1450 0.53
ChromoSight 3845 6044 0.64 993 1628 0.61
Peakachu 1992 2904 0.69 795 1492 0.53
DLoopCaller 4301 6878 0.62 1048 2274 0.46
MIX-HIC-Bimodal (Ours) 5179 5893 0.88 1064 1588 0.67

C.2 Example of Whole-Chromosome Chromatin Loop Comparison

Figure [6] illustrates the performance evaluation of chromatin loops predicted by various methods
(black points, lower left) against corresponding experimentally validated interactions (red points,
upper right). Specifically, we use the same genome regions, chromosome 13: 20Mb-22Mb from
the GM12878 dataset, and identical ground truth data for evaluating all compared methods. Our
predictions (the first left panel) demonstrate significantly fewer false positive loops compared to
experimentally validated ChIA-PET interactions, as evidenced by the correspondent counts between
red and black points. Our method achieves a proportion of 0.57, compared to the runner-up’s 0.32,
highlighting MIX-HIC’s superior ability to accurately identify chromatin loops while producing
fewer false positives.

C.3 Hyperparameter Analysis

The number of Transformer 7" blocks in each layer of the encoder, contact map-grounded fusion block,
and decoder, along with the predefined feature dimension C play a pivotal role in MIX-HIC. We
evaluate the impact of this parameter by testing C' = {64, 128,256} and T' = {2, 4, 8} as depicted
in Figure [7]and Figure [8] respectively. The highest performance is achieved at C' = 128 for HI-C
contact maps and chromatin loops prediction tasks, while C' = 256 performs best for CAGE-seq
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MIX-HIC-Bimodal Peakachu DLoopCaller ChromoSight HiCExplorer

All

Proportion 0.57

Figure 6: Comparison of predicted chromatin loops (black points, lower left) and corresponding
experimentally validated ChIA-PET interactions (red points, upper right) in the chromosome 13
region (20Mb-22Mb) from the GM 12878 dataset. Unmatched experimentally validated ChIA-PET
interactions are represented by green points in the upper right.

expression prediction. Additionally, T = 2 demonstrates the most robust performance across all three
downstream tasks. MIX-HIC exhibits strong resilience to parameter variations, demonstrating our
model’s robustness and parameter efficiency. The performance suggests our architecture reaches a
“sweet spot” with a moderate parameter count and computational efficiency, sufficient to capture the
essential biological patterns without incurring the high risk of overfitting during fine-tuning on smaller,
task-specific datasets. As our pre-training corpus expands, we anticipate larger architectures will
become beneficial. These experimental results substantiate the parameter configurations employed in
MIX-HIC.

Hi-C Contact Maps Prediction Chromatin Loops Prediction CAGE-seq expression Prediction
A —— GM12878 — K562 B —— GM12878 —— K562 Cc —— GM12878 — K562
1.00 1.00

0.95

0.85

0.80
64 128 256 64 128 256 64 128 256
Feature Dimension Feature Dimension Feature Dimension

Figure 7: The performance across different predefined feature dimensions C' = {64, 128, 256} for
three downstream tasks in GM12878 and K562 cell lines.

Hi-C Contact Maps Prediction Chromatin Loops Prediction CAGE-seq expression Prediction
A —— GM12878 — K562 B —— GM12878 — K562 C —— GM12878 — K562
1.00 .00 1.00

4 2 4 8
Layer Layer Layer

Figure 8: The performance across different Transformer layers 7' = {2, 4, 8} for three downstream
tasks in GM 12878 and K562 cell lines.

C.4 Orthogonal Constraint Enhances Feature Diversity

Theorem 1 demonstrates that rigorous alignment can be detrimental to performance. The orthogonal
constraint effectively mitigates this issue by promoting diversity between modality-invariant and
modality-specific features, rather than enforcing strict non-overlap. To validate feature diversity, we
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compute the inner product between modality-invariant X, and modality-specific X3, features of

Hi-C contact maps, as well as between their counterparts X L, and X g in epigenomic tracks on the
datasets of the CAGE-seq expression prediction task. As summarized in Table[9] the inner products
under orthogonal constraints are orders of magnitude smaller than those without constraints (e.g.,
le—5 versus 1.077 for Hi-C contact maps on GM12878 dataset). Our analysis of inner product
results between these embeddings confirms that the constraint successfully generates near-orthogonal
representations.

Table 9: Inner products between modality-invariant and modality-specific features.

Dataset With Pre-training ‘ Without Pre-training

‘ Hi-C contact maps  Epigenomic tracks ‘ Hi-C contact maps Epigenomic tracks
GM12878 0.003 £ 3e—4 0.002 £ 0.001 1.419 £ 0.095 0.164 £ 0.059
K562 le—b +4e—4 0.002 £ 0.002 1.077 £ 0.074 0.144 £ 0.057

C.5 In Silico Perturbation Validates Biological Grounding of Chromatin Loop Detection

The presence and strength of certain epigenomic signals are highly associated with the formation of
chromatin loops [48}49]. For example, CTCF binding sites are typically located within regions of
open chromatin, identifiable as peaks in assays such as DNase-seq or ATAC-seq.

To validate that MIX-HIC learns the fundamental principle linking epigenomic signals to 3D genome
architecture, we design an in silico perturbation experiment. We hypothesize that the model’s loop
detection should be governed by the underlying epigenomic signals at the loop anchors. We focus
our analysis on 118 high-confidence chromatin loops in the K562 cell line, each characterized by
convergent CTCF motifs at their anchors (identified via FIMO [50]). We then systematically attenuate
the input epigenomic tracks (ATAC-seq and DNase-seq) by down-sampling the signal intensity of
peaks within these anchor regions at varying ratios. These perturbed epigenomic profiles are then fed
into the MIX-HIC-InferMap model (trained on GM12878) to assess the impact on loop detection.
The results are shown in Table

Using the unaltered epigenomic data, MIX-HIC successfully recalls all 118 CTCF-mediated loops.
As we progressively degrade the epigenomic signals at the loop anchors, the model’s recall for
these loops decreases. This demonstrates MIX-HIC’s predictions are mechanistically grounded
in biologically pertinent epigenomic features. This result demonstrates the model’s biological
interpretability, confirming the capture of a fundamental principle of genome organization.

Table 10: Impact of Epigenomic Signal Attenuation on MIX-HIC Loop Recall.

Varying ratio 0.0 0.5 0.7 0.8 0.9
MIX-HIC-InferMap 100% (118) 98% (116) 61% (72) 15% (18) 0% (0)

C.6 Robustness Analysis Under Noisy Conditions

The inherent noise and sparsity of Hi-C data [51}152] present a critical challenge for developing robust
and generalizable genomic models. To systematically assess the robustness of MIX-HIC, we conduct
a controlled experiment simulating low-coverage and noisy scenarios. We corrupt Hi-C contact maps
by perturbing different ratios of non-zero contacts with sparsity and Gaussian noise. Under these
varying noise levels, MIX-HIC and the supervised baseline Peakachu are evaluated on the chromatin
loop detection task using the K562 cell line dataset.

As shown in Table|[T1] the performance of Peakachu degrades sharply as noise increases, falling to
near-random performance (0.5091 AUROC) when 70% of the contacts are disturbed. In contrast,
MIX-HIC exhibits remarkable robustness, with its performance declining by less than 7% around all
noise ratios.
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We attribute this resilience to the power of our pre-training paradigm, which learns the fundamental
principles of 3D genome organization from over 1 million samples. This experiment demonstrates that
MIX-HIC develops a robust biological representation and is thus particularly suitable for analyzing
noisy or low-coverage datasets. We will add this analysis to our manuscript to further strengthen the

paper.

Table 11: AUROC comparison of MIX-HIC and Peakachu on chromatin loop detection under varying
levels of simulated noise and sparsity.

Varying ratio 0.0 0.5 0.7 0.9
Peakachu 0.8833 0.7659 0.5091 -
MIX-HIC 0.9194 0.8899 0.8754 0.8486

D Baseline Methods and Assets

In this study, the effectiveness of MIX-HIC is evaluated on three downstream tasks, including Hi-C
contact map prediction, chromatin loop detection, and CAGE-seq expression prediction. We employ
four kinds of methods involving Epiphany [5]], C.Origami [6], EPCOT-LSTM [L1], and EPCOT-
Transformer [[11]] for comparison on the Hi-C contact map prediction task. For chromatin loop
detection task, two statistical-based methods (ChromoSight [9] and HiCExplorer [22]), as well as
two supervised learning-based approaches (Peakachu [8] and DLoopCaller [10]) are utilized for
evaluation. The CAGE-seq expression prediction involves EPI-CNN [[12], EPI-Graph [[12], EPCOT-
LSTM [[L1]], and EPCOT-Transformer [11]] to compare with MIX-HIC. More details of these baselines
are described below.

 Epiphany [5]] predicts cell-type-specific Hi-C contact maps using bidirectional LSTMs to encode
epigenomic tracks.

¢ C.Origami [6] introduces a multimodal framework that predicts chromatin organization from DNA
sequence, CTCF binding signals, and epigenomic tracks, enabling the effective identification of
regulatory elements.

* ChromoSight [9] proposes a computer vision-inspired algorithm for chromatin loop detection that
employs expert-defined pattern templates, demonstrating computational efficiency across diverse
species without requiring training data.

» HiCExplorer [22] identifies significant chromatin interactions by analyzing Hi-C contact matrices,
employing binomial distribution modeling to distinguish true loops from background noise while
controlling for distance-dependent contact probability.

» Peakachu [8]] develops a supervised random forest classification framework that leverages chro-
matin interaction labels to predict chromatin loops from Hi-C contact maps, outperforming statisti-
cal enrichment methods in identifying short-range interactions.

* Xu et al. [10] propose DLoopCaller, a supervised deep learning method that predicts genome-wide
chromatin loops by integrating epigenomic tracks with raw Hi-C contact maps.

» Karbalayghareh et al. [12] extracts local features from epigenomic tacks using convolutional
neural networks (EPI-CNN) and incorporates Hi-C contact maps through graph attention networks
(EPI-Graph) to predict CAGE-seq expression.

e EPCOT [11] introduces a pre-training and fine-tuning deep learning method that leverages Trans-
former (EPCOT-Transformer) or LSTM (EPCOT-LSTM) architectures to predict Hi-C contact
maps and CAGE-seq expression profiles from epigenomic tracks and DNA sequences, achieving
generalizable representations across diverse cell types.

The methods Epiphany, C.Origami, ChromoSight, Peakachu, and DLoopCaller are licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0), while EPI-CNN, EPI-Graph,
EPCOT-Transformer, and EPCOT-LSTM are available under an Attribution-NonCommercial 4.0
International License (CC BY-NC 4.0). HiCExplorer is distributed under the GNU General Public
License v3.0 (GPL-3.0). The licenses of other open-source tools utilized in this work are summarized
in Table

20



Table 12: License of softwares used in this study.

Software License URL
Juicer MIT license https://github.com/aidenlab/juicer
pyBigWig MIT license https://github.com/deeptools/pyBigWig
hicstraw MIT license https://github.com/aidenlab/straw
Huggingface Apache-2.0 https://huggingface.co/
Scikit-Learn BSD-3-Clause https://scikit-learn.org/stable/
Numpy BSD-3-Clause https://numpy.org/
Pytorch BSD-3-Clause https://pytorch.org/
Matplotlib ~ Matplotlib License https://matplotlib.org/

E Broader Impacts and Limitations

Broader Impacts. The three-dimensional chromatin architecture fundamentally governs both cellular
differentiation and disease progression by mediating genomic interactions. This necessitates the
development of Hi-C foundation models to systematically unravel the mechanistic basis of gene
regulatory networks in both physiological and disease contexts. MIX-HIC fundamentally advances
3D genomics analysis by addressing two critical limitations of current approaches. First, they are
typically designed for single tasks with limited cross-task knowledge transfer capability. Second,
they predominantly rely on single-modality data (either Hi-C or epigenomic tracks alone) due to
the scarcity of paired multimodal datasets, resulting in an incomplete understanding of chromatin
organization.

To address these challenges, we develop MIX-HIC, the first multimodal foundation model for 3D
genomics, with three key innovations: 1) We curate the largest paired dataset (over 1 million samples)
of Hi-C and epigenomic tracks to overcome data scarcity. 2) Our novel cross-modal interaction
and mapping blocks simultaneously capture both modality-invariant and modality-specific features,
enabling a reliable complement of missing modality features. 3) As a foundation model, MIX-HIC
enables versatile adaptation to diverse downstream tasks, facilitating knowledge transfer across
different 3D genomics tasks where current approaches operate in isolation. In summary, MIX-
HIC provides a universal computational platform for systematically deciphering the coordinated
mechanisms between chromatin spatial organization and epigenetic regulation, while pioneering new
avenues for multimodal data integration in disease mechanism research, precision medicine, and
synthetic biology applications.

Limitations. Although MIX-HIC has exhibited promising performance, several areas warrant further
improvement. Current methods in the 3D genome field for processing long-range DNA sequences are
often time-intensive. In future work, MIX-HIC could further enhance its capabilities by integrating
DNA sequence information through leveraging recent advancements like MambaDNA [20] and
HyenaDNA [53] to facilitate feature extraction of genomic sequences. Additionally, while the current
version of MIX-HIC serves as a bulk-seq level foundation model, developing a single-cell version
through the integration of large-scale multimodal single-cell data would be valuable to effectively
address the inherent sparsity and noise in single-cell analyses. Finally, the diversity of cell lines
in our pre-training set is an area for future enhancement. Expanding the pre-training corpus by
integrating the paired Hi-C and epigenomic datasets available from ENCODE will broaden MIX-
HIC’s applicability across a wider range of biological contexts. Overall, this study presents MIX-HIC,
a versatile foundation model that integrates 3D genome structures with chromatin accessibility,
providing an efficient framework for advancing genomic organization research and related fields.
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paper’s contributions and scope?
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Justification: The contributions of this work are summarized in the introduction section,
while the score is clearly described in the abstract.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.
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Justification: The proofs of the theorems are detailed in Appendix [B]
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The proofs can either appear in the main paper or the supplemental material, but if
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If the contribution is a dataset and/or model, the authors should describe the steps taken
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be necessary to either make it possible for others to replicate the model with the same
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all referenced sources appropriately, which are provided in Ap-
pendix [D}]
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not introduce new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: All datasets used in this work stem from humans are anonymized, and sourced
from publicly available publications to ensure privacy compliance. The source publications
address key considerations regarding human subjects research.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: All datasets used in this work stem from humans are anonymized, and sourced
from publicly available publications to ensure privacy compliance. The source publications
address key considerations regarding human subjects research.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The LLM tools are only used for writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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