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Abstract

It is not fully understood why adversarial examples can deceive neural networks and
transfer between different networks. To elucidate this, several studies hypothesized
that adversarial perturbations contain data features that are imperceptible to humans
but still recognizable by neural networks. Empirical evidence has shown that neural
networks trained on mislabeled samples with these perturbations can generalize
to natural test data. However, a theoretical understanding of this counterintuitive
phenomenon is limited. In this study, assuming orthogonal training samples, we
first prove that one-hidden-layer neural networks can learn natural data structures
from adversarial perturbations. Our results indicate that, under mild conditions, the
decision boundary from learning perturbations aligns with that from natural data,
except for specific points in the input space.

1 Introduction

It is well known that a small malicious perturbation, or an adversarial perturbation, can change a
classifier’s prediction from the correct class to an incorrect class [16]. An interesting observation
by [8] has shown that a classifier, trained on natural samples with adversarial perturbations labeled by
such incorrect classes, can generalize to unperturbed data. Specifically, the procedure is as follows:

Definition 1.1 (Learning from adversarial perturbations (later redefined) [8]). Let D :=
{(xn, yn)}Nn=1 be a training dataset, where xn denotes an input (e.g., an image) and yn denotes the
corresponding label. Let f be a classifier trained on D. For each n, the adversarial example xadv

n is
produced by imposing an adversarial perturbation on xn to increase the probability for a target label
yadvn ̸= yn given by f , constructing Dadv := {(xadv

n , yadvn )}Nn=1. Training a classifier from scratch
on Dadv is called learning from adversarial perturbations.

Notably, a training sample xadv appears almost identical to x for humans but is labeled as a different
class yadv ̸= y. Nevertheless, neural networks can learn to accurately classify benign samples
{xn}Nn=1 from such adversarially perturbed samples with seemingly incorrect labels.

The unexpected success of learning from adversarial perturbations suggests that they may contain
data features that are class-specific but imperceptible to humans, helping classifiers understand data
structures. This hypothesis suggests intriguing properties of adversarial examples. For example,
classifier misclassifications may be caused by their sensitivity to the features in perturbations. In
addition, transferability across different classifiers [2, 5, 7] can be interpreted as classifiers responding
to the same features in perturbations.
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Mislabeled dataset

Deer Frog Frog Truck

Adversarial example

Frog

MNIST FMNIST CIFAR10
R 92.9% 54.8% 77.1%
D 38.4% 25.1% 42.8%

Train 
classifier

Counterintuitive generalization

Figure 1: Learning from adversarial perturbations (cf. Definition 1.1). Classifiers trained on a
mislabeled dataset with adversarial perturbations achieve high test accuracy on correctly labeled test
datasets, as shown in the table. “R” denotes random selection of the adversarial target label yadvn from
nine non-original labels, while “D” denotes deterministic selection one after the original. Detailed
experimental settings can be found in Appendix C.

The hypothesis that adversarial perturbations contain data features has drawn the attention of the
research community, leading to extensive discussions [1, 4, 9, 14, 18]. However, many of these
discussions are empirical and their theoretical understanding remains limited. For example, it is still
unknown the manner in which an adversarial perturbation encapsulates features, similarity between
the decision boundaries of learning from standard data and perturbations, and feasibility of learning
from perturbations in a high-dimensional dataset with numerous samples.

In this study, we provide the first theoretical validation of the learnability from adversarial perturba-
tions. By leveraging recent results on the decision boundary of a one-hidden-layer neural network
trained on orthogonal data [6], we prove that, under mild conditions, the decision boundary from
adversarial perturbations becomes consistent with that from natural data, except for specific points
in the input space. That is, for most test samples, a one-hidden-layer network trained on seemingly
mislabeled data produces predictions consistent with those of a normally trained network.

2 Related Work

Ilyas et al. first claimed that an adversarial perturbation contains data features, called non-robust
features [8]. These features are highly predictive and generalizable, yet brittle and incomprehensible
to humans. This idea is supported by neural networks that learn from perturbations (cf. Definition 1.1)
achieving good test accuracies on standard datasets [8]. Subsequent studies deepened the discussion
of non-robust features. While Ilyas et al. considered robust and non-robust features separately [8],
Springer et al. claimed their potential entanglement [14]. Some studies have attempted to separate
robust and non-robust features using the information bottleneck [9] and neural tangent kernel [18].
Engstrom et al. conducted a broad discussion on topics such as robust neural style transfer and
robust feature leakage [4]. Other studies leveraged the feature hypothesis to generate highly trans-
ferable adversarial examples [13–15], understand the behavior of batch normalization in adversarial
training [1], and degrade the robustness of adversarially trained models [17]. However, the nature
of adversarial perturbations as data features and the theoretical explanation for the counterintuitive
success of perturbation learning remain unclear.

In this study, we first justify learning from perturbations, which is an essential foundation for
validating the feature hypothesis. Our results support those of the aforementioned studies based on
the feature hypothesis. We do not consider whether adversarial perturbations are robust or non-robust
features or their entanglement. We primarily discuss whether adversarial perturbations are features or
bugs and why classifiers can obtain generalization ability from perturbations.

3 Preliminary

3.1 Settings

Network. Our network settings follow [6]. Let f : Rd → R be a one-hidden-layer neural network.
The number of hidden neurons is even and is denoted by m. We assume that the hidden layer is
trainable and that the last layer is frozen to constant weights a ∈ Rm. The first half elements of a
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are 1/
√
m and the latter half are −1/

√
m. Let W = (w1, . . . ,wm)⊤ ∈ Rm ×Rd be the weights of

the hidden layer. Let ϕ(z) := max(z, γz) be the element-wise leaky ReLU for a constant γ ∈ (0, 1).
That is, f(x) := a⊤ϕ(Wx). The assumption that the positive and negative values of a are equal is
introduced for notational simplicity and is fundamentally unnecessary.

Training. Let D := {(xn, yn)}Nn=1 ⊂ Rd × {±1} be a training dataset, where N ∈ N is the
number of training samples. With a loss function ℓ : R → R, the loss of f(x;W ) over D is defined
as L(W ;D) := 1

N

∑N
n=1 ℓ(ynf(xn;W )). We consider the exponential loss ℓ(z) = exp(−z) and

logistic loss ℓ(z) = ln(1 + exp(−z)). The network parameters are updated by gradient flow, gradient
descent with an infinitesimal step size. Namely, W is updated as dW (t)/dt = −∇WL(W (t);D),
where t ≥ 0 is a continuous training step. Finally, we summarize the training setting as follows:

Setting 3.1 (Training). Consider training a one-hidden-layer neural network f on dataset D. The
network parameter W is updated by minimizing the exponential or logistic loss over D, using
gradient flow. The training runs for a sufficiently long time, t→ ∞.

Learning from Adversarial Perturbations. In the following, we remove the restriction of yadvn ̸= yn
from Definition 1.1 to consider a wider variety of cases.

3.2 Decision Boundary of One-Hidden-Layer Neural Network

To understand learning from perturbations, we employ the following result on the implicit bias of
gradient flow [6] (similar results are shown in [12]).

Theorem 3.2 (Rearranged from [6]). Let {(xn, yn)}Nn=1 ⊂ Rd × {±1} be a training dataset.
Let Rmax := maxn ∥xn∥, Rmin := minn ∥xn∥, and pmax := maxn ̸=k |⟨xn,xk⟩|. Assume
γ3R4

min/(3NR
2
max) ≥ pmax. A one-hidden-layer neural network f : Rd → R is trained on

the dataset following Setting 3.1. Then, as t → ∞, sgn(f(z)) = sgn(fbdy(z)) holds, where
fbdy(z) :=

∑N
n=1 λnyn⟨xn, z⟩ and λn ∈

(
1

2R2
max

, 3
2γ2R2

min

)
for every n ∈ [N ].

Appendix A provides a more detailed background. This theorem claims that the binary decision
from f(z) equals that from the linear function fbdy(z); that is, f(z) has a linear decision boundary.
This theorem only requires training data to be nearly-orthogonal, which is a common property of
high-dimensional data. Although this theorem is not directly related to learning from perturbations,
we utilize it to easily observe the decision boundary derived from perturbation learning as follows:

Corollary 3.3 (Learning from adversarial perturbations). Let {(xadv
n , yadvn )}Nadv

n=1 be a training
dataset with adversarial perturbations (cf. Definition 1.1). Let Radv

max := maxn ∥xadv
n ∥, Radv

min :=
minn ∥xadv

n ∥, padvmax := maxn ̸=k |⟨xadv
n ,xadv

k ⟩|, and λadvn ∈
(

1
2Radv

max
2 ,

3
2γ2Radv

min
2

)
for every n ∈

[Nadv]. Then, the orthogonality assumption and decision boundary in Theorem 3.2 are given by

γ3Radv
min

4
/(3NadvRadv

max
2
) ≥ padvmax and fbdyadv (z) :=

∑Nadv

n=1 λadvn yadvn ⟨xadv
n , z⟩, respectively.

4 Theoretical Results

Perturbation Definition. Recall that a one-hidden-layer network trained on orthogonal data with
Setting 3.1 has a linear decision boundary. We focus on adversarial attacks to this boundary rather
than the network itself, called geometry-inspired attacks. Let ϵ > 0 be the perturbation constraint. A
geometry-inspired adversarial example xadv

n maximizes yadvn fbdy(xadv
n ) under ∥xadv

n −xn∥ ≤ ϵ as:

xadv
n := xn + ηn, ηn = ϵyadvn

∇xn
fbdy(xn)

∥∇xnf
bdy(xn)∥

= ϵyadvn

∑N
k=1 λkykxk

∥
∑N

k=1 λkykxk∥
. (1)

We observe that the perturbation ηn is expressed as a weighted sum of the training samples. Because
the training samples {xn}Nn=1 are nearly-orthogonal, and xn and xk do not negate each other for
n ̸= k, the perturbation contains rich training data information.
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Decision Boundary. Using Corollary 3.3, the decision boundary can be derived as follows. Ap-
pendix B provides the proofs of the theorems.

Theorem 4.1 (Decision boundary by learning from geometry-inspired perturbations on natural data).
Let f be a one-hidden-layer neural network trained on geometry-inspired perturbations on natural
data (cf. Eq. (1) and Definition 1.1) with Setting 3.1. Assume sufficiently large N . If

γ3(R2
min − 2 C√

N
ϵ+ ϵ2)2

3N(R2
max + 2 C√

N
ϵ+ ϵ2)

− 2
C√
N
ϵ− ϵ2 ≥ pmax (2)

with C :=
3R4

max+γ3R4
min

γ2R3
min

√
1−γ

, then, as t→ ∞, the decision boundary of f is given by

fbdyadv (z) :=

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩∑N
n=1 λ

adv
n︸ ︷︷ ︸

Effect of learning from mislabeled natural data

+ ϵ
fbdy(z)

∥
∑N

n=1 λnynxn∥︸ ︷︷ ︸
Effect of learning from perturbations

. (3)

The decision boundary, Eq. (3), includes two components that explain the effects of mislabeled
data and geometry-inspired perturbations. The sign of the first term is determined by the sum of
the weighted inner products,

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩. Because yadvn is mislabeled, the sign (binary

decision) of the first term is not always consistent with human perception. The sign of the second
term depends only on that of the standard decision boundary fbdy(z). When the magnitude of the
second term is dominant, then sgn(fbdyadv (z)) matches sgn(fbdy(z)). This suggests that, although the
dataset appears mislabeled to humans, the classifier can still provide a reasonable prediction. A more
general version of Theorem 4.1 without assuming large N is given in Theorem B.2. The assumption,
Ineq. (2), requires orthogonal training data and ϵ = O(

√
d/N).

Random Label Learning. Let us consider the limiting behavior of the first and second terms, denoted
as T1(z) and T2(z), when yadvn is randomly sampled from {±1}.

Theorem 4.2 (Consistent decision of learning from geometry-inspired perturbations on natural data).
Suppose that Ineq. (2), ∥xn∥ = Θ(

√
d) for all n ∈ [N ], and ∥z∥ = Θ(

√
d) hold. Consider N → ∞

and d → ∞ while keeping d/N = Θ(1). Suppose that yadvn is randomly sampled from {±1} for
each n ∈ [N ]. Assume |

∑N
n=1 λnyn⟨xn, z⟩| = Θ(g(N, d)) if

∑N
n=1 λn|⟨xn, z⟩| = Θ(g(N, d)),

where g is a positive function of N and d. Let Q ⊂ [N ] be a set of indices such that |Q| = Θ(1),
and let r ∈ Rd be a vector such that

∑N
n=1 |⟨xn, r⟩| = O(d). If z is not represented as z =∑

n∈Q ±Θ(1)xn + r, then sgn(fbdyadv (z)) = sgn(fbdy(z)) holds with probability at least 99.99%.

Given labels yn freely selected from {±1}, estimating the growth rate for T2(z) is challenging.
Therefore, we assume that |

∑N
n=1 λnyn⟨xn, z⟩| = Θ(g(N, d)) if

∑N
n=1 λn|⟨xn, z⟩| = Θ(g(N, d))

and instead estimate the growth rate of
∑N

n=1 λn|⟨xn, z⟩| rather than |
∑N

n=1 λnyn⟨xn, z⟩|. Notably,
this theorem suggests that classifiers trained on an apparently mislabeled dataset can produce decisions
consistent with standard classifiers, except for a specific z =

∑
n∈Q ±Θ(1)xn + r. Such z could be,

for example, z = x1, x1 + x2 + x3, and x1 +O(1/N)1, where 1 denotes an all-ones vector. The
first term represents a strong correlation with a few samples. Note that a strong correlation with many
samples is invalid because of the orthogonality of {xn}Nn=1 and ∥z∥ = Θ(

√
d) (cf. Lemma B.4). The

second term represents a small vector pointing towards the neighborhood of the first term. For such
z, the impact of learning from mislabeled samples, T1(z), becomes dominant, and the decisions are
not always aligned. Essentially, for inputs that do not strongly correlate with a few training samples,
the network decisions derived from perturbation learning align with those of a standard network.
Because test datasets typically exclude samples similar to the training data, network learning from
perturbations is expected to produce reasonable predictions for many test samples. This confirms the
high test accuracy of perturbation learning [8].
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5 Conclusion

We provided the first theoretical justification of learning from adversarial perturbations for one-
hidden-layer networks, assuming orthogonal training data. We showed that networks learning from
perturbations produce decisions consistent with normally trained networks, except for specific inputs.
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A Background

To formulate learning from adversarial perturbations, we utilize the theorem presented in [6], which
addresses the implicit bias of one-hidden-layer neural networks under gradient flow with an exponen-
tial loss. Note that this theorem does not directly pertain to adversarial attacks, adversarial examples,
or learning from perturbations. We leverage this because of the tractable form of a decision boundary.
The key findings of their study are summarized as follows:

Theorem A.1 (Rearranged from [6]). Let D := {(xn, yn)}Nn=1 ⊂ Rd × {±1} be a training
dataset. Let Rmax := maxn ∥xn∥, Rmin := minn ∥xn∥, and pmax := maxn ̸=k |⟨xn,xk⟩|. Assume
γ3R4

min/(3NR
2
max) ≥ pmax. A one-hidden neural network f : Rd → R is trained on D following

Setting 3.1. Then, gradient flow on f converges to limt→∞
W (t)

∥W (t)∥F
= W std

∥W std∥F
, where W std :=

(v1, . . . ,vm/2,u1, . . . ,um/2)
⊤ satisfies

∀n ∈ [N ] : ynf(xn;W
std) = 1, (4)

v1 = · · · = vm/2 = v :=
1√
m

∑
n:yn=+1

λnxn − γ√
m

∑
n:yn=−1

λnxn, (5)

u1 = · · · = um/2 = u :=
1√
m

∑
n:yn=−1

λnxn − γ√
m

∑
n:yn=+1

λnxn, (6)

where λn ∈
(

1
2R2

max
, 3
2γ2R2

min

)
for every n ∈ [N ]. The binary decision of f(z;W std) is also given

by:

sgn
(
f
(
z;W std

))
= sgn

(
fbdy(z)

)
, where fbdy(z) :=

N∑
n=1

λnyn⟨xn, z⟩. (7)

The theorem provides three insights: (i) Although there might be many possible directions W /∥W ∥F
that can accurately classify the training dataset, gradient flow consistently converges in direction
to W std irrespective of the initial weight configurations. (ii) Given that W std is composed of a
maximum of two unique row vectors, its rank is constrained to two or less, highlighting the implicit
bias of the gradient flow. (iii) The binary decision of f(z;W std) is the same as the sign of the linear
function fbdy(z), indicating that f(z;W std) has a linear decision boundary. The assumption of the
theorem requires nearly orthogonal data, which is a typical characteristic of high-dimensional data.

Note that in [6], the binary decision boundary is given by:

fbdy(z) =

√
m

2
v −

√
m

2
u. (8)

To derive Eq. (7), we rearrange the above equation as:

fbdy(z) =

√
m

2

(
1√
m

∑
n:yn=+1

λnxn − γ√
m

∑
n:yn=−1

λnxn

)
(9)

−
√
m

2

(
1√
m

∑
n:yn=−1

λnxn − γ√
m

∑
n:yn=+1

λnxn

)
(10)

=
1 + γ

2

( ∑
n:yn=+1

λnxn −
∑

n:yn=−1

λnxn

)
(11)

=
1 + γ

2

N∑
n=1

λnynxn. (12)

Thus,

sgn
(
f
(
z;W std

))
= sgn

(
fbdy(z)

)
= sgn

(
N∑

n=1

λnynxn

)
. (13)
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Note that this theorem does not impose any assumptions on the training data other than orthogonality.
Thus, it can be adapted to a dataset with adversarial perturbations as follows:

Corollary A.2 (Learning from adversarial perturbations). Let Dadv := {(xadv
n , yadvn )}Nadv

n=1 ⊂
Rd × {±1} be a training dataset. Let Radv

max := maxn ∥xadv
n ∥, Radv

min := minn ∥xadv
n ∥, and

padvmax := maxn ̸=k |⟨xadv
n ,xadv

k ⟩|. Assume γ3Radv
min

4
/(3NRadv

max
2
) ≥ padvmax. A one-hidden neural

network f : Rd → R is trained on the dataset following Setting 3.1. Then, gradient flow on f
converges to limt→∞

W (t)
∥W (t)∥F

= W adv

∥W adv∥F
, where W adv := (vadv

1 , . . . ,vadv
m/2,u

adv
1 , . . . ,uadv

m/2)
⊤

satisfies

∀n ∈ [N ] : yadvn f(xadv
n ;W adv) = 1, (14)

vadv
1 = · · · = vadv

m/2 =
1√
m

∑
n:yadv

n =+1

λadvn xadv
n − γ√

m

∑
n:yadv

n =−1

λadvn xadv
n , (15)

uadv
1 = · · · = uadv

m/2 =
1√
m

∑
n:yadv

n =−1

λadvn xadv
n − γ√

m

∑
n:yadv

n =+1

λadvn xadv
n , (16)

where λadvn ∈
(

1
2Radv

max
2 ,

3
2γ2Radv

min
2

)
for every n ∈ [N ]. The binary decision of f(z;W adv) is also

given by:

sgn
(
f
(
z;W adv

))
= sgn

(
fbdyadv (z)

)
, where fbdyadv (z) :=

N∑
n=1

λadvn yadvn ⟨xadv
n , z⟩. (17)

The presented theorem establishes the foundation for learning from adversarial perturbations. The
orthogonality assumption, model weights, and decision boundary are influenced by the definition of
adversarial perturbations.

B Proofs of Theorems in Section 4

In Lemma B.1, we first restructure the orthogonality condition required by Theorem 3.2 and Corol-
lary 3.3, which is applicable to any dataset configuration. To this end, we leverage the lower and
upper bounds of λn and the upper bound of pmax. Then, in Theorem B.2, we formulate learning from
geometry-inspired perturbations without assuming the number of training samples N . Theorem 4.1
is the special case of Theorem B.2 for a sufficiently large N . Lemmas B.3 and B.4 describe the
preliminary on limiting behavior. Propositions B.5 and B.6 give the limiting behavior for two cases:
when yadvn is chosen deterministically or randomly. Finally, Theorem 4.2 is introduced.

We denote the gradient of the decision boundary of the normally trained one-hidden-neural network
by q; namely,

q := ∇zf
bdy(z) =

N∑
n=1

λnynxn. (18)

Using q, we can represent the geometry-inspired adversarial example as:

xadv
n := xn + ϵyadvn

q

∥q∥
. (19)

Lemma B.1 (orthogonality condition for learning from geometry-inspired perturbations on natural
data). Consider the geometry-inspired perturbation defined in Eq. (1). Let

C :=
3R4

max + γ3R4
min

γ2R3
min

√
1− γ

. (20)
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Suppose that the following inequalities are satisfied:
γ3(Rmin−ϵ)4

3N(Rmax+ϵ)2 − 2ϵRmax − ϵ2 ≥ pmax

(
N ≤ C2

R2
max

)
γ3(Rmin−ϵ)4

3N(R2
max+2 C√

N
ϵ+ϵ2)

− 2 C√
N
ϵ− ϵ2 ≥ pmax

(
C2

R2
max

< N ≤ C2

R2
min

)
γ3(R2

min−2 C√
N

ϵ+ϵ2)2

3N(R2
max+2 C√

N
ϵ+ϵ2)

− 2 C√
N
ϵ− ϵ2 ≥ pmax

(
N > C2

R2
min

) . (21)

Then, the following inequality holds for any {(xn, yn)}Nn=1 and {yadvn }Nn=1:

γ3Radv
min

4

3NRadv
max

2 ≥ padvmax. (22)

Proof. First, we exclude cases where ϵ > Rmin. Then, given ϵ ≤ Rmin, we establish the three
primary inequalities. Finally, we prove that these inequalities intrinsically presuppose ϵ ≤ Rmin.

Pruning. In this lemma, we consider the orthogonality condition valid for any {(xn, yn)}Nn=1 and
{yadvn }Nn=1. Here, we assert that if ϵ > Rmin, this condition cannot be sustained.

(Lower bound of maximum inner product) Let n, k be different data indices that satisfy yn = yk =
yadvn = yadvk . Consider the case with pmax = 0. For n,

sgn

(〈
xn,

q

∥q∥

〉)
= sgn (λnyn∥xn∥) = yn. (23)

The lower bound of the maximum inner product is calculated as:

padvmax ≥ ⟨xadv
n ,xadv

k ⟩ = ϵyadvn

〈
xk,

q

∥q∥

〉
+ ϵyadvk

〈
xn,

q

∥q∥

〉
+ ϵ2yadvn yadvk ≥ ϵ2. (24)

(Upper bound of minimum norm) Let l := argminl ∥xl∥ and yadvl = − sgn (⟨xl, q/∥q∥⟩). Note that
this is trivially compatible with the settings of yn = yk = yadvn = yadvk and pmax = 0. The upper
bound of the minimum norm can be calculated as:∥∥xadv

l

∥∥ =

√
R2

min − 2ϵ

∣∣∣∣〈xl,
q

∥q∥

〉∣∣∣∣+ ϵ2 ≥ Radv
min. (25)

(orthogonality condition) Finally, we rearrange the orthogonality condition using the above two
bounds as:

γ3Radv
min

4

3NRadv
max

2 − padvmax ≤ Radv
min

2

3
− padvmax ≤ R2

min + ϵ2

3
− ϵ2 < −ϵ

2

3
< 0. (26)

This inequality indicates that the orthogonality condition that holds for any {(xn, yn)}Nn=1 and
{yadvn }Nn=1 does not exist.

Main proof. Assume ϵ ≤ Rmin. We define the lower and upper bounds of λn as λmin := 1
2R2

max
and

λmax := 3
2γ2R2

min
, respectively.

(Preliminary) The lower bound of the norm of q is derived as:

∥q∥ =

√√√√√ N∑
n=1

λn

λn∥xn∥2 +
∑
k ̸=n

λkynyk⟨xn,xk⟩

 (27)

≥
√
Nλmin(λminR2

min −Nλmaxpmax) (28)

=
Rmin

√
(1− γ)N

2R2
max

. (29)
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The upper bound of the inner product between xn and q is derived as:

⟨xn, q⟩ =
N∑

k=1

λkyk⟨xn,xk⟩ ≤λmax(R
2
max +Npmax) =

3R2
max

2γ2R2
min

+
γR2

min

2R2
max

. (30)

The naive upper bound of the inner product between xn and q/∥q∥ is given by:〈
xn,

q

∥q∥

〉
≤ Rmax. (31)

Alternatively, that can be also obtained as:〈
xn,

q

∥q∥

〉
≤ 3R4

max + γ3R4
min

γ2R3
min

√
(1− γ)N

=:
C√
N
. (32)

Note that 
C√
N

≥ Rmax

(
N ≤ C2

R2
max

)
Rmin ≤ C√

N
< Rmax

(
C2

R2
max

< N ≤ C2

R2
min

)
C√
N
< Rmin

(
N > C2

R2
min

) . (33)

Thus, 〈
xn,

q

∥q∥

〉
≤

{
Rmax

(
N ≤ C2

R2
max

)
C√
N

(otherwise)
. (34)

(Lower and upper bounds of norm) The norm of the geometry-inspired adversarial example can be
represented as:

∥∥xadv
n

∥∥ =

√
∥xn∥2 + 2ϵyadvn

〈
xn,

q

∥q∥

〉
+ ϵ2. (35)

Under ϵ ≤ Rmin, the trivial lower and upper bounds of the above norm is written as:

Rmin − ϵ ≤
∥∥xadv

n

∥∥ ≤ Rmax + ϵ. (36)

Now, we have the following three lower bounds of the norm of xn: (i)
√
R2

min − 2ϵRmax + ϵ2

for N ≤ C2

R2
max

. (ii)
√
R2

min − 2 C√
N
ϵ+ ϵ2 for N > C2

R2
max

. (iii) Rmin − ϵ for ϵ ≤ Rmin. Since

(Rmin − ϵ)2 − (R2
min − 2ϵRmax + ϵ2) ≥ 0, (iii) is always tighter than (i). In addition, since

(Rmin − ϵ)2 − (R2
min − 2 C√

N
ϵ+ ϵ2) ≥ 0 under C2

R2
max

< N ≤ C2

R2
min

, (iii) is always tighter than (ii).
Thus, under ϵ ≤ Rmin,

∥∥xadv
n

∥∥ ≥

Rmin − ϵ (N ≤ C2

R2
min

)√
R2

min − 2 C√
N
ϵ+ ϵ2 (otherwise)

. (37)

The upper bound of the norm is given by:

∥∥xadv
n

∥∥ ≤

Rmax + ϵ (N ≤ C2

R2
max

)√
R2

max + 2 C√
N
ϵ+ ϵ2 (otherwise)

. (38)

(Upper bound of inner product) The upper bound of the inner product between xadv
n and xadv

k for
n ̸= k is represented as:

⟨xadv
n ,xadv

k ⟩ ≤ pmax + 2ϵ

〈
xn,

q

∥q∥

〉
+ ϵ2. (39)
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Thus,

⟨xadv
n ,xadv

k ⟩ ≤

{
pmax + 2ϵRmax + ϵ2 (N ≤ C2

R2
max

)

pmax + 2 C√
N
ϵ+ ϵ2 (otherwise)

. (40)

(orthogonality condition) Using above bounds, we can derive the orthogonality condition that holds
for any {(xn, yn)}Nn=1 and {yadvn }Nn=1 as:

γ3(Rmin−ϵ)4

3N(Rmax+ϵ)2 − 2ϵRmax − ϵ2 ≥ pmax

(
N ≤ C2

R2
max

)
γ3(Rmin−ϵ)4

3N(R2
max+2 C√

N
ϵ+ϵ2)

− 2 C√
N
ϵ− ϵ2 ≥ pmax

(
C2

R2
max

< N ≤ C2

R2
min

)
γ3(R2

min−2 C√
N

ϵ+ϵ2)2

3N(R2
max+2 C√

N
ϵ+ϵ2)

− 2 C√
N
ϵ− ϵ2 ≥ pmax

(
N > C2

R2
min

) . (41)

Compatibility with pruned condition. Here, we prove that the above inequalities implicitly suggest
ϵ ≤ Rmin; that is, they do not hold under ϵ > Rmin. The common upper bound of the left term of the
inequalities is

γ3(R2
min + ϵ2)

3N
− ϵ2. (42)

This bound monotonically decreases with ϵ and is under zero at ϵ = Rmin. Thus, the inequalities are
not satisfied under ϵ > Rmin

Theorem B.2 (Decision boundary by learning from geometry-inspired perturbations on natural data).
Let f be a one-hidden-layer neural network trained on geometry-inspired perturbations on natural
data (cf. Eq. (1)) with Setting 3.1. If

γ3(Rmin−ϵ)4

3N(Rmax+ϵ)2 − 2ϵRmax − ϵ2 ≥ pmax

(
N ≤ C2

R2
max

)
γ3(Rmin−ϵ)4

3N(R2
max+2 C√

N
ϵ+ϵ2)

− 2 C√
N
ϵ− ϵ2 ≥ pmax

(
C2

R2
max

< N ≤ C2

R2
min

)
γ3(R2

min−2 C√
N

ϵ+ϵ2)2

3N(R2
max+2 C√

N
ϵ+ϵ2)

− 2 C√
N
ϵ− ϵ2 ≥ pmax

(
N > C2

R2
min

) . (43)

with C :=
3R4

max+γ3R4
min

γ2R3
min

√
1−γ

, then, as t→ ∞, the decision boundary of f is given by

fbdyadv (z) :=

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩∑N
n=1 λ

adv
n︸ ︷︷ ︸

Learning from mislabeled natural data

+ ϵ
fbdy(z)

∥
∑N

n=1 λnynxn∥︸ ︷︷ ︸
Learning from perturbations

. (44)

Proof. By Lemma B.1, if Ineq. (43) holds, then γ3Radv
min

4
/(3NRadv

max
2
) ≥ padvmax holds for any dataset

configuration, i.e., for any {(xn, yn)}Nn=1 and {yadvn }Nn=1. Thus, we can apply Corollary 3.3 to this
dataset. By Corollary 3.3, the decision boundary is given by:

sgn(f(z;W adv)) = sgn

(
N∑

n=1

λadvn yadvn ⟨xadv
n , z⟩

)
(45)

=sgn

(
N∑

n=1

λadvn yadvn ⟨xn, z⟩+
N∑

n=1

λadvn yadvn ϵyadvn

〈
q

∥q∥
, z

〉)
(46)

=sgn

(
N∑

n=1

λadvn yadvn ⟨xn, z⟩+

(
N∑

n=1

λadvn

)
ϵ

〈
q

∥q∥
, z

〉)
(47)

=sgn

(∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩∑N
n=1 λ

adv
n

+ ϵ
⟨q, z⟩
∥q∥

)
(48)
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=sgn

(∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩∑N
n=1 λ

adv
n

+ ϵ
fbdy(z)

∥q∥

)
. (49)

Theorem 4.1 (Decision boundary by learning from geometry-inspired perturbations on natural data).
Let f be a one-hidden-layer neural network trained on geometry-inspired perturbations on natural
data (cf. Eq. (1) and Definition 1.1) with Setting 3.1. Assume sufficiently large N . If

γ3(R2
min − 2 C√

N
ϵ+ ϵ2)2

3N(R2
max + 2 C√

N
ϵ+ ϵ2)

− 2
C√
N
ϵ− ϵ2 ≥ pmax (2)

with C :=
3R4

max+γ3R4
min

γ2R3
min

√
1−γ

, then, as t→ ∞, the decision boundary of f is given by

fbdyadv (z) :=

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩∑N
n=1 λ

adv
n︸ ︷︷ ︸

Effect of learning from mislabeled natural data

+ ϵ
fbdy(z)

∥
∑N

n=1 λnynxn∥︸ ︷︷ ︸
Effect of learning from perturbations

. (3)

Proof. This is the special case of Theorem B.2 when the number of training samples N is sufficiently
large.

Lemma B.3 (Order of norm of weighted sum of training data). Assume γ3R4
min/(3NR

2
max) ≥ pmax

and ∥xn∥ = Θ(
√
d) for any n ∈ [N ]. Then,∥∥∥∥∥

N∑
n=1

λnynxn

∥∥∥∥∥ = Θ

(√
N

d

)
. (50)

Proof. By definition in Theorem 3.2, λn = Θ(1/d). By the assumption, pmax = O(d/N). The
lower bound is derived as:∥∥∥∥∥

N∑
n=1

λnynxn

∥∥∥∥∥ =

√√√√√ N∑
n=1

λn

λn∥xn∥2 +
∑
k ̸=n

λkynyk⟨xn,xk⟩

 (51)

≥

√√√√√ N∑
n=1

λn

λn∥xn∥2 −
∑
k ̸=n

λkpmax

 (52)

=Ω

(√
N

d

)
. (53)

The upper bound is derived as:∥∥∥∥∥
N∑

n=1

λnynxn

∥∥∥∥∥ ≤

√√√√√ N∑
n=1

λn

λn∥xn∥2 +
∑
k ̸=n

λkpmax

 = O

(√
N

d

)
. (54)

Note that the radicand of the lower bound is positive since the following inequality holds:

λn∥xn∥2 −
∑
k ̸=n

λkpmax ≥ R2
min

2R2
max

− γR2
min

2R2
max

≥ (1− γ)R2
min

2R2
max

> 0. (55)

Thus, ∥∥∥∥∥
N∑

n=1

λnynxn

∥∥∥∥∥ = Θ

(√
N

d

)
. (56)
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Lemma B.4 (Order of inner product). Let {xn}Nn=1 ⊂ Rd and z ∈ Rd be the d-dimensional data.
For any n, k ∈ [N ], k ̸= n, assume ∥xn∥ = Θ(

√
d), ∥z∥ = Θ(

√
d), and |⟨xn,xk⟩| = O(d/N).

Let |⟨xn, z⟩| = O(dβ
max

). Then, the following statements hold:

(a) ∣∣∣∣∣
N∑

n=1

⟨xn, z⟩

∣∣∣∣∣ ≤
N∑

n=1

|⟨xn, z⟩| = O(
√
Ndβ

max

). (57)

(b)

N∑
n=1

⟨xn, z⟩2 = O(d2β
max

). (58)

(c) There are at most O(min(N−2α, N)) instances of n that satisfy ⟨xn, z⟩ = ±Θ(Nαdβ),
where α ≤ 0 and β ≤ 1. There is no n that satisfies ⟨xn, z⟩ = ±Ω(Nαdβ), where α > 0
or β > 1.

(d) (i) The growth rate of
∑N

n=1 |⟨xn, z⟩| is faster than or equal to Θ(1/d)
∑N

n=1⟨xn, z⟩2. (ii)
The growth rate of

∑N
n=1 |⟨xn, z⟩| is equal to Θ(1/d)

∑N
n=1⟨xn, z⟩2 if and only if there

exists n such that |⟨xn, z⟩| = Θ(1) and
∑

n:|⟨xn,z⟩|≠Θ(1) |⟨xn, z⟩| = O(1) with respect
to N .

Proof. For n ∈ [N ], let ψn := sgn(⟨xn, z⟩).
(a) The left inequality is trivial. By the Cauchy–Schwarz inequality,

N∑
n=1

|⟨xn, z⟩| =
N∑

n=1

⟨ψnxn, z⟩ (59)

≤

∥∥∥∥∥
N∑

n=1

ψnxn

∥∥∥∥∥∥z∥ (60)

=

√√√√ N∑
n=1

∥xn∥2 +
N∑

n=1

∑
k ̸=n

ψnψk⟨xn,xk⟩∥z∥ (61)

=O(
√
Nd). (62)

If |⟨xn, z⟩| = O(dβ
max

), then
∑N

n=1 |⟨xn, z⟩| is trivially constrained to O(
√
Ndβ

max

).

(b) By the Cauchy–Schwarz inequality,
N∑

n=1

⟨xn, z⟩2 =

N∑
n=1

⟨⟨xn, z⟩xn, z⟩ (63)

=

〈
N∑

n=1

⟨xn, z⟩xn, z

〉
(64)

≤

√√√√ N∑
n=1

⟨xn, z⟩2∥xn∥2 +
N∑

n=1

∑
k ̸=n

⟨xn, z⟩⟨xk, z⟩⟨xn,xk⟩∥z∥. (65)

Now,
N∑

n=1

∑
k ̸=n

⟨xn, z⟩⟨xk, z⟩⟨xn,xk⟩ ≤
N∑

n=1

N∑
k=1

|⟨xn, z⟩||⟨xk, z⟩||⟨xn,xk⟩| (66)

=O
(
d

N

)( N∑
n=1

|⟨xn, z⟩|

)2

. (67)
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By (a),

N∑
n=1

∑
k ̸=n

⟨xn, z⟩⟨xk, z⟩⟨xn,xk⟩ = O(d3). (68)

Thus,

N∑
n=1

⟨xn, z⟩2 =

√√√√Θ(d2)

N∑
n=1

⟨xn, z⟩2 +O(d4). (69)

Let
∑N

n=1⟨xn, z⟩2 = O(Nζd2) for a constant ζ ∈ Rd. Using this,

N∑
n=1

⟨xn, z⟩2︸ ︷︷ ︸
O(Nζd2)

= O(max(Nζ/2d2, d2)). (70)

If ζ > 0, the left term grows faster than the right term, which contradicts the equation. Thus, ζ ≤ 0.
If |⟨xn, z⟩| = O(dβ

max

), then
∑N

n=1⟨xn, z⟩2 is trivially constrained to O(d2β
max

). Thus, the claim
is established.

(c) By the Cauchy–Schwarz inequality, ⟨xn, z⟩ ≤ ∥xn∥∥z∥ = O(d). Let [N ]α,β := {n :
|⟨xn, z⟩| = Θ(Nαdβ)}, where α ≤ 0 and β ≤ 1. We define δ ≤ 1 to satisfy |[N ]α,β | = Θ(Nδ).
Then, ∑

n∈[N ]α,β

⟨ψnxn, z⟩ =
∑

n∈[N ]α,β

Θ(Nαdβ) = Θ(Nα+δdβ). (71)

By the Cauchy–Schwarz inequality,

∑
n∈[N ]α,β

⟨ψnxn, z⟩ =

〈 ∑
n∈[N ]α,β

ψnxn, z

〉
≤

∥∥∥∥∥∥
∑

n∈[N ]α,β

ψnxn

∥∥∥∥∥∥∥z∥. (72)

Note that ∥∥∥∥∥∥
∑

n∈[N ]α,β

ψnxn

∥∥∥∥∥∥ =

√ ∑
n∈[N ]α,β

∥xn∥2 +
∑

n∈[N ]α,β

∑
k ̸=n

ψnψk⟨xn,xk⟩ (73)

=

√
Θ(Nδd)±Θ(N2δ)O

(
d

N

)
(74)

=Θ(
√
Nδd). (75)

Thus,
∑

n∈[N ]α,β
⟨ψnxn, z⟩ = O(

√
Nδd). Comparing this with Eq. (71), α+ δ ≤ δ/2 ⇔ δ ≤ −2α.

(d) Since Θ(1/d)⟨xn, z⟩2 = Θ(N2αd2β−1) if |⟨xn, z⟩| = Θ(Nαdβ), and α ≤ 0 and β ≤ 1, the
first claim is trivial. The second claim is trivial by (c).

Proposition B.5 (Limiting behavior for learning from geometry-inspired perturbations on natural
data (deterministic label)). Suppose that Ineq. (2) holds. Assume ∥xn∥ = Θ(

√
d) for any n ∈ [N ]

and ∥z∥ = Θ(
√
d). Assume

N∑
n=1

λn|⟨xn, z⟩| = Θ(g1(N, d)) ⇒

∣∣∣∣∣
N∑

n=1

λnyn⟨xn, z⟩

∣∣∣∣∣ = Θ(g1(N, d)), (76)

N∑
n=1

λn|⟨xn, z⟩| = Θ(g2(N, d)) ⇒

∣∣∣∣∣
N∑

n=1

λnyn⟨xn, z⟩

∣∣∣∣∣ = Θ(g2(N, d)). (77)
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where g1 and g2 are positive functions of N and d. Then, the following statements hold:

• Consistent growth rate. For any z, |T1(z)| = Θ(g3(N, d)) ⇔ |T2(z)| = Θ(g3(N, d)),
where g3 is a positive function of N and d.

• Consistent upper bound. For any z, |T1(z)| = O(d/
√
N) and |T2(z)| = O(d/

√
N).

• Test sample strongly correlated with few training samples. If there exists n such that
|⟨xn, z⟩| = Θ(d) and

∑
n:|⟨xn,z⟩|≠Θ(d) |⟨xn, z⟩| = O(d) holds, then |T1(z)| = Θ(d/N)

and |T2(z)| = Θ(d/N).
• Test sample weakly correlated with many training samples. If there are Θ(N) instances of
n such that |⟨xn, z⟩| = Θ(d/

√
N), then |T1(z)| = Θ(d/

√
N) and |T2(z)| = Θ(d/

√
N).

Proof. By definition in Theorem 3.2 and Corollary 3.3, λn = Θ(1/d) and λadvn = Θ(1/d). Un-
der Ineq. (2), ϵ = O(

√
d/N). Because we can set ϵ freely under Ineq. (2), we can consider

ϵ = Θ(
√
d/N). By Lemma B.3, ∥

∑N
n=1 λnynxn∥ = Θ(

√
N/d). Let S := {(α, β) : n ∈

[N ], |⟨xn, z⟩| = Θ(Nαdβ)}. As shown in Lemma B.4, α and β is constrained to α ≤ 0 and β ≤ 1.
Denote the number of n such that |⟨xn, z⟩| = Θ(Nαdβ) by C(α, β). By Lemma B.4, the upper
bound of C(α, β) is constrained to C(α, β) = O(min(N−2α, N)). Let [N ]α,β be the subset of [N ]
such that {n ∈ [N ] : |⟨xn, z⟩| = Θ(Nαdβ)}.

Consistent growth rate. Since λn = Θ(1/d) and λadvn = Θ(1/d),
N∑

n=1

λn|⟨xn, z⟩| = Θ(g(N, d)) ⇔
N∑

n=1

λadvn |⟨xn, z⟩| = Θ(g(N, d)). (78)

Under the assumption,
N∑

n=1

λn|⟨xn, z⟩| = Θ(g(N, d)),

N∑
n=1

λadvn |⟨xn, z⟩| = Θ(g(N, d)) (79)

⇒

∣∣∣∣∣
N∑

n=1

λnyn⟨xn, z⟩

∣∣∣∣∣ = Θ(g(N, d)),

∣∣∣∣∣
N∑

n=1

λadvn yadvn ⟨xn, z⟩

∣∣∣∣∣ = Θ(g(N, d)). (80)

Using the above orders,

|T1(z)| =
Θ(g(N, d))

Θ
(
N
d

) = Θ

(
dg(N, d)

N

)
,

|T2(z)| =Θ

(√
d

N

)
Θ(g(N, d))

Θ
(√

N
d

) = Θ

(
dg(N, d)

N

) (81)

Consistent upper bound. By Lemma B.4,
∑N

n=1 λn|⟨xn, z⟩| = O(
√
N). Thus, T1(z) =

O(d/
√
N) and T2(z) = O(d/

√
N).

Test sample strongly correlated with few training samples. By Lemma B.4, there are at most
O(1) instance of n such that |⟨xn, z⟩| = Θ(d), i.e., C(0, 1) = O(1). Now, since we assume that
there exists n such that |⟨xn, z⟩| = Θ(d), C(0, 1) = Θ(1) holds. Lemma B.4 guarantees that there
can exist at most O(min(N−α, N)) instances of n such that |⟨xn, z⟩| = Θ(Nαdβ) for α ≤ 0 and
β ≤ 1, i.e., C(α, β) = O(min(N−α, N)). Let S′ := S \ {(0, 1)}. Now,

N∑
n=1

λn|⟨xn, z⟩| =
∑

(α,β)∈S

N∑
n∈[N ]α,β

Θ(Nαdβ−1) (82)

=

N∑
n∈[N ]0,1

Θ(Nαdβ−1) (83)

+
∑

(α,β)∈S′

Θ(Nαdβ−1) (84)
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=c(0, 1)Θ(1) +O(1) (85)
=Θ(1). (86)

Thus, T1(z) = Θ(d/N) and T2(z) = Θ(d/N).

Test sample weakly correlated with many training samples. Note that Lemma B.4 guarantees that
there can exist Θ(N) instances of n such that |⟨xn, z⟩| = Θ(d/

√
N). Let S′ := S \ {(−1/2, 1)}.

By the result of (consistent upper bound),

N∑
n=1

λn|⟨xn, z⟩| =
∑

(α,β)∈S

C(α, β)Θ(Nαdβ−1) (87)

=C

(
−1

2
, 1

)
Θ(N−1/2) +

∑
(α,β)∈S′

O(min(N−2α, N))Θ(Nαdβ−1) (88)

=Θ(
√
N) +O(

√
N) (89)

=Θ(
√
N). (90)

Thus, g(N, d) =
√
N holds, indicating T1(z) = Θ(d/

√
N) and T2(z) = Θ(d/

√
N).

Proposition B.6 (Limiting behavior for learning from geometry-inspired perturbations on natural
data (random label)). Suppose that Ineq. (2) holds. Assume ∥xn∥ = Θ(

√
d) for any n ∈ [N ] and

∥z∥ = Θ(
√
d). Suppose that yadvn is randomly sampled from {±1} for each n ∈ [N ]. Assume

N∑
n=1

λn|⟨xn, z⟩| = Θ(g1(N, d)) ⇒

∣∣∣∣∣
N∑

n=1

λnyn⟨xn, z⟩

∣∣∣∣∣ = Θ(g1(N, d)).. (91)

where g1 is a positive function of N and d. Let S := {(α, β) : n ∈ [N ], |⟨xn, z⟩| = Θ(Nαdβ)}.
Denote the number of n such that |⟨xn, z⟩| = Θ(Nαdβ) by C(α, β). Let (αmax, βmax) :=
argmax(α,β)∈S C(α, β)N

αdβ−1 as N → ∞ and d → ∞. By abuse of notation, we denote
f(x) > O(g(x)) if f(x) grows faster than g(x). Similarly, we denote f(x) < Ω(g(x)) if f(x)
shrinks faster than g(x). Then, the following statements hold with probability at least 99.99%:

• Growth rate. For any z, the growth rate of |T2(z)| is larger than or equal to |T1(z)|.
• Upper bound of effect of mislabeled data. For any z, |T1(z)| = O(d/N).
• Faster growth. The growth rate of |T2(z)| is larger than |T1(z)| If either of the following

conditions holds:

(i) C(αmax, βmax)Nαmax

dβ
max−1 > O(1) (92)

(ii) C(αmax, βmax)Nαmax

dβ
max−1 = Θ(1)

and C(αmax, βmax) > O(1) for any (αmax, βmax). (93)

• Consistent shrinks. If C(αmax, βmax)Nαmax

dβ
max−1 = O(g2(N, d)) < Ω(1), then

|T1(z)| = O(dg2(N, d)/N) and |T2(z)| = O(dg2(N, d)/N), where g2(N, d) is a positive
function of N and d. In addition, as N → ∞ and d→ ∞ while preserving d/N = Θ(1),
fbdy(z) = 0 and fbdyadv (z) = 0.

• Consistent growth rate. If there exists (αmax, βmax) such that

C(αmax, βmax)Nαmax

dβ
max−1 = Θ(1) and C(αmax, βmax) = Θ(1), (94)

then |T1(z)| = O(d/N) and |T2(z)| = Θ(d/N).

Proof. As a preliminary, please refer to the proof of Proposition B.5. The notations follow it. Similar
to Eq. (81),

|T1(z)| =Θ

(
d

N

)∣∣∣∣∣
N∑

n=1

λadvn yadvn ⟨xn, z⟩

∣∣∣∣∣, |T2(z)| =Θ

(
d

N

) N∑
n=1

λn|⟨xn, z⟩|. (95)
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By Hoeffding’s inequality,

P

[∣∣∣∣∣
N∑

n=1

λadvn yadvn ⟨xn, z⟩

∣∣∣∣∣ > t

]
≤ 2 exp

(
− 2t2∑N

n=1 λ
adv
n

2⟨xn, z⟩2

)
. (96)

Thus, for a constant C > 0, |
∑N

n=1 λ
adv
n yadvn ⟨xn, z⟩| is larger than C

√∑N
n=1 λ

adv
n

2⟨xn, z⟩2 with

probability at most 2 exp
(
−2C2

)
. Therefore, |

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩| = O(

√
g(N, d)) holds with

sufficiently high probability if
∑N

n=1 λ
adv
n

2⟨xn, z⟩2 = O(g(N, d)).

Growth rate. By Lemma B.4, the claims is established.

Upper bound of effect of mislabeled data. By Lemma B.4,
∑N

n=1 λ
adv
n

2⟨xn, z⟩2 = O(1). Thus,
the claim is established.

Consistent shrinks. If T2(z) shrinks with d and N , by the result of (growth rate), T1(z) shrinks
more faster or equally. Since fbdy(z) ≤

∑N
n=1 λn|⟨xn, z⟩| = O(g2(N, d)), fbdy(z) = 0 holds.

Consistent growth rate. Consistent growth rate between T1(z) and T2(z) can be found only in the
case with

∑N
n=1 λ

adv2⟨xn, z⟩2 = O(1) and
∑N

n=1 λ|⟨xn, z⟩| = Θ(1). This holds only when the
following condition holds:

C(αmax, βmax)Nαmax

dβ
max−1 = Θ(1) and C(αmax, βmax) = Θ(1). (97)

Faster growth. For cases except for (consistent shrinks) and (Consistent growth rate), by Lemma B.4,
T2(z) grows faster than T1(z).

Lemma B.7 (Representation of test sample strongly correlated with few training samples). Suppose
that Ineq. (2) holds. Assume ∥xn∥ = Θ(

√
d) for any n ∈ [N ] and ∥z∥ = Θ(

√
d). Let S := {(α, β) :

n ∈ [N ], |⟨xn, z⟩| = Θ(Nαdβ)}. Denote the number of n such that |⟨xn, z⟩| = Θ(Nαdβ) by
C(α, β). Let (αmax, βmax) := argmax(α,β)∈S C(α, β)N

αdβ−1 as N → ∞ and d → ∞. Let
Q ⊂ [N ] be the set of indices such that |Q| = Θ(1). Let r ∈ Rd be the vector such that∑N

n=1 |⟨xn, r⟩| = O(d). Then, the following statement holds:

There exists (αmax, βmax) such that

C(αmax, βmax)Nαmax

dβ
max−1 = Θ(1) and C(αmax, βmax) = Θ(1), (98)

⇒ z =
∑
n∈Q

±Θ(1)xn + r. (99)

Proof. Note that α and β are constrained to α ≤ 0 and β ≤ 1, respectively, by Lemma B.4.
In addition, C(α, β) is also constrained to C(α, β) = O(min(N−2α, N)) by Lemma B.4. If
C(αmax, βmax)Nαmax

dβ
max−1 = Θ(1) and C(αmax, βmax) = Θ(1), Nαmax

dβ
max−1 = Θ(1). This

holds with only αmax = 0 and βmax = 1. Thus, there must exist n such that |⟨xn, z⟩| = Θ(d).
Note that there are at most O(1) instances of such n. Therefore, z has the term

∑
n∈Q ±Θ(1)xn for

|Q| = Θ(1). Note that |⟨x1, z⟩| = Θ(d) also holds for z = ±Θ(1)x2 ±Θ(1)x3 + · · · ±Θ(1)xN

under γ3R4
min/(3NR

2
max) ≥ pmax. However, as shown in Lemma B.4, such z does not satisfy

∥z∥ = Θ(
√
d). Then, let us consider the properties of r. To maintain αmax = 0 and βmax = 1,

max(α,β)∈S\{0,1} C(α, β)N
αdβ−1 = O(1). In other words, max(α,β)∈S\{0,1} C(α, β)N

αdβ =

O(d). This holds if
∑N

n=1 |⟨xn, r⟩| = O(d).

Theorem 4.2 (Consistent decision of learning from geometry-inspired perturbations on natural data).
Suppose that Ineq. (2), ∥xn∥ = Θ(

√
d) for all n ∈ [N ], and ∥z∥ = Θ(

√
d) hold. Consider N → ∞

and d → ∞ while keeping d/N = Θ(1). Suppose that yadvn is randomly sampled from {±1} for
each n ∈ [N ]. Assume |

∑N
n=1 λnyn⟨xn, z⟩| = Θ(g(N, d)) if

∑N
n=1 λn|⟨xn, z⟩| = Θ(g(N, d)),
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where g is a positive function of N and d. Let Q ⊂ [N ] be a set of indices such that |Q| = Θ(1),
and let r ∈ Rd be a vector such that

∑N
n=1 |⟨xn, r⟩| = O(d). If z is not represented as z =∑

n∈Q ±Θ(1)xn + r, then sgn(fbdyadv (z)) = sgn(fbdy(z)) holds with probability at least 99.99%.

Proof. By Proposition B.6 and Lemma B.7, this is trivial.

C Experimental Settings

In this section, we present the experimental settings in Fig. 1. An NVIDIA A100 GPU was used. A
six-layer convolutional neural network was employed for both MNIST [3] and Fashion-MNIST [19],
whereas WideResNet-28-10 with a dropout ratio of 0.3 was used for CIFAR-10 [10]. The batch size
was set to 128. While no data augmentation was applied to MNIST and Fashion-MNIST, CIFAR-10
utilized random cropping and random horizontal flipping. Training was conducted using stochastic
gradient descent with Nesterov momentum set at 0.9 and a weight decay of 5 × 10−4. The initial
learning rates are 0.01 for MNIST and Fashion-MNIST and 0.1 for CIFAR-10. The perturbation
constraint ϵ was set to 2.0 for MNIST and Fashion-MNIST and 0.5 for CIFAR-10. As a loss function
for both training and adversarial attacks, we adopted the cross-entropy loss. The number of epochs
was set at 100 for MNIST and 200 for both Fashion-MNIST and CIFAR-10. The scheduler reduced
the learning rate to 10% of its original value if the training loss did not decrease over 10 consecutive
epochs.

Adversarial attacks were performed using projected gradient descent [11]. The final output was
selected as the adversarial example that maximized the loss over all steps. The step size of projected
gradient descent is ϵ/5. The number of steps is 100. It should be noted that although we primarily
considered geometry-inspired perturbations (cf. Eq. (1)) in the theoretical discussion, these perturba-
tions are not computationally feasible in practice. This is because we cannot practically obtain the
decision boundary of a one-hidden-layer neural network (cf. Eq. (7)) and the explicit value of λn (cf.
Theorem A.1).
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