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ABSTRACT

In recent years, multimodal recommendation systems have been widely used in
e-commerce and short video platforms. How to effectively utilize multimodal
data and avoid the interference of multimodal noise information has become the
key research direction of researchers. Many studies add multimodal data as aux-
iliary features to the model, which brings positive effects. Pictures, text and
audio signals in short videos are more likely to attract users’ interest than ba-
sic attributes. The user’s multiple personalized interests largely determine the
user’s behavioral preferences. In order to effectively utilize user interest to im-
prove model effect, We propose a new Multi-interest Disentangled Representa-
tion Learning method for multimodal recommendation (MIDR). Specifically, we
first introduce the expected maximum to describe the relationship between interest
and predicted target, and establish the optimization object based on multi-interest
recommendation. Then, considering the relationship between user interest and
multiple modalities, we introduce disentangled representation learning to extract
modal sharing and modal specific interest representations. Furthermore, we intro-
duce multi-interest contrast module to help model learning interest representation
based on self-supervised learning. We conducted experiments on three real-world
data sets, and our proposed MIDR outperformed other state-of-art models. The ef-
fectiveness of the disentangled interest representation module and interest contrast
module was verified by the ablation experiment.

1 INTRODUCTION

In recent years, multi-modal recommendation system has been widely used, including short video
platform, e-commerce platform and other applications covering rich multi-modal information (Deld-
joo et al. (2020); Cen et al. (2020)). Early collaborative filtering algorithms mainly learn the implicit
matching relationship by using the historical interaction between users and items through matrix de-
composition and factorization (Koren et al. (2009); Rendle et al. (2012)). Then the depth model
constructs the matching relationship between user and item based on the id embedding and attribute
features. The emergence of multi-modal data provides the model with more abundant information,
which can help the model to provide more accurate recommendations. Therefore, how to make full
use of multimodal data effectively and avoid the interference of multimodal noise information has
become the key research direction of researchers (Xu et al. (2020); Liu et al. (2019); Han et al.
(2022)).

Some researchers use multimodal data as an auxiliary feature to extract visual and semantic features
from images and text via encoders (Chen et al. (2019); Deldjoo et al. (2021)). The primary results are
obtained by using the multimodal feature method directly. Later, some research work begin to mine
the link between user preferences and multimodal data, and to extract the information of interest
contained in images and text by means of attention modeling and other methods (Tao et al. (2020)).
VBPR (He & McAuley (2016)) uses visual features extracted from product images to mine users’
visual preferences for images. Recently, some work based on graph neural network modeling multi-
modal data has achieved good results. MMGCN (Wei et al. (2019)) constructs a user-item bipart
graph on each mode and enriches the representation of each node with the topology and features of
its adjacent nodes. In addition, there has been some work to improve model effectiveness from the
perspective of modeling intentions and semantic topics by learning about implicit user preferences
(Guo et al. (2022); Chen et al. (2022)).

1



Under review as a conference paper at ICLR 2024

However, there are some problems with these studies. First, it is difficult to learn an accurate se-
mantic representation based on various modal data. Multimodal data not only provides new modal
information, but also contains a lot of noise information. For example, user reviews contain am-
biguous comments and images contain a large number of irrelevant elements. On the one hand, the
model is easily disturbed by such noisy information, on the other hand, it is difficult for the model
to judge which information is more important. When these noise-interfered and semantically am-
biguous modal representations are added to the model as side information, it is easy for the model to
learn biased estimation results and damage the long-term stability of the recommendation system.

Secondly, users should have personal interests and preferences when buying goods and watching
short videos . For example, when buying clothes, users are not interested in the style, but prefer the
color of clothes. Rather than being influenced by all the information about the product, users are
more likely to act out of their own interest. Third, much of the work involved encoding multimodal
data and then directly linking modal representations to attribute feature representations to learn
higher-order interactions. The common assumption is that modal and attribute representations reside
in the same semantic space. However, in practice, it is difficult to ensure that modal representation
and attribute representation are aligned in semantic space.

Considering the above problems, we propose a new solution. We propose a new Multi-interest Dis-
entangled Representation Learning method (MIDR) for Multimodal Recommendation. Specifically,
we first introduce expected maximum to describe the relationship between interest and predicted
target, and establish a multi-interest based recommendation framework. Then, considering the ex-
istence of shared interest and specific interest among multiple modes, we introduce disentangled
representation learning to extract modal shared interest representation and modal specific interest
representation. Then, we introduce the multi-interest contrastive module to construct the contrast
relationship between interests, so as to help the model improve the learning ability of interest repre-
sentation. Finally, the model is trained under the joint action of optimization objectives of multiple
tasks.

In summary, the main contributions of this paper are as follows:

• We establish the relationship between multiple interests and recommended goals through
expectation maximization, and introduce disentangled representation to learn modal shared
interest representation and modal specific interest representation.

• We propose a multi-interest disentangled representation learning method (MIDR) for Mul-
timodal Recommendation. It consists of multi-interest disentangled representation and
multi-interest contrast learning module. MIDR not only accurately establishes an interest-
based recommendation framework, but also realizes effective multimodal knowledge uti-
lization.

• We conducted a comprehensive experiment on three publicly baseline data sets, and the
experimental results show that our model has the best performance. Further ablation ex-
periments and case studies have verified the validity of our proposed interest modeling. We
will then release our code to the community.

2 RELATED WORK

In recent years, a lot of research work has been proposed to improve the effectiveness of multimodal
recommendation (Du et al. (2022); Yu et al. (2022); Han et al. (2022)). Since the traditional collab-
orative filtering method cannot meet the requirements of large-scale multi-modal recommendation
system, the method of modeling modal information using deep neural network has been developed
rapidly. Some early work focused on multimodal data encoding, designing different encoders to ex-
tract visual and textual information, and achieved certain results (Chen et al. (2019); Deldjoo et al.
(2021)). VBPR (He & McAuley (2016)) extracts visual features from product images and incor-
porates visual signals into a matrix decomposition model. VECF (Chen et al. (2019)) also models
the user’s attention perception information for different areas of the image and review. Due to the
powerful representation ability of graph neural network, many works using graph neural network to
utilize multimodal information have achieved good results (Zhao & Wang (2021); Yu et al. (2022)).
MMGCN (Wei et al. (2019)) constructs a user-item dichotomous graph and enriches the represen-
tation of each node with the topology and characteristics of its adjacent nodes. GRCN (Wei et al.
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(2020)) explores the impact of implicit feedback on GCN based recommendation models and pro-
poses a structure that can adaptively improve user project interaction diagrams. MGAT (Tao et al.
(2020)) transmits information in a single graph, and uses the gated attention mechanism to identify
the different importance scores of different patterns on user preferences.

With the development of recommendation system, multi-interest recommendation has become one
of the important research directions (Zheng et al. (2022b); Dhelim et al. (2020); Feng et al. (2019)).
Many studies have proposed interest-based recommendation schemes and achieved certain results
in the field of sequential recommendation. MIND (Li et al. (2019)) extracts multiple interests of
users based on capsule network and dynamic routing algorithm combined with historical behaviors
of users. ComiRec (Cen et al. (2020)) proposes a multi-interest module to capture multiple interests
from a sequence of user behaviors, which can be used to retrieve candidate items from a large pool
of items. ICL (Chen et al. (2022)) clusters the user’s interest representation, and then represent the
user’s intention with the cluster center. The loss function is constructed according to the user’s in-
tention and the user’s interest representation. CMI (Li et al. (2022)) builds multi-interest encoders
based on implicit categories of items and proposes that contrast multi-interest loss minimizes the
difference between interests extracted from two enhanced views of the same interaction sequence.
MMDIN (Yang et al. (2021)) designs multi-head attention module to extract multi-modal informa-
tion to improve the effectiveness of the recommendation system. CLSR (Zheng et al. (2022b)) uses
contrastive learning to construct self-supervised learning task for long and short interests to show the
differential modeling of long and short interests. By combining multi-interest learning and graph
convolution aggregation, MGNM (Tian et al. (2022)) achieves a better modeling effect for users’
multi-grained interest. HUIGN (Wei et al. (2021a)) presents user intentions in a hierarchical graph
structure from fine to coarse-grained.

3 PRELIMINARIES

Let U = {u1, u2, · · · , um} and I = {i1, i2, · · · , in} be the sets of users and items respectively,
where m is the number of users, and n is the number of items. R ∈ {0, 1}m×n is the user-item
implicit feedback matrix. Besides user-item interactions, multimodal features are offered as content
information of items. We denote the modality features of item i as eim ∈ Rdm , where dm denotes
the dimension of the features, m ∈ M is the modality, and M is the set of modalities. The pur-
pose of multimedia recommendation is to accurately predict users’ preferences by ranking items for
each user according to predicted preference scores p. In this paper, we consider visual, textual and
acoustic modalities denoted by M = {v, t, a}.

4 THE PROPOSED MIDR MODEL

In this section, we mainly introduce the structure of MIDR, which consists of three parts. Firstly, we
introduce the expected maximum to describe the relationship between the interest and the predicted
goal, and establish the multi-interest recommendation optimization goal. Secondly, we introduce
disentangled representation learning to extract modal shared interest representations and modal spe-
cific interest representations. Thirdly, we design an interest contrastive module to construct con-
trastive learning objectives to help the model learn accurate interest representation. Finally, the
model is trained through the joint optimization of multiple tasks.

4.1 MULTI-INTEREST RECOMMENDATION THEORETICAL ANALYSIS

As we all know, user behavior is often the result of multiple interests. A user may be interested
in fashion as well as art. When users visit the e-commerce platform, they will choose products
according to their various interests. Therefore, modeling user interest may be a more effective way
than directly using noise information and redundant information.

In the multimodal recommendation, the user’s interest becomes richer because of the rich visual
signals, textual signals and auditory signals received by the user. In particular, users have many
different interests in the same modal data. For example, a female user might be interested in both
the style and color of the clothes shown in the picture. Therefore, it makes sense to model the
multiple interests of a user’s multimodal perception.
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It is assumed that there are K interests sm = {s1, s2, · · · , sK} affecting the decision of the user in
the modal m semantic space. In the multimodal scenario, each modal information can be of interest
to the user. Therefore, the probability of a user interacting with a particular item can be expressed
as:

Pw(z
u) = Es[

M∑
m=1

Pw(z
u
m, s|m)] (1)

Since we cannot directly observe interest, we can only define it by means of implicit representation.
Assuming that every interest smi is an implicit representation, we can define the goal of model
learning as:

w∗ = argmax
w

lnE(s)[

M∑
m=1

Pw(z
u
m, s|m)] (2)

Considering that the objective function is difficult to optimize, we solve the lower bound of the
formula and maximize the lower bound for approximate solution. Suppose interest sm from distri-
bution Dm

s , meet the condition
∑

sm DsmI
= 1, and D(smI ) ≥ 0. The following derivation can then

be obtained:

N∑
u=1

lnE(s)[

M∑
m=1

Pw(z
u
m, s|m)] =

N∑
u=1

ln

K∑
i=1

[

M∑
m=1

Pw(z
u
m, si|m)] (3)

Further, the above equation is equivalent to the following:

N∑
u=1

ln

K∑
i=1

[

M∑
m=1

Pw(z
u
m, si|m)]

=

N∑
u=1

ln

K∑
i=1

[

M∑
m=1

Z(si|m)
Pw(z

u, si|m)

Z(si|m)
]

(4)

It is difficult to directly optimize the above formula, so we introduce music inequality to transform:

N∑
u=1

ln

K∑
i=1

[

M∑
m=1

Z(si|m)
Pw(z

u, si|m)

Z(si|m)
]

≥
N∑

u=1

K∑
i=1

M∑
m=1

Z(si|m)ln
Pw(z

u, si|m)

Z(si|m)

(5)

Then, the formula proportional to the above formula can be expressed as:

N∑
u=1

K∑
i=1

M∑
m=1

Z(si)lnPw(z
u, si|m) (6)

The above formula represents the lower bound of the model learning objective. However, since
D(s) cannot be directly observed, we still cannot directly optimize the above equation. Therefore,
we need to learn approximate interest distribution through interest representation module.

4.2 MULTI-INTEREST DISENTANGLED REPRESENTATION

In the actual recommendation scenario, there may be sharing or orthogonal relationship between
the user’s interest in different modes. For example, if the user finds ”British Brock carving” in the
product description and the Brock carving pattern in the product picture, then the user’s interest in
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different modes is similar. On the contrary, if the user is interested in the material of the product in
the description of the product and likes the female model in the picture, then the user’s interest in
different modes is irrelevant.

In order to describe modal sharing and model-specific interest representation more deeply, we as-
sume that the distribution function Dm

s is a mixed distribution composed of a modal sharing distri-
bution and a modal specific distribution, which is defined as follows:

Z(ci) = Z(ci|r)P (r) + Z(ci|n)P (n) (7)

where Z(c|r) represents a modal sharing distribution function and Z(c|n) represents a modal spe-
cific distribution function. P (r) represents the probability of modal correlation, and P (n) represents
the probability of modal independence, satisfying P (r) + P (n) = 1. To decouple modal sharing
and modal - specific interest information, we use mutual information theory to model.

4.2.1 MUTUAL INFORMATION THEORY

We give the details of Mutual Information Theory in Appendix D. Let X and Z represent the
two random variables, the mutual information maximization object between X and Z is defined as
follows:

Lθ,φ(X,Z) = ÎJSD(X,Z) (8)

where Z is the representation obtained by an encoder with the parameter φ.

4.2.2 MODAL-SHARING INTEREST REPRESENTATION

Let Eφ : X → SX represent a modal sharing interest representation encoder extracted from modal
X , and Eφ : Y → SY represent a modal sharing interest representation encoder extracted from
modal Y . For modal X , we hope to extract the sharing interest representation SX among the modal-
ities, so that SX can reconstruct information close to Y . We estimate and maximize the mutual
information between modal features and their sharing interest representations. The corresponding
mutual information loss function is expressed as follows:

Lm1 = Lθ,φ(X,SY ) + Lθ,φ(Y, SZ) (9)

In addition, since we extract modal sharing interest representations from different modal data, these
representations should theoretically be similar. Therefore, L2 distance is added to constrain the
representation of modal sharing interest, defined as follows:

L2 = Ep(sx,sy)[||SX − SY ||2] (10)

The objective function of extracting modal sharing representation consists of mutual information
maximum and interest constraint, which is defined as follows:

Lshare = αLm1 − γL2 (11)

4.2.3 MODAL-SPECIFIC INTEREST REPRESENTATION

Let Eω : X → GX represent a modal specific interest representation encoder extracted from modal
X , and Eω : Y → GY represent a modal specific interest representation encoder extracted from
modal Y . To solve these representations, we estimate and maximize the mutual information be-
tween each modal feature and its corresponding interest representation R. R is composed of modal
sharing and modal specific interest representation, i.e., RX = (SX , EX). We hope that the original
feature information can be reconstructed through modal sharing representation and modal specific
representation. Mutual information loss function based on information reconstruction is defined as
follows:

Lm2 = Lθ,φ(X,RY ) + Lθ,φ(Y,RZ) (12)
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While maximizing mutual information between X and RX , EX should not contain information
already captured by SX , so it is necessary to minimize mutual information between EX and SX ,
defined as follows:

minimize I(EX , SX) (13)

However, while maximizing the mutual information above, minimizing the mutual information of
EX and SX is not convergent for the model. Therefore, an adversarial network is introduced to min-
imize the mutual information between EX and SX for the convenience of solving the model. Firstly,
the modal data is passed through the encoder EφX to extract the real samples satisfying the PSXEX

distribution. Fake samples satisfying the PSX
PEX

distribution are then extracted by shuffling the
exclusive representation of samples within a batch. A discriminator DρX is then used to identify the
real and fake samples extracted above. Therefore, we can achieve the minimization of mutual infor-
mation between EX and SX by minimizing Jensen-Shannon divergence DJS(PSXEX

||PSX
PEX

).
The loss function based on adversarial network is defined as follows:

Ladv = Ep(sx)p(ex)[log(DρX(SX , EX))]

+ Ep(sx,ex)[log(1−DρX(SX , EX))]
(14)

Further, by integrating the reconstruction loss function with the adversarial loss function, we can
obtain the mode-specific learning objective as follows:

Lspecific = βLm2 − λ
∑
m

(Lm
adv) (15)

where m denotes different modalities.

4.2.4 INTEREST DISTRIBUTION REPRESENTATION

For each sample, we can obtain the shared interest representation smi and the specific interest rep-
resentation emi in each mode. Therefore, the interest representation hm

i = [smi , emi ] for each mode
can be obtained. In order to obtain the weights of the interest distribution, we introduce an attention
network to learn the relationship between different interest representations. From the perspective
of efficiency and effectiveness, we introduce a SENET network with softmax as the encoder. K
interest representations hm

i are spliced together to learn a weight vector with output dimension K
through SENET. The representation of interest distribution is defined as follows:

π = softmax(SENET ([sm1 , sm2 , · · · , smK ])) (16)

where π ∈ RK denotes the weight of interest distribution in the semantic space of modal m.

In addition, we believe that the conditional independence hypothesis is satisfied between different
interests. In order to ensure the independence of different interests, we designs an orthogonal loss
function for constraint, which is defined as follows:

Lc =

M∑
m=1

K−1∑
i=1

K∑
j=i+1

(sTi sj)
2 (17)

4.3 MULTI-INTEREST CONTRAST LEARNING

We assume that each intention distribution is an independent Gaussian distribution, then we can get:

Pw(z
u, si|m) = Pw(si|m)Pw(z

u|si,m) =
1

K
Pw(z

u|si,m) (18)

The above formula is approximate as follows:

1

K
Pw(z

u|si) ∝
1

K

exp(zusi)∑K
j=1 exp(z

usj)
(19)

Thus, maximizing the likelihood function is equivalent to minimizing the contrast loss function as
follows:

Lcl = −
N∑

u=1

M∑
m=1

K∑
i=1

πu
i log

exp(zusi)∑K
j=1 exp(z

usj)
(20)
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Table 1: Statistics of the three datasets with multimodal item Visual(V), Acoustic(A), Textual(T)
information.

Dataset User Item Interactions Embedding Dim Sparsity

Tiktok 9,319 6,710 59,541 V(128), T(768), A(128) 99.904%
Amazon-Sports 35,598 18,357 256,308 V(4,096), T(1024) 99.961%
Amazon-Baby 19,445 7,050 139,110 V(4,096), T(1,024) 99.899%

4.4 TRAINING OPTIMIZATION

This paper focuses on the click prediction problem. The loss function is defined as follows:

Lp = − 1

N

∑
i

[yilogpi + (1− yi)log(1− pi)] (21)

where p denotes the prediction result, which is obtained through a three-layer MLP based on interest
representations hm. y represents the true label. The final loss function is defined as follows:

Loss = Lp + Lshare + Lspecific + ηLcl + µLc (22)

where λ, η, µ represent the hyperparameters used to control the effects of different losses. By opti-
mizing the total loss function, the network parameters can be effectively updated.

5 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following questions:

• RQ1 How does our MIDR model perform compared to the state-of-the-art methods?
• RQ2 How do different modules of MIDR contribute to the effectiveness of the model?
• RQ3 How do the key parameters in the model affect the model effect?

5.1 EXPERIMENTAL SETTINGS

5.1.1 DATASETS

We selected three widely used data sets for the experiment. The first dataset is Tiktok, extracted
from the tiktok platform. Tiktok is a short video application with hundreds of millions of users,
which contains a lot of rich multi-modal data and user information. The other two data sets were
selected from the Amazon dataset1, sports and baby. The statistical results of the three datasets after
preprocessing are shown in Table 1. The details of datasets are provided in Appendix B.

5.1.2 BASELINES

To evaluate the performance, we compared the proposed MIDR with the following baselines: Light-
GCN (He et al. (2020)), VBPR (He & McAuley (2016)), MMGCN (Wei et al. (2019)), GRCN
(Wei et al. (2020)), SGL (Kim et al. (2016)), LATTICE (Zhang et al. (2021)), CLCRec (Wei et al.
(2021b)), MMGCL (Yi et al. (2022)), HCGCN (Mu et al. (2022)), SLMRec (Tao et al. (2022)),
MMSSL (Wei et al. (2023)). The details of baselines are provided in Appendix A.

5.1.3 EVALUATION METRICS AND PARAMETER SETTINGS

Following relevant work (Mu et al. (2022); Wei et al. (2023)), we adopt three commonly used eval-
uation metrics of recommendation systems for model evaluation in this paper, including Recall@K
(R@K), Precision@K (P@K) and Normalized Discounted Gain (N@K). The learning rate is ad-
justed from [0.00001, 0.00005, 0.0001, 0.0005]. The dimension of the hidden vector is selected
from [16, 32, 64, 128, 256]. The hyperparameters α, γ, η and µ are searched in [0.0001, 0.001,
0.01, 0.1, 1]. In addition, the number of interests is searched from [10, 20, 30, 50, 100].

1http://jmcauley.ucsd.edu/data/amazon/
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Table 2: Overall performance comparison. Improvement denotes the relative improvements over the
best baselines.

Model Amazon-Sports Amazon-Baby Tiktok
R@20 P@20 N@20 R@20 P@20 N@20 R@20 P@20 N@20

VBPR 0.0582 0.0031 0.0265 0.0486 0.0026 0.0213 0.0380 0.0018 0.0134
LightGCN 0.0782 0.0042 0.0369 0.0698 0.0037 0.0319 0.0653 0.0033 0.0282
MMGCN 0.0638 0.0034 0.0279 0.064 0.0032 0.0284 0.0730 0.0036 0.0307

GRCN 0.0833 0.0044 0.0377 0.0754 0.0040 0.0336 0.0804 0.0036 0.0350
LATTICE 0.0915 0.0048 0.0424 0.0829 0.0044 0.0368 0.0843 0.0042 0.0367
CLCRec 0.0651 0.0035 0.0301 0.061 0.0032 0.0284 0.0621 0.0032 0.0264
MMGCL 0.0875 0.0046 0.0409 0.0758 0.0041 0.0331 0.0799 0.0037 0.0326

SGL 0.0779 0.0041 0.0361 0.0678 0.0036 0.0296 0.0603 0.0030 0.0238
SLMRec 0.0829 0.0043 0.0376 0.0765 0.0043 0.0325 0.0845 0.0042 0.0353
MMSSL 0.0998 0.0052 0.0470 0.0962 0.0051 0.0422 0.0921 0.0046 0.0392
HCGCN 0.1032 0.0055 0.0478 0.0922 0.0048 0.0415 0.0935 0.0049 0.0412
MIDR 0.1096 0.0059 0.0505 0.1033 0.0055 0.0457 0.0967 0.005 0.0425

Improvement 6.17% 6.52% 5.74% 7.33% 7.51% 8.29% 3.46% 2.85% 3.27%

Table 3: Ablation study of MIDR.

Model Sports Baby Tiktok
R@20 N@20 R@20 N@20 R@20 N@20

MIDR 0.1096 0.0505 0.1033 0.0457 0.0967 0.0425
w/o-DR 0.0852 0.0394 0.7627 0.0341 0.0823 0.0347
w/o-IC 0.0864 0.0391 0.7706 0.0335 0.0807 0.0352
w/o-OC 0.0993 0.0475 0.0944 0.0418 0.0908 0.0379
r/p-IR 0.0768 0.0354 0.0681 0.0322 0.0615 0.0336

5.2 OVERALL PERFORMANCE (RQ1)

We conducted comprehensive experiments on three data sets to compare the effects of our proposed
MIDR with other advanced models. The experimental results are shown in Table 2. According to
the experimental results, we can observe the following phenomena and conclusions. The proposed
MIDR model outperforms all other models on the three data sets. The model effect does not change
with data sparsity. MIDR establishes reliable associations between user interests and recommen-
dation goals, and accurately extracts model-perceived shared and interests-specific representations
through disentangled representation. Therefore, MIDR provides significant improvements across
multiple data sets. Compared with self-supervised learning methods such as MMSSL, the proposed
MIDR performance also outperformed them on all data sets. MIDR is better than classical contrast
learning methods because it establishes an accurate representation of disentangled interest.

5.3 ABLATION EXPERIMENTS (RQ2)

Further, we conduct ablation experiments separately for each important module. (a) We remove
disentangled representation (DR) from the model and directly use randomly generated vectors as in-
terest representations. (b) We remove the multiple interest contrast (IC) loss function from the final
optimization objective. (c) We remove the interest orthogonal constraint (OC) from the final opti-
mization objective. (d) We remove the multi-interest recommendation (IR) framework established
in this paper and directly use an encoder to learn multiple interest representations. We conducted
a comprehensive ablation experiment on three data sets. The experimental results are shown in
Table 3. According to the experimental results, we can observe the following phenomena and con-
clusions: When we replace the interest representation of disentangled representation with random
vector, the model effect decreases obviously. The experimental results verify the effectiveness of
learning users’ interests with disentangled representation. Without the proposed multi-interest rec-
ommendation framework, the model based on simple encoder learning interest is significantly worse.
This also illustrates the difficulty of building accurate user interests directly from the encoder.
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5.4 HYPERPARAMETER ANALYSIS (RQ3)

Since the model contains some hyperparameters which will affect the effect of the model, we carry
out sensitivity analysis on some important parameters. Impact of parameters α and γ. Since we
introduce the modal-sharing interest loss function, we explore the influence of loss weight α and γ
on the model effect. The two parameters are searched in [0.0001, 0.001, 0.01, 0.1, 1]. As shown
in Fig. 1, with the gradual increase of the weight, the effect of the model presents a phenomenon
of first improvement and then decline. Because these two parameters control the size of mutual
information loss, the larger the value, the stronger the constraint. However, too much weight can
easily lead to instability of model training and decrease the effect. In addition, we also adjusted
parameters β and λ, the phenomenon is similar to modal-sharing interest loss function. Impact of
embedding dimension d As shown in Fig. 2, the effectiveness of the model is gradually improved
with the increase of the embedding dimension. The range of effect improvement decreases with
the further improvement of dimension. In the experiment, complexity should be fully considered to
choose the appropriate dimension. Impact of parameters η and µ is provided in Appendix C, with
the increasing of the weight, the effect of the model decreases gradually.
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Figure 1: Impact of parameters α and γ.
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Figure 2: Impact of embedding dimension d.

6 CONCLUSION

In this paper, we propose a multi-interest disentangled representation learning method. MIDR ef-
fectively learns multimodal interest representation to provide accurate recommendations. On three
widely used real data sets, the proposed MIDR outperforms other advanced models. The compre-
hensive experiment verifies the effectiveness of each module designed by us. In the future, we want
to try to introduce interest modeling in a cross-domain multi-modal recommendation scenario. And
we will explore more rich ways to utilize multimodal data such as the use of hypergraph.
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A DETAILS OF THE BASELINES

To evaluate the performance, we compared the proposed MIDR with the following baselines:

• LightGCN (He et al. (2020)) simplifies the model while ensuring its effectiveness by pre-
serving the operation of the most core aggregated neighbor nodes.

• VBPR (He & McAuley (2016)) utilizes attention mechanism to extract users’ visual pref-
erences for product images, and incorporates visual information into the matrix decompo-
sition model.

• MMGCN (Wei et al. (2019)) believes that mining user preferences solely through user
interaction history is not sufficient, and proposes a graph convolutional network to utilize
multimodal data.

• GRCN (Wei et al. (2020)) explores the impact of implicit feedback on GCN based rec-
ommendation models and proposes a structure that can adaptively improve user project
interaction diagrams.

• SGL (Kim et al. (2016)) has designed three different data enhancement operators to build
comparative learning objectives based on graph collaborative filtering.

• NCL (Kim et al. (2016)) utilizes structural adjacent node information to generate positive
sample pairs based on em clustering for constructing contrastive learning.

• LATTICE (Zhang et al. (2021)) learns the item to item structure for each modality and
aggregates multiple patterns to obtain potential item graphs.

• CLCRec (Wei et al. (2021b)) constructs two effective contrastive learning optimization
objectives based on user and interaction items, effectively alleviating the cold start problem.

• MMGCL (Yi et al. (2022)) uses modal edge loss and modal masking to generate user
project diagrams, and introduces a new negative sampling technique to learn the correlation
between modalities.

• HCGCN (Mu et al. (2022)) designs corresponding clustering losses to enhance user-item
preference feedback and multimodal representation learning constraints to adjust modal
importance.

• SLMRec (Tao et al. (2022)) designs three data augmentation methods for feature dimen-
sions and proposed corresponding comparative learning objectives to optimize model train-
ing.

• MMSSL (Wei et al. (2023)) introduces cross-modal contrast learning method to maintain
semantic commonality between modalities and diversity of user preferences.

B IMPLEMENTATION DETAILS

Following relevant work (Mu et al. (2022); Wei et al. (2023)), we adopt three commonly used eval-
uation metrics of recommendation systems for model evaluation in this paper, including Recall@K
(R@K), Precision@K (P@K) and Normalized Discounted Gain (N@K). The learning rate is ad-
justed from [0.00001, 0.00005, 0.0001, 0.0005]. The dimension of the hidden vector is selected
from [16, 32, 64, 128, 256]. The hyperparameters α, γ, η and µ are searched in [0.0001, 0.001,
0.01, 0.1, 1]. In addition, the number of interests is searched from [10, 20, 30, 50, 100]. Follow-
ing the data processing method adopted by (Zheng et al. (2022a)), we select users who interact in
both domains, and then filter users and items that interact less than 10 times. The visual features
are provided by the data set and represented as 4096-dimensional embedding. Following (Mu et al.
(2022)), we connect the item title, description and brand together to extract text features.

C SENSITIVITY ANALYSIS

Impact of parameters η and µ. Since the weights η and µ control the effects of interest contrast
loss, we adjust these two parameters to study the effects on the model. η and µ are adjusted in
[0.0001, 0.001, 0.01, 0.1, 1]. As shown in Fig. 3, with the increasing of the weight, the effect of

13



Under review as a conference paper at ICLR 2024

the model decreases gradually. Since these two parameters directly affect the learning of interest
representation, it is easier for the model to train stably with a smaller weight, thus achieving better
results.
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Figure 3: Impact of parameters η and µ.

D MUTUAL INFORMATION THEORY

Let X and Z represent the two random variables, p(x) and p(z) represent the corresponding marginal
probability density function, and p(x, z) represent the joint probability density function of the two.
Then the mutual information expression of X and Z is as follows:

I(X,Z) =

∫
Z

∫
Z

p(x, z)log(
p(x, z)

p(x)p(z)
)dxdz (23)

The above equation can theoretically be rewritten as I(X,Z) = DKL(P (XZ ||PXPZ), where PXZ

represents the joint probability distribution of X and Z, and PX and PZ represent the edge distri-
butions. Following Deep InfoMax, we adopt Jensen-Shannon divergence as the objective function,
which proved to be very stable. This leads to the following object:

ÎJSD(X,Z) = Ep(x,z)[−log(1 + e−Tθ(x,z))]

− Ep(x)p(z)[log(1 + eTθ(x,z))]
(24)

where Tθ denotes a representation neural network. Further, the mutual information maximization
object between X and Z is defined as follows:

Lθ,φ(X,Z) = ÎJSD(X,Z) (25)
where Z is the representation obtained by an encoder with the parameter φ.
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