Under review as a conference paper at ICLR 2026

STARDOJO: BENCHMARKING OPEN-ENDED BEHAV-
IORS OF AGENTIC MULTIMODAL LLMS IN PRODUC-
TION—LIVING SIMULATIONS WITH STARDEW VALLEY

Anonymous authors
Paper under double-blind review

ABSTRACT

Autonomous agents navigating human society must master both production activi-
ties and social interactions, yet existing benchmarks rarely evaluate these skills si-
multaneously. To bridge this gap, we introduce StarDojo, a novel benchmark based
on Stardew Valley, designed to assess Al agents in open-ended production—living
simulations. In StarDojo, agents are tasked to perform essential livelihood activities
such as farming and crafting, while simultaneously engaging in social interactions
to establish relationships within a vibrant community. StarDojo features 1,000
meticulously curated tasks across five key domains: farming, crafting, exploration,
combat, and social interactions. Additionally, we provide a compact subset of
100 representative tasks for efficient model evaluation. The benchmark offers a
unified, user-friendly interface that eliminates the need for keyboard and mouse
control, supports all major operating systems, and enables the parallel execution of
multiple environment instances, making it particularly well-suited for evaluating
the most capable foundation agents, powered by multimodal large language models
(MLLMs). Extensive evaluations of state-of-the-art MLLMs agents demonstrate
substantial limitations, with the best-performing model, GPT-4.1, achieving only
a 12.7% success rate, primarily due to challenges in visual understanding, multi-
modal reasoning and low-level manipulation. As a user-friendly environment and
benchmark, StarDojo aims to facilitate further research towards robust, open-ended
agents in complex production-living environments. Code and demos can be found
at https://stardojo2025.github.io/stardojo.

1 INTRODUCTION

The complexity of human society is embodied in “production-living systems” (Fu et al.,|2023)), where
individuals simultaneously engage in resource-generating activities (like farming, manufacturing,
and crafting) while participating in social exchanges, cultural practices, and adaptive responses to
environmental changes. These systems represent the fundamental ways humans navigate the world,
requiring constant balancing between productive output, resource management, social integration,
and environmental adaptation. Developing human-level agentic multimodal LLMs (MLLMs) that
can navigate production-living systems represents a crucial frontier in Al research, moving beyond
narrow task completions such as question answering (Achiam et al., [2023)), code generation (Li
et al.,|2022) and math reasoning (Irinh et al.||2024), towards systems that can handle the interplay
between productive activities and social dynamics. This comprehensive capability is essential for
Artificial General Intelligence (AGI), as it encompasses the holistic integration of cognitive, practical,
and social intelligence that has enabled human thriving across diverse environments. However, the
capability is seldom evaluated by existing interactive benchmarks such as Atari (Bellemare et al.|
2013), PySC2 (Vinyals et al.,|2019), MineDojo (Fan et al., 2022) and OSWorld (Xie et al., 2025).

To bridge the gap, we introduce StarDojo, a novel environment and benchmark consisting of 1,000
comprehensive tasks based on the production-living dynamics of the popular simulation game,
Stardew Valley. As illustrated in Figure[I] agents undertake tasks such as clearing farmland, tilling
soil, planting and watering crops, harvesting produce, raising animals, mining and foraging for
resources, and crafting essential tools and equipment. Additionally, agents must explore diverse
maps, collect various items, combat monsters, trade with merchants to generate income, upgrade and

https://stardojo2025.github.io/stardojo

Under review as a conference paper at ICLR 2026

& Farming Festival Wedding Interaction 2% Mining & Combat

G e

Chopping Wood Foraging i Midnight

Figure 1: StarDojo leverages the open-world richness of Stardew Valley to provide a diverse array
of scenarios and activities. Agents are required not only to engage in a wide range of production
activities, such as farming, crafting, mining, logging, and animal husbandry, but also to participate in
various social events, including trading, conversing with NPCs, and even starting families. In addition,
agents need to adapt to dynamic changes in time and weather, thereby reflecting the multifaceted
nature of real-world living and social interaction.

expand their farms, and complete numerous in-game quests. Social progress involves participating
in festivals and community events, building interpersonal relationships, and may eventually lead
to marriage and raising children. The environment realistically simulates time, stamina, weather
patterns, and seasonal cycles, all of which significantly impact both production tasks and social
interactions, presenting further challenges for agents. To facilitate development and evaluation for
researchers, we also present StarDojo-Lite, a curated subset comprising 100 core tasks that focus on
the essential skills typically encountered during the game’s early stages.

To facilitate the development and evaluation of agent behaviors, StarDojo offers four key features: 1)
Unified User-friendly Interface: Provides an intuitive Python interface to interact seamlessly with
Stardew Valley’s game engine implemented in C#, simplifying interaction and internal state capture,
eliminating the need for manual screenshots and keyboard/mouse inputs to obtain observation and
action. 2) Automated Evaluation. Includes comprehensive evaluation scripts for all tasks, ensuring
reliable and reproducible agent performance assessments. 3) System Compatibility. Supports major
operating systems (Ubuntu, macOS, and Windows) to ensure wide accessibility. 4) Parallelized
Environments. Allows multiple headless environment instances to run concurrently, significantly
enhancing efficiency for evaluation and data collection.

Through extensive evaluations, we demonstrate that tasks within StarDojo present significant chal-
lenges even for agents with state-of-the-art MLLMs. Our assessments cover cutting-edge models,
including GPT-4.1 (& mini) 2025), Claude-3.7 Sonnet (Anthropicl 2025), Gemini 2.5

Pro (Googlel 2025)), and the open-source Llama 4 Maverick (Metal 2025), Qwen2.5-VL-72B
2025) and Gemma 3 27B 2025). These agents achieve performance ranging from

4% to 12.7% on the StarDojo-Lite task suite. While agents successfully complete some easy-level
tasks requiring fewer than 30 steps, they exhibit near-zero success rates on medium and hard tasks
demanding extended action sequences. Additionally, tasks involving long-term navigation and combat
are particularly challenging. We observed that even advanced models struggle significantly with
accurately identifying crucial visual elements, such as character locations, entrances, trees, NPCs,
and crops, which makes them difficult to determine whether the object is already within the reach of
interaction. This makes it hard for them to tell whether something is close enough to interact with,
which in turn prevents them from finishing tasks that require moving across different areas or going

Under review as a conference paper at ICLR 2026

in and out of buildings, impeding their ability to engage in comprehensive long-term planning. We
release StarDojo as an open-source environment and benchmark, providing setup instructions, robust
evaluation scripts, comprehensive documentation, and baseline implementations. We hope it can
facilitate research into robust, open-ended decision-making agents capable of lifelong learning and
long-term planning in production-living systems.

Table 1: Comparison of StarDojo with representative existing environments. The columns indicate
whether the environment supports open-ended interaction and continuous learning, evaluates the
ability to perform long-term planning, reflects scenarios relevant to real-world daily life, includes
production activities (e.g., farming, hunting, and crafting), simulates human society with social
interactions, implements a realistic economy supporting production and social activities, and provides
language-based APIs for interaction with LLMs.

Environment Open- Long-Term Routine Production Social Economy Language
Endness Planning Planning Activities Interaction System APIs

Atari (Bellemare et al .| [2013) X X X X X X X
VirtualHome (Puig et al.| 2018) X X v X X X X
SMAC (Samvelyan et al.}2019) X X X X X X X
TextWorld (Coté et al.|[2019) X X v X X X v
Smallville (Park et al., 2023) v v v X v X v
OSWorld (Xie et al.,[2025) X v v X X X v
Crafter (Hafner, [2021) v X X v X X X
MineDojo (Fan et al.,2022) v v X v X X v
CivRealm (Qi1 et al.| [2024) v v X v v v v
StarDojo Vv v Vv Vv v v v

2 RELATED WORK

Benchmarks for MLLLMs Agents. The development of robust benchmarks for evaluating decision-
making agents across various scenarios has been a critical focus in Al research. Traditional re-
inforcement learning (RL) benchmarks (Bellemare et al., |2013} [Todorov et al., 2012 |Guss et al.|
2019; Samvelyan et al., [2019) predominantly emphasize low-level control tasks and non-realistic
environments. More realistic simulators (Chang et al.l 2017 |[Kolve et al., 2017; [Li et al.| 2021}
Puig et al.| 2023 2018]), usually focus on embodied tasks in household scenarios, lacking significant
environmental dynamics and diverse social activities. Recent advancements in generative agents
have enabled large language models (LLMs) to simulate human social behaviors in interactive en-
vironments (Park et al.| 2023} |Albrecht et al., 2022; |/C6té et al., [2019). Their limited action spaces,
primarily restricted to dialogue, hinder engagement in broader, real-world-inspired tasks that involve
production, consumption, and resource management. On the other side, while GUI benchmarks (Shi
et al.L 2017 Zhou et al.,|2023; |[Koh et al., [2024; Xie et al., [2025) also provide interactive environ-
ments, they focus on short-term software manipulations. The most relevant work is MineDojo (Fan
et al.| 2022)), which offers a diverse range of tasks within the open-ended environment of Minecraft.
However, its gameplay primarily focuses on interactions with nature, with limited opportunities for
human-like social interactions. Additionally, its complex 3D navigation controls pose significant
challenges, particularly for LLM-based agents to complete even simple tasks, further limiting its
suitability for more complex activities. Another relevant benchmark, CivRealm (Qi et al., [2024),
evaluates agents’ strategic decision-making at a country level within a turn-based, Civilization-like
game. While CivRealm presents a variety of tasks including managing population, production, and
economy, its scope remains at a macro-strategic level, distinct from StarDojo’s focus on granular,
individual-level decision-making. Additionally, recent works (Paglieri et al., 2024; [Zheng et al.|
2025)) tend to evaluate MLLMs on traditionally RL environments in simple game scenarios, lacking
semantic richness and social interaction.

As shown in Table[I] StarDojo addresses the limitations of prior benchmarks by providing a com-
prehensive, open-ended evaluation platform for decision-making agents in a dynamic environment.
StarDojo allows for rich, multimodal interactions that encompass farming, trading, crafting, explo-
ration, and social relationships. Its unique combination of complexity, realism, and diversity makes it
a valuable testbed for advancing agents in real-world-like environments.

MLLMs Agents. Traditional reinforcement learning (RL) agents (Mnih et al., 2015} |Lillicrap, |2015;
Schulman et al.;[2017; Haarnoja et al.| 2018)) primarily focus on low-level control and fail to leverage
natural language understanding, making them unsuitable for tasks requiring complex reasoning, long-
term planning, and social interactions. Recent advancements in LLM-based agents have significantly

Under review as a conference paper at ICLR 2026

expanded Al capabilities by integrating reasoning mechanisms such as chain-of-thought (CoT)
prompting (Yao et al.,2023) and reflection (Shinn et al., 2023). Modular frameworks and multi-agent
architectures have enabled LLM-based agents to achieve remarkable performance in tasks like code
generation (Hong et al., [2023; Wu et al., 2023; Wang et al., 2024b)) and GUI manipulation (Zheng
et al.,|2024; Zhang et al., [2024;|Wu et al., 2024} |Wang et al., [2024a)). Additionally, Voyager (Wang
et al.l 2023) has demonstrated strong in-context lifelong learning abilities, showcasing exceptional
proficiency in the open-ended world of Minecraft. However, Voyager’s strong reliance on built-in
APIs makes it challenging to adapt to other games. Cradle (Tan et al.| 2024) successfully completes
meaningful tasks across multiple commercial video games and software applications with a unified
interface without the need to access APIs. Its preliminary experiments in Stardew Valley highlight
the limitations of current state-of-the-art agents, particularly in handling multi-modal understanding,
long-term planning, and resource management, which reveals the importance of extending Stardew
Valley as a well-developed benchmark for decision-making agents.

3 StArRDOJO

3.1 INTRODUCTION TO STARDEW VALLEY

Stardew Valley is a globally popular open-ended simulation RPG game where players inherit a
run-down farm. Players must thoughtfully manage their farming strategies, explore the surrounding
village, build meaningful relationships with villagers, and gather diverse resources to revitalize the
farm. More details can be found in Appendix B}

Realistic Dynamics. The game incorporates a realistic cycle, featuring days that run from 6 AM to 2
AM, a daily energy system, and four 28-day seasons with changing weather, all of which influence
both production and social activities. Success depends on effective time and energy management, as
well as the ability to quickly adapt to dynamics.

Rich Production Activities. As the core gameplay of Stardew Valley, players can engage in a
variety of production activities such as clearing land, growing crops, raising animals, mining, and
foraging. These activities improve character skills and unlock over 100 crafting recipes for useful
tools, machinery, and decorative items that significantly enhance productivity and efficiency.

Diverse Social Interaction. The game also features social interaction with 45 unique non-player
characters (NPCs), each with their own personality and routines. Players can build friendships and
may even date, marry, and raise children with villagers. Improving friendships not only enriches the
narrative experience but also facilitates production, as villagers may send useful gifts, share recipes,
or offer assistance in various activities. Rich town festivals and quests provide further opportunities
for community engagement and resource gathering.

Comprehensive Economic System. Agents must engage in strategic resource management, invest-
ment, and efficient planning to generate income from both production and social activities while
adapting to seasonal demands and market conditions to ensure long-term financial success.

Overall, Stardew Valley serves as an ideal environment for decision-making agents in the pro-
duction—living simulation. Its well-integrated systems of time management, resource allocation,
economic planning, and social interaction provide a dynamic and complex environment that requires
strategic thinking and adaptability. The game’s structured yet open-ended nature makes it an excellent
testbed for evaluating decision-making capabilities in simulated real-world conditions.

3.2 ARCHITECTURE

As a typical commercial video game, Stardew Valley only supports human-like interaction, e.g.,
observing gameplay through screenshots and using keyboard and mouse to control. Additionally,
the game window must remain active and in the foreground, significantly restricting automated
gameplay and preventing simultaneous execution of multiple instances. As shown in Figure 2] to
overcome these limitations, we introduce the carefully designed StarDojo environment, enabling
efficient interaction and comprehensive evaluation of agents.

Unified User-friendly Interface. We present StarDojoMod, a novel extension built upon the Stardew
Modding API (SMAPI)(Plamondon-Willard), which is a widely adopted, open-source modding
framework designed specifically for Stardew Valley. SMAPI offers developers extensive APIs that
expose key game events and internal states, facilitating the creation of interactive and sophisticated
mods. Based on SMAPI, StarDojoMod provides structured and efficient interactions between agents
and the game environment. It communicates in real-time with the Stardew Valley game engine
through a socket server, granting agents direct access to rendered gameplay images, saving the

Under review as a conference paper at ICLR 2026

‘port': 6000,
'new_game': False
'needs_pausing": True

Confi (Sow 5 Dirt with Cauliflower Seeds:
9 L id: 18, object: Dirt, quantity: 5

nitiali
1 Reward Task Evaluator ‘% Task Manager
t

Initialize

* Energy: 270 Inventory:
Time: 6:00 AM 0: Axe
1: Hoe T
. Money: 500
Observation Item iz hand: Axe 2 Scythe
?‘[";ot'?]d?gggfs Game State |||*
@SS _ 11, 0]: Parsnip Seeds " 5
Agent - [-1, 1]: Weeds StarDojoMod L
4‘» Move P» Use 8 Craft
Command %

. Choose Choose
Action Option[% Interact. Item

Stardew Valley Env

StarDojo Env

Figure 2: StarDojo environment is initiated by configurable task files. It communicates with parallel
game engines through StarDojoMod to obtain internal game states and execute commands, which
will be encapsulated as observations and actions by the Python Wrapper.

time-consuming screen captures, internal game states (such as character positions, statuses, and
environmental information), and enabling diverse callable functions as action skills beyond traditional
keyboard and mouse inputs. Moreover, we implemented a configurable pause-and-resume mechanism
by directly modifying the inner states of the game, allowing the game to pause during model inference
and agent planning, and resume before action execution. Inherited from SMAPI, StarDojoMod is
implemented in C# to be consistent with the game engine. To enhance ease-of-use and accessibility
of the environment, we provide a user-friendly Python Wrapper based on the StarDojoMod for
observation retrieval, action execution, and task customization, empowering users to engage with the
StarDojo environment effortlessly.

System Compatibility. Stardew Valley is one of the few games that can be played on all mainstream
operating systems (Linux, macOS and Windows). We also ensured the compatibility of StarDojoMod
and the Python Wrapper, enabling the entire environment to run seamlessly across different systems.

Parallel Execution. Our architecture is designed for scalability and parallel execution. Each instance
of Stardew Valley is independently managed through unique ports, enabling simultaneous control of
multiple game instances without interference. Communication efficiency is further enhanced through
the use of shared memory, reducing observation retrieval time to as little as 30 ms. Furthermore,
StarDojoMod supports headless operation through the X Virtual Framebuffer (Xvfb), enabling
compatibility with Linux systems without graphical interfaces, thus broadening accessibility across
diverse hardware and system configurations.

3.3 OBSERVATION AND ACTION SPACES

Observation Space. StarDojo offers a comprehensive observation space that integrates both visual
and textual modalities to accommodate a wide range of agent architectures. Each observation
includes a gameplay screenshot alongside detailed textual information describing the game state.
This textual state contains character status (such as health and energy), local tile information (n X n
tiles surrounding the agent), and global information (such as time, weather, and the positions of
NPCs and buildings). By combining visual and textual observations, StarDojo ensures that agents can
leverage both high-level context and fine-grained environmental cues for more robust and informed
decision-making. For our experiments, we selected a subset of this information to fairly evaluate
agent behaviors. Full details of the observation space are provided in Appendix [C.}

Action Space. The action space in StarDojo is designed to encompass the full range of activities that
can be performed in the original Stardew Valley using a keyboard and mouse. Actions are carefully
abstracted to eliminate redundant operations while retaining the core decision-making challenges
inherent to the game. We define ten fundamental actions, which together are sufficient to cover
most gameplay scenarios: move(x, y), use(direction), interact(direction), choose_item(slot_index),
attach_item(slot_index), detach_item(), craft(item), choose_option(option_index, quantity, direc-
tion) and menu(option, menu_name). Detailed descriptions of the action space can be found in
Appendix [C.2]

Under review as a conference paper at ICLR 2026

Table 2: Task statistics of StarDojo-Lite. The
task suite is made up of the most representa-
tive early-stage tasks from each category.

Category |Easy Medium Hard Total

Fmt,b Farming | 14 3 4 21
‘% Yy BO Crafting | 7 4 3 14
&9z
t {: Exploration| 15 8 5 28
2 Combat | 3 6 3 12
8 Social 17 6 2 25
Figure 3: Distribution of 1000 tasks across five cat- Total 56 23 21 100

egories: Farming, Crafting, Exploration, Combat
and Social in StarDojo, each with Easy, Medium,
and Hard difficulties.

3.4 TASKS

As shown in Figure [3| we carefully curate 1000 tasks to benchmark agents’ various behaviors in
StarDojo. These tasks are divided into five distinct categories: Farming, Crafting, Exploration,
Combat and Social, which cover most of the production-living activities in the early and middle
stages of the game. Each task is classified into three difficulties: easy, medium, and hard. For
easy-level tasks, agents are provided with all necessary items or tools from the start (e.g., mature
crops ready for harvest, ingredients for crafting). Agents are initialized near the target location (e.g.,
inside a shop with enough budget for trading). These tasks primarily test the agent’s basic ability
to complete atomic activities. For medium-level tasks, agents need to fulfill the prerequisites of the
tasks on their own, such as planting and harvesting crops, gathering crafting ingredients, traveling
from the farm to the target area, and earning sufficient funds to purchase specific items. Many of
these resources can be acquired through multiple sources and methods. This flexibility gives agents
considerable freedom in choosing their strategies. Hard-level tasks typically require several in-game
days to complete and are often composed of multiple medium-level tasks. Agents have greater
freedom to allocate their time and energy each day, choosing how to prioritize activities and sequence
actions. Success often demands strategic long-term planning, adaptive decision-making, and efficient
resource management, as there are multiple viable paths to achieving the goal.

As shown in Table 2] to facilitate efficient agent evaluation, we curate a representative smaller
task suite, called StarDojo-Lite, comprising 100 core tasks from the full task collection, balancing
coverage and practicality. This lite task set covers most of the representative activities in the early
stage of the game. Detailed descriptions of the task set can be found in Appendix [C.3]

Initial Config and Setup. Some tasks require the agent to possess specific equipment (e.g., a
sword), have certain items (e.g., sufficient crop seeds in inventory), or have completed particular
game progress (e.g., unlocking the mines). To establish the initial state for each task, we provide
multiple saved game files reflecting various stages of progression, along with specialized task-specific
functions utilizing StarDojoMod commands. At the start of each task, StarDojo automatically loads
the corresponding saved game and executes these task-specific commands, ensuring all necessary
prerequisites, such as items, equipment, skill levels, date and farm status, are appropriately configured.

Automatic Evaluation. Given the extensive number of existing tasks and the vast potential for future
additions, it is essential to establish a reusable, scalable, adaptive, and efficient evaluation mechanism.
StarDojo addresses this need by implementing a general evaluation system that continuously monitors
task progression and provides immediate reward feedback to agents. Specifically, after agents
finish executing actions at each step, the evaluator is invoked to determine whether tasks have been
successfully completed or have reached the predefined maximum number of steps. To achieve this, the
evaluator maintains the previous game state information, compares it with the current state obtained
via StarDojoMod, identifies incremental changes indicating progress, and accurately assesses task
completion criteria based on these observed differences. By leveraging a comprehensive observation

Under review as a conference paper at ICLR 2026

Table 3: Success rates(%) and standard deviation of agents with different base models on StarDojo-
Lite task set, ranging over five categories (Farming, Crafting, Exploration, Combat and Social) and
three levels of difficulty. Each task is evaluated over three runs.

Model \ Task \ Farming Crafting Exploration Combat Social Total
Easy 31.0+41 524483 15.6+3.9 11.1+193 7.8+68 21.4+18

GPT-4.1 Medium 0.0+0.0 0.040.0 8.3+72 0.040.0 0.040.0 27423

’ Hard 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
Total 20.6+2.8 26.2+4.1 10.7+0.0 2.8+48 53446 12,7406
Easy 262441 47.6+83 6.7+6.7 0.0+£00 11.8459 17.9+18

Gemini 2.5 Pro Medium 0.0+0.0 0.040.0 8.3+7.2 0.040.0 0.040.0 27423
) Hard 0.0+£0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
Total 17.54+428 23.844.1 6.0+2.1 0.0+0.0 8.0+4.0 10.740.6
Easy 31.0+4.1 28.6+0.0 8.9+10.2 0.0+0.0 7.8434 16.1+4.7

Claude 3.7 Sonnet Medium 0.0+0.0 0.040.0 16.7+7.2 0.040.0 0.040.0 5.3+23
) Hard 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
Total 20.6+2.8 14.340.0 9.5+55 0.0+0.0 5.3+23 10.34+25
Easy 26.2+4.1 4.8+8.3 4.4+477 11.1+193 7.8434 11.3+27

GPT-4.1 mini Medium 0.0+0.0 0.0+0.0 8.3+72 0.0+0.0 0.0+0.0 2.7+23

’ Hard 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0

Total 17.54+28 2.4+4.1 4.8455 2.8+48 5.3+23 7.0+£1.7
Easy 28.6+0.0 28.6+0.0 0.0+0.0 0.0+0.0 7.8434 13.1+£10

Llama 4 Maverick Medium 0.0+0.0 0.0+0.0 42472 0.0+0.0 0.0+0.0 1.3+23
Hard 0.040.0 0.040.0 0.040.0 0.040.0 0.040.0 0.040.0

Total 19.14+0.0 14.340.0 1.2+42.1 0.0+0.0 5.3+23 7.7+0.6

Easy 16.748.3 9.5+83 13.3+133 0.0+0.0 9.8434 119455

Medium 0.0+0.0 0.0+0.0 0.040.0 0.0+0.0 0.0+0.0 0.0+0.0

Qwen2.5 VL. 72B Hard 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+£00 0.0+0.0
Total 11.14+55 4.8+4.1 T.1+47.1 0.0+0.0 6.7+23 6.743.1

Easy 9.5+4.1 0.040.0 2.2439 0.040.0 11.8400 6.6+2.1

Medium 0.0+0.0 0.0+0.0 42472 0.0+0.0 0.0+0.0 1.3+23

Gemma 3278 Hard 0.040.0 0.040.0 0.040.0 0.040.0 0.040.0 0.040.0
Total 6.4428 0.0+0.0 24421 0.0+0.0 8.0+0.0 4.0£1.0

space for incremental progress tracking, our evaluation approach effectively mitigates discrepancies
caused by varying initial conditions, ensuring robust adaptability across diverse tasks.

4 EMPIRICAL STUDIES

In this section, we benchmark the current state-of-the-art MLLM-based agents on StarDojo and
provide a comprehensive study and analysis of agents’ behaviors and limitations.

Agentic MLLM Baselines. We evaluated seven cutting-edge agentic MLLMs on StarDojo-Lite task
set: GPT-4.1 series (OpenAl 2025)(gpt-4.1-2025-04-14 & gpt-4.1-mini-2025-04-14), Claude 3.7
Sonnet (Anthropic, [2025) (claude-3-7-sonnet-20250219), Gemini 2.5 Pro (Google, [2025)) (gemini-
2.5-pro-preview-03-25), from the closed-source community and Llama 4 Maverick (Meta, 2025)
(Llama-4-Maverick-17B-128E-Instruct), Qwen2.5 VL (Bai et al.,[2025)) (qwen2.5-vl-72b-instruct)
and Gemma 3 (Team et al.| 2025) (gemma-3-27b-it) from the open-source community.

Settings. If not mentioned explicitly, all experiments are conducted under the following settings:
Agents have access to both visual and textual observations for their decision-making process. Visual
observations are provided at a resolution of 720P (1280x720). Textual observations include 7x7
agent-centered surrounding information and other global information like time, date and budget. In
addition to receiving observations from the current timestep, agents are also provided with history
information from the previous timestep, enabling agents to reflect on past states and facilitating
consistency in decision-making. Agents can output at most two skills as an action to be executed
sequentially. After executing all the actions, the environment is paused until the agent outputs the
next action. Each task is evaluated over three runs with a heuristic maximum of 30, 50 and 150 steps
for easy, medium and hard level tasks. More details of settings are provided in Appendix

Under review as a conference paper at ICLR 2026

4.1 QUALITATIVE ANALYSIS

Overall Results. As shown in Table[3] a clear gap between flagship commercial models and open-
source models can be observed. GPT-4.1, Gemini 2.5 Pro, and Claude 3.7 Sonnet all exceed a 10%
overall success rate, with GPT-4.1 achieving the highest at 12.7%. In contrast, all open-source models
remain below 8%, with Llama 4 Maverick performing best, largely due to its larger model size.
Most successful completions are limited to easy tasks, whereas all models struggle significantly
with medium and hard tasks, achieving near-zero success rates due to increased task complexity and
longer sequences of required actions. Models show some proficiency in farming and crafting tasks
but exhibit considerable difficulty in exploration, combat, and social interactions.

Low-Level Control as Tool-Use. All models demonstrate reasonable ability to control agents with
non-trivial movements and interactions with actions clearly specified in the prompts. Larger models
such as GPT-4.1, Gemini 2.5 Pro, Claude 3.7 Sonnet and Llama 4 Maverick perform significantly
better than others on Crafting tasks, highlighting their superior tool-use capabilities and in-context
understanding when handling more complex function calls. This contrast explains the weaker
performance of smaller models like GPT-4.1 Mini and Gemma 3 27B, which often struggle to provide
valid and accurate parameters when calling actions like choose_option and craft. However, all models
continue to struggle in fast-paced tasks such as Combat, which demand dynamic control.

Navigation is the Key Bottleneck. We found that all models struggled most severely with navigation,
which is the core skill required in the game. Due to limited image understanding, they consistently
failed to accurately identify and locate target objects, building entrances or exits, and map transitions,
which usually only appear in the provided image rather than the textual information. These short-
comings heavily impaired tasks that involve moving across scenarios or exploring areas beyond the
immediate field of view. As a result, success rates were particularly low in Exploration and Social
tasks, both of which often require cross-map navigation to locate targets. In contrast, agents are less
influenced and perform relatively better in easy-level Farming tasks, since these are usually confined
to a small farmland where target products remain within visual proximity and are directly accessible.

Long-Horizon Tasks Remain Far From Solved. Medium and hard-level tasks can typically be
decomposed into multiple simpler subtasks involving different category combinations. However,
given the low success rates even on easy-level tasks, which serve as the atomic activities in the
benchmark, all state-of-the-art models remain far from being able to complete complex long-horizon
tasks in StarDojo. This gap reveals substantial potential for more capable MLLM models.

4.2 ERROR ANALYSIS

To further investigate models’ behaviors, we conducted the

Spatial

error analysis on GPT-4.1-based agent to identify and categorize Reason o

failure modes in StarDojo-Lite task set. For tasks with multiple e o
errors, we report primary errors that block further progress. oS
The error analysis reveals several key failure modes, with the - o

most significant being limited Visual Understanding, which o T ey
accounts for 42% of all errors. The model often struggles to e
reliably recognize target objects, many of which are only around Recognition el

10x10 pixels shown in the image. And even when detected, it e
frequently fails to accurately determine their position relative T | N

8% 9%

to the character, hindering effective navigation and interaction.
Additionally, models often struggle to interpret the status of
tiles, even those immediately adjacent to the character, such
as whether a tile is tilled, seeded, watered, or obstructed. The second major source of failure, at
21%, is Multimodal Reasoning, where the model overly relies on its limited visual perception
instead of integrating both visual and textual inputs, leading to confusion even when clear positional
or status information is available in the text. Additionally, the model sometimes hallucinates task
progress by incorrectly assuming the success of previous actions. Long-Term Planning issues also
contribute to 21% of failures, as the model, while capable of proposing reasonable subtasks, often
abandons plans prematurely and switches strategies inconsistently, which undermines progress on
longer-horizon tasks; this is sometimes compounded by insufficient domain knowledge, such as not
knowing a crafting recipe or which NPC to interact with. Lastly, Low-Level Control accounts for a
smaller but persistent 16% of errors, where the model, despite generally choosing appropriate actions,
occasionally selects incorrect or suboptimal ones, demonstrating instability in fine-grained execution,
with occasional formatting or parameter errors.

Figure 4: Error Analysis.

Under review as a conference paper at ICLR 2026

Success Rate per Task Average Steps per Task

(=)
S

I Image + Text I Image + Text
= 100 Image Only 50 Image Only
S <0 I Text Only 340 I Text Only
o Il Real-Time k3] I Real-Time
= 7]
=60 %30
8 5
§ 40 Z20
7]

20 10

Figure 5: Ablation results of GPT-4.1-based agents on five representative tasks under four different
settings: Image + Text (default setting), Image Only, Text Only, and Real-Time (without game
pausing). Except for Chop 20 Wood, which is a medium-level task with a maximum of 50 steps, the
remaining four are easy-level tasks capped at 30 steps. Each task is evaluated over three runs.

4.3 ABLATION STUDIES

To demonstrate the flexible customization capabilities of StarDojo and enable more comprehensive
evaluations of agent performance, we benchmark GPT-4.1 under the following three additional
settings using five representative basic tasks. 1) Image Only: Agents receive only visual observations
without textual state information, evaluating their capability to rely solely on visual cues. 2) Text
Only: Agents receive textual state observations without visual input, restricting the agent’s perception
to local 7x7 grid-based information. This setting is particularly relevant for LLM agents. 3) Real-
time: The environment progresses continuously during action generation, simulating real gameplay
conditions where agents must plan and respond without game pausing.

As illustrated in Figure 5] removing textual input (Image Only) significantly affects agents” perfor-
mance across all tasks, reflecting the defect of base models’ poor visual-based control, emphasizing
textual information’s importance in grounding detailed action decisions for the current stage of agents.
On the other side, eliminating visual input (7ext Only) substantially reduces success in tasks that
require navigation like Ship 1 Parsnip and Go to Bus Stop, demonstrating the essential contribution
of visual cues to spatial reasoning and movement. Disabling the feature to pause the environment
(Real-time) remarkably affects performance across tasks demanding timely reactions or prolonged
action sequences. For example, in combat scenarios like Kill I Bug, the target (bug) continues moving
during model inference, which can take over 10 seconds per request for GPT-4.1 via APIL. By the
time the action is executed, the bug has often moved far from its previous position, rendering the
action ineffective. Similarly, in long-horizon tasks like Chop 20 Wood, the in-game clock advances
continuously during inference. With pausing enabled, the task may be completed in just 2 in-game
hours; without pausing, it can take over 12 in-game hours, frequently pushing completion into
the night or spanning multiple in-game days. These findings highlight the practical importance of
real-time evaluation, an aspect often overlooked in prior benchmarks.

5 LIMITATIONS AND CONCLUSION

Limitations. This work has several potential limitations. 1) Although StarDojo is an open-source
environment and benchmark, users need an official copy of Stardew Valley to run it. 2) Fishing, an
optional gameplay, is currently not included in StarDojo, due to its nature as a complex, real-time
mini-game. The operations are independent of other game controls, which is not applicable to
evaluate MLLMSs. 3) The benchmark primarily focuses on early- and mid-game content within the
main valley map. Other advanced areas, such as the Desert and Ginger Island, are not yet supported.
4) Due to budget limitations, our evaluations were conducted mainly on StarDojo-Lite with 7 models.
A broader assessment across diverse tasks and models remains an important direction for future work.

Conclusion. Overall, we introduce StarDojo, a novel environment and benchmark designed to
evaluate the open-ended behaviors of MLLM agents in Stardew Valley. StarDojo bridges the gap in
existing environments by enabling comprehensive assessment of agents across both production and
daily living activities within a simulated nature and society. Featuring a set of diverse tasks, StarDojo
exposes significant challenges in current agents’ visual understanding, multimodal reasoning, long-
term planning, and real-time inference, highlighting key areas for future research and development.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

StarDojo environment and benchmark are already open-sourced and can be found at
https://stardojo2025.github.io/stardojo. We also provide the code in the supplementary material.

LARGE LANGUAGE MODELS USAGE STATEMENT

In this work, we utilized LLMs exclusively for language polishing and grammar refinement. LLMs
were not employed for tasks such as information retrieval, discovery and research ideation.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Joshua Albrecht, Abraham Fetterman, Bryden Fogelman, Ellie Kitanidis, Bartosz Wréblewski,
Nicole Seo, Michael Rosenthal, Maksis Knutins, Zack Polizzi, James Simon, et al. Avalon:
A benchmark for rl generalization using procedurally generated worlds. Advances in Neural
Information Processing Systems, 35:12813-12825, 2022.

Anthropic. Claude 3.7 sonnet and claude code. https://www.anthropic.com/news/
claude-3-7-sonnet, 2025. Accessed: 2025-05-10.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253-279, 2013.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva,
Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor
environments. arXiv preprint arXiv:1709.06158, 2017.

Marc-Alexandre Coté, Akos Kadar, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
environment for text-based games. In Computer Games: 7th Workshop, CGW 2018, Held in Con-
Jjunction with the 27th International Conference on Artificial Intelligence, IJCAI 2018, Stockholm,
Sweden, July 13, 2018, Revised Selected Papers 7, pp. 41-75. Springer, 2019.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343-18362, 2022.

Jingying Fu, Qiang Gao, Dong Jiang, Xiang Li, and Gang Lin. Spatial-temporal distribution of
global production-living—ecological space during the period 2000-2020. Scientific Data, 10(1):
589, 2023.

Google. Gemini 2.5: Our most intelligent ai model. https://blog.google/technology/
google—-deepmind/gemini-model-thinking-updates-march-2025/
#gemini-2-5-thinking, 2025. Accessed: 2025-05-10.

William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela Veloso,
and Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft demonstrations. arXiv
preprint arXiv:1907.13440, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861-1870. PMLR, 2018.

10

https://stardojo2025.github.io/stardojo
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking

Under review as a conference paper at ICLR 2026

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-thor: An interactive 3d environment
for visual ai. arXiv preprint arXiv:1712.05474, 2017.

Chengshu Li, Fei Xia, Roberto Martin-Martin, Michael Lingelbach, Sanjana Srivastava, Bokui
Shen, Kent Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, et al. igibson 2.0: Object-centric
simulation for robot learning of everyday household tasks. arXiv preprint arXiv:2108.03272, 2021.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092-1097, 2022.

TP Lillicrap. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation.
https://ai.meta.com/blog/llama-4-multimodal—intelligence/, 2025. Ac-
cessed: 2025-05-10.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529-533, 2015.

OpenAl. Introducing gpt-4.1 in the api. https://openai.com/research/gpt-4-1, 2025.
Accessed: 2025-05-10.

Davide Paglieri, Barttomiej Cupial, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir Khan,
Eduardo Pignatelli, L.ukasz Kucinski, Lerrel Pinto, Rob Fergus, et al. Balrog: Benchmarking
agentic llm and vlm reasoning on games. arXiv preprint arXiv:2411.13543,2024.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
annual acm symposium on user interface software and technology, pp. 1-22, 2023.

Jesse Plamondon-Willard. SMAPI: Stardew Modding API. https://smapi.io/. Accessed:
2025-07-09.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba.
Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 8494-8502, 2018.

Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Partsey,
Ruta Desai, Alexander William Clegg, Michal Hlavac, So Yeon Min, et al. Habitat 3.0: A co-habitat
for humans, avatars and robots. arXiv preprint arXiv:2310.13724, 2023.

Siyuan Qi, Shuo Chen, Yexin Li, Xiangyu Kong, Junqi Wang, Bangcheng Yang, Pring Wong, Yifan
Zhong, Xiaoyuan Zhang, Zhaowei Zhang, et al. Civrealm: A learning and reasoning odyssey in
civilization for decision-making agents. arXiv preprint arXiv:2401.10568, 2024.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043,2019.

11

https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://openai.com/research/gpt-4-1
https://smapi.io/

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pp- 3135-3144. PMLR, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
vAE1hFcKW6.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Gang Ding, Boyu Li, Bohan Zhou, Junpeng
Yue, Jiechuan Jiang, Yewen Li, et al. Cradle: Empowering foundation agents towards general
computer control. In NeurIPS 2024 Workshop on Open-World Agents, 2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhe;j,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033.
IEEE, 2012.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476-482, 2024.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
StarCraft II using multi-agent reinforcement learning. nature, 575(7782):350-354, 2019.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective navigation via
multi-agent collaboration. arXiv preprint arXiv:2406.01014, 2024a.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024b.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. OS-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Jing Hua
Toh, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. Advances in Neural Information
Processing Systems, 37:52040-52094, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, et al. UFO: A Ul-focused agent for Windows OS interaction. arXiv
preprint arXiv:2402.07939, 2024.

12

https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6

Under review as a conference paper at ICLR 2026

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. In ICLR, 2024.

Xiangxi Zheng, Linjie Li, Zhengyuan Yang, Ping Yu, Alex Jinpeng Wang, Rui Yan, Yuan Yao, and
Lijuan Wang. V-mage: A game evaluation framework for assessing visual-centric capabilities in
multimodal large language models. arXiv preprint arXiv:2504.06148, 2025.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

A APPENDIX

B INTRODUCTION TO STARDEW VALLEY

Stardew Valley is an open-ended simulation RPG game where the player inherits a run-down farm
and works to restore it. The game is presented in a 2D top-down perspective, offering a wider field
of view compared to 3D games, which helps reduce operational difficulty and makes navigation
smoother. The game does not have mandatory main storyline tasks and players can freely explore
and live in the open-ended world.

B.1 REALISTIC GAMEPLAY MECHANISM

Stardew Valley is an open-ended simulation RPG game where the player inherits a run-down farm
and works to restore it. The game is presented in a 2D top-down perspective, offering a wider field
of view compared to 3D games, which helps reduce operational difficulty and makes navigation
smoother. The game does not have mandatory main storyline tasks and players can freely explore
and live in the open-ended world.

There are many mechanisms in Stardew Valley to simulate the real world, which raises additional
challenges for players to plan reasonably according to these rules during the gameplay.

Time and Daily Routine. Each in-game day lasts about 14 minutes in real-time, running from 6 AM
to 2 AM. Players must balance production, and social activities before exhaustion sets in. Staying up
past 12 AM reduces energy the next day, and if players don’t sleep by 2 AM, they will pass out and
lose gold or wake up at the clinic. Nightfall typically occurs between 6 and 8 PM, depending on the
season, as the outdoors gradually darkens over time.

Energy Management. At the beginning, players have 270 energy points per day. Every action, from
farming to mining, consumes energy. Energy can be restored by sleeping or eating food. Strategic
time and energy management are essential to maximize productivity and also the main challenge in
Stardew Valley.

Seasons and Weather Effects. The game also has four seasons each lasting 28 days and affecting
crop growth, fish availability, and town events. Weather varies daily, with rain saving time on
watering crops, storms potentially damaging them, and snow limiting farming options. Some crops
and activities are only available in specific seasons, requiring careful planning.

B.2 PRODUCTION

Simulating real-world society, production activities are the main gameplay within the game, where
players improve life quality through labor output.

Labor Activities. The game world is vast and diverse, featuring locations like Pelican Town, the
Mines, the Beach and the forest, each offering unique activities such as mining, foraging, and fishing.
Farming is central to gameplay, requiring players to plant, water, harvest crops and raise animals
like cows and chickens for valuable products. Fishing and foraging provide additional resources,
with seasonal variations and rare finds. Mining is crucial for gathering ores and materials, with
progressively challenging levels and combat against monsters.

13

Under review as a conference paper at ICLR 2026

Skill Progression and Crafting. As players engage in these activities, they gradually improve
their skills in Farming, Mining, Foraging, Fishing, and Combat. Gaining experience in each skill
unlocks new crafting recipes, efficiency boosts, and profession choices that provide specialized
benefits. Crafting is an essential part of progression, allowing players to create tools, machines,
and decorations that enhance farm efficiency and exploration. In addition to upgrading tools and
structures, they can fully customize their farm and home, arranging decorations and personalizing
interiors to create their ideal living space.

B.3 SOCIETY

Besides production, engaging with the community is a core aspect of the game.

Festivals and Quests. Every season features unique festivals and events, such as the Egg Festival,
Stardew Valley Fair, and Winter Star Festival. These events provide mini-games, rare items, and
opportunities to strengthen relationships with villagers, adding depth to the community experience.
Alongside festivals, quests play a crucial role in guiding players through different aspects of the game.
NPC:s also post daily requests on the town board, offering gold and friendship points for completing
specific tasks. By participating in festivals and completing quests, players engage more deeply with
the world, fostering a sense of purpose and progression throughout their journey.

Relationship and Friendship System. The game also provides various NPCs with unique person-
alities, schedules, and heart events. Players can befriend them, give gifts, and even date or marry
eligible characters. Higher friendship levels unlock new interactions, cutscenes, and benefits, such as
helpful spouses assisting with farm chores.

Economy System. Stardew Valley features a comprehensive economic system where players generate
income through various means, including farming, fishing, mining, and crafting. Players must manage
their resources, reinvest in production, and make strategic decisions to ensure financial growth. The
economy fluctuates based on seasonal demand, production choices, and market conditions. Strategic
planning, investment in high-value goods, and efficient time management are essential to achieving
long-term prosperity. The economic system provides depth and challenges players to optimize their
approach to wealth generation and sustainability.

Stardew Valley serves as an ideal benchmark for decision-making agents in Production-Living
Simulation. Its well-integrated systems of time management, resource allocation, economic planning,
and social interaction provide a dynamic and complex environment that requires strategic thinking
and adaptability. The game’s structured yet open-ended nature makes it an excellent testbed for
evaluating decision-making capabilities in simulated real-world conditions.

C STARDOJO ENVIRONMENT

Our environment is developed based on the game Stardew Valley, which offers comprehensive
official mod development documentation. A large community of game enthusiasts has created and
open-sourced their own mods. This provides significant convenience, as we can build a completely
new mod on top of existing open-source mods to achieve the interaction between the LLM agent, RL
agent, and the game.

Stardew Valley is available for purchase on Steam, and users must first buy and install the game to
use our environment. Since our mod heavily relies on the official mod framework SMAPI, users
will need to install both SMAPI and the mod we developed. This process can be easily carried out
on Windows, macOS, and Linux systems with a graphical interface. Additionally, we have ensured
compatibility for Linux systems without a graphical interface. After purchasing the game, users
can install Stardew Valley through Steamcmd, the command-line tool of the Steam client to install
and update dedicated servers for Steam games. We also provide installation commands for SMAPI,
allowing users to install it directly. To use our developed mod, users simply need to copy it to the
designated mod folder. Since Stardew Valley is a graphical application, it cannot be directly opened
on systems without a graphical interface. To address this limitation, we use the X virtual framebuffer
(Xvtb), which supports all graphical operations in virtual memory without displaying any screen
output. This directly ensures that our environment is compatible with various system and hardware
configurations.

14

Under review as a conference paper at ICLR 2026

The interaction between our algorithm and Stardew Valley is achieved through the mod we developed,
rather than simulating keyboard and mouse inputs. This approach allows us to open multiple game
instances and control each one independently. Specifically, when launching multiple games, we
assign a unique port number to each one. Actions provided by the algorithms being trained or tested
are transmitted through this port to the corresponding game, and the returned information is received
via the same port. Moreover, we use shared memory for each port to improve communication
efficiency when necessary. By ensuring that the actions executed and information transmitted in
all game processes do not interfere with one another, we enable parallel training and testing. To
help researchers efficiently establish the initial state for each task, we provide the simulator APIs to
configure the game environment.

C.1 OBSERVATION SPACE

StarDojo provides a rich and flexible observation space to accommodate the diverse needs of various
agents. The observation space includes both visual and textual observations, which can be customized
and extended by developers to suit their specific goals.

Visual Observation. StarDojo leverages the game engine to directly retrieve rendered gameplay
images, eliminating the need for inefficient screen-capture methods. This approach ensures high-
fidelity visual observations that are consistent with the gameplay environment. The resolution of these
images can be configured dynamically, ranging from 360P to 4K. Notably, the resolution scaling is
not merely a resizing operation; as the image size increases, the field of view also expands, providing
agents with a broader perspective of the game world. This feature is particularly useful for tasks
requiring detailed spatial awareness or long-term planning.

Textual Observation. While visual observations are essential, recent work (Tan et al., |2024)
highlights the challenges faced by state-of-the-art MLLMs in accurately interpreting the unique art
style and precise manipulation requirements of Stardew Valley. To address this limitation, StarDojo
provides structured textual observations through built-in APIs. These observations are designed to
complement visual data, offering agents a more comprehensive understanding of the game state. The
textual observations are organized into four main categories:

* Character Information: Includes health, energy, gold, position, inventory, location, facing
direction, professions, skills (e.g., Farming, Mining, Combat, Fishing, Foraging), dating partners
and spouse.

* Surrounding Information: Includes tile information within an NxN grid centered on the player’s
position. Each tile in the grid contains detailed information about its contents and properties, such
as debris, crops, NPCs, exits, buildings, furniture, terrain features, and other properties. The grid
size can be adjusted to balance granularity and computational efficiency.

* Map-level Global Information: Provides global information within the current location map.
Details such as crops, exits, NPCs, buildings, shop counters, furniture in rooms, and animals or
pets on the farm are included as part of the map-level global information. By providing a structured
overview of the entire map, this information enables the model to locate and reason about specific
targets more efficiently, while reducing the need for exhaustive exploration of the environment.

* Game-level Global Information: Provides global information across the entire game. Game states
such as time, day of month, season, year and weather are included in this part, along with other
necessary information like the current menu information if any menu is showing.

As shown in our experiment, we selected a subset of the available information as the general
configuration. Specifically, we adopted character information, surrounding information, and game-
level global information to construct the observation space for Stardojo. Although map-level global
information can significantly boost agent performance in certain tasks, our goal is to evaluate
the agent’s exploration ability based on visual input. Since map-level global information offers
shortcuts for locating specific targets, it is deliberately excluded from our experimental setup. This
combination of visual and textual observations ensures that agents have access to both high-level
contextual information and fine-grained environmental details, enabling more robust and informed
decision-making.

The observation space captures a comprehensive snapshot of the game’s state in a JSON-like structure,
with an additional screenshot RGB map. All relevant details are organized within the following
nested objects. Figure []shows an example of the screenshot included in the observation.

15

Under review as a conference paper at ICLR 2026

Observation Space Format

The observation space consists of the following structured fields:
» Health: Integer representing the agent’s current health.
* Energy: Float indicating the agent’s current energy level.
* Money: Integer showing the amount of money the agent holds.
* Current Time: String formatted as hh :mm AM/PM.
* Day: Integer indicating the current day in the season.
* Season: String, one of spring, summer, fall,orwinter.

 Item in Your Hand: A dictionary with fields:
— index: Integer slot index.
— currentitem: String name of the item.
* Toolbar: A list of 36 item slot descriptions in the format:
"slot_index N: [Item Name] (quantity: Q)" or "slot_index N: No
item"
e Current Menu: A dictionary with keys such as: type, message, shopmenudata,
animalsmenudata, etc.
* Surrounding Blocks: A list of nearby tiles, each with:

— position: A 2D integer coordinate offset relative to the agent.
— object: A list of string attributes (e.g., Type: Dirt,Diggable: True).
— (Optional) npc on this tile: Information about an NPC, if present.

Figure 6: Example of game screenshot as part of the observation space.

C.2 ACTION SPACE

To better align with the actual action space of human players while simplifying redundant operations
that do not contribute to the model’s decision-making capabilities, we designed a simplified minimal
action space.

The action space defines the set of skills (or actions) that an agent can perform. Each action is
implemented as a function with a specific call template and a thorough comment. The full list of
actions is provided in Table [d] which details each available action along with its parameters and
intended behavior. In our experiments, we excluded the navigate action from the available action
space. While navigate provides a high-level shortcut for moving between maps, our primary objective
is to evaluate the agent’s realistic exploration abilities and its performance using an action space that
more closely mirrors human interactions.

16

Under review as a conference paper at ICLR 2026

Table 4: Complete Action Space with Call Templates and Parameter Descriptions

Action Description

move (X, V) Call Template: move (x = ..., y = ...)
Parameters: x, y — X and Y coordinates of the destination.
Move to the position (X, y).

craft (item) Call Template: craft (item = ...)
Parameters: item — The name of the item to craft.
Craft an item based on its name.

use (direction) Call Template: use (direction = ...)
Parameters: direction — A string: up, right, down, or left.
Use an item in a specified direction. Requires proper positioning.

choose_item(slot_index) Call Template: choose_item(slot_index = ...)
Parameters: slot_index — Inventory index (0-35).
Choose the item in the specified inventory slot.

interact (direction) Call Template: interact (direction = ...)
Parameters: direction — A string: up, right, down, or left.
Interact with an object or NPC in a specific direction.

choose_option (Call Template: choose_option (option_index =
option_index, quantity = ..., direction = ...)
quantity, direction) Parameters:

option_index — Index of the option to choose.

quantity (optional) — Quantity of items to buy/sell.
direction (optional) — "in" for buy/take, "out " for sell/put.
Choose from a list of options, with optional quantity and direction.

attach_item(slot_index) Call Template: attach_item(slot_index = ...)
Parameters: slot_index — Inventory index (0-35).
Attach the item in the given inventory slot.

unattach_item/() Call Template: unattach_item()
Parameters: None.
Unattach the currently attached item.

menu (option, Call Template: menu (option = ..., menu_name = ...)
menu_name) Parameters:

option—"open" or "close"

menu_name — Menu name (e.g., "map")

Open or close a specific menu.

navigate (name) Call Template: navigate (name = ...)
Parameters: name — Name of the location to navigate to.
Navigate to a specified location.

C.3 TASK
Our benchmark provides 1000 tasks organized into five categories:

* Farming: Farming tasks can be broadly categorized into two types: cultivation (growing crops) and
husbandry (raising animals). Easy tasks involve routine agricultural work such as clearing and tilling tiles,
fertilizing, sowing seeds, watering plants, harvesting mature crops and animal products, as well as animal
care—including feeding, grazing, and interaction. These simple, discrete operations test whether agents
possess the most fundamental production capabilities. Medium tasks require agents to independently procure
farming resources such as seeds, fertilizer, water, and hay. These resources can be obtained through foraging,
crafting, or purchasing. Hard tasks typically span multiple days, requiring agents to perform daily routine
farming activities. These activities form a cohesive production chain, following a specific sequence where
each step is interdependent. For example, if a task involves growing a plant from seed to harvest, the agent
must plant the seed in tilled dirt, water it daily over several days, and finally reap the crop. Any missed step,
such as failing to water the plant on a given day, could delay or even prevent maturation. Thus, hard farming

17

Under review as a conference paper at ICLR 2026

tasks demand that agents autonomously allocate time and resources efficiently, presenting significant tests of
multi-step reasoning and long-term planning capabilities.

Crafting: Crafting tasks encompass both fabrication and cooking. Most crafting activities simply require
adequate raw materials, though some may need equipment like furnace or cookout kit. Typically, easy tasks
provide all necessary materials and tools directly in the agent’s inventory, requiring only proper execution of
crafting procedures. Occasionally, agents might need to gather readily available resources like a few woods or
stones. Medium tasks demand greater autonomy, which agents must identify, locate and acquire appropriate
materials and equipment through careful planning. Hard tasks involve procuring diverse materials through
demanding methods (like deep mining for ores), followed by complex, multi-stage processes like crafting
intermediary components, testing an agent’s comprehensive crafting capabilities.

Exploration: Exploration tasks can be categorized into three types: map navigation/pathfinding, resource
gathering in wilderness areas, and completing challenging in-game quests. Easy tasks may involve traveling
to an accessible location or collecting specified items within a small nearby area. Medium tasks present
greater complexity, some require venturing into more distant and hazardous environments (like the second
floor of the mines), while others demand searching expansive zones (such as an entire forest) for randomly
spawning resources. Hard tasks challenge agents to locate extremely rare resources with highly randomized
spawn locations (like amethysts in mines). Additionally, built-in game quests that chain multiple sub-tasks
of varying types, challenging enough to occasionally defeat even experienced human players also qualify as
high-difficulty exploration objectives.

Combat: Agents are tasked with eliminating a specified number of monsters in mines. As difficulty escalates,
targets become both more formidable and numerous. Basic adversaries like slimes, bugs, and grubs present
minimal threat, their predictable movement patterns, low health pools, and weak attacks make them easy
to dispatch or evade. However, advanced creatures employ deadly specialties: flies attack with erratic,
lightning-fast strikes; duggies ambush from subterranean positions; rock crabs retreat into impregnable
armored stances. Defeating these requires dynamic positioning, tactical strike timing, and adaptive combat
strategies.

Social: Social tasks encompass two primary objectives: cultivating relationships with NPCs, and conducting
transactional interactions with specialized NPCs (such as carpenter, blacksmith, etc.). Easy tasks require only
basic interactions like conversations or gift-giving, and agents are teleported directly to designated transaction
locations (e.g., at the counter of Pierre’s General Store). Medium tasks demand agents autonomously select
and navigate to appropriate venues. Hard tasks challenge agents to build high friendship levels with NPCs.
This requires strategic planning to increase rapport through daily greetings, thoughtful gift-giving, and
fulfilling requests. Each NPC possesses unique behavioral patterns and preferences. Agents must develop
customized engagement strategies, as actions that delight one NPC (e.g., a favored gift) may offend another
(e.g., a disliked item). This nuanced system tests agents’ adaptive social intelligence.

Each category of tasks is encoded in a YAML file. This dictionary-like file format is both highly readable and
convenient for processing by Python programs. The structure of a task is as follows:

Task Format

\.

sow_5_dirt_with_cauliflower_seeds: The key serves as both the name and the description of the task,
and will be used as the prompt input to LLM.

* id: A unique identifier for the task within its category.

* object: The target object of the task—such as item, location, character, or quest—that the player
tries to acquire, reach, interact with, or complete in a specific quantity.

* quantity: The required number of the target object. For non-quantifiable objects, such as location
and NPC, quantity is simply set to 1.

* tool: The tool required to complete the task.

» save: The initial game save for the task, which has pre-configured some common environmental
settings to reduce frequent calls to simulator APIs.

* init_commands: This is a list of commands to invoke the simulator APIs. After loading the task,
StarDojo will automatically execute these commands one by one, invoking the corresponding
API to fine-tune the initial conditions. Combined with the save file, StarDojo achieves efficient
standardization for each task.

* evaluator: The type of evaluator to assess the task.

* difficulty: The difficulty level of the task.

The 100 tasks in StarDojo-Lite are listed in Table[3]

18

Under review as a conference paper at ICLR 2026

Table 5: Complete list of tasks in StarDojo-Lite.

Task | Category D Object Quantity Tool Save Init Commands Evaluator Difficulty
clear_10_weeds_with_scythe Farming 0 Weeds 10 Seythe save_new clear easy
clear_5_stone_with_pickaxe Farming 1 Stone 5 Pickaxe save_new clear casy
clear_30_debris_with_scythe_and_pickaxe_and_axe| Farming 2 Debris 30 Scythe, Pickaxe, Axe save_new clear medium
(il1_5_tile_with_hoe Farming 3 Tile 5 Hoe save_new il easy
fertilize_S_dirt_with_basic_retaining_soil Farming 4 Dirt 5 Basic Retaining Soil save_farming add_item_by_name("Basic Retaining Soil", 5) fertilize casy
fertilize_1_dirt_with_speed_gro Farming 5 Dirt 1 Speed-Gro save_farming fertilize casy
sow_5_dirt_with_cauliflower_sceds Farming 6 Dirt S Cauliffower Seeds save_farming add_item_by_name("Cauliflower Seeds", 5) sow easy
sow_1_dirt_with_potato_seeds Farming 7 Dirt 1 Potato Seeds save_new set_time(time=900) sow medium
water_5_crop_with_watering_can Farming 8 Crop 5 Watering Can ~ save_farming water casy
harvest_S_parsnip Farming 9 Parsnip 5 save_farming harvest casy
cultivate_and_harvest_I_garlic Farming 10 Garlic 1 save_new add_item_by_name("Garlic Seeds”) harvest hard
pet_3_animal Farming 11 Animal 3 save_farming pet casy
pet_8_animal Farming 12 Animal 8 save_farming pet medium
open_I_deluxe_coop Farming 13 Deluxe Coop 1 save_farming open easy
ill_I_pet_bowl_with_watering_can Farming 14 Pet Bowl 1 Watering Can~ save_new fill casy
fill_I_feeding_bench_with_hay Farming 15 Feeding Bench 1 Hay save_farming add_item_by_name("Hay", 12) fill casy
harvest_1_cgg Farming 16 Ege 1 save_farming harvest easy
harvest_1_milk_with_milk_pail Farming 17 Milk 1 Milk Pail save_farming add_item_by_name("Milk Pail") harvest easy
harvest_3_milk_with_milk_pail Farming 18 Milk 3 Milk Pail save_farming harvest hard
incubate_I_chicken_with_incubator Farming 19 Chicken 1 Incubator save_farming incubate hard
earn_50_friendship_with_I_cat Farming 20 Cat 50 save_new friendship hard
craft_I_cherry_bomb Crafting 0 Cherry Bomb 1 save_new se_time(time=900) craft medium
craft_1_wood_fence Crafting 1 Wood Fence 1 save_new craft casy
craft_1_sprinkler Crafting 2 Sprinkler 1 save_new diaé‘fﬂ::fs?fﬁﬁﬁ:*ﬁ"ﬁ%ﬁ;"“,d;?‘a'ﬁ?j‘.’cy;."j";f di“;‘;!?f;ﬂfﬁf.» éf)‘ craft medium
craft_1_basic_retaining_soil Crafting 3 Basic Retaining Soil 1 save_new craft casy
craft_I_spring_sceds Crafting 4 Spring Sceds 1 save_new craft hard
craft_1_field_snack Crafting 5 Field Snack 1 save_new Add-item by_name("Acomn"), add_item_by_name("Maple Seed”), craft casy
e add_item_by_name("Pine Cone")

craft_1_torch Crafting 6 Torch 1 save_new craft casy
craft_1_furnace Crafting 7 Fumace 1 save_new set_time(time=900) craft medium
craft_I_chest Crafting 8 Chest 1 save_new sel_time(time=900) craft medium
craft_I_scarecrow Crafting 9 Scarecrow 1 save_new addf"e'"fhyf““;’(‘ﬁ‘x‘i’gng;:g‘ﬁ"‘:sfzhgf“ame(‘Coal), craft easy
produce_I_copper_bar_with_furnace Crafting 10 Copper Bar 1 Furnace save_new 2dd-item_by_name(f:&fﬁi;ibﬂ-;g:;—g{,;{‘“)me‘ Copper Ore”. 3). craft easy
produce_I_refined_quartz_with_furnace Crafting 11 Refined Quartz 1 Furnace save_new craft hard
cook_I_fried_egg_with_stove Crafting 12 Fried Egg 1 Stove save_new upgrade_house(1), add_item_by_name("Egg") craft casy
cook_1_salad_with_cookout_kit Crafting 13 Salad 1 CookoutKit save_new craft hard
go_to_bed Exploration 0 Bed 1 save_new sleep easy
go_to_coop [Exploration 1 Coop 1 save_new location casy
g0_to_bus_stop [Exploration 2 BusStop 1 save_new location casy
g0_to_backwoods Exploration 3 Backwoods 1 save_new location easy
£0_to_pierre’s_general_store [Exploration 4 SeedShop 1 save_new set_time(time=900) location eas!
go_to_marnic’s_ranch [Exploration 5 AnimalShop 1 save_new set_time(time=900) location casy
g0_to_fish_shop [Exploration 6 FishShop 1 save_new set_time(time=900) location casy
go_to_carpenter’s_shop 7 ienceHou 1 save_new sel_time(time=900) location easy
go_to_the_mines_2nd_floor [Exploration 8 UndergroundMine2 1 save_new location medium
g0_to_the_mines_Sth_floor_by_clevator [Exploration 9 UndergroundMines 1 Elevator save_new location medium
go_to_the_mines_10th_floor [Exploration 10 UndergroundMinel0 1 save_new Tocation hard
chop_10_wood_with_axe [Exploration 11 Wood 10 Axe save_new harvest casy
chop_20_wood_with_axe [Exploration 12 Wood 20 Axe save_new harvest medium
forage_I_wild_horseradish Exploration 13 Wild Horseradish 1 save_new warp(“forest”) harvest medium
forage_1_daffodil [Exploration 14 Daffodil 1 save_new warp("town") harvest medium
forage_1_leck [Exploration 15 Leck 1 save_new warp("mountain”) harvest medium
forage_I_clam Exploration 16 Clam 1 save_new warp("beach") harvest casy
forage_10_hay_with_scythe Exploration 17 Hay 10 Seythe save_new silo easy
forage_I_quartz [Exploration 18 Quartz 1 save_new warp_mine(1) harvest medium
dig_1_cave_carrot_with_hoe [Exploration 19 Cave Carrot 1 Hoe save_new warp_mine(13) harvest casy
mine_1_amethyst_with_pickaxe [Exploration20 Amethyst 1 Pickaxe save_new warp_mine(1) harvest hard
mine_I_copper_ore_with_pickaxe [Exploration21 ~ Copper Ore 1 Pickaxe save_new warp_mine(2) harvest casy
mine_I_coal_with_pickaxe [Exploration 22 Coal 1 Pickaxe save_new warp_mine(1) harvest medium
quit_1_quest [Exploration 23 Quest 1 save_new quit casy
take_I_quest_reward 24 Quest Reward 1 save_quests reward easy
complete_I _help_wanted_quest [Exploration 25 Help Wanted Quest 1 save_new complete_help hard
complete_the_story_quest_"introductions” [Exploration 26 9 1 save_new complete_story hard
complete_the_story_quest_"getting_started" [Exploration 27 6 1 save_quests complete_story hard
Kill_I_green_slime_with_rusty_sword Combat 0 Green Slime 1 Rusty Sword save_new warp_mine(2) kill easy
Kill_S_green_slime_with_rusty_sword Combat 1 Green Slime 5 Rusty Sword save_new warp_mine(2) kil medium
Kill_10_green_slime_with_rusty_sword Combat 2 Green Slime 10 Rusty Sword save_new warp_mine(2) kil hard
Kill_I_bug_with_rusty_sword Combat 3 Bug 1 Rusty Sword save_new warp_mine(2) kill easy
Kill_S_bug_with_rusty_sword Combat 4 Bug 5 Rusty Sword save_new warp_mine(2) kill medium
Kill_10_bug_with_rusty_sword Combat 5 Bug 10 Rusty Sword save_new warp_mine(2) kill hard
Kill_I_fly_with_rusty_sword Combat 6 Fly 1 Rusty Sword save_new warp_mine(2) kill medium
Kill_I_duggy_with_rusty_sword Combat 7 Duggy 1 Rusty Sword save_new warp_mine(6) kil medium
Kill_I_grub_with_rusty_sword Combat 8 Grub 1 Rusty Sword ~ save_new warp_mine(15) kill casy
Kill_S_grub_with_rusty_sword Combat 9 Grub 5 Rusty Sword save_new warp_mine(15) kill medium
Kill_10_grub_with_rusty_sword Combat 10 Grub 10 Rusty Sword save_new warp_mine(15) kill hard
Kill_I__rock_crab_with_rusty_sword Combat 11 Rock Crab 1 Rusty Sword ~ save_new warp_mine(2) kill medium
ship_I_parsnip_with_shipping_bin Social 0 Parsnip 1 Shipping Bin save_new add_item_by_name("Parsnip") sell casy
purchase_S_beer Social 1 Beer 5 save_new warp_shop("gus”) purchase casy
purchase_I_muscle_remedy Social 2 Muscle Remedy 1 save_new set_time(time=900) purchase medium
sell_S_parsnip_to_pierre Social 3 Parsnip 5 save_new warp_shop("pierre”), add_item_by_name("Parsnip”, 5) sell casy
sell_I_parsnip_to_pierre Social 4 Parsnip 1 save_new add_item_by_name("Parsnip"). set_time(time=900) sell medium
upgrade._to_copper_pickaxe Social 5 Copper Pickaxe 1 save_new add_item_by_name("Copper Bar", 5) upgrade_tool hard
break_5_geode Social 6 Geode 5 save_new warp_shop("clint"), add_item_by_name("Geode", 5) break easy
purchase_joja_membership Social 7 JojaMembership 1 save_new warp("joja”, 21, 26) jojamart e
purchase_minecarts_development_project Social 8 Minecarts Repaired 1 save_new joja_membership(). set_time(time=900) jojamart medium
upgrade_to_large_pack Social 9 Large Pack 1 save_new warp_shop("pierre") backpack easy
purchase_I_chicken Social 10 Chicken 1 save_new warp_shop("marnie”) purchase_animal easy
sell_1_chicken Social 11 Chicken 1 save_new sell_animal casy
build_I_big_coop Social 12 BigCoop 1 save_new warp_shop("robin)'7 “dfifn‘:“";ﬁ,’g‘*o‘:g,‘!‘fism"“d > 400). build casy
move_l_coop Social 13 Coop 1 save_new sel_time(time=900) move medium
upgrade_farmhouse Social 14 Farmhouse 1 save_new warp_shop("robin"), add_item_by_name("Wood", 450) upgrade_farmhouse easy
demolish_I_shipping_bin Social 15 Shipping Bin 1 save_new sel_time(time=900) demolish ~ medium
talk_to_alex Social 16 Alex 1 save_new sel_time(time=800) talk casy
talk_to_scbastian Social 17 Schastian 1 save_new set_time(time=1500) talk easy
talk_to_vincent Social 18 Vincent 1 save_new set_time(time=900) talk easy
give_abigail_I_amethyst Social 19 Abigail 1 Amethyst save_new add_item_by_name("Amethyst", 1, 4), set_time(time=900) gift casy
give_haley_1_coconut Social 20 Haley 1 Coconut save_new add_item_by_name("Coconut’, 1, 4), set_time(time=1100) gift casy
give_jas_I_fairy_rose Social 21 Jas 1 Fairy Rose save_new add_item_by_name("Fairy Rose", 1, 4), set_time(time=900) gift easy
give_jodi_1_pancakes Social 22 Jodi 1 Pancakes save_new add_item_by_name("Pancakes”, 1. 4), sel_time(time=900) gift casy
carn_100_friendship_with_elliott Social 23 Elliott 100 save_new add_item_by_name("Pomegranate”, 1. 4), set_time(time=1100) friendship medium
earn_200_friendship_with_harvey Social 24 Harvey 200 save_new friendship hard

19

Under review as a conference paper at ICLR 2026

C.4 SIMULATOR APIs

To establish the initial state for each task, we develop a set of simulator APIs that allow fine-grained customization
of the game environment. Many tasks require strict initial conditions and world settings, such as resources (e.g.,
sufficient crop seeds in inventory), weather conditions (e.g., a rainy day), and game progress (e.g., unlocking
the mines). The simulator APIs can configure these task-specific conditions, endowing each task with a unique
environment setup. This mechanism significantly expands the benchmark’s diversity and flexibility, allowing
varied and nuanced task designs that closely mirror the dynamic production-living settings in human society.

To efficiently standardize our tasks, we also create a series of tailored game save files, which have pre-configured
some common environmental settings using simulator APIs. These files reduce the excessively frequent calls to
simulator APIs in real time, improving the efficiency of task execution. At the beginning of each task, StarDojo
automatically loads the corresponding saved game and invokes specific simulator APIs, ensuring all necessary
prerequisites are appropriately configured.

The complete APIs are as follows:

Simulator APIs

* Player Settings

— set_base_health(amount: int): Set the health capacity of the player.

— set_health(amount: int): Set the current health of the player.

— set_base_energy(amount: int): Set the energy capacity of the player.

— set_energy(amount: int): Set the current energy of the player.

— set_inventory_size(size: int): Set the inventory size.

— clear_inventory(): Clear the inventory.

— set_money(amount: int): Set the amount of money that the player possesses.

— add_item_by_id(id: str, count: int, quality: int): Add the specific item of given count and
quality (e.g., 0, 1) to inventory by ID.

— add_item_by_name(name: str, count: int, quality: int): Add the specific item of given count
and quality to inventory by name.

— lookup(name: str): Look up and print the item ID by name.

— current_position(): Print the current position of the player.

— add_recipe(type: str, recipe: str): Teach the player the specific crafting / cooking recipe.

— set_max_luck(): Set player’s luck to the maximum.

— print_luck(): Print player’s luck.

* Surrounding Settings

— world_clear(entity: str, location: str): Remove all entities of the given type (e.g., "crops",
"trees") from a location.

— set_terrain(terrain: str, id: str, x: int, y: int): Set the terrain feature of the given tile.

— place_item(item: str, type: str, x: int, y: int): Place the specific item on the given tile.

— remove_item(x: int, y: int): Remove the item on the given tile.

— place_crop(crop: str, x: int, y: int): Place the specific crop on the given tile.

— grow_crop(day: int, x: int, y: int): Grow the crop on the given tile for a specific number of
days.

— grow_tree(day: int, x: int, y: int): Grow the tree on the given tile for a specific number of
days.

— build(type: str, force: bool, x: int, y: int): Build the specific building at the given coordinate.

— build_stable(x: int, y: int): Build a stable at the given coordinate.

— move_building(x_source: int, y_source: int, x_dest: int, y_dest: int): Move the building
from the source coordinate to the destination coordinate.

— remove_building(x: int, y: int): Remove the building at the given coordinate.
— upgrade_house(level: int): Upgrade the farmhouse to the given level.
¢ Character Settings
— spawn_pet(type: str, breed: str, name: str, x: int, y: int): Spawn a pet of given type (e.g.,
"cat", "dog"), breed (e.g., "0", "1"), and name on a tile.

— spawn_animal(type: str, name: str): Spawn an animal of given type and name in the animal
house.

20

Under review as a conference paper at ICLR 2026

— grow_animal(name: str): Set the specific animal in current location to day 1 of adulthood,
unless already adult.

— animal_friendship(name: str, friendship: int): Set the friendship with the specific animal.
— npc_friendship(npc: str, friendship: int): Set the friendship with the specific NPC.
— all_npc_friendship(friendship: int): Set the friendship with all NPCs.
— dating(npc: str): Make the specific NPC be the player’s boyfriend / girlfriend.
* Location Settings
— warp(location: str, x: int, y: int): Warp the player to given location and position.
— warp_mine(level: int): Warp the player to given mine level.
— warp_volcano(level: int): Warp the player to given volcano level.
— warp_home(): Warp the player back home.
— warp_shop(npc: str): Warp the player to the shop run by the given NPC.
— warp_character(npc: str, location: str, x: int, y: int): Warp the specific NPC to given location
and position.
* World Settings

— set_date(year: int, season: str, day: int): Set the date.
— set_time(time: int): Set the current time.
— rain(): Set the weather to rainy.

* Progression Settings

— set_deepest_mine_level(level: int): Set the deepest mine level reached by the player.

— set_monster_stats(monster: str, Kills: int: Set the kill stats for the specific monster to the
given value.

— print_monster_stats(monster: str): Print the kill stats for the specific monster.

— start_quest(id: str): Start the quest of given ID.

— start_help_quest(type: str): Start a random help wanted quest of given type.

— complete_quest(id: str): Complete the quest of given ID.

— joja_membership(): Give the player JojaMart membership.

— spawn_junimo_note(id: str): Spawn the junimo note of given ID in the Community Center.
— mark_bundle(id: str): Mark the completion of the specific bundle.

— complete_room_bundles(id: str): Complete all bundles in the specific room of the Community
Center.

— community_development(id: str): Complete the community development project of given ID.
— receive_mail(mail: str): Add the specific mail to mailbox.
— trigger_event(id: str): Trigger the event of given ID.

— seen_event(id: str, see_or_forget: bool): Mark the viewed / unviewed status of the specific
event.

— load_save(save: str): Load the game save of given name.

C.5 EVALUATION

Given the scale of our extensive task set, it is imperative to design an efficient and reusable evaluation mechanism
that not only accurately monitors task progression but also delivers immediate reward feedback to agents.
Therefore, we implement a unified evaluation system based on textual observation comparison. The evaluation
workflow follows a consistent pattern across all tasks, as outlined in the following steps and Algorithm|T}

* Maintain the previous observation: Store the agent’s prior textual observation to enable temporal compari-
son.

Capture the current observation: Acquire the latest textual observation.

» Compare two observations: Based on the task’s evaluator type (e.g., harvest, sell) and target object (e.g.,
item, NPC), the system detects related game state changes, such as items in the inventory and surrounding
tiles, to quantify task progress.

¢ Accumulate incremental progress: Accumulate incremental changes captured per step into a sum.

* Check completion criterion: Validate whether predefined success conditions (e.g., quantity thresholds,
event triggers) are met.

21

Under review as a conference paper at ICLR 2026

Algorithm 1 Task Evaluation

1: function EVALUATE(0bs)
2: if last_obs is null then

3: last_obs < obs

4: return {completed : False, current_quantity : 0}

5: end if

6: quantity_change < COMPARE (evaluator, object, obs, last_obs)
7: last_obs < obs

8: current_quantity < current_quantity + quantity_change

9: if current_quantity > quantity then

10: completed < True

11: else

12: completed < False

13: end if

14: return {completed : completed, current_quantity : current_quantity}

15: end function

The evaluation system relies on the comprehensive observation space, allowing for step-by-step tracking of
progress toward the task goal. This incremental inspection approach avoids differences caused by varying initial
conditions, making the proposed evaluation mechanism more generalizable. The evaluation output provides
standardized metrics, including completion status and current progress. These metrics also serve as reward
feedback and, along with observations, are passed to the agents to prompt them to adjust their behavior.

D EXPERIMENT SETTINGS

If not mentioned explicitly, all experiments are conducted under the following settings: Agents have access
to both visual and textual observations for their decision-making process. Visual observations are provided
at a resolution of 720p (1280x720 pixels). Textual observations include detailed information about current
state. Specifically, there are information about the player itself, including health, energy, gold, chosen item, and
inventory information. There are also global information, which are current time, current day, season, and current
open menu. Finally, we provide 7x7 agent-centered surrounding information, containing details about each tile,
ranging from the terrain, debris, buildings, object, exits, NPCs, and furniture information, to other tile properties
encoded in the game. In addition to receiving observations from the current timestep, agents are also provided
with action and visual information from the previous timestep. Incorporating previous timestep information
enables agents to reflect on past states and facilitate consistency in decision-making. All the agents can output at
most two skills as an action to be executed sequentially. After executing all the actions, the environment remains
paused until the agent outputs the next action. All experiments are repeated three times to ensure reliability.

Prompt Used in Main Experiment

You are a helpful Al assistant integrated with ’Stardew Valley’ on the PC, equipped to handle various
tasks in the game. Your advanced capabilities enable you to process and interpret gameplay screenshots
and other relevant information. By analyzing these inputs, you gain a comprehensive understanding of
the current context and situation within the game. Utilizing this insight, you are tasked with identifying
the most suitable in-game action to take next, given the current task. You control the game character
and can execute actions from the available action set. Upon evaluating the provided information, your
role is to articulate the precise action you would deploy, considering the game’s present circumstances,
and specify any necessary parameters for implementing that action.

Here is some helpful information to help you make the decision.

Your Current task is: <$task_description$>

Basic knowledge about the environment:

1. Hoe is used to till the soil, Watering Can is used to water the soil, Pickaxe is used to break
rocks, Axe is used to chop trees, Scythe is used to harvest crops.

2. When you want to go through a door, move in front of it by 1 tile, and interact towards it.

3. Please go to bed at night (after 18:00) even if your task is not yet complete!

22

Under review as a conference paper at ICLR 2026

4. Call interact(direction) with a box, a shipping bin or anything else. Call use(direction) to use
an item or tool in your inventory.

Health: <$health$>

Energy: <$energy$>

Money: <$money$>

Current Time: <$time$>

Day: <day>

Season: <$season$>

Item in your hand: <$chosen_item$>

Toolbar of items which you can choose from: <$toolbar_information$>
Current menu: <$current_menu$>

Surrounding blocks (Objects surrounds you): <$surroundings$>

Valid action set in Python format to select the next action: <$skill_library$>
Last executed action: <pre_action>

<$image_introduction$>

Based on the above information, analyze the current situation and provide the reasoning for what you
should do for the next step to complete the task. Then, you should output the exact action you want to
execute in the game. You should respond to me with:

Reasoning: You should think step by step and provide detailed reasoning to determine the next action
executed on the current state of the task. You need to answer the following questions step by step. You
cannot miss the last question:

1. Is there an open menu? What is the current menu saying? What are the options? Which one
should you choose or should you exit the menu? Use choose_option to make a choice.

2. What is the current map? Do you need to move to another map?
3. Refer to surroundings, what are the important tiles? What are their positions?

4. You are always at (0, 0). You can only affect points adjacent to you, such as (0,1), (0,-1),
(1,0), (-1,0). Is your target at these positions? If not, move next to it first.

5. Analyze the information in the toolbar. Does it contain all the necessary items for completing
the task? What is the current item?

6. When calling use or interact, you need to decide the direction. For example, if you are at
(x.y):
- call interact("up") or use("up") to interact with or use against (0,-1)
- call interact("right") or use("right") to interact with or use against (1,0)
- call interact("down") or use("down") to interact with or use against (0,1)
- call interact("left") or use("left") to interact with or use against (-1,0)

7. What is the current image showing? What additional information can be learned from the
image?

8. Do all the selected actions exist in the valid action set? If no, regenerate the actions and give
the reasons.

Actions: The requirements that the generated action needs to follow. The best action, or short sequence
of actions without gaps, to execute next to progress in achieving the goal. Pay attention to the names
of the available skills and to the previous skills already executed, if any. You should also pay more
attention to the following action rules:

1. You should output actions in Python code format and specify any necessary parameters to
execute that action. If the function has parameters, you should also include their names and

23

Under review as a conference paper at ICLR 2026

decide their values, like move(x=0, y=1). If it does not have a parameter, just output the
action, like unattch_item().

2. You can only output at most 2 actions in the output.

3. If you want to interact with the objects in the toolbar, you need to make sure that the target
object is already selected. You need to use choose_item() to select them before executing
use().

4. If you want to plant a seed or harvest a mature crop, please use interact(). If you want to use
tools, like axe, hoe, watering can, pickaxe and scythe, please use use().

5. Your action should strictly follow the analysis in the reasoning. Do not output any additional
action not mentioned in the reasoning.

You should only respond in the format described below, and you should not output comments or other
information.

Reasoning:

I. ..

2. ...

3. ..

Actions:

AN

python
action (argsl=x,args2=y)

AURWRY

Conclusion

The above cases collectively reveal key limitations of current large language models when deployed in grounded,
spatially structured environments like Stardew Valley. Despite having access to both visual and textual infor-
mation, the model consistently exhibits hallucinations in spatial understanding — including confusion about
direction, misjudgment of proximity, and failure to plan indirect paths around obstacles.

These behaviors suggest that LLMs, while capable in language-based reasoning, still lack robust internal
representations of space and geometry. Moreover, the persistence of such errors even with explicit instructions
points to fundamental weaknesses in grounding language to actionable physical reasoning. Bridging this gap will
require future work in multimodal integration, spatial memory, and instruction-following mechanisms tailored to
embodied agents. Our findings underscore the importance of evaluating LLMs not just on language tasks, but
within interactive environments where spatial and physical reasoning are essential.

E FINANCIAL COST

The financial costs of evaluating different closed-source MLLMs on StarDojo-Lite for one round are summarized
in Table

Table 6: Financial costs of running one round on StarDojo-Lite with different closed-source MLLMs.

MLLM Model Name Cost
GPT-4.1 gpt-4.1-2025-04-14 $20.6
Gemini 2.5 Pro gemini-2.5-pro-preview-03-25 $25.8
Claude 3.7 Sonnet claude-3-7-sonnet-20250219 $38.7
GPT-4.1 mini gpt-4.1-mini-2025-04-14 $4.3

24

	Introduction
	Related Work
	StarDojo
	Introduction to Stardew Valley
	Architecture
	Observation and Action Spaces
	Tasks

	Empirical Studies
	Qualitative Analysis
	Error Analysis
	Ablation Studies

	Limitations and Conclusion
	Appendix
	Introduction to Stardew Valley
	Realistic Gameplay Mechanism
	Production
	Society

	StarDojo Environment
	Observation Space
	Action Space
	Task
	Simulator APIs
	Evaluation

	Experiment Settings
	Financial Cost

