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Abstract

Introduced by Korpelevich in 1976, the extragradient method (EG) has become a
cornerstone technique for solving min-max optimization, root-finding problems,
and variational inequalities (VIs). Despite its longstanding presence and significant
attention within the optimization community, most works focusing on understand-
ing its convergence guarantees assume the strong L-Lipschitz condition. In this
work, building on the proposed assumptions by Zhang et al. [2020b] for minimiza-
tion and Vankov et al. [2024] for VIs, we focus on the more relaxed α-symmetric
(L0, L1)-Lipschitz condition. This condition generalizes the standard Lipschitz
assumption by allowing the Lipschitz constant to scale with the operator norm,
providing a more refined characterization of problem structures in modern machine
learning. Under the α-symmetric (L0, L1)-Lipschitz condition, we propose a novel
step size strategy for EG to solve root-finding problems and establish sublinear
convergence rates for monotone operators and linear convergence rates for strongly
monotone operators. Additionally, we prove local convergence guarantees for weak
Minty operators. We supplement our analysis with experiments validating our
theory and demonstrating the effectiveness and robustness of the proposed step
sizes for EG.

1 Introduction

Min-max optimization problems have recently attracted significant interest due to their widespread
applications in machine learning, such as reinforcement learning [Brown et al., 2020, Sokota et al.,
2023], distributionally robust optimization [Namkoong and Duchi, 2016], and generative adversarial
network training [Goodfellow et al., 2020]. These problems are often formulated as variational
inequalities (VIs) [Ryu and Yin, 2022, Gidel et al., 2019, Sokota et al., 2023]. In the unconstrained
case, the VI problem simplifies to the root-finding problem [Luo and Tran-Dinh, 2022, Tran-Dinh,
2024], defined as follows [Gorbunov et al., 2022b]:

Find x∗ ∈ Rd such that F (x∗) = 0, (1)

where F : Rd → Rd is an operator. Root finding problems of the form (1) encompass a variety of
problems as special cases, such as: (i) Unconstrained minimization: finding a stationary point of
minx∈Rd f(x), is equivalent to solving (1) with F (x) = ∇f(x), (ii) Min-max optimization: Let
minw1∈Rd1 maxw2∈Rd2 L(w1, w2) where L : Rd1 ×Rd2 → R. In this scenario, if in (1), the operator
is selected as follows:

F (x) ≡
(
∇w1L(w1, w2)

⊤, −∇w2L(w1, w2)
⊤)⊤, (2)

then solving (1) amounts to finding a stationary point x∗ = (w⊤
1∗, w

⊤
2∗)

⊤ ∈ Rd1+d2 of the min-
max problem, which for convex-concave functions L is a global solution (Nash equilibrium), i.e.,
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L(w1∗, w2) ≤ L(w1∗, w2∗) ≤ L(w1, w2∗) [Luo and O’Neill, 2025, Choudhury et al., 2024], and
(iii) Multiplayer games: A Nash equilibrium x∗ = (w⊤

1∗, . . . , w
⊤
N∗)

⊤ of an N -player game in
which each player i minimizes their own convex objective Li(wi, w−i) with respect to wi (here
w−i denotes the actions of all players except i) is also captured by (1), with an operator F (x) =(
∇w1

L1(w1, w−1)
⊤, . . . , ∇wN

LN (wN , w−N )⊤
)⊤

[Yoon et al., 2025].

Problem (1) and algorithms for solving it have been studied extensively in recent years under different
conditions on the operator F [Loizou et al., 2021, 2020, Gorbunov et al., 2022a, Diakonikolas et al.,
2021, Choudhury et al., 2024]. One of the well-known algorithms for solving VIs and root-finding
problems of the form (1) is the extragradient (EG) method [Korpelevich, 1977] due to its superior
convergence guarantees [Gorbunov et al., 2022b]. The algorithm is defined as follows

x̂k = xk − γkF (xk),

xk+1 = xk − ωkF (x̂k) (3)

where γk > 0 and ωk > 0 are the extrapolation step size and update step size, respectively. Since
its original inception by Korpelevich, the EG method was revisited and extended in various ways,
e.g., non-monotone operators [Diakonikolas et al., 2021, Fan et al., 2023] stochastic [Mishchenko
et al., 2020, Gorbunov et al., 2022a, Choudhury et al., 2024, Li et al., 2022], distributed [Beznosikov
et al., 2022]. Despite a rich literature for analysing EG and its variants, most of the existing
convergence guarantees heavily rely on the L-Lipschitz assumption of the operator F [Korpelevich,
1977, Diakonikolas et al., 2021], i.e.

∥F (x)− F (y)∥ ≤ L∥x− y∥ (4)

for all x, y ∈ Rd. However, this assumption can be restrictive; for instance, the operator F (x) = x2

for x ∈ R does not satisfy (4) for any finite L [Zhang et al., 2020b]. The primary goal of this work is
to relax this assumption and establish convergence guarantees under a more general framework.

Relaxing the L-Lipschitz Assumption. Recently, Zhang et al. [2020b] introduced the
(L0, L1)-smoothness assumption for the minimization problems. Specifically, for minx∈Rd f(x),
Zhang et al. [2020b] assume ∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ (when f is twice differentiable) and
later [Chen et al., 2023] proved that this is equivalent to:

∥∇f(x)−∇f(y)∥ ≤ (L0 + L1∥∇f(x)∥)∥x− y∥. (5)

Zhang et al. [2020b] demonstrated that modern neural networks, such as LSTMs (Long Short-Term
Memorys) [Hochreiter and Schmidhuber, 1997], align with (L0, L1)-smoothness assumption rather
than the traditional L-smoothness assumption (i.e. ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥). Moreover, they
used this assumption to justify why gradient clipping speeds up neural network training. Later, Ahn
et al. [2024] showed that similar trends hold for the transformer [Vaswani et al., 2017] architecture.
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Figure 1: Scatter plot of ∥∇2f(xk)∥ on y-
axis and ∥∇f(xk)∥ on x-axis.

In Figure 1, we present an example demonstrating the
validity of the (L0, L1)-smoothness condition (5) for the
iterates of the EG. Similar plots have been presented for
gradient descent methods [Zhang et al., 2020b, Gorbunov
et al., 2025], but to the best of our knowledge, this lin-
ear connection between ∥∇2f(xk)∥ and ∥∇f(xk)∥ for
EG iterates was never reported before. Following Gor-
bunov et al. [2025], we consider the minimization problem
minx∈Rd f(x) := log

(
1 + exp(−a⊤x)

)
, and plot the val-

ues of ∥∇2f(xk)∥ on the y-axis against ∥∇f(xk)∥ on the
x-axis. Each point is colored according to the iteration
index k, as indicated by the accompanying colorbar. The
resulting plot reveals an approximately linear relationship
between ∥∇2f(xk)∥ and ∥∇f(xk)∥, thereby supporting
the modeling of this function within the ∥∇2f(x)∥ ≤
L0 + L1∥∇f(x)∥ or (L0, L1)-smoothness framework.

Now, let us consider the min-max optimization problem minw1∈Rd1 maxw2∈Rd2 L(w1, w2), which
is captured by (1) with the operator (2). If the operator F is L-Lipschitz, then its Jacobian matrix
J(x), defined in (11), satisfies ∥J(x)∥ ≤ L for all x = (w⊤

1 , w
⊤
2 )

⊤(follows from Theorem 2.1
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with L1 = 0). For example, consider the quadratic min-max objective minw1 maxw2 L(w1, w2) =
1
2w

2
1 + w1w2 − 1

2w
2
2 . In this case, implementing the EG method and plotting the Jacobian norm

∥J(xk)∥ (on the y-axis) against the operator norm ∥F (xk)∥ (on the x-axis) yields a horizontal line
parallel to x-axis (see Appendix B).

However, this behaviour does not persist for more complex problems. For instance, for the cubic
objective

minw1 maxw2 L(w1, w2) =
1
3w

3
1 + w1w2 − 1

3w
3
2, (6)

∥J(xk)∥ increases with the ∥F (xk)∥. This observation suggests that the standard Lipschitz
assumption may be overly restrictive for capturing the structure of such problems (check Figure 2).
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Figure 2: Scatter plot of ∥J(xk)∥ on y-axis
and ∥F (xk)∥ on x-axis.

To better model this relationship, we investigate a relaxed
condition of the form ∥J(x)∥ ≤ L0 + L1∥F (x)∥α with
α ∈ (0, 1] which generalizes the standard Lipschitz bound
(for L1 = 0, this boils down to ∥J(x)∥ ≤ L0, which
is the Lipschitz property). Note that, instead of α = 1,
our formulation permits α to lie in the broader interval
(0, 1]. This condition is motivated by the plot in Figure 2,
which suggests a sublinear relationship, resembling the
form h(r) = L0 + L1r

α for some α ∈ (0, 1), rather than
a linear trend.

As we will prove later (in Theorem 2.1), for any
doubly differentiable min-max optimization problem
minw1 maxw2 L(w1, w2), the condition ∥J(x)∥ ≤ L0 +
L1∥F (x)∥α is equivalent to the operator F satisfying the
α-symmetric (L0, L1)-Lipschitz condition (see Assump-
tion 1.1). The equivalent α-symmetric (L0, L1)-Lipschitz condition does not rely on second-order in-
formation and applies to a broader class of problems (no need for double differentiability). Therefore,
in the remainder of this work, we focus on analyzing the convergence of EG under the α-symmetric
(L0, L1)-Lipschitz assumption [Vankov et al., 2024] on the operator F , defined below.

Assumption 1.1. F is called α-symmetric (L0, L1)-Lipschitz operator if for some L0, L1 ≥ 0 and
α ∈ (0, 1],

∥F (x)− F (y)∥ ≤
(
L0 + L1 maxθ∈[0,1] ∥F (θx+ (1− θ)y)∥α

)
∥x− y∥ ∀x, y ∈ Rd. (7)

Instead of a fixed Lipschitz constant in (4), Assumption 1.1 allows the Lipschitz-like quantity to
depend on the norm of the operator itself along the path from x to y. This assumption generalizes the
standard L-Lipschitz condition (4), corresponding to the special case where L0 = L and L1 = 0.
Moreover, the α-symmetric (L0, L1)-Lipschitz condition provides a more refined characterisation of
operators whose Lipschitz constant depends on their norm, offering a tighter bound by balancing
L0 ≪ L and L1 ≪ L. Additionally, (7) provides a more relaxed bound compared to (5) with α = 1.

Classes of Root-finding Problems. Apart from the condition (7), we will also assume ad-
ditional structure on the operator F to prove convergence. We say the operator F is monotone or
strongly monotone if it satisfies the following assumption.

Assumption 1.2. F is called monotone if

⟨F (x)− F (y), x− y⟩ ≥ 0 ∀x, y ∈ Rd (8)

and strongly monotone if there is some µ > 0 such that

⟨F (x)− F (y), x− y⟩ ≥ µ∥x− y∥2 ∀x, y ∈ Rd. (9)

This captures convex minimization and convex-concave min-max optimization problems as a special
case. Apart from the monotone operators, we are also interested in some non-monotone operators,
weak Minty operators [Diakonikolas et al., 2021], which satisfy the following assumption.
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Table 1: Summary of step size selection for EG under the L-Lipschitz and α-symmetric (L0, L1)-Lipschitz
assumptions. Our proposed step size strategy is of the general form γk = 1

c0+c1∥F (xk)∥α
, tailored for solving

problems involving α-symmetric (L0, L1)-Lipschitz operators.

Setup Assumption α γk ωk

Strongly
Monotone (1)

L-Lipschitz (2)

[Mokhtari et al., 2020] - 0.25
L γk

α-symmetric (L0, L1)-Lipschitz
[Vankov et al., 2024] 1 min

{
1
4µ ,

1
2
√
2eL0

, 1
2
√
2eL1∥F (xk)∥

}
γk

α-symmetric (L0, L1)-Lipschitz
(Theorem 3.2) 1 0.21

L0+L1∥F (xk)∥ γk

α-symmetric (L0, L1)-Lipschitz
(Theorem 3.4) (0, 1) 0.61

2K0+(2K1+21−αK1−α
2 )∥F (xk)∥α

(2) γk

Monotone (1)

L-Lipschitz
[Gorbunov et al., 2022b] - 1

L
γk

2

α-symmetric (L0, L1)-Lipschitz
(Theorem 3.5) 1 0.45

L0+L1∥F (xk)∥ γk

α-symmetric (L0, L1)-Lipschitz
(Theorem 3.7) (0, 1) 1

2
√
2K0+(2

√
2K1+23(1−α)/2K1−α

2 )∥F (xk)∥α
γk

Weak Minty (1)

L-Lipschitz
[Diakonikolas et al., 2021] - 1

L
γk

2

L-Lipschitz
[Pethick et al., 2022] - 1

L ρ+ ⟨F (x̂k),xk−x̂k⟩
∥F (x̂k)∥2

α-symmetric (L0, L1)-Lipschitz
(Theorem 3.8) 1 0.56

L0+L1∥F (xk)∥
γk

2

α-symmetric (L0, L1)-Lipschitz
(Theorem 3.9) (0, 1) 1

2
√
2K0+(2

√
2K1+23(1−α)/2K1−α

2 )∥F (xk)∥α

γk

2

(1) Convergence measure • strongly monotone: ∥xK − x∗∥2, • monotone: min0≤k≤K ∥F (xk)∥2, • weak minty: min0≤k≤K ∥F (x̂k)∥2.
(2) For K0, K1, K2, check Proposition 3.1. Note that, for L1 = 0 we have K1 = K2 = 0.

Assumption 1.3. Operator F is called weak Minty if for some ρ ≥ 0,

⟨F (x), x− x∗⟩ ≥ −ρ∥F (x)∥2 ∀x ∈ Rd. (10)

1.1 Main Contributions

We summarize the main contributions of our work below.

• Tighter analysis for strongly monotone: We establish linear convergence guarantees for strongly
monotone (9) α-symmetric (L0, L1)-Lipschitz problems (see Theorem 3.2, 3.4). In contrast to
the results in Vankov et al. [2024] for α = 1, our analysis shows that linear convergence can be
achieved without incurring exponential dependence on the initial distance to the solution ∥x0−x∗∥
(see Corollary 3.3).

• First analysis for monotone and weak Minty: We provide the first convergence analysis of EG
for solving monotone (8) and weak Minty (10) problems under α-symmetric (L0, L1)-Lipschitz
assumption. We establish global sublinear convergence for monotone problems (see Theorem 3.5,
3.7) and local sublinear convergence for weak Minty problems (see Theorem 3.8, 3.9).

• Novel step size for EG: We propose a novel adaptive step size strategy for the EG method designed
to handle α-symmetric (L0, L1)-Lipschitz operators. Specifically, all our step size schemes adopt
the general form γk = 1

c0+c1∥F (xk)∥α , where c0, c1 > 0 are constants determined by the problem-
dependent parameters L0, L1, and α. In Table 1, we included a detailed summary of our proposed
step size selection for different classes of operators and compared it with closely related works.

• Numerical experiments: Finally, in Section 4, we present experiments validating different aspects
of our theoretical results. We compare our proposed step size selections with existing alternatives,
demonstrating the effectiveness and robustness of our approach.

2 On the α-Symmetric (L0, L1)-Lipschitz Assumption

We divide this section into two parts. In the first subsection, we present an equivalent reformulation
of the α-symmetric (L0, L1)-Lipschitz condition (7) in the context of min-max optimization. In
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the second subsection, we provide some examples of operators that satisfy (7) and highlight its
significance.

2.1 Equivalent Formulation of α-Symmetric (L0, L1)-Lipschitz Assumption

In this subsection, we consider the min-max optimization problem minw1 maxw2 L(w1, w2). The
corresponding operator F and Jacobian J are defined as

F (x) =

[
∇w1

L(w1, w2)
−∇w2L(w1, w2)

]
and J(x) =

[
∇2

w1w1
L(w1, w2) ∇2

w2w1
L(w1, w2)

−∇2
w1w2

L(w1, w2) −∇2
w2w2

L(w1, w2)

]
, (11)

where x = (w⊤
1 , w

⊤
2 )

⊤. Assuming that F is α-symmetric (L0, L1)-Lipschitz, we obtain the following
theorem.
Theorem 2.1. Suppose F is the differentiable operator associated with the problem
minw1 maxw2 L(w1, w2). Then F satisfies the α-symmetric (L0, L1)-Lipschitz condition (7)
if and only if

∥J(x)∥ ≤ L0 + L1∥F (x)∥α. (12)
Here J(x) is the Jacobian defined in (11) and ∥J(x)∥ = σmax(J(x)) i.e. maximum singular value
of J(x). In particular, we have ∥J(x)∥ ≤ L when operator F is L-Lipschitz.

This result provides an equivalent characterization of the α-symmetric (L0, L1)-Lipschitz condi-
tion (7) for min-max optimization problems. In practice, it is often easier to verify (12) than to
directly check (7). In Appendix E, we provide an example where we use Theorem 2.1 to verify if an
operator satisfies (7).

2.2 Examples of α-Symmetric (L0, L1)-Lipschitz Operators

To motivate the significance of this relaxed assumption (7), we present a few instances of
α-symmetric (L0, L1)-Lipschitz operators that highlight its advantages over the conventional
L-Lipschitz assumption.

Example 1[Gorbunov et al., 2025]: We start with an example from the minimization set-
ting. Consider the logistic regression loss function f(x) = log

(
1 + exp

(
−a⊤x

))
. Then the

corresponding gradient operator F = ∇f satisfies the L-Lipschitz assumption with L = ∥a∥2 and
α-symmetric (L0, L1)-Lipschitz assumption with L0 = 0, L1 = ∥a∥, α = 1. Therefore, when
∥a∥ ≫ 1, the bound provided by 1-symmetric (L0, L1)-Lipschitz can be significantly tighter than the
one imposed by the L-Lipschitz condition. This example emphasizes the benefit of the α-symmetric
(L0, L1)-Lipschitz framework in scenarios where standard Lipschitz constants are overly pessimistic.

Example 2: Consider the operator F (x) = (u21, u
2
2) for x = (u1, u2) ∈ R2 with x∗ = (0, 0). Then

we can show that

∥F (x)− F (y)∥ ≤ 2
∥∥F (

x+y
2

)∥∥1/2 ∥x− y∥ ≤ 2
∥∥maxθ∈[0,1] F (θx+ (1− θ)y)

∥∥1/2 ∥x− y∥.

This establishes that F is 1/2-symmetric (0, 2)-Lipschitz operator. However, this operator F does not
satisfy the standard L-Lipschitz assumption for any finite choice of L. We add the related details
to Appendix C. Therefore, this example highlights the need for relaxed assumptions on operators
beyond standard L-Lipschitz (4).

Example 3. Consider the following min-max optimization problem, for any p > 1,

minw1
maxw2

L(w1, w2) =
1

p+1∥w1∥p+1 + w⊤
1 Bw2 − 1

p+1∥w2∥p+1.

The corresponding operator F (x) defined in (2) is 1-symmetric
(
2τ0 + ∥M∥, 2

2p2−1

p2 τ1

)
-Lipschitz,

for any choice of τ1 > 0 and τ0 =
(

p−1
τ1

)p−1

,M =

[
0 B

−B⊤ 0

]
. Moreover, F is not L-Lipschitz

for any finite L. We have added the proof in Appendix C.

In Appendix C, we also provide additional examples that illustrate cases where the operator associated
with a general bilinearly coupled min-max optimization problem or an N -player game satisfies the
α-symmetric (L0, L1)-Lipschitz condition.
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3 Convergence Analysis
In this section, we present the convergence guarantees of EG for solving monotone, strongly mono-
tone, and weakly Minty operators. For strongly monotone operators, we have linear convergence,
while for monotone and weak Minty operators, we provide sublinear convergence guarantees. To
prove these results, we rely on the similar expression presented in Chen et al. [2023] for the (L0, L1)-
smooth minimization problem. For completeness, we include the proof for α-symmetric (L0, L1)-
Lipschitz operators in the Appendix.

Proposition 3.1. Suppose F is α-symmetric (L0, L1)-Lipschitz operator. Then, for α = 1

∥F (x)− F (y)∥ ≤ (L0 + L1∥F (x)∥) exp (L1∥x− y∥)∥x− y∥, (13)

and for α ∈ (0, 1) we have

∥F (x)− F (y)∥ ≤
(
K0 +K1∥F (x)∥α +K2∥x− y∥α/1−α

)
∥x− y∥ (14)

where K0 = L0(2
α2/1−α + 1), K1 = L1 · 2α2/1−α and K2 = L

1/1−α

1 · 2α2/1−α · 3α(1− α)α/1−α.

Proposition 3.1 eliminates the maximum over θ ∈ [0, 1] in (7) and provides a simpler upper bound on
the ∥F (x)− F (y)∥. We divide the rest of the section into three subsections based on the structure of
operators. Moreover, each of these subsections is divided into two parts depending on the value of α,
i.e. α = 1 and α ∈ (0, 1).

3.1 Convergence Guarantees for Strongly Monotone Operators
In case of strongly monotone operators (9), we achieve linear convergence rates, analogous to those
obtained under standard L-Lipschitz assumptions [Tseng, 1995, Mokhtari et al., 2020]. For α = 1,
operator F satisfies the condition (13). To guarantee convergence for this class of operators, we use
the EG with step size γk = ωk = ν/(L0+L1∥F (xk)∥) and ν > 0. Gorbunov et al. [2025] used similar
step sizes for the Gradient Descent algorithm to solve convex minimization problems.

Theorem 3.2. Suppose F is µ-strongly monotone and 1-symmetric (L0, L1)-Lipschitz operator.
Then EG with step size γk = ωk = ν

L0+L1∥F (xk)∥ satisfy

∥xk+1 − x∗∥2 ≤
(
1− νµ

L0 (1 + L1 exp (L1∥x0 − x∗∥)∥x0 − x∗∥)

)k+1

∥x0 − x∗∥2

where ν > 0 satisfy 1− 2ν − ν2 exp 2ν = 0.

The equation 1− 2ν − ν2 exp (2ν) = 0 admits a positive solution, approximately ν ≈ 0.363. Specif-
ically, to ensure ∥xK −x∗∥2 ≤ ε, we require K = O

((
L0

µ + L0L1∥x0−x∗∥ exp (L1∥x0−x∗∥)
µ

)
log 1

ε

)
iterations. When L1 = 0, we recover the best-known results for the strongly monotone L-Lipschitz
setting [Tseng, 1995, Mokhtari et al., 2020]. Vankov et al. [2024] also studied constrained strongly
monotone problems and obtained similar guarantees with an alternative step size scheme.

However, using a refined proof technique, we can eliminate the exp(L1∥x0 − x∗∥) term from the
convergence rate and establish a tighter bound. One of the intermediate steps of Theorem 3.2 is
proving a lower bound on the step size γk, which can be very loose for large k. We now show that
after a certain number of iterations K ′ (51), the operator norm satisfies ∥F (xk)∥ ≤ L0/L1 for all
k ≥ K ′, which implies γk = ωk ≥ ν/2L0 for all k ≥ K ′.

Corollary 3.3. Suppose F is a µ-strongly monotone and 1-symmetric (L0, L1)-Lipschitz operator.
Then, EG with step sizes γk = ωk = ν

L0+L1∥F (xk)∥ guarantees ∥xK+1 − x∗∥2 ≤ ε after at most

K =
2L0

νµ
log

(
∥x0 − x∗∥2

ε

)
︸ ︷︷ ︸

Term I

+
1

ζµ
log

(
2L1∥x0 − x∗∥2

ζ2L0

)
︸ ︷︷ ︸

Term II

(15)

iterations, where we have ζ := ν/L0(1+L1 exp(L1∥x0−x∗∥)∥x0−x∗∥), and ν > 0 satisfies 1 − 4ν −
2ν2 exp(2ν) = 0.
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This result shows that to reach an accuracy of ε > 0, we need (15) iterations. Importantly, Term II in
(15) is independent of ε, and the Term I of (15) no longer depends on exp(L1∥x0−x∗∥). Technically,
Term II corresponds to the number of iterations required for the step sizes γk and ωk to exceed ν/2L0,
while Term I captures the iteration complexity of EG with a fixed step size ν/2L0.

Now, we investigate the behavior of α-symmetric (L0, L1)-Lipschitz operators for 0 < α < 1. In
this regime, we adopt a step size of the order O (∥F (xk)∥−α) and prove the following result.

Theorem 3.4. Suppose F is µ-strongly monotone and α-symmetric (L0, L1)-Lipschitz operator
with α ∈ (0, 1). Then EG with γk = ωk = ν

2K0+(2K1+21−αK1−α
2 )∥F (xk)∥α

satisfy

∥xk+1 − x∗∥2 ≤
(
1− νµ

2K0+(2K1+21−αK1−α
2 )(K0+K2∥x0−x∗∥α/1−α)α∥x0−x∗∥α

)k+1

∥x0 − x∗∥2

where ν ∈ (0, 1) is a constant such that 1− ν − ν2 = 0.

This result establishes linear convergence. In particular, to ensure ∥xK − x∗∥2 ≤ ε, it suffices to run

K = O
((

K0

µ +
(K1K

α
2 +K2)∥x0−x∗∥

α/1−α

µ

)
log 1

ε

)
iterations. Compared to the L-Lipschitz setting,

the bound here includes an additional dependence on ∥x0 − x∗∥α/1−α, which grows larger as α→ 1.

3.2 Convergence Guarantees for Monotone Operators

In this subsection, we focus on the monotone operators (8). Here we provide the first analysis for the
monotone 1-symmetric (L0, L1)-Lipschitz operators.

Theorem 3.5. Suppose F is monotone and 1-symmetric (L0, L1)-Lipschitz operator. Then EG
with step size γk = ωk = ν

L0+L1∥F (xk)∥ satisfy

min0≤k≤K ∥F (xk)∥2 ≤ 2L2
0(1+L1 exp (L1∥x0−x∗∥)∥x0−x∗∥)2∥x0−x∗∥2

ν2(K+1) . (16)

where ν exp ν = 1/
√
2.

Note that the solution of ν exp ν = 1/
√
2 is approximately 0.45. Hence, this result proves

sublinear convergence of EG when F is monotone. Moreover, (16) implies, EG will need
K = O

(
L2

0∥x0−x∗∥2

ε +
L2

0L
2
1 exp (2L1∥x0−x∗∥)∥x0−x∗∥4

ε

)
iterations to get ∥F (xk)∥2 ≤ ε for some

k ≤ K. Therefore the convergence rate exponentially depends on ∥x0 − x∗∥ when L1 > 0. This
shows that 1-symmetric (L0, L1)-Lipschitz operators potentially require more iterations of EG com-
pared to L-Lipschitz operators when initialization x0 is far from x∗. However, (16) recovers the
best known dependence on ∥x0 − x∗∥ as a special case when L1 = 0, i.e. F is a standard Lipschitz
operator [Gorbunov et al., 2022b].

Theorem 3.5 shows that the EG’s convergence rate has an extra term exp (L1∥x0 − x∗∥) compared
to the results of the Lipschitz setting. One of the intermediate steps in this proof involves an upper
bound on

∑K
k=0 γ

2
k∥F (xk)∥2 (see (56) in Appendix D). Then the simple approach is to get a lower

bound on γ2k for all k and derive (16). This lower bound on γ2k involves the exp (L1∥x0 − x∗∥) term
(see (55) in Appendix D) and can be potentially very small. However, it is possible to eliminate this
exponential dependence using a refined proof technique.

Theorem 3.6. Suppose F is monotone and 1-symmetric (L0, L1)-Lipschitz operator. Then EG
with step size γk = ωk = ν

L0+L1∥F (xk)∥ satisfy

min0≤k≤K ∥F (xk)∥ ≤
√
2L0∥x0−x∗∥

ν
√
K+1−

√
2L1∥x0−x∗∥

where ν exp ν = 1/
√
2 and K + 1 ≥ 2L2

1∥x0−x∗∥2

ν2 .

Note that to obtain this convergence guarantee, a sufficiently large number of iterations is required,
specifically K + 1 ≥ (2L2

1∥x0−x∗∥2)/ν2. Gorbunov et al. [2025] employed a similar proof technique
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to eliminate the exponential dependence on the initial distance exp(L1∥x0 − x∗∥) in the context of
the Adaptive Gradient method.

Next we state our result for α-symmetric (L0, L1)-Lipschitz monotone operator with α ∈ (0, 1).

Theorem 3.7. Suppose F is monotone and α-symmetric (L0, L1)-Lipschitz operator with α ∈
(0, 1). Then EG with γk = ωk = 1

2
√
2K0+(2

√
2K1+23(1−α)/2K1−α

2 )∥F (xk)∥α
satisfy

min0≤k≤K ∥F (xk)∥2 ≤
16

(
K0+(K1+2

−3/2K1−α
2 )(K0+K2∥x0−x∗∥

α/1−α)α∥x0−x∗∥α
)2

∥x0−x∗∥2

K+1 .

This theorem establishes a sublinear convergence rate for α ∈ (0, 1). In the special case where
L1 = 0 (i.e., the standard L-Lipschitz setting), we have K1 = K2 = 0 by Proposition 3.1. Thus, our
result recovers the best-known rate O

(
L2

0∥x0−x∗∥2
/K+1

)
from Gorbunov et al. [2022b]. On the other

hand, when L1 > 0, we obtain a convergence rate of O
(

∥x0−x∗∥
2+4α−2α2

1−α /K+1

)
. Furthermore,

as α→ 0—which corresponds again to the L-Lipschitz setting—our step sizes γk and ωk become
constant, and we recover the standard convergence rate O

(
∥x0−x∗∥2

/K+1
)
. This matches the classical

result for monotone L-Lipschitz operators up to constants, emphasizing the tightness of our analysis.

3.3 Local Convergence Guarantees for Weak Minty Operators

Beyond the monotone operators, it is also possible to provide convergence for weak Minty opera-
tors (10) under some restrictions on ρ > 0. In contrast to the monotone problems where we used the
same extrapolation and update step γk, ωk, here we use smaller update step size ωk. Specifically,
we employ ωk = γk/2, similar to Diakonikolas et al. [2021] for handling weak Minty L-Lipschitz
operators.

Theorem 3.8. Suppose F is weak Minty and 1-symmetric (L0, L1)-Lipschitz assumption. More-
over we assume

∆1 := ν

L0(1+L1∥x0−x∗∥eL1∥x0−x∗∥)
− 4ρ > 0. (17)

Then EG with step size γk = ν
L0+L1∥F (xk)∥ and ωk = γk/2 satisfies

min
0≤k≤K

∥F (x̂k)∥2 ≤ 4L0 (1 + L1 exp (L1∥x0 − x∗∥) ∥x0 − x∗∥) ∥x0 − x∗∥2

ν∆1(K + 1)
(18)

where ν exp ν = 1.

To the best of our knowledge, this is the first result establishing convergence guarantees for weak
Minty, α-symmetric (L0, L1)-Lipschitz operators. Similar to the monotone case, we obtain a
sublinear convergence rate for weak Minty operators. However, the condition in (17) indicates that
the initialization point x0 must be sufficiently close to the solution x∗ in order to ensure convergence.
Consequently, Theorem 3.8 only provides a local convergence guarantee.

In the special case where L1 = 0, i.e., the standard L-Lipschitz setting, condition (17) reduces to
the simpler requirement ρ < ν/4L0. Similar assumptions on ρ have been made in prior works such
as Diakonikolas et al. [2021] and Pethick et al. [2022] for the L-Lipschitz weak Minty setting. Finally,
we extend our analysis to the case α ∈ (0, 1), and present a corresponding theorem establishing
sublinear convergence under analogous restrictions on ρ.

Theorem 3.9. Suppose F is weak Minty and α-symmetric (L0, L1)-Lipschitz operator with
α ∈ (0, 1). Moreover we assume

∆α := 1
2
√
2K0+2

√
2(K1+2−3/2K1−α

2 )(K0+K2∥x0−x∗∥α/1−α)α∥x0−x∗∥α
− 4ρ > 0. (19)

Then EG with step size γk = 1

2
√
2K0+(2

√
2K1+23(1−α)/2K1−α

2 )∥F (xk)∥α
and ωk = γk/2 satisfy

min0≤k≤K ∥F (x̂k)∥2 ≤
4
(
K0+

(
K1+2

−3/2K1−α
2

)
(K0+K2∥x0−x∗∥

α/1−α)α∥x0−x∗∥α
)
∥x0−x∗∥2

∆α(K+1) .
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4 Numerical Experiments

In this section, we conduct experiments to validate the efficiency of our proposed step size strategy
γk = 1

c0+c1∥F (xk)∥α with α = 1. In the first experiment, we compare our step size choice with that
of Vankov et al. [2024] on a strongly monotone problem, and in the second experiment, we make a
comparison with the constant step size strategy for solving a monotone problem. Finally, we evaluate
our scheme for solving the GlobalForsaken problem from Pethick et al. [2022]. All experiments in
this work were conducted using a personal MacBook with an Apple M3 chip and 16GB of RAM. We
provide the code for all of our experiments at https://github.com/isayantan/L0L1extragradient.
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Figure 3: In Figures 3a and 3b, we compare our proposed adaptive step size strategy with that of Vankov et al.
[2024]. We report the relative error and the magnitude of the step size over iterations.
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Figure 4: In Figures 4a and 4b, we evaluate the performance of the EG method on the problem in (20), using
both a constant step size and the (L0, L1)-adaptive step size. We report the relative error and the magnitude of
the step size over iterations.

Performance on a Strongly Monotone Problem. In this experiment, we compare our theoretical
step sizes with those from Vankov et al. [2024]. Here, we implement EG for solving the operator
F (x) = (sign (u1) |u1|+ u2, sign (u2) |u2| − u1). This problem has constants L0 = 1 + 2

√
2 and

L1 = 2
√
2. For our method, we use γk = ωk = ν

L0+L1∥F (xk)∥ while for EG [Vankov et al., 2024]

we use stepsize γk = ωk = min
{

1
4µ ,

1
2
√
2eL0

, 1
2
√
2eL1∥F (xk)∥

}
. In Figure 3a, we plot the relative

error ∥xk−x∗∥2

∥x0−x∗∥2 on the y-axis while number of iterations on the x-axis. We find that our proposed step
size outperforms that of Vankov et al. [2024]. Moreover, in Figure 3b, we compare the magnitude of
the step size and how it evolves over the iterations. We find that the step size of Vankov et al. [2024]
remains constant at approximately 0.02, whereas our proposed step size increases to a value larger
than 0.032. These experiments highlight the efficiency of our proposed step size.
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Performance on a Monotone Problem. Here we consider the following min-max optimization
problem

minw1∈Rd maxw2∈Rd L(w1, w2) =
1
3

(
w⊤

1 Aw1

)3/2
+ w⊤

1 Bw2 − 1
3

(
w⊤

2 Cw2

)3/2
. (20)

where A,B,C ∈ Rd×d are positive definite matrices. Note that, when d = 1, and A,B,C are just
scalars equal to 1, this problem reduces to (6). The corresponding operator of this problem is given
by

F (x) =

[
∇w1

L(w1, w2)
−∇w2

L(w1, w2)

]
=

[ (
w⊤

1 Aw1

)1/2
Aw1 +Bw2(

w⊤
2 Cw2

)1/2
Cw2 −B⊤w1

]
.

Furthermore, we show that L is convex-concave and has an equilibrium only at w1, w2 = 0 ∈ Rd

(check Appendix F). To solve (20), we implement the EG method using two types of step size strate-
gies: (1) a constant step size γk = ωk = 1/c, and (2) an adaptive step size γk = ωk = 1/(c0+c1∥F (xk)∥).
For the constant step size EG, we perform a grid search over c ∈ {102, 103, 104, 105, 106, 107}.
We find that c = 105 yields the best performance: larger values lead to slower convergence, while
smaller values cause divergence. Figures 4a and 4b present the relative error and step size for the
case c = 105. For our adaptive EG method, we perform a grid search over c0 ∈ {10, 100, 1000} and
c1 ∈ {0.1, 1, 10}, evaluating all 9 possible combinations. The performance of all adaptive variants is
plotted in Figures 4a and 4b. We observe that most combinations outperform the constant step size
EG, with (c0, c1) = (10, 10) achieving the best results (see Figure 4a).

Interestingly, while the adaptive EG starts with smaller step sizes compared to the constant step size
EG, its step sizes increase over time and eventually surpass those of the constant step size approach
(see Figure 4b). This highlights the practical effectiveness of our proposed method in handling
non-Lipschitz operators such as the one in (20).

Performance on a Weak Minty Problem. Here we consider the unconstrained GlobalForsaken
problem from Pethick et al. [2022] given by

min
w1∈R

max
w2∈R

L(w1, w2) := w1w2 + ψ(w1)− ψ(w2), (21)

where ψ(w) = 2w6

21 − w4

3 + w2

3 . As shown in Pethick et al. [2022], the saddle-point problem in (21)
admits a global Nash equilibrium at (w1, w2) = (0, 0) and satisfies the weak Minty condition (10)
with parameter ρ ≈ 0.119732. We implement Adap-
tiveEG+, EG+ and EG with our step size strategy to
solve this problem. For each algorithm, we perform step
size tuning on a a grid of {10−5, 10−4, · · · , 102}. We
observe that both AdaptiveEG+ and EG+ perform best
with a fixed step size of γk = 0.1. For our method, we
set the step size parameters as (c0, c1) = (1, 1). In Fig-
ure 5, we present the trajectory plots of these algorithms,
all initialized at (w1, w2) = (1, 1). Our findings indicate
that all algorithms eventually converge to the equilibrium
(0, 0), but the convergence of our method is significantly
faster. This demonstrates the advantage of our step size
strategy in solving challenging problems that satisfy only
weak Minty conditions.
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w
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AdaptiveEG+[Pethick et al. 2023]
EG (This Work)
Equilibrium
Start

Figure 5: Trajectories of algorithms for solv-
ing problem (21).

5 Conclusion

This work extends the analysis of the EG method to a broader class of α-symmetric (L0, L1)-
Lipschitz operators. We establish new convergence guarantees for strongly monotone, monotone, and
weak Minty settings, supported by a novel adaptive step size rule.

A limitation of our current analysis is that it focuses solely on root-finding problems and does not
handle the constrained setup. However, the results included in this work advance the theoretical
understanding of EG and open several promising directions, including extensions to constrained
and stochastic settings, as well as the analysis of optimistic gradient methods under this relaxed
assumption. Furthermore, another important research direction is the estimation of the unknown
constants α,L0, L1, which would pave the way for fully adaptive algorithms.
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they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: see Section 1 and 3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: see Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: see Section 4.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: see Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [NA]

Justification: all experiments are deterministic.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: see Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: the paper follows NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: the paper is mostly theoretical and does not have a direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: we do not release data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: see Section 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: not applicable.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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Supplementary Material
The supplementary material is organized as follows. In Section A, we discuss papers that are closely related to our
work. Section B presents several technical lemmas used in our theoretical analysis. Section C provides illustrative
examples of α-symmetric (L0, L1)-Lipschitz operators, while Section D contains the detailed proofs of the
main convergence theorems presented in the paper. Next, in Section E, we discuss an equivalent formulation of
the α-symmetric (L0, L1)-Lipschitz condition. Finally, Section F offers additional details on the experimental
setup and results.
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A Further Related Work

Relaxing Lipschitzness. The (L0, L1)-smoothness assumption was first introduced by Zhang et al. [2020b] and
further developed in Zhang et al. [2020a], Chen et al. [2023]. More recently, improved convergence guarantees
for optimization under this relaxed smoothness were obtained by Gorbunov et al. [2025], Vankov et al. [2025].
This assumption has also been used in the analysis of modern large-scale optimization algorithms, for example,
Gluon for LLM training [Riabinin et al., 2025].

Beyond (L0, L1)-smoothness, several alternative notions or relaxations of smoothness have been proposed in
the literature, including relative smoothness [Bauschke et al., 2017], glocal smoothness [Fox et al., 2025], and
Hölder smoothness [Gorbunov et al., 2024], among others. The (L0, L1)-smoothness framework has recently
been extended to the variational inequality setting by Vankov et al. [2024], while Xian et al. [2024] analyzed
min–max problems under a similarly general smoothness perspective. A recent line of work by Loizou et al.
[2021], Gorbunov et al. [2022b], Beznosikov et al. [2023] studies star-cocoercive operators, which could hold
even when the operator is not Lipschitz.

On Methods for Solving VIs. A variety of methods have been developed to solve root-finding problems and,
more generally, variational inequalities. The most basic approach is the gradient method and its stochastic
counterpart [Loizou et al., 2021, Beznosikov et al., 2023]. More variants of the gradient method have been
proposed in different settings, like the dissipative gradient method [Zheng et al., 2024] and distributed methods
for VIs [Zhang et al., 2024]. However the gradient method fails to converge in simple monotone problems [Gidel
et al., 2019].To obtain convergence guarantees in more relaxed settings (including monotone problems), Korpele-
vich [1977] introduced the EG method, which has since been extended to adaptive [Antonakopoulos et al., 2021],
stochastic [Gorbunov et al., 2022a, Gidel et al., 2019, Mishchenko et al., 2020, Diakonikolas et al., 2021, Li et al.,
2022], and decentralized variants [Beznosikov et al., 2022]. A key drawback of EG is that it requires two oracle
calls per iteration. To address this, Popov [1980] proposed the Optimistic Gradient (OG) method, which uses
only a single oracle call. Similar to EG, OG has been analyzed in stochastic settings [Hsieh et al., 2019, Gidel
et al., 2019, Daskalakis et al., 2017, Choudhury et al., 2024, Böhm, 2023]. Beyond these methods, accelerated
variants have also been developed, achieving faster convergence rates [Yoon and Ryu, 2021, Diakonikolas, 2020,
Lee and Kim, 2021].
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B Technical Lemmas

In this section, we present some technical lemmas, which will be used to prove the main results of the work in
subsequent sections.

Lemma B.1. For a, b ∈ Rd, we have

2 ⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2. (22)

Lemma B.2. For a, b ∈ Rd, we have

−∥a∥2 ≤ −1

2
∥a+ b∥2 + ∥b∥2. (23)

Lemma B.3. For positive numbers a, b > 0 we have

a+ b ≤
√
2
√

a2 + b2 (24)

Proof. From AM-GM inequality on a, b > 0 we have

2ab ≤ a2 + b2.

Adding a2 + b2 on both sides we have

(a+ b)2 ≤ 2(a2 + b2).

Then the result follows by taking square root on both sides.

Lemma B.4 (Cauchy-Schwarz Inequality). For vectors a, b ∈ Rd, we have

⟨a, b⟩ ≤ ∥a∥∥b∥. (25)

Lemma B.5. Chen et al. [2023] Operator F is α-symmetric (L0, L1)-Lipschitz if and only if

∥F (x)− F (y)∥ ≤
(
L0 + L1

∫ 1

0

∥F (θx+ (1− θ)y)∥α dθ

)
∥x− y∥ ∀x, y ∈ Rd. (26)

Lemma B.6. For a 2× 2 symmetric matrix, the maximum eigenvalue is given by

λmax

([
a b
b d

])
=

(a+ d) +
√

(a− d)2 + 4b2

2
(27)

where a, b, d ∈ R.

Proof. Let A be a symmetric 2× 2 matrix given by

A =

[
a b
b d

]
where a, b, d ∈ R. Since A is symmetric, it has real eigenvalues. The eigenvalues of A are the roots of its
characteristic polynomial:

det(A− λI) = det

([
a− λ b
b d− λ

])
= (a− λ)(d− λ)− b2.

Expanding the determinant, we obtain the characteristic equation:

λ2 − (a+ d)λ+ (ad− b2) = 0.

This is a quadratic equation in λ, and its solutions are:

λ =
(a+ d)±

√
(a− d)2 + 4b2

2
.

Thus, the maximum eigenvalue is the larger of the two roots:

λmax(A) =
(a+ d) +

√
(a− d)2 + 4b2

2
.

This completes the proof.
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Lemma B.7. For the quadratic problem minw1 maxw2 L(w1, w2) = 1
2
w2

1 + w1w2 − 1
2
w2

2 , the Jacobian
J(x) is given by

J(x) =

[
1 1
−1 1

]
.

In this case we get ∥J(x)∥ = σmax (J(x)) =
√
2.

Proof. Note that

J(x)⊤J(x) =

[
2 0
0 2

]
= 2I.

which has maximum eigenvalue
√
2. Hence, ∥J(x)∥ = σmax(J(x)) =

√
λmax(J(x)⊤J(x)) =

√
2.

Lemma B.8 (Vankov et al. [2025] Example 2.2). The function f(x) = 1
p+1

∥x∥p+1, where p > 1 is

(τ0, τ1)-smooth with arbitary τ1 > 0 and τ0 =
(

p−1
τ1

)p−1

i.e.

∥∇2f(x)∥ ≤
(
p− 1

τ1

)p−1

+ τ1∥∇f(x)∥ (28)

for any τ1 > 0.

Lemma B.9 (Equivalence of Lq Norm). For any vector x ∈ Rd, and 0 < r < q, we have

∥x∥q ≤ ∥x∥r ≤ d
1
r
− 1

q ∥x∥q. (29)

In particular, for any a, b ∈ R and 0 < r < q we have

(aq + bq)
1
q ≤ (ar + br)

1
r (30)

and
(ar + br)

1
r ≤ 2

1
r
− 1

q (aq + bq)
1
q (31)

Proof. The proof of (29) follows from Holder’s Inequality. (30) and (31) follows from (29) with d = 2 and
x = (a, b).
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C Further Examples of α-Symmetric (L0, L1)-Lipschitz Operators

In this section, we provide further examples of operators that satisfy the α-symmetric (L0, L1)-Lipschitz
assumption. We first start with the details of Examples 2 and 3 from Section 2.2, then we provide three more
examples for the min-max optimization problem and N -player game that satisfy the assumption.

Example 2: Here we consider the operator F (x) = (u2
1, u

2
2) for x = (u1, u2). Then for y = (v1, v2), we have

∥F (x)− F (y)∥ =
∥∥(u2

1 − v21 , u
2
2 − v22

)∥∥
=

((
u2
1 − v21

)2
+

(
u2
2 − v22

)2)1/2

=
(
(u1 − v1)

2 (u1 + v1)
2 + (u2 − v2)

2 (u2 + v2)
2)1/2

≤
(
(u1 − v1)

4 + (u2 − v2)
4)1/4 ((u1 + v1)

4 + (u2 + v2)
4)1/4

≤
(
(u1 − v1)

2 + (u2 − v2)
2)1/2 ((u1 + v1)

4 + (u2 + v2)
4)1/4

=
(
(u1 + v1)

4 + (u2 + v2)
4)1/4 ∥x− y∥

= 2

((u1 + v1
2

)4

+
(u2 + v2

2

)4
)1/4

∥x− y∥

= 2

∥∥∥∥(u1 + v1
2

)2

,
(u2 + v2

2

)2
∥∥∥∥1/2

∥x− y∥

= 2
∥∥∥F (x+ y

2

)∥∥∥1/2

∥x− y∥

≤ 2 max
θ∈[0,1]

∥F (θx+ (1− θ)y)∥1/2 ∥x− y∥.

Here, the first inequality follows from the Cauchy-Schwarz inequality. This completes the proof of 1
2

-symmetric-
(0, 2) Lipschitz property of F . Now, we consider the vectors x = α12 and y = 12 where 12 = (1, 1). Then we
have

∥F (x)− F (y)∥
∥x− y∥ =

√
(α2 − 1)2 + (α2 − 1)2√
(α− 1)2 + (α− 1)2

=

√
2(α2 − 1)2√
2(α− 1)2

=

√
(α− 1)2(α+ 1)2

(α− 1)2

= |α+ 1|.

Therefore,

lim
α→∞

∥F (x)− F (y)∥
∥x− y∥ = lim

α→∞
|α+ 1|

= ∞

This proves that F is not Lipschitz.
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Example 3. Consider the min-max optimization problem

min
w1

max
w2

L(w1, w2) =
1

p+ 1
∥w1∥p+1 + w⊤

1 Bw2 −
1

p+ 1
∥w2∥p+1. (32)

Then the corresponding operator F defined in (2) is 1-symmetric
(
2τ0 + ∥M∥, 2

2p2−1

p2 τ1

)
-Lipschitz with any

arbitary τ1 > 0 and τ0 =
(

p−1
τ1

)p−1

where M =

[
0 B

−B⊤ 0

]
. Moreover, F is not Lipschitz for any finite L.

Proof. For the simplicity of the proof, we define the function f(w) := 1
p+1

∥w∥p+1. The following properties
of this function will be used to prove our result.

1. Gradient of f(w): The gradient of f(w) = 1
p+1

∥w∥p+1 = 1
p+1

(
∥w∥2

) p+1
2 is given by

∇f(w) =
1

p+ 1
· p+ 1

2

(
∥w∥2

) p+1
2

−1 · ∇
(
∥w∥2

)
=

1

2

(
∥w∥2

) p−1
2 · 2w = ∥w∥p−1w. (33)

Here, the first equality follows from chain rule.

2. f is (τ0, τ1)-smooth: From Lemma B.8, we know f is (τ0, τ1)-smooth. Choose arbitary τ1 > 0, then from
Lemma B.8, f satisfies

∥∇2f(w)∥
(28)
≤ τ0 + τ1∥∇f(w)∥ (34)

where τ0 =
(

p−1
τ1

)p−1

.

Now, we will get back to the original min-max problem. Note that, using the definition of f(w), we can rewrite
the objective function in (32) as

L(w1, w2) = f(w1) + w⊤
1 Bw2 − f(w2). (35)

Then the operator F corresponding to the min-max problem (32) is given by

F (x) =

[
∇w1L(w1, w2)
−∇w2L(w1, w2)

]
(35)
=

[
∇f(w1) +Bw2

∇f(w2)−B⊤w1

]
(33)
=

[
∥w1∥p−1w1 +Bw1

∥w2∥p−1w2 −B⊤w2

]
. (36)

Moreover, the Jacobian matrix corresponding to this min-max problem (32) is

J(x) =

[
∇2

w1w1
L(w1, w2) ∇2

w2w1
L(w1, w2)

−∇2
w1w2

L(w1, w2) −∇2
w2w2

L(w1, w2)

]
(35)
=

[
∇2f(w1) B
−B⊤ ∇2f(w2)

]
. (37)

Furthermore, note that, we can break the operator F from (36) as F (x) = H(x) +Mx with

H(x) =

[
∇f(w1)
∇f(w2)

]
=

[
∥w1∥p−1w1

∥w2∥p−1w2

]
(38)

and M =

[
0 B

−B⊤ 0

]
. Then the Jacobian J(x) of this min-max problem satisfies

∥J(x)∥ (37)
=

∥∥∥∥[∇2f(w1) B
−B⊤ ∇2f(w2)

]∥∥∥∥
=

∥∥∥∥[∇2f(w1) 0
0 ∇2f(w2)

]
+M

∥∥∥∥
≤

∥∥∥∥[∇2f(w1) 0
0 ∇2f(w2)

]∥∥∥∥+ ∥M∥

≤ max
{
∥∇2f(w1)∥, ∥∇2f(w2)∥

}
+ ∥M∥

≤ ∥∇2f(w1)∥+ ∥∇2f(w2)∥+ ∥M∥
(34)
≤ τ0 + τ1∥∇f(w1)∥+ τ0 + τ1∥∇f(w2)∥+ ∥M∥
= 2τ0 + ∥M∥+ τ1 (∥∇f(w1)∥+ ∥∇f(w2)∥)
(24)
≤ (2τ0 + ∥M∥) +

√
2τ1

√
∥∇f(w1)∥2 + ∥∇f(w2)∥2

(38)
= (2τ0 + ∥M∥) +

√
2τ1∥H(x)∥. (39)

where τ1 > 0 is arbitary and τ0 =
(

p−1
τ1

)p−1

. Above, the second inequality follows from the fact that the
maximum eigenvalue of a block diagonal matrix is less than or equal to the maximum eigenvalues of it’s diagonal
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matrices. Now, we want to find a bound on ∥H(x)∥ in terms of ∥F (x)∥. Towards that end, we will first find the
relation between ∥H(x)∥ and ⟨F (x), x⟩. Note that

⟨F (x), x⟩ = ⟨H(x), x⟩+ ⟨Mx, x⟩

= ⟨H(x), x⟩+
〈[

Bw2

−B⊤w1

]
,

[
w1

w2

]〉
= ⟨H(x), x⟩
(38)
=

〈[
∥w1∥p−1w1

∥w2∥p−1w2

]
,

[
w1

w2

]〉
= ∥w1∥p+1 + ∥w2∥p+1 (40)

and

∥H(x)∥ (38)
=

∥∥∥∥[∥w1∥p−1w1

∥w2∥p−1w2

]∥∥∥∥
=

((
∥w1∥p−1)2 ∥w1∥2 +

(
∥w2∥p−1)2 ∥w2∥2

) 1
2

=
(
∥w1∥2p + ∥w2∥2p

) 1
2 (41)

Then note that

∥H(x)∥ (41)
=

(
∥w1∥2p + ∥w2∥2p

) 1
2

=

((
∥w1∥2p + ∥w2∥2p

) 1
2p

)p

(30)
≤

((
∥w1∥p+1 + ∥w2∥p+1) 1

p+1

)p

=
(
∥w1∥p+1 + ∥w2∥p+1) p

p+1

(40)
= ⟨F (x), x⟩

p
p+1

(25)
≤ ∥F (x)∥

p
p+1 ∥x∥

p
p+1

= ∥F (x)∥
p

p+1

((
∥w1∥2 + ∥w2∥2

) 1
2

) p
p+1

(31)
≤ ∥F (x)∥

p
p+1

(
2

1
2
− 1

2p
(
∥w1∥2p + ∥w2∥2p

) 1
2p

) p
p+1

= 2
p−1
2p ∥F (x)∥

p
p+1

((
∥w1∥2p + ∥w2∥2p

) 1
2p

) p
p+1

= 2
p−1
2p ∥F (x)∥

p
p+1

((
∥w1∥2p + ∥w2∥2p

) 1
2

) 1
p+1

(41)
= 2

p−1
2p ∥F (x)∥

p
p+1 ∥H(x)∥

1
p+1

Therefore, dividing both sides by ∥H(x)∥
1

p+1 we get

∥H(x)∥
p

p+1 ≤ 2
p−1
2p ∥F (x)∥

p
p+1 .

Thus raising both sides to the power p+1
p

we get

∥H(x)∥ ≤ 2
p2−1

2p2 ∥F (x)∥. (42)

Combining this bound on ∥H(x)∥ with (39) we get

∥J(x)∥
(39)
≤ (2τ0 + ∥M∥) + 2

1
2 τ1∥H(x)∥

(42)
≤ (2τ0 + ∥M∥) + 2

1
2
+ p2−1

2p2 τ1∥F (x)∥

= (2τ0 + ∥M∥) + 2
2p2−1

2p2 τ1∥F (x)∥.

Thus, the result follows using Theorem 2.1.
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Next we show F is not Lipschitz. Consider, x = (tw1, 0) and y = (0, 0) with ∥w1∥ = 1. Then we get

∥F (x)− F (y)∥
∥x− y∥ =

1

p+ 1

tp+1

t
=

tp

p+ 1
.

As we take t → ∞, we get ∥F (x)−F (y)∥
∥x−y∥ → ∞. Hence, there doesn’t exist any finite bound on ∥F (x)−F (y)∥

∥x−y∥ or
F is not L-Lipschitz.

Example 4: Consider the min-max problem

min
w1

max
w2

L(w1, w2) =
1

p+ 1
∥w1∥p+1 − 1

p+ 1
∥w2∥p+1.

Then the corresponding operator F defined in (2) is 1-symmetric (L0, L1)-Lipschitz where L1 =
√
2τ1 and

L0 = 2
(

p−1
τ1

)p−1

for any τ1 > 0. Moreover, F is not L-Lipschitz for any finite L.

Proof. Define f(w) = 1
p+1

∥w∥p+1. From Lemma B.8, we know f is (τ0, τ1)-smooth. Choose arbitary τ1 > 0,
then from Lemma B.8, f satisfies

∥∇2f(w)∥
(28)
≤ τ0 + τ1∥∇f(w)∥ (43)

where τ0 =
(

p−1
τ1

)p−1

. Then we have L(w1, w2) = f(w1) − f(w2) and the corresponding operator and
Jacobian are given by

F (x) =

[
∇f(w1)
∇f(w2)

]
and J(x) =

[
∇2f(w1) 0

0 ∇2f(w2)

]
,

respectively. Note that the Jacobian matrix J(x) is block diagonal. Hence, the maximum eigenvalue of J(x) is
less than the maxiumum eigenvalue of both ∇2f(w1) and ∇2f(w2). Therefore,we get

∥J(x)∥ ≤ max
{
∥∇2f(w1)∥, ∥∇2f(w2)∥

}
≤ ∥∇2f(w1)∥+ ∥∇2f(w2)∥
(43)
≤ τ0 + τ1∥∇f(w1)∥+ τ0 + τ1∥∇f(w2)∥
= 2τ0 + τ1 (∥∇f(w1)∥+ ∥∇f(w2)∥)
(24)
≤ 2τ0 +

√
2τ1

√
∥∇f(w1)∥2 + ∥∇f(w2)∥2

= 2τ0 +
√
2τ1∥F (x)∥.

Then F is 1-symmetric (L0, L1)-Lipschitz from Theorem 2.1 with L1 =
√
2τ1 and L0 = 2τ0 = 2

(
p−1
τ1

)p−1

for any τ1 > 0.

Next we show F is not Lipschitz. Consider, x = (tw1, 0) and y = (0, 0) with ∥w1∥ = 1. Then we get

∥F (x)− F (y)∥
∥x− y∥ =

1

p+ 1

tp+1

t
=

tp

p+ 1
.

As we take t → ∞, we get ∥F (x)−F (y)∥
∥x−y∥ → ∞. Hence, there doesn’t exist any finite bound on ∥F (x)−F (y)∥

∥x−y∥ .
Therefore, F is not L-Lipschitz.

Example 5: Min-max optimization problems can be studied using operators. Here we consider one such
example, the bilinearly coupled min-max optimization Chambolle and Pock [2016] problem

min
∥w1∥≤R

max
∥w2∥≤R

L(w1, w2) := f(w1) + w⊤
1 Bw2 − g(w2)

for matrix B ∈ Rd×d and functions f, g : Rd → R. The associated operator for this problem is given by
F (x) = H(x) +Mx where

H(x) =

[
∇f(w1)
∇g(w2)

]
and M =

[
0 B

−B⊤ 0

]
.

If f, g are individually (L0, L1)-smooth Zhang et al. [2020b], we show that

∥F (x)− F (y)∥ ≤
(
2L0 + (1 + 2L1R)∥M∥+

√
2L1∥F (x)∥

)
∥x− y∥.
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Thus, F is 1-symmetric
(
2L0 + (1 + 2L1R)∥M∥,

√
2L1

)
-Lipschitz. Consider the min-max problem

min
∥w1∥≤R

max
∥w2∥≤R

L(w1, w2) := f(w1) + w⊤
1 Bw2 − g(w2).

where f, g are (L0, L1)-smooth. Then for x = (w1, w2) we have

F (x) =

(
∇f(w1)
∇g(w2)

)
+

(
0 B

−B⊤ 0

)(
w1

w2

)
= H(x) +Mx

where M is a matrix and H is an operator. Now note that for x = (w1, w2) and y = (v1, v2) we get

∥H(x)−H(y)∥ =

∥∥∥∥[∇f(w1)−∇f(v1)
∇g(w2)−∇g(v2)

]∥∥∥∥
=

(
∥∇f(w1)−∇f(v1)∥2 + ∥g(w2)− g(v2)∥2

)1/2
≤

(
(L0 + L1∥∇f(w1)∥)2 ∥w1 − v1∥2 + (L0 + L1∥∇g(w2)∥)2 ∥w2 − v2∥2

)1/2
≤

(
(L0 + L1∥∇f(w1)∥)4 + (L0 + L1∥∇g(w2)∥)4

)1/4 (∥w1 − v1∥4 + ∥w2 − v2∥4
)1/4

≤
(
(L0 + L1∥∇f(w1)∥)2 + (L0 + L1∥∇g(w2)∥)2

)1/2 (∥w1 − v1∥2 + ∥w2 − v2∥2
)1/2

≤
(
4L2

0 + 2L2
1

(
∥∇f(w1)∥2 + ∥∇g(w2)∥2

))1/2 (∥w1 − v1∥2 + ∥w2 − v2∥2
)1/2

=
(
4L2

0 + 2L2
1∥H(x)∥2

)1/2 ∥x− y∥

≤
(
2L0 +

√
2L1∥H(x)∥

)
∥x− y∥

Therefore, using the above inequality, we derive

∥F (x)− F (y)∥ ≤ ∥H(x)−H(y)∥+ ∥Mx−My∥

≤
(
2L0 +

√
2L1∥H(x)∥

)
∥x− y∥+ ∥M∥∥x− y∥

≤
(
2L0 + ∥M∥+

√
2L1∥H(x)∥

)
∥x− y∥

Now using ∥H(x)∥ = ∥H(x) +Mx−Mx∥ ≤ ∥F (x)∥+ ∥M∥∥x∥ ≤ ∥F (x)∥+
√
2R∥M∥ we get

∥F (x)− F (y)∥ ≤
(
2L0 + (1 + 2L1R)∥M∥+

√
2L1∥F (x)∥

)
∥x− y∥.

Example 6: In this example, we consider an N -player game Balduzzi et al. [2018], Loizou et al. [2021], Yoon
et al. [2025], where each player i ∈ [N ] selects an action wi ∈ Rdi , and the joint action vector of all players is
denoted as x = (w1, w2, · · · , wN ) ∈ Rd1+···dN . Each player i aims to minimize their loss function fi for their
action wi. The objective is to find an equilibrium x∗ = (w1∗, w2∗, · · · , wN∗) such that

wi∗ = argminwi∈Rdi fi(wi, w−i∗).

Here we abuse the notation to denote w−i = (w1, · · · , wi−1, wi+1, · · · , wN ) and fi(wi, w−i) =
fi(w1, · · · , wN ). When the functions fi are convex, this equilibrium corresponds to solving F (x∗) = 0,
where the operator F is defined as

F (x) = (∇1f1(x),∇2f2(x), . . . ,∇NfN (x)) .

In case each of these partial gradients ∇ifi are (L0, L1)-Lipschitz i.e.

∥∇ifi(x)−∇ifi(y)∥ ≤ (L0 + L1∥∇ifi(x)∥)∥x− y∥
then we obtain

∥F (x)− F (y)∥2 =

N∑
i=1

∥∇ifi(x)−∇ifi(y)∥2

≤
N∑
i=1

(L0 + L1 ∥∇ifi(x)∥)2 ∥x− y∥2

≤ ∥x− y∥2
N∑
i=1

(2L2
0 + 2L2

1∥∇ifi(x)∥2)

= ∥x− y∥2(2NL2
0 + 2L2

1∥F (x)∥2)
≤ ∥x− y∥2(

√
2NL0 +

√
2L1∥F (x)∥)2.

This completes the proof.
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D Convergence Analysis

In this section, we present the missing proofs from Section 3. We start with the proof of Proposition 3.1 and then
provide the results related to strongly monotone, monotone and weak Minty problems.

D.1 Proof of Proposition 3.1
Proposition D.1. Suppose F is α-symmetric (L0, L1)-Lipschitz operator. Then, for α = 1

∥F (x)− F (y)∥ ≤ (L0 + L1∥F (x)∥) exp (L1∥x− y∥)∥x− y∥,

and for α ∈ (0, 1) we have

∥F (x)− F (y)∥ ≤
(
K0 +K1∥F (x)∥α +K2∥x− y∥α/1−α

)
∥x− y∥

where K0 = L0(2
α2/1−α + 1), K1 = L1 · 2α2/1−α and K2 = L

1/1−α

1 · 2α2/1−α · 3α(1− α)
α/1−α.

Proof. For proving this theorem, we follow the proof technique similar to Chen et al. [2023]. We start with
α = 1 case. Let x, y ∈ Rd and define xθ := θx+ (1− θ)y. Since F is 1-symmetric (L0, L1)-Lipschitz , we
have for all θ ∈ [0, 1],

∥F (xθ)− F (y)∥
(26)
≤

(
L0 + L1

∫ 1

0

∥F (xθτ )∥dτ
)
∥xθ − y∥.

Note that
xθτ = τxθ + (1− τ)y = τ(θx+ (1− θ)y) + (1− τ)y = θτx+ (1− θτ)y.

Let us define a function

H(θ) := L0θ + L1

∫ θ

0

∥F (xu)∥du.

Then, note that H ′(θ) = L0 + L1∥F (xθ)∥. Moreover, we have

∥F (xθ)− F (y)∥ ≤
(
L0 + L1

∫ 1

0

∥F (xθτ )∥dτ
)
∥xθ − y∥

=

(
L0 + L1

∫ 1

0

∥F (xθτ )∥dτ
)
∥θx+ (1− θ)y − y∥

=

(
L0 + L1

∫ 1

0

∥F (xθτ )∥dτ
)
∥θx− θy∥

=

(
L0θ + L1

∫ 1

0

∥F (xθτ )∥θdτ
)
∥x− y∥

=

(
L0θ + L1

∫ 1

0

∥F (θτx+ (1− θτ)y)∥θdτ
)
∥x− y∥

=

(
L0θ + L1

∫ θ

0

∥F (ux+ (1− u)y)∥du
)
∥x− y∥

=

(
L0θ + L1

∫ θ

0

∥F (xu)∥du
)
∥x− y∥

= H(θ)∥x− y∥.
Therefore we obtain

H ′(θ) = L0 + L1∥F (xθ)∥
≤ L0 + L1 (∥F (xθ)− F (y)∥+ ∥F (y)∥)
≤ L0 + L1 (H(θ)∥x− y∥+ ∥F (y)∥)
= aH(θ) + b,

where a = L1∥x− y∥, b = L0 + L1∥F (y)∥. Then we integrate both sides for θ ∈ [0, θ′] to get

H(θ′) ≤ b

a
(eaθ

′
− 1).

Here, we set θ′ = 1 to obtain

H(1) ≤ b

a
(ea − 1)

=
L0 + L1∥F (y)∥

L1∥x− y∥ (eL1∥x−y∥ − 1).
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Now, put this back into the original inequality

∥F (x)− F (y)∥ ≤ H(1)∥x− y∥

≤ (L0 + L1∥F (y)∥) · e
L1∥x−y∥ − 1

L1

=

(
L0

L1
+ ∥F (y)∥

)
(eL1∥x−y∥ − 1).

Finally, using the inequality ez − 1 ≤ zez for z ≥ 0, we get

∥F (x)− F (y)∥ ≤
(
L0

L1
+ ∥F (y)∥

)
L1∥x− y∥eL1∥x−y∥

≤ (L0 + L1∥F (y)∥)eL1∥x−y∥∥x− y∥

This completes the proof for α = 1. The proof for α ∈ (0, 1) follows similarly from Chen et al. [2023].

D.2 Convergence Guarantees for Strongly Monotone Operators
Lemma D.2. Suppose F is µ-strongly monotone operator. Then Extragradient method with step size γk = ωk

satisfy

∥xk+1 − x∗∥2 ≤ (1− γkµ) ∥xk − x∗∥2 − γ2
k(1− 2γkµ)∥F (xk)∥2 + γ2

k∥F (xk)− F (x̂k)∥2. (44)

Proof. From the update step of the Extragradient method, we obtain

∥xk+1 − x∗∥2 = ∥xk − γkF (x̂k)− x∗∥2

= ∥xk − x∗∥2 − 2γk ⟨F (x̂k), xk − x∗⟩+ γ2
k∥F (x̂k)∥2

= ∥xk − x∗∥2 − 2γk ⟨F (x̂k), x̂k − x∗⟩ − 2γk ⟨F (x̂k), xk − x̂k⟩+ γ2
k∥F (x̂k)∥2

(9)
≤ ∥xk − x∗∥2 − 2γkµ∥x̂k − x∗∥2 − 2γk ⟨F (x̂k), xk − x̂k⟩+ γ2

k∥F (x̂k)∥2

(23)
≤ ∥xk − x∗∥2 − γkµ∥xk − x∗∥2 + 2γkµ∥xk − x̂k∥2 − 2γk ⟨F (x̂k), xk − x̂k⟩

+γ2
k∥F (x̂k)∥2

= (1− γkµ)∥xk − x∗∥2 + 2γkµ∥xk − x̂k∥2 − 2γk ⟨F (x̂k), xk − x̂k⟩+ γ2
k∥F (x̂k)∥2

= (1− γkµ)∥xk − x∗∥2 + 2γ3
kµ∥F (xk)∥2 − 2γ2

k ⟨F (x̂k), F (xk)⟩+ γ2
k∥F (x̂k)∥2

(22)
= (1− γkµ) ∥xk − x∗∥2 + 2γ3

kµ∥F (xk)∥2

−γ2
k

(
∥F (x̂k)∥2 + ∥F (xk)∥2 − ∥F (xk)− F (x̂k)∥2

)
+ γ2

k∥F (x̂k)∥2

= (1− γkµ) ∥xk − x∗∥2 − γ2
k(1− 2γkµ)∥F (xk)∥2 + γ2

k∥F (xk)− F (x̂k)∥2.

D.2.1 Proof of Theorem 3.2
Theorem D.3. Suppose F is µ-strongly monotone and 1-symmetric (L0, L1)-Lipschitz operator. Then
Extragradient method with step size γk = ωk = ν

L0+L1∥F (xk)∥
satisfy

∥xk+1 − x∗∥2 ≤
(
1− νµ

L0 (1 + L1 exp (L1∥x0 − x∗∥)∥x0 − x∗∥)

)k+1

∥x0 − x∗∥2

where ν > 0 root of 1− 2ν − ν2 exp 2ν = 0.

Proof. From the update rule of Extragradient and using µ-strong monotonicty, we obtain

∥xk+1 − x∗∥2
(44)
≤ (1− γkµ) ∥xk − x∗∥2 − γ2

k(1− 2γkµ)∥F (xk)∥2 + γ2
k∥F (xk)− F (x̂k)∥2

(13)
≤ (1− γkµ) ∥xk − x∗∥2 − γ2

k(1− 2γkµ)∥F (xk)∥2

+γ2
k(L0 + L1∥F (xk)∥)2 exp (2L1∥xk − x̂k∥)∥xk − x̂k∥2

= (1− γkµ)∥xk − x∗∥2

−γ2
k

(
1− 2γkµ− γ2

k(L0 + L1∥F (xk)∥)2 exp (2γkL1∥F (xk)∥)
)
∥F (xk)∥2.(45)
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Now we set γk = ν
L0+L1∥F (xk)∥

. Then we want to choose ν such that

1− 2νµ

L0 + L1∥F (xk)∥
− ν2 exp 2ν ≥ 0.

Note that µ ≤ L0 + L1∥F (xk)∥ for any xk. Therefore, we get 1− 2νµ
L0+L1∥F (xk)∥

− ν2 exp 2ν ≥ 1− 2ν −
ν2 exp 2ν and it is enough to choose ν such that

1− 2ν − ν2 exp 2ν ≥ 0.

This inequality holds for any ν ≤ 0.22. Hence, for this choice of ν we get the following inequality from (45).

∥xk+1 − x∗∥2 ≤ (1− γkµ)∥xk − x∗∥2. (46)

This proves that the distance of the iterates xk from x∗ are bounded by ∥x0 − x∗∥. Now note that using (13)
with x = xk, y = x∗ with ∥xk − x∗∥ ≤ ∥x0 − x∗∥ we get

∥F (xk)∥
(13)
≤ L0 exp (L1∥xk − x∗∥)∥xk − x∗∥
(46)
≤ L0 exp (L1∥x0 − x∗∥)∥x0 − x∗∥. (47)

Therefore, we have the following lower bound on the step size

γk =
ν

L0 + L1∥F (xk)∥
(47)
≥ ν

L0 (1 + L1 exp (L1∥x0 − x∗∥)∥x0 − x∗∥)
. (48)

Hence, we get

∥xk+1 − x∗∥2
(46),(48)
≤

(
1− νµ

L0 [1 + L1 exp (L1∥x0 − x∗∥)∥x0 − x∗∥]

)
∥xk − x∗∥2

≤
(
1− νµ

L0 [1 + L1 exp (L1∥x0 − x∗∥)∥x0 − x∗∥]

)k+1

∥x0 − x∗∥2.

D.2.2 Proof of Corollary 3.3
Corollary D.4. Suppose F is µ-strongly monotone and 1-symmetric (L0, L1)-Lipschitz operator. Then
Extragradient with step size γk = ωk = ν

L0+L1∥F (xk)∥
satisfy ∥xK+1 − x∗∥2 ≤ ε after

K =
2L0

νµ
log

(
∥x0 − x∗∥2

ε

)
+

1

γµ
log

(
2L1∥x0 − x∗∥2

γ2L0

)
many iterations, where ν > 0 satisfy 1− 4ν − 2ν2 exp 2ν = 0 and

γ :=
ν

L0 (1 + L1 exp (L1∥x0 − x∗∥)∥x0 − x∗∥)
.

Proof. We set γk = ν
L0+L1∥F (xk)∥

and we choose ν ∈ (0, 1) such that 1− 4ν − 2ν2 exp 2ν = 0. Then we
have

1− 2γkµ− γ2
k(L0 + L1∥F (xk)∥)2 exp (2γkL1∥F (xk)∥) ≥ 1− 2νµ

L0 + L1∥F (xk)∥
− ν2 exp 2ν

≥ 1− 2ν − ν2 exp 2ν

=
1

2
. (49)

Therefore, from (45) and (49) we get

∥xk+1 − x∗∥2 ≤ (1− γkµ)∥xk − x∗∥2 −
γ2
k

2
∥F (xk)∥2. (50)

In (48), we found that a lower bound of γk is

γk ≥ γ :=
ν

L0 (1 + L1 exp (L1∥x0 − x∗∥)∥x0 − x∗∥)
.

Then from (50) we get

γ2

2
∥F (xk)∥2 ≤ (1− γµ)∥xk − x∗∥2 ≤ (1− γµ)k+1∥x0 − x∗∥2 (51)
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This can be rearranged to write

∥F (xk)∥2 ≤ 2(1− γµ)k+1

γ2
∥x0 − x∗∥2.

This implies ∥F (xk)∥2 ≤ L0
L1

after

K′ =
1

γµ
log

(
2L1∥x0 − x∗∥2

γ2L0

)
(52)

many iterations. Hence for k ≥ K′ we have

γk =
ν

L0 + L1∥F (xk)∥

≥ ν

2L0
.

In the last inequality we used ∥F (xk)∥2 ≤ L0
L1

for k ≥ K′. Therefore for k ≥ K′ we obtain

∥xk+1 − x∗∥2 ≤
(
1− νµ

2L0

)
∥xk − x∗∥2

≤
(
1− νµ

2L0

)k+1−K′

∥xK′ − x∗∥2

≤
(
1− νµ

2L0

)k+1−K′

∥x0 − x∗∥2

Thus we conclude that, ∥xK+1 − x∗∥2 ≤ ε after atmost

K =
2L0

νµ
log

(
∥x0 − x∗∥2

ε

)
+K′

many iterations.

D.2.3 Proof of Theorem 3.4
Theorem D.5. Suppose F is µ-strongly monotone and α-symmetric (L0, L1)-Lipschitz operator with α ∈
(0, 1). Then Extragradient method with γk = ωk = ν

2K0+(2K1+21−αK1−α
2 )∥F (xk)∥α

satisfy

∥xk+1 − x∗∥2 ≤
(
1− νµ

2K0+(2K1+21−αK1−α
2 )(K0+K2∥x0−x∗∥α/1−α)α∥x0−x∗∥α

)k+1

∥x0 − x∗∥2.

where ν ∈ (0, 1) is a constant such that 1− ν − ν2 ≥ 0.

Proof. Using the update steps of the Extragradient method and using µ-strong monotonicity, we have

∥xk+1 − x∗∥2
(44)
≤ (1− γkµ) ∥xk − x∗∥2 − γ2

k(1− 2γkµ)∥F (xk)∥2 + γ2
k∥F (xk)− F (x̂k)∥2

(14)
≤ (1− γkµ) ∥xk − x∗∥2 − γ2

k(1− 2γkµ)∥F (xk)∥2

+γ2
k

(
K0 +K1∥F (xk)∥α +K2∥xk − x̂k∥α/1−α

)2

∥xk − x̂k∥2

= (1− γkµ)∥xk − x∗∥2

+γ2
k

(
1− 2γkµ− γ2

k

(
K0 +K1∥F (xk)∥α + γ

α/1−α

k K2∥F (xk)∥α/1−α
)2

)
∥F (xk)∥2.

Here we will choose γk > 0 such that

1− 2γkµ− γ2
k

(
K0 +K1∥F (xk)∥α + γ

α/1−α

k K2∥F (xk)∥α/1−α
)2

≥ 0

Let us choose γk = ν

2K0+(2K1+21−αK1−α
2 )∥F (xk)∥α

for some ν ∈ (0, 1). Then we observe that

γk (K0 +K1∥F (xk)∥α) + γ
1/1−α

k K2∥F (xk)∥α/1−α ≤ ν (K0 +K1∥F (xk)∥α)
2K0 +

(
2K1 + 21−αK1−α

2

)
∥F (xk)∥α

+
ν

1/1−αK2∥F (xk)∥α/1−α(
2K0 +

(
2K1 + 21−αK1−α

2

)
∥F (xk)∥α

)1/1−α

≤ ν

2
+

ν
1/1−α

2
≤ ν.
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The last inequality follows from ν ∈ (0, 1). Therefore it is enough to choose ν ∈ (0, 1) such that

1− 2νµ

2K0 +
(
2K1 + 21−αK1−α

2

)
∥F (xk)∥α

− ν2 ≥ 0

However, note that, we always have µ ≤ K0, thus it is enough to choose ν ∈ (0, 1) such that

1− ν − ν2 ≥ 0.

Hence, for this choice of ν we get

∥xk+1 − x∗∥2 ≤ (1− γkµ)∥x0 − x∗∥2.

Here we lower bound the step size γk with

γk ≥ ν

2K0 + (2K1 + 21−αK1−α
2 )(K0 +K2∥x0 − x∗∥α/1−α)α∥x0 − x∗∥α

.

Hence we obtain

∥xk+1 − x∗∥2 ≤
(
1− νµ

2K0+(2K1+21−αK1−α
2 )(K0+K2∥x0−x∗∥α/1−α)α∥x0−x∗∥α

)
∥xk − x∗∥2

≤
(
1− νµ

2K0+(2K1+21−αK1−α
2 )(K0+K2∥x0−x∗∥α/1−α)α∥x0−x∗∥α

)k+1

∥x0 − x∗∥2.

This completes the proof of the theorem.
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D.3 Convergence Guarantees for Monotone Operators
Lemma D.6. Suppose F is a monotone operator. Then EG with step size γk = ωk satisfy

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − γ2
k∥F (xk)∥2 + γ2

k∥F (xk)− F (x̂k)∥2. (53)

Proof. From the update rule of the Extragradient method, we have

∥xk+1 − x∗∥2 = ∥xk − γkF (x̂k)− x∗∥2

= ∥xk − x∗∥2 − 2γk ⟨F (x̂k), xk − x∗⟩+ γ2
k∥F (x̂k)∥2

= ∥xk − x∗∥2 − 2γk ⟨F (x̂k), x̂k − x∗⟩ − 2γk ⟨F (x̂k), xk − x̂k⟩+ γ2
k∥F (x̂k)∥2

(8)
≤ ∥xk − x∗∥2 − 2γk ⟨F (x̂k), xk − x̂k⟩+ γ2

k∥F (x̂k)∥2

= ∥xk − x∗∥2 − 2γ2
k ⟨F (x̂k), F (xk)⟩+ γ2

k∥F (x̂k)∥2

(22)
= ∥xk − x∗∥2 − γ2

k∥F (x̂k)∥2 − γ2
k∥F (xk)∥2 + γ2

k∥F (xk)− F (x̂k)∥2 + γ2
k∥F (x̂k)∥2

= ∥xk − x∗∥2 − γ2
k∥F (xk)∥2 + γ2

k∥F (xk)− F (x̂k)∥2.

D.3.1 Proof of Theorem 3.5
Theorem D.7. Suppose F is monotone and 1-symmetric (L0, L1)-Lipschitz operator. Then EG with step
size γk = ωk = ν

L0+L1∥F (xk)∥
satisfy

min
0≤k≤K

∥F (xk)∥2 ≤ 2L2
0 (1 + L1 exp (L1∥x0 − x∗∥) ∥x0 − x∗∥)2 ∥x0 − x∗∥2

ν2(K + 1)
.

where ν exp ν = 1/
√
2.

Proof. From the update rule of the Extragradient method and using monotonicity, we have

∥xk+1 − x∗∥2
(53)
≤ ∥xk − x∗∥2 − γ2

k∥F (xk)∥2 + γ2
k∥F (xk)− F (x̂k)∥2

(13)
≤ ∥xk − x∗∥2 − γ2

k∥F (xk)∥2

+γ2
k(L0 + L1∥F (xk)∥)2 exp (2L1∥xk − x̂k∥)∥xk − x̂k∥2

= ∥xk − x∗∥2 − γ2
k

(
1− γ2

k(L0 + L1∥F (xk)∥)2 exp (2γkL1∥F (xk)∥)
)
∥F (xk)∥2

≤ ∥xk − x∗∥2

−γ2
k

(
1− γ2

k(L0 + L1∥F (xk)∥)2 exp (2γk(L0 + L1∥F (xk)∥))
)
∥F (xk)∥2.

Here we use γk = ν
L0+L1∥F (xk)∥

for some ν ∈ (0, 1) to get

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − γ2
k

(
1− ν2 exp (2ν)

)
∥F (xk)∥2

Then we choose ν such that ν exp ν = 1/
√
2 to obtain

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −
γ2
k

2
∥F (xk)∥2. (54)

In particular the distance of the iterates xk from x∗ are bounded i.e. ∥xk+1 − x∗∥ ≤ ∥xk − x∗∥ ≤ ∥x0 − x∗∥.
Therefore, using (13) with y = x∗ and x = xk, we get

∥F (xk)∥ ≤ L0 exp (L1∥xk − x∗∥)∥xk − x∗∥
≤ L0 exp (L1∥x0 − x∗∥)∥x0 − x∗∥.

Then we have the lower bound on step size given as follows

γk =
ν

L0 + L1∥F (xk)∥
≥ ν

L0 (1 + L1 exp (L1∥x0 − x∗∥) ∥x0 − x∗∥)
. (55)

Rearranging (54) we have

γ2
k

2
∥F (xk)∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2.

Summing up the above inequality for k = 0, 1, · · · ,K and dividing by K + 1 we get

1

K + 1

K∑
k=0

γ2
k

2
∥F (xk)∥2 ≤ ∥x0 − x∗∥2 − ∥xK+1 − x∗∥2

K + 1
≤ ∥x0 − x∗∥2

K + 1
. (56)
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Here we will use the lower bound on step size γk given in (55) to get

1

K + 1

K∑
k=0

∥F (xk)∥2 ≤ 2L2
0 (1 + L1 exp (L1∥x0 − x∗∥) ∥x0 − x∗∥)2 ∥x0 − x∗∥2

ν2(K + 1)
.

Finally, note that min0≤k≤K ∥F (xk)∥2 ≤ 1
K+1

∑K
k=0 ∥F (xk)∥2. Therefore we have

min
0≤k≤K

∥F (xk)∥2 ≤ 2L2
0 (1 + L1 exp (L1∥x0 − x∗∥) ∥x0 − x∗∥)2 ∥x0 − x∗∥2

ν2(K + 1)
.

This completes the proof of the Theorem.

D.3.2 Proof of Theorem 3.6
Theorem D.8. Suppose F is monotone and 1-symmetric (L0, L1)-Lipschitz operator. Then Extragradient
method with step size γk = ν

L0+L1∥F (xk)∥
satisfy

min
0≤k≤K

∥F (xk)∥ ≤
√
2L0∥x0 − x∗∥

ν
√
K + 1−

√
2L1∥x0 − x∗∥

where ν exp ν = 1/
√
2 and K + 1 ≥ 2L2

1∥x0−x∗∥2

ν2 .

Proof. From (56), we know steps of Extragradient method satisfy

1

K + 1

K∑
k=0

γ2
k

2
∥F (xk)∥2 ≤ ∥x0 − x∗∥2

K + 1
.

Taking the minimum on the left-hand side we have

min
0≤k≤K

γ2
k∥F (xk)∥2 ≤ 2∥x0 − x∗∥2

K + 1
,

or equivalently,

min
0≤k≤K

ν2∥F (xk)∥2

(L0 + L1∥F (xk)∥)2
≤ 2∥x0 − x∗∥2

K + 1
.

Taking the square root on both sides we have

min
0≤k≤K

ν∥F (xk)∥
L0 + L1∥F (xk)∥

≤
√
2∥x0 − x∗∥√

K + 1
.

Therefore, for some 0 ≤ k0 ≤ K we have

∥F (xk0)∥
L0 + L1∥F (xk0)∥

≤
√
2∥x0 − x∗∥
ν
√
K + 1

.

Therefore, rearranging these terms, we get(
ν
√
K + 1−

√
2L1∥x0 − x∗∥

)
∥F (xk0)∥ ≤

√
2L0∥x0 − x∗∥.

When we have K + 1 ≥ 2L2
1∥x0−x∗∥2

ν2 then we can rearrange the terms to obtain

∥F (xk0)∥ ≤
√
2L0∥x0 − x∗∥(

ν
√
K + 1−

√
2L1∥x0 − x∗∥

) .
for some 0 ≤ k0 ≤ K. Hence, we complete the proof of the theorem

min
0≤k≤K

∥F (xk)∥ ≤
√
2L0∥x0 − x∗∥

ν
√
K + 1−

√
2L1∥x0 − x∗∥

.

D.3.3 Proof of Theorem 3.7
Theorem D.9. Suppose F is monotone and α-symmetric (L0, L1)-Lipschitz operator with α ∈ (0, 1). Then
Extragradient method with step size γk = 1

2
√
2K0+(2

√
2K1+23(1−α)/2K1−α

2 )∥F (xk)∥α
satisfy

min0≤k≤K ∥F (xk)∥2 ≤
16

(
K0+

(
K1+2

−3/2K1−α
2

)
(K0+K2∥x0−x∗∥

α/1−α)α∥x0−x∗∥α
)2

∥x0−x∗∥2

K+1
.
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Proof. Here operator F is a α-symmetric (L0, L1)-Lipschitz i.e. it satisfies (14). For the update steps of the
Extragradient method, we have

∥xk+1 − x∗∥2
(53)
≤ ∥xk − x∗∥2 − γ2

k∥F (xk)∥2 + γ2
k∥F (xk)− F (x̂k)∥2

(14)
≤ ∥xk − x∗∥2 − γ2

k∥F (xk)∥2

+γ2
k

(
K0 +K1∥F (xk)∥α +K2∥xk − x̂k∥α/1−α

)2

∥xk − x̂k∥2

= ∥xk − x∗∥2

−γ2
k

(
1− γ2

k

(
K0 +K1∥F (xk)∥α + γ

α/1−α

k K2∥F (xk)∥α/1−α
)2

)
∥F (xk)∥2.(57)

Here we want to choose γk such that

γk (K0 +K1∥F (xk)∥α) + γ
1/1−α

k K2∥F (xk)∥α/1−α ≤ 1√
2
.

For this, it is enough to make sure

γk (K0 +K1∥F (xk)∥α) ≤
1

2
√
2

and γ
1/1−α

k K2∥F (xk)∥α/1−α ≤ 1

2
√
2
.

Therefore, we choose γk = 1

2
√

2(K0+K1∥F (xk)∥α)+23(1−α)/2K1−α
2 ∥F (xk)∥α

and we get the following from (57)

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −
γ2
k

2
∥F (xk)∥2. (58)

Rearranging this inequality, we have

γ2
k

2
∥F (xk)∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2.

Then we sum up this inequality for k = 0, 1, · · ·K to get

1

K + 1

K∑
k=0

γ2
k∥F (xk)∥2 ≤ 2∥x0 − x∗∥2

K + 1
. (59)

For this step size, we also have ∥xk − x0∥2 ≤ ∥x0 − x∗∥2 from (62). Now note that from (14) we obtain the
following bound with x = xk and y = x∗

∥F (xk)∥α ≤ (K0 +K2∥xk − x∗∥α/1−α)α∥xk − x∗∥α

(62)
≤ (K0 +K2∥x0 − x∗∥α/1−α)α∥x0 − x∗∥α.

We use this to lower bound the step size γk as follows

γk =
1

2
√
2(K0 +K1∥F (xk)∥α) + 23(1−α)/2K1−α

2 ∥F (xk)∥α

≥ 1

2
√
2K0 + 2

√
2(K1 + 2−3/2K1−α

2 )(K0 +K2∥x0 − x∗∥α/1−α)α∥x0 − x∗∥α
.

Therefore from (63) we obtain

min
0≤k≤K

∥F (xk)∥2 ≤
16

(
K0 + (K1 + 2

−3/2K1−α
2 )(K0 +K2∥x0 − x∗∥α/1−α)α∥x0 − x∗∥α

)2

∥x0 − x∗∥2

K + 1
.
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D.4 Local Convergence Guarantees for Weak Minty Operator

D.4.1 Proof of Theorem 3.8
Theorem D.10. Suppose F is weak Minty and 1-symmetric (L0, L1)-Lipschitz assumption. Moreover we
assume

∆1 :=
ν

L0 (1 + L1∥x0 − x∗∥eL1∥x0−x∗∥)
− 4ρ > 0. (60)

Then EG with step size γk = ν
L0+L1∥F (xk)∥

and ωk = γk/2 satisfies

min
0≤k≤K

∥F (x̂k)∥2 ≤ 4L0 (1 + L1 exp (L1∥x0 − x∗∥) ∥x0 − x∗∥) ∥x0 − x∗∥2

ν∆1(K + 1)
(61)

where ν exp ν = 1.

Proof. From the update rule of the Extragradient method, we have

∥xk+1 − x∗∥2 =
∥∥∥xk − γk

2
F (x̂k)− x∗

∥∥∥2

= ∥xk − x∗∥2 − γk ⟨F (x̂k), xk − x∗⟩+
γ2
k

4
∥F (x̂k)∥2

= ∥xk − x∗∥2 − γk ⟨F (x̂k), x̂k − x∗⟩ − γk ⟨F (x̂k), xk − x̂k⟩+
γ2
k

4
∥F (x̂k)∥2

(10)
≤ ∥xk − x∗∥2 + γkρ∥F (x̂k)∥2 − γk ⟨F (x̂k), xk − x̂k⟩+

γ2
k

4
∥F (x̂k)∥2

= ∥xk − x∗∥2 + γkρ∥F (x̂k)∥2 − γ2
k ⟨F (x̂k), F (xk)⟩+

γ2
k

4
∥F (x̂k)∥2

(22)
= ∥xk − x∗∥2 + γkρ∥F (x̂k)∥2 −

γ2
k

2
∥F (x̂k)∥2 −

γ2
k

2
∥F (xk)∥2

+
γ2
k

2
∥F (xk)− F (x̂k)∥2 +

γ2
k

4
∥F (x̂k)∥2

= ∥xk − x∗∥2 + γkρ∥F (x̂k)∥2 −
γ2
k

4
∥F (x̂k)∥2 −

γ2
k

2
∥F (xk)∥2

+
γ2
k

2
∥F (xk)− F (x̂k)∥2

(13)
≤ ∥xk − x∗∥2 + γkρ∥F (x̂k)∥2 −

γ2
k

4
∥F (x̂k)∥2 −

γ2
k

2
∥F (xk)∥2

+
γ2
k

2
(L0 + L1∥F (xk)∥)2 exp (2L1∥xk − x̂k∥)∥xk − x̂k∥2

= ∥xk − x∗∥2 −
γk
4

(γk − 4ρ) ∥F (x̂k)∥2

−γ2
k

2

(
1− γ2

k(L0 + L1∥F (xk)∥)2 exp (2γkL1∥F (xk)∥)
)
∥F (xk)∥2

≤ ∥xk − x∗∥2 −
γk
4

(γk − 4ρ) ∥F (x̂k)∥2

−γ2
k

2

(
1− γ2

k(L0 + L1∥F (xk)∥)2 exp (2γk(L0 + L1∥F (xk)∥))
)
∥F (xk)∥2.

Similar to the proof of Theorem 3.5, we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −
γk
4
(γk − 4ρ)∥F (x̂k)∥2

for γk = ν
L0+L1∥F (xk)∥

and ν exp ν = 1. Again similar to Theorem 3.5, step size γk is lower bounded with

γk =
ν

L0 + L1∥F (xk)∥
≥ ν

L0 (1 + L1 exp (L1∥x0 − x∗∥) ∥x0 − x∗∥)
.

Hence from (17) we get
γk∆1

4
∥F (x̂k)∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2

Then we sum up this inequality for k = 0, 1, · · · ,K to get

1

K + 1

K∑
k=0

γk∆1

4
∥F (x̂k)∥2 ≤ ∥x0 − x∗∥2

K + 1
.
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Therefore, we get

min
0≤k≤K

∥F (x̂k)∥2 ≤ 4∥x0 − x∗∥2

γ∆1(K + 1)
.

D.4.2 Proof of Theorem 3.9
Theorem D.11. Suppose F is weak Minty and α-symmetric (L0, L1)-Lipschitz with α ∈ (0, 1). Moreover
we assume

∆α :=
1

2
√
2K0 + 2

√
2(K1 + 2−3/2K1−α

2 )(K0 +K2∥x0 − x∗∥α/1−α)α∥x0 − x∗∥α
− 4ρ > 0.

Then EG with step size γk = 1

2
√
2K0+(2

√
2K1+23(1−α)/2K1−α

2 )∥F (xk)∥α
and ωk = γk

2
satisfy

min0≤k≤K ∥F (x̂k)∥2 ≤
4
(
K0+

(
K1+2

−3/2K1−α
2

)
(K0+K2∥x0−x∗∥

α/1−α)α∥x0−x∗∥α
)
∥x0−x∗∥2

∆α(K+1)
.

Proof. From the update rule of the Extragradient method, we have

∥xk+1 − x∗∥2 =
∥∥∥xk − γk

2
F (x̂k)− x∗

∥∥∥2

= ∥xk − x∗∥2 − γk ⟨F (x̂k), xk − x∗⟩+
γ2
k

4
∥F (x̂k)∥2

= ∥xk − x∗∥2 − γk ⟨F (x̂k), x̂k − x∗⟩ − γk ⟨F (x̂k), xk − x̂k⟩+
γ2
k

4
∥F (x̂k)∥2

(10)
≤ ∥xk − x∗∥2 + γkρ∥F (x̂k)∥2 − γk ⟨F (x̂k), xk − x̂k⟩+

γ2
k

4
∥F (x̂k)∥2

= ∥xk − x∗∥2 + γkρ∥F (x̂k)∥2 − γ2
k ⟨F (x̂k), F (xk)⟩+

γ2
k

4
∥F (x̂k)∥2

(22)
= ∥xk − x∗∥2 + γkρ∥F (x̂k)∥2 −

γ2
k

2
∥F (x̂k)∥2 −

γ2
k

2
∥F (xk)∥2

+
γ2
k

2
∥F (xk)− F (x̂k)∥2 +

γ2
k

4
∥F (x̂k)∥2

= ∥xk − x∗∥2 + γkρ∥F (x̂k)∥2 −
γ2
k

4
∥F (x̂k)∥2 −

γ2
k

2
∥F (xk)∥2

+
γ2
k

2
∥F (xk)− F (x̂k)∥2

(13)
≤ ∥xk − x∗∥2 + γkρ∥F (x̂k)∥2 −

γ2
k

4
∥F (x̂k)∥2 −

γ2
k

2
∥F (xk)∥2

+
γ2
k

2

(
K0 +K1∥F (xk)∥α +K2∥xk − x̂k∥α/1−α

)2

∥xk − x̂k∥2

= ∥xk − x∗∥2 −
γk
4

(γk − 4ρ) ∥F (x̂k)∥2

−γ2
k

2

(
1− γ2

k

(
K0 +K1∥F (xk)∥α + γ

α/1−α

k K2∥F (xk)∥α/1−α
)2

)
∥F (xk)∥2.

Here we choose γk = 1

2(K0+K1∥F (xk)∥α)+23(1−α)/2K1−α
2 ∥F (xk)∥α

and we get the following from (57)

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −
γk
4

(γk − 4ρ) ∥F (x̂k)∥2. (62)

Rearranging this inequality, we have

γk
4

(γk − 4ρ) ∥F (x̂k)∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2.

Then we sum up this inequality for k = 0, 1, · · ·K to get

1

K + 1

K∑
k=0

γk
4

(γk − 4ρ) ∥F (x̂k)∥2 ≤ 2∥x0 − x∗∥2

K + 1
. (63)
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For this step size, we also have ∥xk − x∗∥2 ≤ ∥x0 − x∗∥2 from (62). Now note that from (14) we obtain the
following bound with x = xk and y = x∗

∥F (xk)∥α ≤ (K0 +K2∥xk − x∗∥α/1−α)α∥xk − x∗∥α

(62)
≤ (K0 +K2∥x0 − x∗∥α/1−α)α∥x0 − x∗∥α.

We use this to lower bound the step size γk as follows

γk =
1

2
√
2(K0 +K1∥F (xk)∥α) + 23(1−α)/2K1−α

2 ∥F (xk)∥α

≥ 1

2
√
2K0 + 2

√
2(K1 + 2−3/2K1−α

2 )(K0 +K2∥x0 − x∗∥α/1−α)α∥x0 − x∗∥α
.

Therefore from (63) we obtain

min
0≤k≤K

∥F (xk)∥2 ≤ 4∥x0 − x∗∥2

γ∆(K + 1)
.
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E Equivalent Formulation of α-Symmetric (L0, L1)-Lipschitz Assumption

In this section, we consider the min-max optimization problem given by minw1 maxw2 L(w1, w2) and provide
an equivalent formulation of α-symmetric (L0, L1)-Lipschitz operator. Next, we provide an example where we
use this formulation to compute the constants α,L0, L1.

E.1 Proof of Theorem 2.1
Theorem E.1. Suppose F is the operator for the problem

min
w1

max
w2

L(w1, w2).

Then F satisfies α-symmetric (L0, L1)-Lipschitz assumption if and only if

∥J(x)∥ = sup
∥u∥=1

∥J(x)u∥ ≤ L0 + L1∥F (x)∥α

where

J(x) =

[
∇2

w1w1
L(w1, w2) ∇2

w2w1
L(w1, w2)

−∇2
w1w2

L(w1, w2) −∇2
w2w2

L(w1, w2)

]
.

Here ∥J(x)∥ = σmax(J(x)) i.e. maximum singular value of J(x).

Proof. Following (26), we have the equivalent characterization of F given by

∥F (y)− F (x)∥ ≤
(
L0 + L1

∫ 1

0

∥F (θy + (1− θ)x)∥α dθ

)
∥y − x∥ ∀x, y ∈ Rd.

As this inequality holds for any x, y ∈ Rd, we choose y = x+ θ′u where ∥u∥ = 1 and θ′ ∈ (0, 1). Then we
get

∥F (x+ θ′u)− F (x)∥ ≤
(
L0 + L1

∫ 1

0

∥∥F (x+ θ′θu)
∥∥α

dθ

)
∥θ′u∥ ∀x ∈ Rd.

The right-hand side of this inequality can be rewritten as(
L0 + L1

∫ 1

0

∥∥F (x+ θ′θu)
∥∥α

dθ

)
∥θ′u∥ = θ′

(
L0 + L1

∫ 1

0

∥∥F (x+ θ′θu)
∥∥α

dθ

)
= L0θ

′ + L1

∫ 1

0

∥∥F (x+ θ′θu)
∥∥α

θ′dθ

= L0θ
′ + L1

∫ θ′

0

∥F (x+ φu)∥α dφ.

In the last line, we used the change of variable with φ = θ′θ. Therefore, we get

∥F (x+ θ′u)− F (x)∥
θ′

≤ L0 +
L1

θ′

∫ θ′

0

∥F (x+ φu)∥α dφ.

Then we take θ′ → 0 and use L’Hôpital’s rule and Leibniz Integral rule to obtain

lim
θ′→0

∥F (x+ θ′u)− F (x)∥
θ′

≤ L0 + L1 ∥F (x)∥α .

Moreover, note that the left-hand side is given by ∥J(x)u∥ where

J(x) =

[
∇2

w1w1
L(w1, w2) ∇2

w2w1
L(w1, w2)

−∇2
w1w2

L(w1, w2) −∇2
w2w2

L(w1, w2)

]
.

Therefore, for any ∥u∥ = 1 we have

∥J(x)u∥ ≤ L0 + L1∥F (x)∥α.

Hence we get
∥J(x)∥ = sup

∥u∥=1

∥J(x)u∥ ≤ L0 + L1∥F (x)∥α.

Now we want to show the other way, i.e. suppose we have ∥J(x)∥ ≤ L0 + L1∥F (x)∥α. For this we define,

q(θ) := F (θx+ (1− θ)y).
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Then q(1) = F (x) and q(0) = F (y) and we have

∥F (x)− F (y)∥ = ∥q(1)− q(0)∥

=

∥∥∥∥∫ 1

0

dq(θ)

dθ
dθ

∥∥∥∥
=

∥∥∥∥∫ 1

0

dF (θx+ (1− θ)y)

dθ
dθ

∥∥∥∥
=

∥∥∥∥∫ 1

0

J(θx+ (1− θ)y)(x− y)dθ

∥∥∥∥
≤

∫ 1

0

∥J(θx+ (1− θ)y)∥ ∥x− y∥ dθ

=

(∫ 1

0

∥J(θx+ (1− θ)y)∥ dθ
)
∥x− y∥

≤
(∫ 1

0

L0 + L1∥F (θx+ (1− θ)y)∥αdθ
)
∥x− y∥

=

(
L0 + L1

∫ 1

0

∥F (θx+ (1− θ)y)∥αdθ
)
∥x− y∥ .

Then, using Lemma B.5, we have the result.

E.2 Computation of α,L0, L1 for L(w1, w2).

We now revisit the min-max problem defined in (6). Note that, the operator corresponding to this problem is
given by

F (x) =

[
w2

1 + w2

w2
2 − w1

]
Then the norm of operator is ∥F (x)∥ =

√
(w2

1 + w2)
2 + (w2

2 − w1)
2. Moreover, the Jacobian matrix is given

by

J(x) =

[
2w1 1
−1 2w2

]
.

Then the maximum singular value at any point x is given by

∥J(x)∥ = λmax

(
J(x)⊤J(x)

)
= λmax

([
4w2

1 + 1 2(w1 − w2)
2(w1 − w2) 4w2

2 + 1

])
(27)
=

√
2(w2

1 + w2
2) + 1 + 2

√
(w1 − w2)2 + (w2

1 − w2
2)

2 (64)

To validate whether the operator F satisfies the condition (7), we examine whether the following function is
non-negative:

g(w1, w2) = L0 + L1∥F (x)∥ − ∥J(x)∥. (65)
In Figure 6, we plot g(w1, w2) using L0 = 10 and L1 = 10. We observe that g(w1, w2) has no real solution
and remains positive for all w1, w2 ∈ R, confirming that the function (6) satisfies (12) with (α,L0, L1) =
(1, 10, 10). Thus, the corresponding operator F is 1-symmetric (10, 10)-Lipschitz.

42



w1

10007505002500 2505007501000

w 2

1000
750

500
250

0
250

500
750
1000

g(
w

1,
w

2)
1e

7

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Figure 6: Plot of g(w1, w2) (65). Here, the z-axis is in 107 scale.

F Additional Details on Numerical Experiments

In this section, we provide additional details on the second experiment related to the monotone problem. First,
we show that

L(w1, w2) =
1

3

(
w⊤

1 Aw1

)3/2

+ w⊤
1 Bw2 −

1

3

(
w⊤

2 Cw2

)3/2

is convex-concave, and then we find the equilibrium point of L.

Convex-Concave L(w1, w2). Note that for L(w1, w2) in (20) we have ∇w1L(w1, w2) =(
w⊤

1 Aw1

)1/2
Aw1 + Bw2 and ∇w2L(w1, w2) = B⊤w1 −

(
w⊤

2 Cw2

)1/2
Cw2. Then the second-order

derivatives are given by

∇2
w1w1

L(w1, w2) = ∥A1/2w1∥A+
Aw1w

⊤
1 A⊤

∥A1/2w1∥
Here, A is positive definite and Aw1w

⊤
1 A⊤ is a positive semidefinite matrix. Hence, ∇2

w1w1
L(w1, w2) is a

positive definite matrix as well and L(·, w2) is convex for any w2. Similarly, we show that

−∇2
w2w2

L(w1, w2) = ∥C1/2w2∥C+
Cw2w

⊤
2 C⊤

∥C1/2w2∥

and −∇2
w2w2

L(w1, w2) is positive definite. Therefore, L(w1, ·) is concave for any w1. This proves that
L(w1, w2) is convex with respect to w1 and concave with respect to w2. Thus, we conclude that the correspond-
ing operator F is monotone.

Equilibrium of L(w1, w2). To find the equilibrium points, we solve the set of equations given by
∇w1L(w1, w2) = 0 and ∇w2L(w1, w2) = 0, i.e., solve for(

w⊤
1 Aw1

)1/2

Aw1 +Bw2 = 0,

B⊤w1 −
(
w⊤

2 Cw2

)1/2

Cw2 = 0.

Now multiplying the first equation with w⊤
1 and second one with w⊤

2 , we have(
w⊤

1 Aw1

)1/2

w⊤
1 Aw1 + w⊤

1 Bw2 = 0

w⊤
2 B⊤w1 −

(
w⊤

2 Cw2

)1/2

w⊤
2 Cw2 = 0

Combining these two equations, we get(
w⊤

1 Aw1

)1/2

w⊤
1 Aw1 +

(
w⊤

2 Cw2

)1/2

w⊤
2 Cw2 = 0
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which can be equivalently written as ∥∥∥A1/2w1

∥∥∥3

+
∥∥∥C1/2w2

∥∥∥3

= 0

which implies w1 = w2 = 0 as both A,C are positive definite matrices (hence A
1/2,C

1/2 are invertible).
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