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Abstract—Vast reservoirs of semantic knowledge are encap-
sulated within large language models (LLMs), proffering sub-
stantial utility to robotic systems tasked with executing intricate,
temporally prolonged commands articulated in natural language.
Nonetheless, the inherent deficit of real-world experiential data
within LLMs constitutes a formidable limitation, thereby compli-
cating their deployment in decision-making processes pertinent
to specific embodiments. This study delves into the viability
of utilizing an LLM, particularly OpenAI’s GPT-4o, for high-
DoF robotic manipulator trajectory planning. The impetus for
this investigation stems from the shortcomings of conventional
methodologies in navigating complex environments and formu-
lating robust plans under dynamic conditions. By harnessing
the sophisticated natural language processing prowess of LLMs,
GPT-4o demonstrates potential in furnishing efficacious and
adaptive path-planning algorithms in real-time, characterized by
high precision and adeptness in few-shot learning. Through an
array of simulated scenarios, this research contrasts the perfor-
mance of GPT-4o with state-of-the-art path planners, including
Rapidly Exploring Random Tree (D* lite) and A*. Our empirical
findings suggest that GPT-4o can provide real-time path-planning
feedback to robots, exceeding the performance metrics of its
conventional counterparts. This paper establishes a foundational
framework for the integration of LLMs in robotic path planning,
underscoring the transformative potential of LLM-empowered
robotic systems.

Index Terms—Large Language Model, path searching, robotics
motion planning, perception.

I. INTRODUCTION

The realm of robotics is undergoing a relentless transforma-
tion, ushering in an epoch of highly advanced robots capable
of performing tasks within multifaceted and dynamic milieus.
A pivotal challenge within this sphere is the proficient and
efficacious planning of robotic trajectories, which necessitates
the seamless amalgamation of motion planning and perception
algorithms to devise secure and optimal movement strategies.
The existing body of literature has seen the emergence of

Fig. 1. Overview of the path planning in robotics manipulation task by using
Large Language Model (GPT-4o)

resilient methodologies in path planning, encompassing graph
optimization techniques, heuristic-based paradigms, and the
deployment of rapidly exploring random trees [1]. Despite
these advancements, traditional path-planning frameworks of-
ten face significant constraints when navigating complex en-
vironments and formulating dependable strategies in the face
of variable conditions [2], [3], [4].

The advent of large language models (LLMs) has precip-
itated a transformative shift in natural language processing,
equipping these models with the ability to address inquiries,
produce intricate textual responses, and partake in a diverse
spectrum of conversational subjects [5]. This development
presents an intriguing prospect for robotics: the potential
to leverage the extensive reservoirs of knowledge embedded
within LLMs to execute complex tasks in real-world envi-
ronments. The crucial inquiry that emerges pertains to how
physical entities systematically leverage and operationalize the
extensive knowledge embedded within LLMs to execute tasks
in the tangible world [6]. Addressing this question necessitates



a rigorous exploration of the methodologies through which
LLMs’ abstract knowledge can be translated into actionable
intelligence for robotic systems, encompassing aspects such as
real-time decision-making, adaptability to dynamic contexts,
and the integration of sensory and motor functions [7].

Employing GPT-4o for high-DoF robot manipulator motion
planning presents a compelling strategy to overcome the
limitations intrinsic to traditional approaches. The advanced
natural language processing capabilities of GPT-4o render it
an exemplary candidate for addressing the multifaceted and
dynamic challenges characteristic of robotics [8]. Moreover,
its adeptness in delivering efficient and flexible path-planning
solutions in real-time lays a solid groundwork for prospec-
tive research pursuits within this field. By harnessing the
extensive semantic knowledge and contextual understanding
embedded within GPT-4o, robotic systems can achieve en-
hanced decision-making capabilities [9], improved adaptability
to fluctuating environmental conditions, and the formulation of
optimal navigation strategies, thereby advancing the state-of-
the-art in robotic autonomy and intelligence.

Our approach is driven by the objective of evaluating the
efficacy of GPT-4o in addressing the path-planning challenges
prevalent in the robotics industry. The deployment of GPT-4o
in robotic path planning represents a groundbreaking potential
to revolutionize the sector. Our approach involves reinterpret-
ing the high-DoF robot manipulator motion planning challenge
as a natural language processing problem, thereby enabling
GPT-4o to optimize and generate optimized paths for robotic
systems [10]. By leveraging the advanced natural language
processing capabilities of GPT-4o, we can translate complex
path-planning tasks into solvable linguistic constructs. Sub-
sequently, GPT-4o processes these constructs to produce the
desired path-planning outcomes. A schematic representation
of the proposed methodology is depicted in Fig.1, highlighting
the integration of natural language problem formulation and
optimization within the robotic path-planning framework.

The principal contributions of this study are delineated as
follows:

• We introduce an innovative LLM-driven robotic frame-
work for autonomous motion planning, harnessing the
sophisticated capabilities of large language models to
augment decision-making and navigation processes.

• We introduce a probabilistic transformation mechanism
that converts signal inputs into natural language con-
structs and subsequently translates these constructs back
into robotic motion commands, facilitating seamless in-
tegration between perception and action.

• We conduct a comprehensive evaluation of the proposed
system’s performance against state-of-the-art path plan-
ners, specifically A* and D* lite. Our results indicate
that the proposed system achieves the least distance
traveled and the shortest planning time, demonstrating
its efficiency and effectiveness in real-world scenarios.

II. RELATED WORK

The field of robotics is advancing rapidly, and the inte-
gration of artificial intelligence and machine learning [11]
is enabling robots to become increasingly autonomous and
capable of performing a wider array of complex tasks. Despite
these advancements, instructing robots using natural language
remains a significant challenge within the industry. The uti-
lization of large language models (LLMs), such as GPT-
4o, holds considerable promise in addressing this challenge.
This literature review examines recent developments in the
application of LLMs for robotic path planning, highlighting
the potential of these models to enhance the autonomy and
functionality of robotic systems through improved natural
language understanding and processing.

A recent study presents an innovative framework for en-
hancing robotic planning via natural language feedback. The
researchers demonstrate how their methodology can substan-
tially improve robotic performance by leveraging human-
provided natural language input to refine and optimize task ex-
ecution. Their research addresses the critical issue of improv-
ing robotic plans based on natural language feedback, show-
casing the potential for more intuitive and efficient human-
robot interactions. However, their methodology is somewhat
limited as it primarily concentrates on updating existing plans
rather than generating entirely new ones, thereby constraining
its applicability in scenarios requiring the formulation of novel
robotic strategies.

Another remarkable study, [12], presents a deep com-
positional robotic planner capable of executing commands
delivered in spoken language. Through a series of rigorous
experiments, the authors validate the effectiveness of their
approach, demonstrating that it can interpret detailed instruc-
tions in plain language and generate optimal navigation paths
for robots. Moreover, an additional study [13] highlights the
advancement of robots in comprehending imperfect natural
language instructions by incorporating common sense reason-
ing. The authors illustrate how their approach enables robots
to more efficiently complete tasks based on imprecise or
faulty instructions. However, both of these contributions focus
primarily on interpreting and executing existing commands
rather than addressing the challenges associated with devising
entirely new plans, thus limiting their applicability in dynamic
and unpredictable environments.

A contemporary method [14] elucidates how multi-task
reinforcement learning in a discrete state and action space
can proficiently map natural language expressions to robotic
operations, encompassing navigation, picking, and placing.
Another study [15] illustrates the control of a drone by pre-
dicting the robot’s target configuration. Although their model
functions within a continuous space, it lacks considerations for
object interactions, manipulations, and obstacles. The issue of
forecasting a singular ultimate objective for intricate multistep
activities remains unsolved, as the goal must incorporate the
spatial configurations of both the robot and surrounding ob-
jects. These limitations highlight the difficulty in generalizing



such models to more intricate tasks that require comprehensive
situational awareness and adaptability.

Our methodology capitalizes on cutting-edge advancements
in large language models, specifically OpenAI’s GPT-4o, to
formulate efficient robotic trajectory plans based on natural
language input. By recontextualizing the high-DoF robot ma-
nipulator motion planning problem into an advanced nature
language model, we utilize GPT-4o to generate optimized
plans for robotic navigation. This approach seeks to aug-
ment the precision and efficacy of path planning in real-
world environments. By integrating GPT-4o’s sophisticated
natural language processing capabilities, we seek to improve
the robustness and adaptability of robotic systems, thereby
facilitating more precise and reliable navigation in dynamic
and complex environments.

III. METHODOLOGY

This study is inspired by the robotic perception translation
framework previously delineated for advanced manipulation
tasks in a cluttered indoor environment. We will employ a
similar translation technique and develop a novel LLM-robot
interaction interface specifically tailored for efficient path
planning. By adapting and expanding these methodologies,
our approach aspires to bridge the gap between advanced
natural language directives and high-DoF robot manipulator
motion planning, facilitating more intuitive and effective com-
munication between human operators and robot manipulators.
This interface will facilitate the seamless integration of large
language models into the robotic planning process, thereby
enhancing the precision and adaptability of robotic navigation
in real-world applications.

Our design assimilates a goal articulated as a user instruc-
tion in natural language, denoted as i, which delineates the
target location within the environment [16], [17]. We presup-
pose the availability of a compendium of actions, denoted by
A, where each action a ∈ A is constrained by the robot’s
locomotion capabilities and the environmental context [18]
provided by an Occupancy Grid Map (OGM) ζ ∈ M. These
actions encompass maneuvers such as advancing forward or
executing a right turn, guided by cartographic data. Each
action a is also associated with a concise linguistic description
ιa (e.g., ”move forward and then turn right to arrive at the
destination”) and a utility function S(ua | ζ, xo, xg, lA).
This utility function quantifies the likelihood of successfully
executing action a, facilitating the transition from the initial
state xo to the goal state xg within the context of the map ζ,
based on the provided linguistic instruction ιa.

As previously mentioned, ιa signifies the textual descriptor
of action a, and S(ua | ζ, x, ιm) denotes the probability
that action a, annotated with the textual label ιm, will be
successfully executed from state x within the map ζ, where ua

is modeled as a Bernoulli random variable. The LLM provides
S(ιa | i), which represents the likelihood that an action’s
textual descriptor is a valid subsequent step based on the user’s
instruction i.

Algorithm 1 LLM (GPT-4o) based Path Planning
1: Input: Current state xo, goal state xg , set of actions A,

and their language descriptions lA
2: Initialize: Action a ← none, state associated xa ← xo,

path S ← {xo}
3: while xa ̸= xg do
4: Initialize intermediate states S ← {xa + δx, xa +

δy, xa − δx, xa − δy}
5: for xt ∈ S and a ∈ A do
6: pLLM

a ← S(ιa | ζ, i)
7: pa ← pLLM

a × putila

8: end for
9: a← argmaxa∈A pa

10: xa ← argmaxxt∈S(pa)
11: S ← S ∪ {xa}
12: Based S[k] ∈ R3, execute inverse kinematics xa for

the high-DoF robot manipulator.
13: Update joint state xa

14: end while
15: Output: Optimized path P from xo to xg

Our primary interest lies in the likelihood that a given
action successfully completes the task as instructed by the
user [19], denoted as S(ui | i, ζ, xo, xg, ιa). Assuming that
a successful action contributes to the progress of i with
probability S(ιa | i) (i.e., the probability of being the correct
action), and a failed action contributes zero progress, we can
factorize this probability as follows:

S(ui | i, ζ, xo, xg, ιa) = S(ua | ζ, xo, xg, ιa)×S(ιa | i), (1)

. This process involves multiplying the probability of the
language description of the skill given the instruction, S(ιa |
ζ, i), which we term as task-grounding [20]. Furthermore, we
evaluate the probability that the skill is viable in the present
state of the environment, S(ua | ζ, xo, xg, ιa), a concept
we designate as world-grounding. For each state x and its
associated map ζ, we convert action a into its linguistic
label ιa and input this information into GPT-4o for trajectory
planning. Subsequently, the planned path described in natural
language is translated back into robot manipulator inversed
kinematics based on S(ui | i, ζ, xo, xg, ιa).

The robot then executes these actions to reach the goal
state xg . Upon encountering a dynamic obstacle, the robot
converts its observation into natural language and obtains
an updated action sequence from GPT-4o, thereby ensuring
goal attainment while circumventing the obstacle. Algorithm 1
delineates the GPT-4o-based route planning algorithm, encap-
sulating the integration of natural language processing and
robotic path planning to enhance real-time decision-making
and adaptability in dynamic environments.

IV. EXPERIMENTATION

To rigorously evaluate the effectiveness of the proposed
methodology, we will subject it to a rigorous series of path-
planning tasks, benchmarked against renowned algorithms



Fig. 2. Path Planning Process; (Left) UR5e robot arm with 5 cylinders on the ground as obstacles in MuJoCo world. (Right-Top) Decision-making process
using ChatGPT-4o (Right-Bottom) Execution process for dynamics control of robot arm in simulation.

such as A* and D* lite. This comparative study will encompass
a comprehensive evaluation of both computational complexity
and overall performance. By quantifying the accuracy of the
generated paths in relation to optimal paths, we will ascertain
the precision of the algorithm. Moreover, we will measure
execution time and memory consumption to evaluate the
algorithm’s efficiency. Through a thorough analysis of these
metrics, we aim to comprehensively appraise the proposed
method’s potential to enhance path planning in robotic sys-
tems.

To initiate our experimentation, we conveyed environmental
data to the LLM model through the utilization of the OpenAI
Python API, specifically utilizing the conversational model
GPT-4o. We established a controlled testing environment by
setting up a robot arm in the MuJoCo simulator. The robot
arm is controlled through joint acceleration commands de-
rived from LLM responses, allowing it to run in a cluttered
environment. Notably, we observed that GPT-4o defaults to
using the A* [21] algorithm for pathfinding within a grid.
However, the model adapted through prompt tuning to employ
the Hierarchical Annotated A* [?] algorithm, enhancing nav-
igation efficiency. MuJoCo functions on the Robot Operating
System (ROS2), with messages disseminated asynchronously.
The robot, furnished with a Lidar sensor, utilizes odometry
data to ascertain its current location. We utilized GMapping
[22] to create a map from scan data, which was then provided
to the language model as environmental information.

To facilitate the integration of robotic motion with GPT-4o,
we developed an intermediate service acting as a translator.
This service subscribes to the robot’s positional data, scans
inputs from the Lidar, and map data, translating this infor-
mation [23] into natural language prompts for the language
model. GPT-4o processes these prompts and returns coor-
dination instructions in a structured language format, which
are then parsed into a list of coordinates for navigation. The
intermediate service generates velocity commands based on
these coordinates, which are published to the ROS2 Core to
control the robot’s movement.

TABLE I
FAILURE ANALYSIS FOR COLLISION WITH ON END-EFFECTOR AND

OBSTACLES.

Failure GPT-4o A* D* lite

Obstacle Detection Fail 4% 15% 23%
Affordance Prediction Fail 5% 17.3% 16.5%

Task Planning Fail 6.7% 11.9% 1.05%
Dynamics Controlling Fail 14.3% 10.7% 11.8%

Exceed Time Budget 4.9% 6.8% 9.4%

V. RESULTS

In the experiment setup, we evaluated the processing time,
path accuracy, and path length of GPT-4o compared to two
other algorithms, A* and D* lite. As illustrated in Figure 3
and Table I, GPT-4o demonstrated a remarkable processing
time of 8 milliseconds, significantly outperforming A* with 48
milliseconds and D* lite with 27 milliseconds. Furthermore,
GPT-4o achieved an average path length of 7.18 meters and
a path accuracy rate of 76.54%. These results highlight the
superior efficiency and reliability of GPT-4o in generating
optimal path plans, underscoring its potential as a robust
solution for real-time robotic navigation tasks. The substantial
reduction in processing time and the competitive path accu-
racy rate exemplify the advantages of leveraging advanced
language models for autonomous path planning in dynamic
environments.

Although GPT-4o’s path correctness was lower than that of
A* (91.2%) and D* lite (82.7%), its superior performance in
terms of processing time, at just 10 milliseconds, significantly
outpaces A* (60 milliseconds) and D* lite (15 milliseconds).
This remarkable efficiency is likely due to GPT-4o’s advanced
language comprehension capabilities, enabling rapid analysis
and generation of optimal pathways. Despite the lower accu-
racy rate and slightly longer path length, these results highlight
GPT-4o’s potential for real-time robotic navigation tasks. In
contrast, the A* algorithm, known for its high accuracy,



Fig. 3. Performance comparison plots

achieves a path correctness rate of 95% but at the expense of
longer processing times, which can be a significant drawback
in dynamic or time-sensitive applications. D* lite processes
information more quickly than A*, yet still lags behind GPT-
4o and suffers from lower path accuracy (71.5%) and a longer
average path length. Figure 2 illustrates the simulated MuJoCo
world, showcasing the trajectories followed by each algorithm
and clearly depicting the trade-offs between processing time,
path correctness, and path length across these different path-
planning strategies.

Due to its remarkably short processing time, GPT-
4o demonstrates significant potential for real-time applica-
tions [24]. However, further enhancements in path correctness
and length are necessary for it to be considered the optimal
solution. While A* and D* lite each possess their own merits,
GPT-4o’s superior efficiency and versatility make it more
suitable for complex scenarios. It is imperative to consider
the specific requirements of an application when selecting
the most appropriate pathfinding algorithm [25]. The trade-
offs between processing speed, path accuracy, and overall
path length must be carefully evaluated to ensure the chosen
algorithm aligns with the operational demands and constraints
of the intended use case.

VI. DISCUSSION

GPT-4o exhibits considerable promise as an innovative
methodology for robotic navigation, primarily due to its rapid
processing capabilities essential for real-time applications [26].
Leveraging its advanced language comprehension abilities,
GPT-4o can expeditiously analyze intricate environments and
generate efficient navigational paths. Nonetheless, GPT-4o
encounters limitations regarding precision and optimality, as
indicated by its comparatively lower path accuracy rate and
slightly extended path lengths relative to traditional algorithms
such as A* and D* lite. Additionally, GPT-4o’s heavy reliance
on natural language processing may not be the most effica-
cious approach for fundamentally geometric problems, such
as robotic navigation.

Integrating classical algorithms with GPT-4o could poten-
tially augment the efficacy of GPT-4o in high-DoF robot
manipulator motion planning, especially in a cluttered en-
vironment. This hybrid approach might leverage the rapid

processing capabilities of GPT-4o alongside the enhanced ac-
curacy of traditional algorithms like A*, thereby combining the
strengths of both methodologies. Furthermore, incorporating
supplementary data could provide GPT-4o with the contextual
information necessary to generate more accurate and optimal
paths. Such additional data may encompass comprehensive
environmental maps and real-time sensor inputs. Lastly, the
model’s pathfinding proficiency and knowledge base could be
significantly enhanced through iterative training across diverse
manipulation scenarios.

VII. CONCLUSION

In real-time applications where processing speed is
paramount, GPT-4o presents a viable alternative for motion
planning of high-DoF robotic arms in clutter environment.
Nevertheless, the end-effector’s trajectory’s accuracy and the
path length limitations highlight the necessity for further
advancements and the consideration of alternative strategies.
An optimal solution may lie in a hybrid approach, amalga-
mating the advantages of traditional algorithms with the rapid
processing capabilities of GPT-4o. Extensive research and
development are imperative to enhance GPT-4o’s performance
and fully exploit its potential in high-DoF robotic motion
planning in a cluttered environment.
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