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Abstract

Continual medical image segmentation primarily explores the utilization of U-Net and its
derivatives within the realm of medical imaging, posing significant challenges in meeting
the demands of shifting domains over time. Foundation models serve as robust knowledge
repositories, offering unique advantages such as general applicability, knowledge transfer-
ability, and continuous improvements. By leveraging pre-existing domain insights, adapt-
ability, generalization, and performance across diverse tasks can be enhanced. In this work,
we show how to deploy Segment Anything Model’s (SAM) natural image pretraining for
the continual medical image segmentation, where data is sparse. We introduce UnCLe
SAM, a novel approach that uses the knowledge of the pre-trained SAM foundation model
to make it suitable for continual segmentation in dynamic environments. We demonstrate
that UnCLe SAM is a robust alternative to U-Net-based approaches and showcase its state-
of-the-art (SOTA) continual medical segmentation capabilities. The primary objective of
UnCLe SAM is to strike a delicate balance between model rigidity and plasticity, effectively
addressing prevalent pitfalls within CL methodologies. We assess UnCLe SAM through a
series of prostate segmentation tasks, applying a set of different CL methods. Compara-
tive evaluations against the Lifelong nnU-Net framework reveal the potential application
of UnCLe SAM in dynamically changing environments like healthcare. Our code base is
available at https://github.com/MECLabTUDA/UnCLeSAM/.

Keywords: Continual learning, Foundation Model, Segment Anything Model

1. Introduction

Continual learning (CL) holds immense significance in safety-critical applications of Deep
Learning. This is evident in healthcare, where models must adapt to data changes over
time while maintaining high performance on older data (Gonzalez et al., 2020). Traditional
U-Net architectures encounter difficulties in seamlessly adapting to domain changes in data
distribution, particularly when faced with new imaging protocols or variations in patient
populations or diseases (Sanner et al., 2021; Derakhshani et al., 2022; Gonzalez et al., 2022;
Fuchs et al., 2022). The challenge lies in training models that exhibit superior performance
when using datasets with limited temporal availability. Finding a good trade-off between
rigidity which hinders learning new tasks and plasticity causing catastrophic forgetting
on previous tasks is therefore important (Kirkpatrick et al., 2017; Hadsell et al., 2020;
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Figure 1: Unlike traditional static training (left), continual U-Net training (middle) involves
time-limited access to training data. Data arrives sequentially, and the model lacks access
to previous data. In contrast, UnCLe SAM (right) continuously adapts the adapter with
sequentially arriving data while benefiting from SAM’s pre-trained knowledge base.

De Lange et al., 2021). Existing CL methods, when applied to medical data, often result in
segmentations that fall short of basic semantic standards like semantic coherence over time
(Ranem et al., 2022; Gonzalez et al., 2023).

We introduce UnCLe SAM (Unleashing Continual Learning for SAM), a novel ap-
proach that leverages the Segment Anything Model (SAM) (Kirillov et al., 2023) for en-
hanced domain adaptation in continuous medical setups. Our method involves continually
adapting the prompt for SAM while leveraging the knowledge base of SAM without a full
re-training as in MedSAM (Ma and Wang, 2023).

The Lifelong nnU-Net framework and other CL methods, such as Elastic Weight Con-
solidation (EWC) (Kirkpatrick et al., 2017), Riemannian Walk (RWalk) (Chaudhry et al.,
2018), or basic replay methods like iCARL (Rebuffi et al., 2017), struggle to adequately
adapt to changing domains (Gonzilez et al., 2023). Using replay, regularization, or knowl-
edge distillation has its advantages and disadvantages when it comes to domain shifts in
continuous setups. For instance, there is a rigidity/plasticity trade-off or computational
burden on performance. Exploring CL by using foundation models, until now, remained an
unexplored approach, Figure 1.

UnCLe SAM strategically addresses challenges for domain adaptation known when ap-
plying U-Net-based architectures. U-Nets encounter challenges in maintaining segmentation
accuracy amidst variations in imaging protocols or discrepancies in patient populations, re-
sulting in compromised performance and reduced reliability of the model in dynamic clinical
scenarios (Gonzalez et al., 2020; Ranem et al., 2022; Sanner et al., 2021). Leveraging the
robust knowledge from SAM while continually adapting the prompting adapter reduces
such challenges.

In this work, we use the pre-trained SAM architecture for continual prostate MRI seg-
mentation that leverage the foundation model’s knowledge to properly adapt to shifting do-
mains. Rather than attempting to apply regularization to the network, we opt to freeze
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certain architectural components such as the Vision Transformer, i.e., SAM’s Encoder while
continually adapting the prompt for SAM. With this approach, the learned visual represen-
tation can be transfered to different domains (Ma and Wang, 2023).

SAM’s ability to segment anything in diverse contexts becomes a valuable asset for con-
tinual adaptation, ensuring that the model maintains high segmentation performance across
evolving datasets with simple fine-tuning techniques. By using a pre-trained ResNet-50 net-
work, (He et al., 2016) as an Adapter to continually updating the SAM prompt, UnCLe
SAM effectively handles challenges that come with domain adaptations commonly faced by
U-Net-based architectures. UnCLe SAM does not require a long time to train on a new do-
main, which makes it superior in terms of applicability while achieving SOTA performance.
To validate our approach, we focus on the critical task of prostate segmentation for T2-
weighted MRIs, which plays an important role in prostate cancer diagnosis and treatment
planning. Our contributions are three-fold: We (1) introduce a Continual prompting
of foundation model for medical image segmentation, that can (2) successfully respond
to domain adaptation by achieving (3) superior performance than Lifelong nnU-Net
Framework.

2. Methodology

Fundamentals We start by introducing some key terminology: € C R? defines a 3D
spatial domain as we work with three-dimensional Magnetic Resonance (MR) scans. 7; C
Q7 is referred to a single task i, whereas {27 represents a set of tasks. A stage j in a continual
setup defines the process of training the model on task 7; after it has been trained on all
previous {7i,...,Tj—1} tasks using some CL method.

Basic components of SAM  SAM (Kirillov et al., 2023), consists of a Vision Transformer
(ViT) (Dosovitskiy et al., 2020) as its core feature extractor and a segmentation head in
form of a mask decoder, responsible for generating precise segmentation masks. Trained
on a large database of general images, SAM has garnered a robust knowledge base that
facilitates its adaptability across various domains opening doors for continual setups.

The ViT feature extractor within SAM effectively captures visual information from input
images, creating detailed embeddings. SAM’s segmentation head complements the ViT
feature extractor by processing the embeddings to produce detailed segmentation masks.
This mask decoder is trained to accurately delineate regions of interest within the input
images. Moreover, the segmentation head can makes use of different prompts such as 2D
points and bounding boxes to further guide the segmentation process. SAM was trained on a
large database of general images to establish a strong foundation for adaptable segmentation
tasks. This foundation enables SAM to excel in various domains, making it particularly
well-suited for continual setups where adaptability is paramount.

UnCLe SAM: Continual Prompting for Enhanced Adaptability UnCLe SAM
builds upon the foundation of SAM by introducing a novel approach to enhance adapt-
ability over time. Since SAM generalizes to different domains, UnCLe SAM enhances this
adaptability by introducing continual prompting using a ResNet-50 adapter. The archi-
tecture of UnCLe SAM is carefully crafted to leverage the global knowledge stored within
the pre-trained SAM, offering adaptability in dynamic environments like healthcare. A key
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aspect of our methodology is the decision to keep SAM’s ViT backbone frozen, ensuring con-
sistent feature extraction across different datasets and imaging modalities. This approach
not only enhances feature extraction reliability but also lays the groundwork for seamless
adaptation to changing domain characteristics, see Figure 2. By leveraging the frozen ViT
backbone, we implement a pre-processing step to extract embeddings from both training
and testing sets, aligning with the approach proposed by MedSAM (Ma and Wang, 2023).

Losses

l Adapter
Lysse? < (samples, samplesgt) Samples
bbox 2P
Lyis (bbox, bboxy:) Conv ResNet 50
Lpce(seg,seggr) Bounding
Box
Liotar = L:,;as’;ples + Lyf + Lpcy —
SAM
ViT Embeddings Mask Decoder

% LDCE

Figure 2: UnCLe SAM model for medical image segmentation using a ResNet-50 as an
Adapter to build the input prompt for the base SAM backbone.

A key component of UnCLe SAM lies in the continuous adaptation of the ResNet-50
adapter, which plays a crucial role in guiding the segmentation process by generating adap-
tive prompts. These adaptive prompts are based on the embeddings extracted by the ViT
feature extractor. By incorporating a transposed convolutional layer, the ResNet-50 adapter
effectively translates the embeddings into actionable prompts, improving segmentation ac-
curacy. Based on the extensive ablations of SAM in radiology (Ranem et al., 2023), the
proposed adapter is designed to predict 100 2D points and four coordinates representing a
bounding box.

Moreover, UnCLe SAM is designed to adapt to changing domain characteristics over
time. While SAM’s basic components provide a strong foundation for segmentation tasks,
UnCLe SAM’s continual prompting mechanism ensures that the model can dynamically
adjust to evolving datasets and domain shifts. This adaptability is essential for maintaining
high performance across diverse medical imaging environments.

In summary, UnCLe SAM’s architectural composition integrates the robustness of pre-
trained SAM and the feature extraction capabilities of ResNet-50, forming a comprehensive
base model for domain adaptation in medical image segmentation over time. By strategically
freezing SAM’s ViT backbone, coupled with the ResNet-50 Adapter, UnCLe SAM is the
first method to effectively combine the strengths of both a foundation model and CL to
achieve accurate and adaptable segmentation results for medical segmentation tasks.
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3. Experimental Setup

Datasets We explore the problem of continual image segmentation for prostate MRIs.
To ensure reproducibility, we use only openly available datasets, whereas every data source

acts as one task {71,...,T,}. Table 1 provides a summary of the core characteristics of the
data.

Dataset UCL 12CVB ISBI DecathProst

# Cases 13 19 30 32

Resolution | [24 384 384] [64 384 384] [19 384 384]  [19 316 316]
Spacing | [3.30.50.5] [1.30.50.4] [3.70.505] [1.01.0 1.0]

Table 1: Image and label characteristics of the used prostate datasets.

The prostate data corpus consists of four publicly available T2-weighted MRI datasets
as provided in the Multi-site Dataset for Prostate MRI Segmentation Challenge for sites
A (ISBI), C (I2CVB) and D (UCL) and DecathProst from the Medical Segmentation De-
cathlon (Litjens et al., 2014; Bloch et al., 2015; Lemaitre et al., 2015; Liu et al., 2020a,b;
Antonelli et al., 2021). For all datasets, we randomly divide 20% of the data for test
purposes and maintain this split across all experiments.

Training setup All nnU-Net (Isensee et al., 2021) experiments train for 250 epochs with
250 steps each using the Lifelong nnU-Net framework (Gonzalez et al., 2023) with default
optimizer and scheduler. SAM experiments also run for 250 epochs using Adam optimizer
with weight decay of le™*, learning rates of le™* and le™3 for the SAM segmentation
head and the Adapter respectively. Our loss function combines Dice-Cross-Entropy (DCE,
Lpcg) from (Consortium, 2020) and Mean-Squared-Error (MSE, Ly;sg) with early stop-

ping (patience of 15). The MSE loss-term is used for predicted samples (Ef\?,glgles) nd

bounding box coordinates (L¥E%): Loam = Lpor + Ej‘}?ﬁles + £BBo%  All models are

trained on a single NVIDIA A40 GPU (48 GB).

Metrics For every CL setup, we report the mean Dice and standard deviation across the
test images from all tasks {7i}i<|n,| as well as average forwards (FWT) and backwards
(BWT) transferability (Diaz-Rodriguez et al., 2018). FWT measures the impact of the
current training stage {7;};<|o,| on test data from an untrained stage 7; ; j > i. BWT,
on the other hand, indicates the amount of maintained knowledge on test samples from 7;
during training on different stages {7;};<|q,| ; j < i over time. Models that achieve a higher
FWT have high plasticity and are able to learn new knowledge, while models with a higher
BWT maintain most knowledge from previous tasks, i.e. prevent catastrophic forgetting.
More information on the CL metrics can be found in the Appendix B.

Baselines To get a proper evaluation of our approach, we compare against conventional
sequential training, rehearsal training, and two well-known CL methods: EWC (Kirkpatrick
et al., 2017) and RWalk (Chaudhry et al., 2018). For both CL methods we are inspired by
the Lifelong nnU-Net (Gonzélez et al., 2023) hyperparameter setup for all our experiments
(EWC: A =04, RWalk: « =0.9,A =0.4).
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4. Results

4.1. Continual learning performance

In this section, we compare UnCLe SAM with sequential Lifelong nnU-Net and two estab-
lished CL methods — EWC and RWalk. Additionally, we evaluate against the upper bound
of rehearsal training, which involves storing randomly 20% from each task. Rehearsal serves
as an upper bound for Lifelong nnU-Net but is impractical due to privacy policy constraints
on storing patient images.

Method Fixed param Tuned param Dice 1 [%] BWT 1 [%] FWT 1 [%] ‘ # Epochs | Runtime | [sec]
Sequential,,, e, 49.44+28.82 —52.96+15.07 —52.81+5.05 1000 193
Sequentialyyre san 7838 £11.67 —1427+891 —21.27+10.96 113 43
EWC,,U0-Net B N=o04 39.34 +£32.03 —46.77+12.16 —52.72£16.90 1000 200
EWCUnCLe SAM = TTAT+1216  —16.85+10.13  —22.40 + 10.86 123 46
RWalkynt-Net w00 o4 52.48 +£26.10 —48.62+13.42  —48.73 +£9.52 1000 196
RWalkyncLe saM = = 773141342 —16.08+12.86 —23.17+11.41 120 48
Rehearsal,nu-Net - - 60.90 £21.62 —37.45 £ 11.60 —39.83 £7.92 ‘ 1000 269

Table 2: CL performance of the final model; mean Dice, BWT and FWT over all tasks
including standard deviation, total amount of trained epochs and average runtime per epoch
in seconds; best values are marked in bold.

Table 2 and Figure 3 show that Lifelong nnU-Net achieves certain benefits depending
on which CL method is used, however gets significantly outperformed by UnCLe SAM.
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Figure 3: Segmentation performance as Dice using different CL methods for UnCLe SAM
and Lifelong nnU-Net; the larger the area the better.

UnCLe SAM demonstrates superiority over Lifelong nnU-Net as it successfully leverages
the rich knowledge base embedded in the foundation model, enabling robust adaptation to
domain shifts within the data. The 23% and 18% performance increase for BWT and FWT,
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compared to the rehearsal upper bound, contrasts with traditional methods, which struggle
to handle domain variations effectively over time.

4.2. Qualitative temporal evaluation

To analyze the robustness of our proposed method, we illustrate segmentation masks in
Figure 4 for UnCLe SAM and Lifelong nnU-Net using EWC, RWalk and rehearsal.
UnCLe SAM consistently generates coherent segmentation masks throughout all training
stages. In contrast, EWC and rehearsal training for Lifelong nnU-Nets result in low-quality
segmentations after training on the last stage 4 {7;}. The reduced performance on the
sample scan for later stages illustrates the impact of catastrophic forgetting, where the
network excessively adapts to the most recent training data, i.e. being too plastic. UnCLe
SAM avoids being either overly rigid or plastic, by achieving a proper balance, providing
robust predictions that maintain quality across both early and later training stages.

Lifelong nnU-Net
Ground Truth UnCLe SAM Sequential EWC RWalk Rehearsal

{Tplpss {Tplp<2 {T1}

{T p}ps4

Figure 4: Temporal analysis for sequential, EWC, Rehearsal and UnCLe SAM using Case
14, Slice 14 (37) from 7>.

4.3. UnCLe SAM static comparison

In a static training condition, a model is trained on one single task and validated across all
existing tasks, as shown in Table 3. Direct comparison between UnCLe SAM and nnU-Net
segmentation under static training provide direct insights into a method’s generalizability
and ability to handle diverse tasks after training on a singular dataset.
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Tested on — Dice 1 + o | [%]

Trained on

UCL 12CVB ISBI DecathProst
£ UCL 85.47+6.92 23.24+16.8 81.47+10.7 968 +11.4
ZI 12CVB 57.11+£7.57 83.06+0.28 45.73 +20.2 1.30 £ 1.53
v:q) ISBI 81.78 £6.15 29.06+£17.6 93.00+1.46 5248+27.5
= DecathProst 25.24 4 25.1 27.57+£1.89 59.20 £16.3 89.25+1.78
© UCL 85.29+3.59 51.53+36.1 85.57 £6.61 44 57 £ 21.8
5 = 12CVB 85.99+1.83 88.11 +3.20 83.55+K.42 80.16 £ 6.52
5;:3 ISBI 84.68 +£0.93 54.84 £38.8 96.02+1.04 82.56+3.79

DecathProst 81.55£8.66 59.94+36.4 79.77+15.1 92.27+0.97

Table 3: Results for nnU-Net and UnCLe SAM networks trained on every task individually
and evaluated across all tasks; Bold values indicate the performance of the baseline on the
validation set of the task it has been trained on.

Table 3 demonstrates the superior performance and greater gemeralizability of UnClLe
SAM compared to nnU-Net for prostate segmentation. The method consistently achieves
higher Dice scores across diverse datasets, achieving proper generalizability, highlighting
UnCLe SAM’s robustness and adaptability. It showcases promising potential for domain
adaptation and continual learning in medical image segmentation, providing a stable and
adaptable solution across diverse datasets. For additional results, we refer the reader to
Appendix A.

5. Conclusion

We propose UnCLe SAM, a novel approach that leverages the knowledge base of the pre-
trained SAM foundation model to address domain adaptation challenges in continual med-
ical image segmentation. By leveraging SAM’s robust capabilities, our method achieves
superior adaptability and performance compared to traditional U-Net architectures like the
Lifelong nnU-Net framework. Through extensive evaluation of a set of four different prostate
datasets, UnCLe SAM demonstrates its effectiveness in maintaining knowledge from early
stages while adapting to evolving datasets over time. Our approach not only outperforms
existing methods in terms of segmentation accuracy in a continuous setup but also offers a
more generalizable solution, showcasing a significant performance improvement even when
trained statically with data from a single site. UnCLe SAM paves the way for a balanced ap-
proach between rigidity and plasticity in continual learning setups without using actual CL
methods like EWC while achieving better results than rehearsal. By releasing our code base,
we hope to inspire research in CL that goes beyond traditional U-Net-based segmentation
for medical settings by leveraging the knowledge base of foundation models like SAM.
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Appendix A. Base model performance

Table 3 from the main manuscript provides the Dice scores with standard deviation for every
trained baseline evaluated across all tasks. Figure 5 visualizes them in form of confusion
matrices.

UnCLe SAM nnU-Net

25.24 27.57 59.20

DecathProst
DecathProst
\

- 60

ISBI
ISBI

-40

Trained on

12CVvB
12CVvB

ucL
ucL

'
12CVB DecathProst

' '
12CVvB DecathProst

Tested on

Figure 5: Confusion matrices based on Dice score for UnCLe SAM (left) and nnU-Net
(right) across different datasets.

Appendix B. Continual learning metrics

In this work, BWT and FWT are defined as follows (Diaz-Rodriguez et al., 2018). Let T;
be a specific task:
FWT is defined as

FWT (7;) = Dice (M[ﬂ7',,77;71], 7;) — Dice (M[fm, 7;) s (1)
where M7, 7, is a network trained on stages {1,...,p} < |Q7|and Dice(M7; . 7, Ti)
indicates the Sgrensen—Dice coefficient from a network trained on stages {1, ..., j} evaluated

on dataset p.
BWT is defined as

BWT (7;) = Dice (Mr;__7;...7.], Ti) — Dice (M 71, T5) , (2)
FWT for the last model state as well as BWT for the first model state is not defined.

Appendix C. Continual learning performance

Table 2 from the main manuscript provides the CL performance over all used methods
using mean Dice, BWT and FWT. Table 4 provides the actual Dice scores and standard
deviation of each method across all four tasks after the network was trained on all stages
in a continous manner.

12
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Tested on — Dice t + o | [%)]

Method

UCL 12CVB ISBI DecathProst
Sequential, ,7Net 25.06 £5.61 20.22+3.95 61.40+15.7 91.06 +1.61
Sequentialy,cre SAM 81.55+£8.66 59.94+36.4 79.77+15.1 92.27+£0.97
EWC,hu-Net 21.98 £+ 3.92 2.17 £ 2.57 45.01 £24.9 88.20 +1.30
EWCuncLe sam 78.36 = 8.57 5826+ 36.5 83.19£10.7 91.25+1.01
RWalk,nu-Net 36.86 £ 7.82 21.67 £+ 4.56 60.33 &+ 18.9 91.07 £ 1.54
RWalkyncre sam 81.56 £4.95 54.51+385 84.34+547 88.85+3.20
Rehearsal,nu-Net 35.39+30.7 46.59+£3.03 70.30+16.00 91.33+1.45

Table 4: Results for nnU-Net and UnCLe SAM final networks trained all tasks sequentially,
with EWC and RWalk, evaluated across all tasks; Bold values indicate the best performance.

Appendix D. Workflow comparison of models
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Centralized training performance

Figure 6: Comparison of workflow methodologies for SAM, MedSAM, and UnCLe SAM.
SAM and MedSAM adopt a centralized training approach, whereas SAM fails to perform
good in medical use cases. In contrast, UnCLe SAM utilizes a continuous training paradigm,
facilitating CL.

Figure 6 illustrates the workflow process for SAM, MedSAM and UnCLe SAM, highlight-

ing their distinct training methodologies. SAM and MedSAM are trained centralized from
scratch, while having an increased CO2 emission. Additionally, having centralized training
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of MedSAM may inadvertently contain samples from publicly used datasets, resulting in
data leakage and privacy violations in CL comparisons. In contrast, UnCLe SAM utilizes
a continuous training paradigm, minimizing CO2 emissions by leveraging the pre-trained
SAM model and enabling adaptation to evolving data leveraging the pre-trained SAM.
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