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Abstract

The integration of evolutionary algorithms (EAs) with reinforcement learning
(RL) has shown superior performance compared to standalone methods. How-
ever, previous research focuses on exploration in policy parameter space, while
overlooking the reward function search. To bridge this gap, we propose LaRes,
a novel hybrid framework that achieves efficient policy learning through reward
function search. LaRes leverages large language models (LLMs) to generate the
reward function population, guiding RL in policy learning. The reward functions
are evaluated by the policy performance and improved through LLMs. To improve
sample efficiency, LaRes employs a shared experience buffer that collects experi-
ences from all policies, with each experience containing rewards from all reward
functions. Upon reward function updates, the rewards of experiences are relabeled,
enabling efficient use of historical data. Furthermore, we introduce a Thompson
sampling-based selection mechanism that enables more efficient elite interaction.
To prevent policy collapse when improving reward functions, we propose the re-
ward scaling and parameter constraint mechanisms to efficiently coordinate reward
search with policy learning. Across both initialized and non-initialized settings,
LaRes consistently achieves state-of-the-art performance, outperforming strong
baselines in both sample efficiency and final performance. The code is available at
https://github.com/yeshenpy/LaRes.

1 Introduction

Reinforcement learning (RL) [1] is a class of learning methods that excels at handling sequential
decision-making problems [2]. Through trial and error and gradient-based optimization, RL approxi-
mates value functions and provides policy gradients for policy learning [3]. It has been applied in
various fields, including robotic control [4], game AI [5], and recommender systems [6]. In contrast,
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Evolutionary Algorithms (EAs) [7–9] are heuristic optimization methods inspired by Darwinian
principles, typically employing gradient-free approaches to solve problems and have shown remark-
able performance in fields like circuit design [10] and scheduling optimization tasks [11]. Previous
studies have revealed complementary characteristics between these two approaches [12, 13]. RL
excels at utilizing fine-grained information, such as states and actions, offering high sample efficiency
and strong local optimization capabilities. However, it faces exploration challenge and is prone to
suboptimal solutions [14]. In contrast, EAs are strong in global optimization but suffer from weak
local optimization and sample inefficiency [15, 16]. Given these complementary strengths, many
works have explored the integration of EAs and RL for policy learning, demonstrating superior
performance compared to each approach individually [17–20].

The ultimate goal of task solving is to learn an efficient policy, which depends on two key factors:
the algorithm’s search capability in the policy parameter space, and the quality of the task’s reward
function, which directly impacts policy learning performance and efficiency [1]. Previous works
primarily focus on integrating EAs and RL to improve the policy search capabilities [13], with
little attention given to the reward functions. Early works aim to improve reward functions through
heuristic operators, but these methods struggle to scale to complex tasks [21]. With the advancement
of large language models (LLMs) that demonstrate strong coding capabilities and valuable domain
knowledge, the generation of complex reward functions using LLMs has been explored preliminarily.
For example, Text2Reward [22] uses LLMs to construct reward functions based on structured
environment representation. Eureka [23] constructs a reward function population and improves
the reward function based on evolutionary principles. SA [24] integrates CoT and hyperparameter
optimization. R* [25] further improves Eureka’s performance through structural evolution and
parameter optimization. However, these works overlook sample efficiency, a key evaluation metric in
RL, leading to excessive environment interactions. In contrast, LaRes focuses on sample-efficient
policy learning from both the policy and sample perspectives.

To solve these problems, we propose an LLM-based adaptive Reward search hybrid framework
(LaRes) for efficient policy learning. In LaRes, we use LLMs to generate a population of candidate
reward functions, while RL learns corresponding policies. The LLM then iteratively refines the reward
population based on the performance feedback from these learned policies. If a human-designed
reward function is available, it can be included in the context to reduce the difficulty of reward search.
To improve sample efficiency, we maintain a shared replay buffer that stores experiences from all
policies. The key difference from previous works is that each experience includes multiple
rewards from the reward function population, rather than a single reward. RL then optimizes
multiple policies based on the corresponding rewards. Besides, when the reward functions are
improved, we (1) relabel the corresponding rewards in the replay buffer to enable historical data reuse,
and (2) allow RL individuals to inherit from the best individual, avoiding retraining from scratch.
However, we find that reward function changes may lead to policy collapse. To stabilize learning,
we propose two mechanisms: reward scaling, which aligns the scale of the new reward function
with the elite one, and parameter constraint loss, which minimizes the distance between the policy
and critic and their elite counterparts in parameter space. Moreover, different reward functions may
result in significant performance variations among policies, the experiences from inferior policies
can contaminate the replay buffer, leading to suboptimal policies. Thus we propose Thompson
sampling [26]-based interaction mechanism, which prioritizes more frequent interactions for superior
policies. In experiments on 16 robotic manipulation and 4 MinAtar tasks with human-designed
reward initialization, LaRes outperforms strong RL, ERL, and reward design baselines in both sample
efficiency and final performance. When trained without initialization, LaRes continues to achieve
state-of-the-art results in manipulation and locomotion tasks.

We summarize our contributions as follows: (1) We propose a novel hybrid framework that focuses
on improving sample efficiency from both the sample and policy perspectives. (2) From the sample
perspective, we design a shared replay buffer with a reward relabeling mechanism to fully utilize
historical data. (3) From the policy perspective, we propose reward scaling and parameter constraint
mechanisms to ensure training stability, and a Thompson sampling–based interaction mechanism to
balance exploration and exploitation. (4) Empirical results show that LaRes consistently outperforms
strong baselines across a wide range of tasks and experimental settings.
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Figure 1: The optimization flow of LaRes. In the first iteration, ① LaRes generates the reward
function population using the LLM, followed by ② RL training. After a certain number of training
steps, ④ results are summarized, and then ⑤ the non-elite RL individuals are replaced by the elite
ones. Next, ① the reward function population is enhanced based on the best reward function, followed
by ③ the reward relabel phase. The subsequent iterations follow the sequence: ②, ④, ⑤, ①, and ③.

2 Background

Reinforcement Learning Consider a Markov decision process (MDP) [1], defined by a tuple
⟨S,A,P,R, γ, T ⟩. At each step t, the agent uses a policy π to select an action at ∼ π(·|st) ∈ A
according to the state st ∈ S and the environment transits to the next state st+1 according to
transition function P(st, at) and the agent receives a reward rt = R(st, at). The return is defined as
the discounted cumulative reward, denoted by Rt =

∑T
i=t γ

i−tri where γ ∈ [0, 1) is the discount
factor and T is the maximum episode horizon. The goal of RL is to learn an optimal policy π∗

that maximizes the expected return. SAC [27] is one representative RL algorithm that maximizes
expected reward while maintaining high entropy for effective exploration. SAC maintains a policy
and double Q-networks, with the policy optimized as follows:

Lπ = ED,π

[
α log π(a|s)−min

i
Qϕi(s, a)

]
, LQ(ϕi) = ED,π

[
Qϕi(s, a)− (r + γV ′(s′))

]2
,

(1)
where V ′(s′) = Eπ

[
minj Qϕ̂j

(s′, a′)− α log π(a′|s′)
]

and α is the temperature parameter.

Evolutionary Algorithm Evolutionary Algorithms (EAs) [7, 28, 9] are a class of black-box
optimization methods. EAs typically need to maintain a population of individuals. In previous
hybrid works, the population individuals are often represented in various forms [13], e.g., policy
networks, value function networks, and the evolution of the population is achieved through crossover
and mutation operations on the parameters. In this paper, the population maintained by the EAs exists
in the form of reward function code, defined as follows: P = {F1, F2, ..., Fn}. The reward function
fitness f(Fi) is evaluated based on the performance of the policy guided by Fi. We improve the
reward function through LLMs.

3 Related Work

The integration of EAs with RL has demonstrated strong capabilities across various tasks [13,
16]. Some works incorporate RL into EAs to improve population initialization [29], evolutionary
operators [30], and other processes [31]. Other works integrate EAs into RL for hyperparameter
tuning [32], action selection [33], and exploration [34]. Another emerging active direction is to fuse
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the strengths of both approaches. For example, methods such as ERL [12], PDERL [18], CEM-
RL [17], ERL-Re2 [19], EvoRainbow [20] leverage the complementary strengths of EAs and RL,
improving both sample efficiency and exploration in policy search. Other works, like VFS [35] and
VEB-RL [36], focus on optimizing value functions. In addition, some works have extended ERL
concepts to areas like multi-agent systems [37, 38] and game testing [39]. In contrast, LaRes focuses
on improving the reward function to enhance policy learning efficiency in complex tasks.

Early works on reward design primarily focus on inverse RL [40–43], where rewards are constructed
based on expert demonstrations. Subsequently, the emergence of RL from human feedback (RLHF)
enables learning reward models directly from human feedback [44–48]. In addition, some works
improve reward quality through reward shaping [49–53]. With broad domain knowledge and strong
coding capabilities [54–59], LLMs have been successfully applied across various fields [60–65].
Among them, recent works explore leveraging LLMs to generate reward functions. For example,
L2R [66] employs LLMs to write reward code based on predefined APIs. Eureka [23] follows an
evolutionary approach, maintaining a population of reward functions to guide policy learning and
iteratively refining them with an LLM. DrEureka [67] uses LLMs to write reward functions and
configure domain randomization parameters to achieve sim-to-real transfer. R* [25] decomposes
reward design into structural evolution and parameter optimization. However, these works overlook
sample efficiency, a key evaluation metric in RL. In contrast, LaRes focuses on improving sample
efficiency from both the sample and policy perspectives.

4 LLM-based Adaptive Reward Search

This section provides an overview of LaRes and elaborates its key mechanisms from three perspectives:
high-level reward evolution, low-level policy learning, and inter-level coordination.

4.1 LaRes Optimization Flow

Unlike previous ERL methods that use EAs and RL to co-optimize the policy parameters, LaRes
decomposes the task-solving process into reward function search and policy learning. The overall
framework is shown in Figure 1. LaRes employs LLM to construct and evolve the reward function
population. We then employ RL to learn the corresponding policies and evaluate the reward function
fitness based on the policy performance. Below, we briefly summarize the algorithmic process, from
high-level reward evolution, lower-level policy learning, and coordination between the two levels.

Population initialization. In the initial iteration, we provide human-designed reward functions
(optional), task descriptions, and environment information as the context to the LLM. Using tailored
prompts, the LLM generates n reward functions to construct the initial reward function population.
For each reward function, an RL agent is initialized for environment interaction and policy learning.

Population Evaluation and Evolution. With T -step learning, we select the best reward function
together with its corresponding policy and Q-function based on policy performance, e.g. success rate.
Subsequently, we provide the best reward function and learning process information (e.g., success
rates, cumulative rewards) as feedback to the LLM for reflection. The LLM then generates new
improved reward functions that replace the non-elite ones in the population.

The above process introduces the high-level reward search, focusing on reward function generation,
evaluation and evolution. Below, we introduce the low-level policy learning.

Policy Learning. We employ the off-policy RL algorithms (e.g., SAC [27]) to learn the policies
guided by different reward functions. To improve sample efficiency and mitigate exploration chal-
lenges in RL, experiences from all policies are stored in a shared replay buffer. To reduce replay
buffer contamination from inferior policy experiences, we propose the selection-based interaction
using Thompson sampling [26]. Further details are provided in Subsection 4.3.

The coordination between the two levels is crucial, with a particular focus on how policy learning
adapts to the periodic evolution of the reward function.

Continual Learning. After the reward function is improved, continuing learning with the previous
policy and Q-functions may lead to suboptimal results, while learning a new RL policy from scratch
incurs a significant sample cost. Thus we propose a continual learning approach, where the best
policy and its corresponding Q-functions are used to initialize those of the non-elite agents. However,

4



we find that the elite policy is prone to performance collapse when guided by new reward functions.
To solve the problem, we propose the reward scaling and parameter constraint mechanisms, which
will be discussed in Subsection 4.3.

Historical Data Reuse. Off-policy RL algorithms like SAC can reuse historical data through a replay
buffer. However, when the reward function changes, directly training on previous data may lead to
policy collapse due to reward inconsistency problem, while discarding historical data would result
in significant sample waste. To efficiently reuse historical data, we relabel the shared replay buffer
based on the new reward function population.

Next, we present a detailed introduction to the key components of LaRes.

4.2 High-level Reward Evolution

Inspired by previous works [22, 23], we provide the raw environment variables as context to the LLM,
along with tailored prompts that guide it in generating and refining reward functions. The LLM then
iteratively generates n reward functions in code format, which are subsequently optimized from three
key perspectives: 1) Components Optimization. Adding new reward components for guidance or
removing ineffective reward components. 2) Weight Optimization. Adjusting the weights between
different reward components. 3) Calculation Optimization. Modifying the calculation method of
reward components, such as using alternative activation functions.

The LLM must consider all three aspects simultaneously. If optimization is not performed, a brief
explanation should be provided. In the improvement phase, the best reward function is selected
according to the policy performance. We then provide the policy performance, episodic reward,
and other related statistics to the LLM, which reflects on this feedback and generates new reward
functions to replace the non-elite ones in the population. Through the above process, we can achieve
the iterative improvement of the reward function population. To ensure the stability of policy learning,
the elite reward functions will not be replaced and continue to guide their corresponding RL agents.
Additionally, under settings with human-designed reward initialization, we always maintain the
human-designed reward function, resulting in a total of n+ 1 reward functions.

4.3 Low-level Policy Learning

Given the presence of multiple reward functions, we employ the parallel training approach, learning
an RL agent for each reward function. To improve sample efficiency, we maintain a shared replay
buffer that stores the experiences from all policies. The key difference is that, the conventional replay
buffer stores experiences in the format {s, a, s′, r, done}, due to the presence of the reward function
population, each experience needs to be relabeled by the reward function population, resulting in the
format {s, a, s′, r, r1, . . . , rn, done, info}, r represents the original human-designed reward, which
exists only when a human-designed reward function is provided, {r1, . . . , rn} represent the rewards
from the population, and info denotes the variable inputs to the reward function for reward calculation.
Each RL agent is trained using its corresponding rewards.

In addition, due to the significant performance differences in policies guided by different reward
functions, allocating the same number of interaction steps to each agent would lead to resource waste.
To improve the experience quality in the replay buffer while mitigating the impact of poor experiences,
we propose a Thompson sampling-based interaction mechanism. Thompson sampling [26] is a
Bayesian inference-based sampling method that estimates the distribution of the expected reward
for each action based on historical data. Actions are selected by sampling from these distributions,
and after performing the action, the reward distribution is updated using the reward feedback. In
LaRes, we define n actions, where the i-th action corresponds to selecting policy i for interaction.
We update the Beta distribution parameters using feedback from task success and failure. Specifically,
the reward ψi of each action follows Beta distribution ψi ∼ Beta(αi, βi), and the action with the
highest sampled reward is selected for interaction. For action i, βi and αi are updated as follows:

α′
i = αi + ns,i, β

′
i = βi + nf,i, (2)

where ns,i and nf,i represent the number of successes and failures of policy i, respectively. Under
this mechanism, superior policies have more interaction resources, while inferior policies have fewer
opportunities for interaction. Additionally, after the reward function improves, we reset the Thompson
sampler to reallocate resources. Note that following previous ERL works, the RL agent guided by the
human-designed reward function does not participate in sampling and interacts in each iteration.
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The iterative improvement of the reward function population can introduce several problems for
low-level policy learning. In this subsection, we provide a detailed explanation of how to address
these challenges. When the reward function changes, we adopt a continual learning approach to
directly configure the best policy and Q functions for the new reward function. This approach avoids
the high sample cost of training from scratch and mitigates the performance degradation caused by
continuing to train an inferior policy. However, we find that when the reward function changes, policy
learning is prone to collapse. This is primarily caused by two factors: reward scale difference and
reward design difference.

To address the scale difference, we introduce a reward scaling mechanism. Specifically, we calculate
the mean µelite and variance σelite of the elite reward function based on the replay buffer as a surrogate
for its true mean and variance. Meanwhile, we calculate the mean µnew and variance σnew of the
newly generated reward function. We align the means and variances of the two reward functions
using the following formula:

rscaled =
σelite

σnew
(rnew − µnew) + µelite. (3)

By scaling both the replay buffer rewards and the new interaction rewards, we can efficiently address
the reward scale difference problem. However, distributional differences still exist. In previous ERL
works, evolution typically occurs at the parameter level, under the assumption that better individuals
are located near the parameters of the optimal individual. Inspired by this, we propose parameter
constraint mechanism that constrains the parameter changes of the policy and value functions to
further mitigate the collapse problem. Specifically, we introduce the following loss:

Lπi = ∥θi − θelite∥22,LQi
= ∥ϕ0,i − ϕ0,elite∥22 + ∥ϕ1,i − ϕ1,elite∥22, (4)

where θelite,ϕ0,elite and ϕ1,elite are the policy parameters and value function parameters of the elite
agent. By adding the above constraint loss during both policy and value function updates, we prevent
the policy from drifting away from the elite parameters, thereby improving training stability.

4.4 LaRes Algorithm

Algorithm 1 LaRes Framework

1: Require: Task description L, environment variables V ,
reward function prompt P , coding LLM LLM , Human-
designed reward function FH (Optional)

2: Initialize Shared Replay Buffer D, Thompson sampler
TS , an RL population PRL = {π1, Q1, ·, πn, Qn}

3: Initialize reward function population:
PReward = LLM(L, V, P, FH(optional))

4: for N Iterations do
5: Reset the Thompson sampler TS
6: for T environment steps do
7: Policy interaction based on sampler TS
8: Add all rewards for each experience using PReward
9: Add all experiences to D

10: RL parallel training, add parameter constraint loss
to non-elite agents

11: end for
12: Select the best Reward Function Fbest, πbest and Qbest
13: Improve reward population with LLM reflection

PReward = Reflection(L, V, P, FH(optional), Fbest)
14: Relabel replay buffer D using the new PReward
15: Initialize the non-elite RL agents with the best πbest

and Qbest
16: Reward rescaling for new reward functions
17: end for

LaRes is a flexible framework that
can be combined with any off-policy
RL method. We provide the pseu-
docode in Algorithm 1. Specifically,
we first use the LLM to generate a
reward function population based on
the human-designed reward function
FH (in human reward function initial-
ization setting), environment variables
V , and other information (line 3). In
each iteration, we first initialize the
Thompson sampler TS (line 5). Next,
we enter the training phase, which be-
gins with policy interactions (line 6-
11), including both the TS sampled
policy and the policy guided by the
human-designed reward (line 7). For
each experience, rewards are calcu-
lated using PReward (line 8), and all
experiences are added to the shared re-
play buffer D (line 9). Subsequently,
parallel RL training is conducted (line
10). If the current iteration is not the
initial iteration, a parameter constraint
loss is added to the non-elite agent
training process to ensure learning sta-
bility. After T environment steps of
training, we evaluate the performance of the learned RL policies and select the best reward function
Fbest, together with its corresponding policy πbest and value function Qbest(line 12). Using the LLM
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Figure 2: Performance comparison on 12 robot manipulation tasks from MetaWorld.

reflection mechanism, we improve the reward function population by replacing non-elite individuals
(line 13). The experiences in D are then relabeled based on the new reward function (line 14), and
the parameters of the non-elite individuals are initialized using πbest and Qbest (line 15). To ensure
reward scale consistency, we apply a reward rescaling mechanism to adjust the reward function (line
16). The process then proceeds to the next iteration. Through the above process, LaRes achieves
efficient policy learning through reward search.

5 Experiments

We first conduct experiments on various tasks to compare LaRes with other strong baselines. To gain
deeper insights into LaRes, we then perform detailed analyses. Furthermore, an ablation study is
conducted to verify the effectiveness of each component.

5.1 Experimental Setups

We evaluate LaRes on a wide range of benchmarks, including manipulation tasks from the MetaWorld
and ManiSkill3 suites [68, 69], MinAtar tasks with image inputs [70], and locomotion tasks from
MuJoCo [71]. Under the setting with human-designed reward initialization, we evaluate LaRes on
20 tasks, including 12 MetaWorld tasks, 4 ManiSkill tasks, and 4 MinAtar tasks. In manipulation
tasks, we implement LaRes based on SAC. We compare LaRes with the following baselines: 1)
RL baselines, i.e., SAC [27]; 2) ERL-related baselines, including ERL [12], PDERL [18], CEM-
RL [17], ERL-Re2 [19], EvoRainbow [20]. 3) Reward-search baselines, i.e., SAC-based Eureka [23]
and Text2Reward [22], R* [25]. In MinAtar tasks, we implement LaRes based on DQN and compare
it with DQN. Under the no-initialization setting, we compare LaRes with other reward design methods
on 5 MetaWorld tasks and 2 locomotion tasks (Ant & Humanoid).

We use the official codes or implement the methods on new benchmarks following the original papers.
For a fair comparison, we fine-tune them in each task to provide the best performance. We use
GPT-4o-mini as the LLM backbone under the human-designed reward initialization setting, and
GPT-4o under the no-initialization setting. All algorithms are trained with 1 million environment
steps on MetaWorld and locomotion tasks, 2 million environment steps on ManiSkill3 and MinAtar.
All statistics are obtained from 5 independent runs, consistent with previous literature. We report the
average with 95% confidence intervals. For LaRes, we set the population size to 5. We perform 5
iterations of the reward population evolution. All implementation details are provided in Appendix B.
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Figure 3: Performance comparison on 4 robot manipulation tasks from ManiSkill3.

Method Window-Close Window-Open Drawer-Open Button-Press Door-Close

LLM zero-shot 51% | 388796 6% | 419084 8% | 762346 65% | 560428 15% | 156590
Eureka 50% | 303786 55% | 657098 15% | 731876 61% | 924163 98% | 283206
LaRes 100% | 164850 100% | 358403 100% | 164850 100% | 112800 100% | 65626

Table 2: Comparison under the no-initialization setting (Success Rate | Samples Needed).

5.2 Performance Evaluation with Human Reward Function Initialization

We begin by evaluating LaRes and other baselines across 12 different manipulation tasks in the
MetaWorld benchmark. The RL and ERL baselines learn policies guided by human-designed rewards.
The experimental results are shown in Figure 2. We observe that LaRes significantly outperforms
SAC (guided by human-designed rewards) across all tasks, which demonstrates that LaRes effectively
discovers better reward functions and fully leverages the learned multiple policies to achieve superior
performance. Furthermore, LaRes outperforms other ERL methods in both sample efficiency and
final performance across most tasks, especially the harder ones. Notably, unlike other ERL methods,
LaRes does not combine EAs and RL for co-optimizing policy and value function parameters. Instead,
it focuses on reward function search and continuous policy learning. The results highlight both the
importance of reward function design and the effectiveness of LaRes. Finally, we observe that LaRes
significantly outperforms other reward design methods. Compared to Eureka and R*, LaRes makes
more efficient use of the generated data and ensures stable policy learning, while Text2Reward lacks
the capacity for continuous improvement, making the policy more prone to suboptimality or collapse.

We further evaluate LaRes and SAC on four tasks from ManiSkill3. Unlike MetaWorld, these tasks
leverage GPU parallel sampling, enabling higher sampling efficiency. The results presented in
Figure 3 demonstrate that LaRes can also significantly improve SAC. This demonstrates that LaRes
consistently improves performance across different benchmarks, further validating the effectiveness
of LaRes.

Method Breakout Asterix Freeway SpaceInvaders

DQN 13.52 | 21.86 2.96 | 11.55 38.89 | 53.93 23.18 | 65.38
LaRes 21.87 | 31.28 14.13 | 28.18 50.87 | 57.24 42.27 | 84.72

Table 1: The scores at 0.5 & 2 million env steps on MinAtar tasks.

Can LaRes improve other
off-policy algorithms and
be applied to discrete ac-
tion spaces? To verify
this, we integrate LaRes
with DQN and evaluate on 4
discrete-control tasks from
MinAtar, and report the average scores at 0.5 and 2 million environment steps in Table 1. We observe
that LaRes significantly improves the performance of DQN trained with human-designed rewards.
This result further validates the effectiveness and generality of LaRes.

5.3 Performance Evaluation without Human Reward Functions

In the previous subsection, we mainly explore the results under the setting where a human-designed
reward function is provided as initialization. A natural question arises: Can LaRes still outperform
other reward design methods when no human-designed reward function is available? To answer
this question, we first evaluate LaRes on 5 tasks from MetaWorld, which are similar to those used
in Text2Reward. Compared to the tasks in the previous subsection, these tasks are relatively easier,
allowing policies to achieve a 100% success rate. The experimental results are presented in Table 2.
We observe that LaRes outperforms other methods in both sample efficiency and best performance,
which indicates that LaRes is also efficient in its approach to learning from scratch.
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Speed 1M (m/s) Eureka ROSKA [72] LaRes

Ant 1.49 2.77 4.44
Humanoid 2.02 2.95 3.42

Table 3: Performance on locomotion tasks.

Beyond the above manipulation tasks, we fur-
ther evaluate LaRes on two challenging loco-
motion tasks, Humanoid and Ant. As shown
in Table 3, LaRes again surpasses other reward
design methods, demonstrating its effectiveness
across different tasks.

5.4 Analysis & Ablation

In this section, we answer the following questions through experiments: Q1. Does LaRes effectively
improve the reward function? Q2. Does the Thompson sampler in LaRes efficiently and dynamically
adjust the policy interaction? Q3. Can the reward scaling and parameter constraint mechanisms
effectively prevent policy collapse?
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Figure 4: Performance comparison of the policy success rate
guided by human-designed rewards and generated rewards.

To answer Q1, we present perfor-
mance comparison between the pol-
icy guided by the human-designed re-
ward and the best one guided by the
generated reward function in LaRes.
The results are shown in Figure 4.
We observe that the generated reward
function significantly outperforms the
human-designed reward function both
in terms of sample efficiency and final
performance. This indicates that LaRes can discover higher-quality reward function than the human-
designed expert reward function. Additionally, we provide the LLM summary of the best reward
function generated on the Hammer task. Due to space limitations, the complete reward functions are
provided in Appendix C. We observe that the LLM is able to make reasonable improvements based
on the three designed aspects, enabling more efficient exploration of the reward space.

LLM Summary of Improved Reward Function

1. Reward Components: The reward for lifting the hammer (‘a‘) and for hitting the target
nail (‘b‘) was increased significantly to enhance the focus on these critical actions. The
increased penalties when nearing the target position (e.g. adjusted bounds to ‘0.015‘) will
encourage more precise interactions with the target area.
2. Reward Weights: The weight of the successful lift and placement were modified to
provide enhanced emphasis on these actions, thereby creating a stronger incentive for the
agent to accomplish these milestones, which seems crucial considering the policy’s current
low success rate.
3. Reward Calculation: The overall normalization and adjustment of reward components
now includes changes in thresholds and the temperature parameter, which should provide
more stability and control in training. Lowering the temperature value improves the agent’s
control over the learning process and minimizes excessive reward scaling.
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Figure 5: (Left) Policy learning performance guided by dif-
ferent reward functions, (Right) The variation curve of the
probability of policy selection.

To answer Q2, we first present de-
tailed learning curves of policies
guided by different functions on the
Hammer task. We observe that the
policies show significant differences,
which aligns with the intuition that the
modifications guided by LLMs do not
always yield positive results. Then
we visualize the selected probability
of each policy using Thompson sam-
pler. We can observe that F3 is se-
lected with a high probability in each
iteration, while F5, due to its inferior
performance, has a low probability of being selected. Additionally, we conduct an ablation study on
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(a) Thompson-sampling interaction mechanism
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(b) Reward scale & parameter constraint.

Figure 6: Ablation study on LaRes

the Thompson sampling mechanism. The results in Figure 6a show that removing Thompson sam-
pling leads to a performance decline. This is consistent with the intuition that uniformly distributing
interaction resources leads to poor performance.

To answer Q3, we conduct an ablation study on the reward scaling and parameter constraint mecha-
nisms. The experimental results in Figure 6 demonstrate that LaRes w/o reward scaling and parameter
constraints exhibits performance fluctuations during the learning process. However, adding reward
scaling and parameter constraints leads to more stable and efficient policy learning, highlighting
the effectiveness of these mechanisms. More experiments on hyperparameters and different LLM
backbones are provided in Appendix D.

Finally, we present an overhead analysis. LaRes employs a parallel training architecture to simultane-
ously train multiple policies, effectively reducing the training time required for multi-policy learning.
LaRes incurs an approximately 20% increase in time overhead, primarily due to inter-process commu-
nication. This overhead could be further reduced [73], such as adopting asynchronous communication.
In addition, one limitation of LaRes is its increased computational resource requirements, which we
aim to address in future work.

6 Conclusion

This paper introduces LaRes, a novel evolutionary reinforcement learning hybrid framework focused
on reward function search. Driven by LLM, LaRes operates on three levels: reward function
search at the high level, policy learning at the low level, and coordination between the two levels.
Specifically, the high level employs the LLM to refine human-designed reward functions, generating
improved reward functions. The low level employs Thompson sampling to adaptively select policies
for interaction based on their performance and utilizes a shared replay buffer to enhance sample
efficiency. The coordination between the two levels focuses on continuous policy learning. To achieve
this, we propose a reward relabeling mechanism to efficiently reuse historical data, along with reward
scaling and parameter constraint mechanisms to mitigate the policy-collapse problem. Across 16
robotic manipulation tasks, LaRes demonstrates significant improvements in both sample efficiency
and final performance compared to other strong baselines.
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A Limitations & Future Work

For limitations and future work, firstly our work is empirical proof of the effectiveness of the LaRes
idea and we provide no theory on optimality, convergence, and complexity. Secondly, although
LaRes adopts a parallel training architecture, it still incurs additional time overhead, primarily due to
inter-process data communication. This overhead could be further optimized [73], for instance, by
implementing an asynchronous communication mechanism. Furthermore, the computational cost of
LaRes scales proportionally with the number of policies being trained. Thirdly, this work represents
only an initial exploration of reward function search in the ERL framework. The proposed architecture
can be further optimized, for example, by incorporating human-designed reward-guided policies
into the Thompson sampling-based interactions or adopting more efficient sampling mechanism and
continuous policy learning mechanism. Fourthly, LaRes does not explore more efficient generation
mechanisms. For example, leveraging reasoning techniques within LLMs, such as Chain-of-Thought
(CoT) [74] or Tree-of-Thought (ToT) [75] reasoning, could potentially enhance the quality of the
generated reward functions. Finally, diversity is a key aspect of EA [76]. When constructing reward
functions, we do not explicitly consider individual diversity and instead rely on the randomness of
LLMs. However, this approach often fails to ensure sufficient differentiation among individuals.

Overall, LaRes represents a preliminary attempt at leveraging LLMs for reward function search
within the ERL framework. However, it still has several limitations and potential areas for further
improvement. We aim to address these challenges and enhance the method in future work.

B Method Implementation Details

The MetaWorld experiments are carried out on Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz.
ManiSkill3 leverages GPU acceleration; therefore, we conduct experiments on NVIDIA GTX 2080
Ti GPU with Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz.

B.1 Implementation of Baselines

For all ERL baseline algorithms, we use the official implementation, including ERL1, PDERL2,
CEM-RL3, ERL-Re24, EvoRainbow25. The reward-search baselines primarily include Text2Reward,
Eureka and R*. For fair comparisons, all these methods are implemented based on the SAC algorithm
with consistent hyperparameter settings. In addition, to handle discrete action spaces, we implement
a DQN-based version of LaRes. For the implementation of Text2Reward, we employ the LLM
to generate improved reward functions based on human-designed reward functions and interface
definitions. Eureka can be regarded as a variant of LaRes without continual learning or data sharing.
To achieve this, we modify the LaRes by removing unrelated components and ensuring the same
number of evolutionary iterations and population size. R* further builds upon Eureka by introducing
two mechanisms: parameter optimization and structure evolution.

B.2 Implementation of LaRes

The implementation of LaRes has three versions: MetaWorld, ManiSkill3, and MinAtar. We build
LaRes for MetaWorld based on the SAC implementation from EvoRainbow, for ManiSkill3 using
the official SAC implementation provided by ManiSkill3, and for MinAtar using the official DQN
implementation provided by VEB-RL6.

For the training framework, we construct a parallel framework using Python’s multiprocessing library.
This framework consists of a central server and multiple workers. The server is primarily responsible
for policy interactions, data distribution, parameter distribution, data labeling, and relabeling. The
number of workers corresponds to the number of reward functions, and each worker is tasked with

1https://github.com/ShawK91/Evolutionary-Reinforcement-Learning
2https://github.com/crisbodnar/pderl
3https://github.com/apourchot/CEM-RL
4https://github.com/yeshenpy/ERL-Re2
5https://github.com/yeshenpy/EvoRainbow
6https://github.com/yeshenpy/VEB-RL
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training a specific policy and sending the trained parameters back to the server for interactions and
computations.

In all experiments, we maintain a reward function population of size 5, along with the original
human-designed reward function, resulting in a total of 6 reward functions. The improvement of the
reward function population involved a total of 5 evolutions (including the generation of the initial
population). The elite size is set to 3 for all tasks. Thompson sampling parameters α and β are set to
1 by default.

For all tasks in MetaWorld, we trained for 1 million environment steps, while for all tasks in
ManiSkill3, we trained for 2 million environment steps. Consequently, for tasks in MetaWorld,
population evolution is performed every 200,000 environment steps, whereas for tasks in ManiSkill3,
it is performed every 500,000 steps.

The following describes the policy interaction process.

For MetaWorld, we first perform n rounds of population policy interactions, during which individual
policies are sampled using the Thompson sampler. If the same individual is sampled again, we will
skip the interaction. Subsequently, we conduct policy interactions guided by the human-designed
reward function. Each interaction corresponds to one episode. For ManiSkill3, we use 16 environ-
ments for parallel sampling by default. 4 rounds of policy interactions are performed as one policy
interaction cycle, resulting in 64 environment steps (the default number of interaction steps before
each training iteration in the SAC implementation).

After the interaction process, the collected data is annotated with multiple rewards by the reward
population, and the corresponding variable information are recorded for subsequent relabeling and
other operations.

For training settings, we follow the configurations of SAC. Specifically, we set the UTD ratio to 1 for
MetaWorld, and to 0.5 for ManiSkill3.

For the process of generating reward functions using the LLM, it is essential to extract necessary
information, e.g., the human-designed reward function, the input variables, and the success criteria.
Subsequently, we use Prompts 1 and 2 as input to the LLM to generate the initial population, with
the suggestions from Prompt 3 appended to Prompt 2. Subsequently, during each evolution process,
information about the best reward function is provided in Prompt 4, and the LLM is instructed to
construct new individuals through reflection. The following describes the prompt design for the LLM.

Prompt 1: Role Definition and Task Description

You are a reward engineer trying to write reward functions to solve reinforcement learning
tasks as effective as possible. Your goal is to write a reward function for the environment
that will help the agent learn the task described in text. You can introduce or remove some
reward components for better learning. Here is the current reward function. your task is to
refine and enhance it: {task_target}
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Prompt 2: Human-Designed Reward Function and User Format

The reward function is defined as
compute_reward function
{task_obs_code_string_1}
_gripper_caging_reward function
{task_obs_code_string_2}
Based on the return values of the functions mentioned above, some criteria are determined as
follows:
{criteria_code_string}
These variables are crucial for constructing your reward function. Note that it only applies
to the return values of the functions mentioned above. Therefore, you should not modify
the calculation methods for these variables in the functions, as it may disrupt the conditions
for evaluation. Instead, focus on leveraging this information to design more efficient reward
guidance.
Here are the modification suggestions
{suggestion}.
Please strictly follow them to rewrite the ”compute_reward“ and "_gripper_caging_reward"
above separately, using the keys from the list below as function inputs. However, do not
introduce any keys that are not present in the list.
{input_dict_string}
Repeatedly verify that all input variables in the function definition exist in the list, ensuring
no errors in naming or the introduction of new variables.
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Prompt 3: Suggestions

The code output should be formatted as a python code string: "“‘python ... “‘". The
return variables must be consistent with those provided in the given functions. You should
neither add nor remove variables, nor modify their names. I will specifically search for the
"compute_reward" and "_gripper_caging_reward" reward functions.
Please carefully consider the sub-tasks that need to be completed sequentially to achieve the
current task, and determine what rewards are necessary for guiding each task.
Carefully read the logic of the code above and improve the code in three ways, each of which
must include the following:
(1) Reward Components: Add or remove certain components. If there are no modifications,
please provide a brief reason. for example, add xxx reward component to encourage the
agent to do xxx and apply a weight x for better xxx
(2) Reward Weights: Adjust the weight of certain reward components or change the reward
coefficients. If there are no modifications, please provide a brief reason. for example, change
the reaching reward weight from 5.0 to 10.0 for better xxx
(3) Reward Calculation: Modify the reward calculation methods. If there are no modifications,
please provide a brief reason. for example, change the reaching or catching reward calculation
method or add exp to xxx reward component to encourage the agent to do xxx
Finally, summarize three areas of improvement and provide valid reasons for their effective-
ness.
Some helpful tips for writing the reward function code:
(1) You may find it helpful to normalize the reward to a fixed range by applying transforma-
tions like np.exp to the overall reward or its components.
(2) If you choose to transform a reward component, then you must also introduce a tempera-
ture parameter inside the transformation function; this parameter must be a named variable in
the reward function and it must not be an input variable. Each transformed reward component
should have its own temperature variable.
(3) Please do not simply transform the reward components or adjust the hyperparameters.
Some unnecessary reward components can be removed, while some components that may be
effective for learning can be added to the final reward.
(4) Make sure the type of each input variable is correctly specified; All the necessary
information is provided in the function inputs, and "self" is neither referenced nor called.
(5) Do not modify the conditions for determining success, proximity to the object, or object
grasping, as this would compromise the evaluation criteria.
(6) It is necessary to adjust some parameters of the existing reward function, such as scaling
the reward for grasping, scaling the proximity reward, or scaling the success reward. For
example "If condition: reward += 1.0 to reward +=0.5 for higher importance".
(7) If an error occurs while calling a function, implement the desired functionality based on
your understanding instead of repeatedly calling the function.

Prompt 4: Reflection Tips

Based on the above reward function, the current RL policy’s win rate is {win_rate}, the
human designed expert reward is {current_score}, and the reward from the currently designed
function is {current_our_score}. Below are the scores of the current policy on different
metrics across multiple rounds during the evaluation process: {current_output}
Please carefully analyze the policy feedback. Some helpful tips for analyzing the policy
feedback:
(1) If the success rates are always near zero, then you must rewrite the entire reward function.
(2) If the current policy has already performed well on certain metrics, the focus should shift
to the subsequent tasks.
(3) If the reward is excessively large, it may need to be appropriately scaled to avoid learning
issues.
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C Generated Reward Examples by LaRes

Below is an example of the reward function constructed by LaRes, which successfully guided policy
learning to achieve nearly 100% success rate on the Hammer task in its final stages. The following
three contexts represent the main reward function, the subfunction and the improvement summaries.
It can be observed that the LLM is capable of thoroughly analyzing the current issues and providing
constructive improvement ideas.

Generated Reward Function

def compute_reward(action , obs , HAMMER_HANDLE_LENGTH ,
_target_pos , NailSlideJoint_qpos , left_pad , right_pad ,
tcp_center , obj_init_pos , init_tcp):
hand = obs [:3]
hammer = obs [4:7]
hammer_head = hammer + np.array ([0.16 , 0.06, 0.0])
# Hammer position adjustment for proximity consideration
hammer_threshed = hammer.copy()
threshold = HAMMER_HANDLE_LENGTH / 2.0
if abs(hammer [0] - hand [0]) < threshold:

hammer_threshed [0] = hand [0]
# Quaternion error reward calculation
ideal = np.array ([1.0 , 0.0, 0.0, 0.0])
error = np.linalg.norm(obs [7:11] - ideal)
reward_quat = max (1.0 - error / 0.3, 0.0) # Modified the

denominator for stricter orientation
# Computing caging and gripping rewards
caging_and_gripping , caging = _gripper_caging_reward(

left_pad ,right_pad ,tcp_center ,obj_init_pos ,
init_tcp ,action ,hammer_threshed ,
object_reach_radius =0.01, obj_radius =0.015 ,
pad_success_thresh =0.02 , xz_thresh =0.01 , high_density=True ,

)
reward_grab = (caging_and_gripping + caging) / 2.0
# Lifting reward with enhanced importance
lifted = hammer_head [2] > 0.02
pos_error = _target_pos - hammer_head
a = 0.5 # Increased importance of lifting the hammer
b = 1.5 # Increased importance of hitting the target nail
reward_in_place = a * float(lifted) + b *

reward_utils.tolerance(
np.linalg.norm(pos_error),
bounds =(0, 0.015) , # Reduced bounds for improved

precision
margin =0.1,
sigmoid="long_tail")

# Overall reward normalization
temperature = 5.0 # Adjusted for better normalization
reward = (2.0 * reward_grab + 4.0 * reward_in_place) *

reward_quat / temperature
# Success condition evaluation
success = NailSlideJoint_qpos > 0.09
if success and reward > 0.5: # Reducing the threshold for

checking success
reward = 10.0

return (reward , reward_grab , reward_quat , reward_in_place ,
success)
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Generated Subfunction

def _gripper_caging_reward(
left_pad ,
right_pad ,
tcp_center ,
obj_init_pos ,
init_tcp ,
action ,
obj_pos ,
obj_radius =0.015 ,
pad_success_thresh =0.02 ,
object_reach_radius =0.01,
xz_thresh =0.01,
desired_gripper_effort =1.0,
high_density=False ,
medium_density=False ,

):
""" Reward for agent grasping the hammer."""
if high_density and medium_density:

raise ValueError("Can only be either high_density or
medium_density")

# Calculate distances for caging rewards
pad_y_lr = np.hstack (( left_pad [1], right_pad [1]))
pad_to_obj_lr = np.abs(pad_y_lr - obj_pos [1])
pad_to_objinit_lr = np.abs(pad_y_lr - obj_init_pos [1])
# Define caging rewards based on y-axis
caging_lr_margin = np.abs(pad_to_objinit_lr

-pad_success_thresh)
caging_lr =[ reward_utils.tolerance(pad_to_obj_lr[i],bounds=

(obj_radius , pad_success_thresh),
margin=caging_lr_margin[i], sigmoid="long_tail" ,) for i

in range (2)]
caging_y = reward_utils.hamacher_product (* caging_lr)
# Caging reward for x-z reference
tcp , xz = tcp_center , [0, 2]
caging_xz_margin = np.linalg.norm(obj_init_pos[xz] -

init_tcp[xz]) - xz_thresh
caging_xz = reward_utils.tolerance(np.linalg.norm(tcp[xz]-

obj_pos[xz]),
bounds =(0, xz_thresh),margin=caging_xz_margin ,
sigmoid="long_tail",)

# Determine gripper closure extent
gripper_closed = min(max(0, action [-1]),

desired_gripper_effort)/desired_gripper_effort
# Combining the various caging rewards
caging = reward_utils.hamacher_product(caging_y , caging_xz)
gripping = gripper_closed if caging > 0.97 else 0.0
caging_and_gripping = reward_utils.hamacher_product(caging ,

gripping)
if high_density:

return caging_and_gripping , caging
if medium_density:

tcp = tcp_center
tcp_to_obj = np.linalg.norm(obj_pos - tcp)
tcp_to_obj_init = np.linalg.norm(obj_init_pos -

init_tcp)
reach_margin = abs(tcp_to_obj_init -

object_reach_radius)
reach = reward_utils.tolerance(tcp_to_obj ,bounds =(0,

object_reach_radius),margin=
reach_margin ,sigmoid="long_tail" )

return caging_and_gripping , reach
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Improvement Summary

### Summary of Improvements
1. **Reward Components**: The reward for lifting the hammer (‘a‘) and for hitting the
target nail (‘b‘) was increased significantly to enhance the focus on these critical actions. The
increased penalties when nearing the target position (e.g. adjusted bounds to ‘0.015‘) will
encourage more precise interactions with the target area.
2. **Reward Weights**: The weight of the successful lift and placement were modified to
provide enhanced emphasis on these actions, thereby creating a stronger incentive for the
agent to accomplish these milestones, which seems crucial considering the policy’s current
low success rate.
3. **Reward Calculation**: The overall normalization and adjustment of reward components
now includes changes in thresholds and the temperature parameter, which should provide
more stability and control in training. Lowering the temperature value improves the agent’s
control over the learning process and minimizes excessive reward scaling.
These adjustments are proposed to directly address the demonstrated need for improvements
given the agent’s historical performance metrics, particularly with a near-zero success rate.
The enhanced focus on the essential tasks and tighter constraints on the rewards should
facilitate a more efficient learning trajectory towards successful manipulation tasks.

D Additional Experiments

Table 4: Performance under different population sizes.

Pop size 2 5 10
soccer 0.48 0.71 0.63
pick-out-of-hole 0.38 0.81 0.65
hammer 0.55 0.80 0.85

Parameter analysis experiment on population size. The results are shown in Table 4. We observe
that a population size of 5 generally yields the best performance. A larger population may introduce
potential out-of-distribution issues, while a smaller population can limit the algorithm’s exploration
capacity.

Table 5: Performance under different numbers of interaction steps.

Interaction steps 100,000 200,000 400,000
soccer 0.68 0.71 0.55
pick-out-of-hole 0.83 0.81 0.60
hammer 0.53 0.80 0.69

Parameter analysis experiment on interaction steps. The results are shown in Table 5. We
observe that a frequency of 200k generally performs well. A smaller evolution frequency may lead to
insufficient training of the lower-level policy, while a larger frequency can result in under-exploration
of the reward function search space.

Table 6: Performance under different elite sizes.

Elite size 1 2 3 4
soccer 0.63 0.78 0.71 0.75
pick-out-of-hole 0.73 0.67 0.81 0.57
hammer 0.72 0.75 0.80 0.68
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Parameter analysis experiment on elite size. The results are shown in Table 6. We find that 3
generally yields the best results. An elite size that is too small tends to increase the risk of falling into
suboptimal solutions.

Table 7: Performance comparison using different LLM backbones.

Backbone basketball soccer pick-out-of-hole hammer
4o-mini 0.87 0.71 0.81 0.80
deepseek-v3 0.88 0.68 0.58 0.63
qwen-plus 0.63 0.88 0.98 0.50

Comparative experiment using different LLMs as backbones. We conducted evaluations with
different LLMs as backbones, including Qwen-plus, GPT-4o-mini, and DeepSeek-V3. The results are
shown in Table 7. We observe that although different models exhibit some variation in performance
across tasks, LaRes consistently achieves a high success rate regardless of the underlying LLM
framework.

Parameter analysis experiment on the weight of constraint loss. The results are shown in Table 8.
LaRes does not tune this hyperparameter; it is set to the default value of 1.0 across all tasks. While
further tuning may lead to improved performance, we find that 1.0 is generally sufficient to achieve
strong results.

Table 8: Parameter analysis of the weight of constraint loss.

Coefficient 10.0 1.0 0.1 0.01
pick-out-of-hole 0.60 0.81 0.85 0.78
soccer 0.64 0.71 0.81 0.74
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper focuses on developing a framework that enables efficient coordina-
tion between reward function optimization and policy learning, with the aim of achieving
higher sample efficiency. The main claims presented in the abstract and introduction accu-
rately reflect the contributions and scope of the work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a discussion of the limitations in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our work focuses on empirical evaluation and does not provide theoretical
proofs or formal analysis. We leave the development of theoretical guarantees and formal
analysis as future work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the detailed pseudocode, experimental hyperparameter settings
and the designed prompts.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We commit to releasing the code upon the public availability of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detailed experimental settings in both the main experiment
section and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Following the experimental settings of prior work, we conduct each experiment
with 5 independent runs and report error bars to reflect statistically significant variability.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These details are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in this paper fully conforms with the NeurIPS
Code of Ethics in all respects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This paper presents work whose goal is to advance the field of RL. There are
many potential societal consequences of our work, none which we feel must be specifically
highlighted here.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all creators and original owners of the assets used in the paper are properly
credited and fully respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:[NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs are employed for reward function generation, and comprehensive details
are provided in the main body of the paper as well as in the appendix. All components of the
proposed methods are independently designed and original, with no dependence on LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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