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Abstract

Large Transformer networks are increasingly used in settings where low infer-
ence latency is necessary to enable new applications and improve the end-user
experience. However, autoregressive inference is resource intensive and requires
parallelism for efficiency. Parallelism introduces collective communication that
is both expensive and represents a phase when hardware resources are underuti-
lized. Towards mitigating this, Kraken is an evolution of the standard Transformer
architecture that is designed to complement existing tensor parallelism schemes
for efficient inference on multi-device systems. By introducing a fixed degree of
intra-layer model parallelism, the architecture allows collective operations to be
overlapped with compute, decreasing latency and increasing hardware utilization.
When trained on OpenWebText, Kraken models reach a similar perplexity as stan-
dard Transformers while also preserving their language modeling capabilities as
evaluated on the SuperGLUE benchmark. Importantly, when tested on multi-GPU
systems using TensorRT-LLM engines, Kraken speeds up Time To First Token by
a mean of 35.6% across a range of model sizes, context lengths, and degrees of
tensor parallelism.

1 Introduction

Deep neural networks based on the Transformer architecture (51) have become the prevalent choice
for a variety of tasks involving sequences, especially in natural language processing and computer
vision (44) (7) (19). Their capabilities, particularly in language modeling, have been driven by a rapid
increase in parameter count (7). Today’s largest language models have up to a trillion parameters (21)
and consequently demand more efficiency from the systems used to train and serve them. This has
necessitated the need for many techniques and optimizations that focus on improving the performance
of both algorithms and systems (47) (34) (17) (37) (12).

Large models are often used in interactive applications where latency is an important metric that
dictates the quality of the end-user experience (28). A typical web search takes about 0.2 seconds but
the Time To First Token (TTFT) for large models can be up to a few seconds (depending on context
length, model size, and available hardware) (42). Additionally, because it is not always feasible to
run models on local hardware, they are served to users via datacenters that use multi-device compute
nodes, adding to latency constraints. Increasingly, language models are also used as intermediate
steps in longer processes such as augmenting web searches or presenting the results of database
queries (28). The rising prevalence of such multi-step applications makes reducing inference latency
even more critical.
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Continuing this theme, this work focuses on reducing the latency cost of the collective operations in-
troduced by tensor parallelism (49) in the forward pass. In particular, it introduces Kraken, a variation
of the standard Transformer architecture (44)(7) that reduces the amount of inter-device communi-
cation and allows remaining collective operators to be overlapped with compute. Kraken models
have a fixed degree of innate model parallelism that allows computational graphs on each device to
run independently without having to wait for the results of collective operations. The architecture
is designed to complement the topology of multi-device setups such as nodes in typical datacenters
and DGX (13) systems. By designing the model architecture to account for characteristics of the
hardware, our approach increases compute utilization and allows more efficient inference.

We evaluate the improvements Kraken offers over standard Transformers in two key aspects: model
quality and inference latency. For the former, we train a series of Kraken models with varying degrees
of parallelism and parameter count on OpenWebText (23) and compare them with the GPT-2 (44)
family of models on the SuperGLUE suite of benchmarks (53). We then implement Kraken using
the TensorRT-LLM library (15) and measure the Time To First Token (TTFT) given various model
sizes and context lengths to illustrate the efficiency gains when collective operators are no longer
on the critical path. We find that while maintaining the language modeling capabilities of standard
Transformers, Kraken models speedup the Time To First Token (TTFT) by a geomean of 35.6% when
tested across a range of model sizes, context lengths, and degrees of parallelism.

2 Background

2.1 Decoder-Only Transformer models

We will briefly discuss the forward pass of decoder-only Transformer (DTransformer) models that
use self-attention mechanisms to perform language modeling (39) in order to motivate our approach.
Given an input sequence x consisting of tokens belonging to a vocabulary V , such models return
a probability distribution over the vocabulary that describes what the next token in x could be i.e.,
the model is trained to estimate P (x[ℓ + 1] | x[1 : ℓ]) where ℓ is the initial length of x. To compute
the output logits in the forward pass, x is converted to a sequence of embeddings that incorporate
information about each token and its position in the sequence. These embeddings are used as input to
a stack of Transformer layers one of which is depicted in Figure 1.
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Figure 1: One layer of a standard Transformer
consisting of Multi-Head Attention (also shown)
followed by a FeedForward Network. Residual
connections have been omitted.
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Even when weights and KV cache fit on de-
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These results are for a 6.7B parameter GPT-3
like model and were collected using TensorRT-
LLM engines on our evaluation platform: an
HGX A100 40GB system.
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Such layers comprise the bulk of the compute in the model and consist of a Multi-Head Attention
(MHA) block followed by a FeedForward Network (FFN or Multi-Layer Perceptron). The FFN
typically consists of two linear transformations with a non-linear activation function in between. On
the other hand, Multi-Head Attention (Figure 1) implements scaled dot-product attention i.e., each
head computes Softmax(QKT

√
h
)V where Q,K, V ∈ Rh×l. Here, h is the head dimension and l is the

sequence length. The General Matrix Multiply (GEMM) Wout combines the outputs of the different
heads. The activations of the last layer are used as input to the unembedding operation. Henceforth,
we will refer to the GPT-2,3 (44)(7) like construction as the standard Transformer architecture. This
variant uses MHA, has sequential Attention and FFN blocks, expands the embedding dimension from
d to 4d in the hidden layer of the FFN, uses Gaussian Error Linear Unit (GELU) non-linearities, and
places Layer Norm operators before the MHA and FFN i.e., is a Pre-LN Transformer.

A widely used optimization during inference involves caching the Key and Value matrices (from
GEMM QKV in Figure 1) of each token in a KV cache that is stored in memory. This memoization
has the effect of breaking up autoregressive inference (38)(58) into two distinct steps: 1) Prefill (when
the first token and the KV cache are generated) and 2) Decode(for all subsequent tokens). Both
these steps have distinct runtime characteristics with Prefill being more compute bound and Decode
being more memory bandwidth bound (58). The KV cache entry for the next generated token is
appended during each Decode step. Prefill, measured by TTFT, typically takes much longer than a
single Decode step and will be the focus of this work.

2.2 Multi-Device systems

Given the extensive amount of compute and memory capacity required to efficiently serve large
models, most widely used systems are node-based configurations where each node has a small
number (between 4 and 16) of devices. These devices usually take the form of Graphics Processing
Units (GPUs) or Tensor Processing Units (TPUs). The discussion in this work will focus on GPUs
but we expect that our findings will also be of relevance to other choices of accelerators such as
TPUs. Accessing data at levels of the system physically closer to compute cores such as scratchpad
memory or caches is typically much faster and more efficient compared to accessing off-chip memory.
Techniques like tiled matrix multiplication (20) and FlashAttention (17) account for this characteristic,
considerably improving the runtime performance of implementations.

Devices within a node are configured in a topology and linked by interconnects such as Peripheral
Component Interconnect Express (PCIe), NVLink, and NVSwitch. The different standards balance
versatility and cost with performance. For instance, a topology that uses PCIe switches across some
connections will have less overall bandwidth than a system that uses solely NVLink/NVSwitch.
Inter-device communication primitives are provided to other software by libraries like NCCL (14)
and RCCL (11). Communication is comparatively expensive and represents a phase in the forward
pass where compute cores are mostly idle. This work strives to extend the IO-aware approach used
by techniques like FlashAttention (17) towards the multi-device setting.

2.3 Tensor parallelism

Serving large models in multi-device settings requires parallelization schemes and strategies
that partition the input sequence, model weights, activations, and/or incoming inference re-
quests (49) (56) (35) (1) (60). In particular, model parallel (intra-operator) schemes fall into two
broad categories: tensor parallelism and pipeline parallelism. Since Kraken models are designed to
improve inference latency, this discussion will center around tensor parallelism.

There are several possible strategies (42) (55) to achieve distributed tensor parallelism in Transformer
models but we will focus on the widely used scheme introduced by Shoeybi et al. (49) which is
well-suited for multi-GPU settings. This scheme introduces two AllReduce operations per layer and
takes advantage of the implicitly parallel nature of Multi-Head Attention with optimal partitioning of
the FeedForward Network. In each layer, contiguous groups of Attention heads are placed across
different devices and the Wout matrix that is used to combine the output of the different heads is
partitioned across columns. The output of the MHA block is retrieved by reducing the local output
of all devices; this introduces one AllReduce as shown in Figure 1. Similarly, in the FFN block,
the W1 weight matrix is partitioned across rows (using the notation where W1 is multiplied by a
column-vector of activations) and the W2 weight matrix is partitioned across columns. The output
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Figure 3: Parallelizing two standard Transformer layers compared to executing two layers
of a Kraken Transformer with 2-way parallelism. Kraken Transformers have fewer AllReduce
operations and these can be run concurrently with the Multi-Head Attention in the next layer. Step
lengths are illustrative and not indicative of how much wall-clock time a particular operation might
require.

of the FFN is computed by reducing the local output of all devices, thereby introducing another
AllReduce operation. The objective of this work is to reduce and hide the runtime impact of these
collectives introduced by tensor parallelism.

3 Kraken: Model architecture

3.1 Layer construction

The primary objective of Kraken is to preserve as much of the standard Transformer (GPT-2,3
like)(44)(7) architecture as possible while reducing the latency cost of the collective communication
introduced by tensor parallelism. To achieve this, we allow each of the individual shards of a
parallelized Transformer layer to behave as independent, smaller layers. More precisely, as depicted
in Figure 3, instead of sharding the Multi-Head Attention and FeedForward Network blocks, each
MHA and FFN block is replaced with a smaller, independent block. This introduces a fixed degree
of parallelism that is chosen at the outset of training and accounts for the most common hardware
deployment target. For example, if a model will be mostly served on nodes with eight GPUs each, a
reasonable choice would be to use either 4-way or 8-way parallelism (depending on the size of the
model). The former would be suitable for smaller models, allowing each node to serve two different
inference requests at the same time.

Consequently, the only inter-device dependency is an AllReduce operation at the end of every layer.
This collective represents the only interchange of activations between groups of sub-layers. Its output
is used in the FFN block of the next layer and not in the MHA block. As shown in Figure 3, this
allows for overlapping the compute in the MHA block with the AllReduce, effectively removing
most inter-device communication from the critical path. Much like how positional embeddings are
added to the token embeddings prior to the first layer (39), we chose to use element-wise addition to
combine the outputs of the various sub-layers from the previous layer. This occurs prior to the Layer
Norm before the FFN. The forward pass of each sub-layer, including residual connections, is also
described in Algorithm 1. All pretrained models in our evaluation use the GELU activation function
in the FFN. In initial experiments that explored different constructions, we scaled the weights of the
residual layer by 1√

L∗N using a similar line of reasoning as that used by Radford et al. (44). Here,
L is the number of layers, and N is the degree of parallelism. We did not remove this initialization
scheme in subsequent experiments even though accumulation along residual connections was limited
to groups of L sub-layers.
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Algorithm 1: Kraken Sub-Layer: Forward Pass

Input: x ∈ Rl×d

Output: y ∈ Rl×d

1 residual = x
/* The first layer replaces the AllReduce with the identity operator */

2 y = AllReduce(x)
3 x = LayerNorm(x)
4 x = residual + MultiHeadAttention(x)
5 residual = x
/* The output of the AllReduce is used only here allowing it to be overlapped

with Attention */
6 x = LayerNorm(x+ y)
7 y = residual + FeedForwardNetwork(x)
8 return y

The token and positional embeddings are shared across all sub-layers of the first layer i.e., there
is still one set of embeddings to maintain compatibility with weight tying (27) (43). After the last
layer, we combine the outputs of the different sub-layers using a linear transformation with weights
Wconcat ∈ Rd∗N×d where d is the embedding dimension and N is the degree of parallelism. The
output of this transformation is used as input to the unembedding. Depending on the implementation,
this linear layer introduces the only blocking collective in the computational graph.

3.2 Deriving model configurations for a fixed parameter budget

Increasing the degree of parallelism while keeping other hyperparameters like the embedding di-
mension constant will increase the parameter count. Instead, using a configuration of a standard
Transformer as the basis, we make the following two modifications to derive a Kraken configuration
that has approximately the same number of parameters:

• First, the hidden state expansion in the FFN is reduced from 4d to 2d where d is the
embedding/model dimension.

• Given the number of parameters P , degree of parallelism N , number of layers L, and
vocabulary size V , we derive a closed form expression for P and solve for d i.e., P =
V ∗d+ΣL

i=1N ∗((3∗(d×d)+(d×d))+2∗(d×2d)) where the term ((3∗(d×d)+(d×d))
comes from MHA and 2 ∗ (d× 2d)) comes from the FFN.

4 Evaluation

4.1 Model configurations and perplexity

To evaluate language modeling performance, we train a series of models up to 761 million parameters
large and with varying degrees of parallelism on OpenWebText (23). This allows us to compare
the performance of the Kraken architecture with the GPT-2 (44) family of models. Because of
limited access to compute, we do not exhaustively search for hyperparameters and stop training at
150 billion tokens in contrast to the about 300 billion tokens that language models of such sizes are
typically trained for (44)(24). Table 1 details the embedding dimensions, number of layers, and other
hyperparameters for each configuration. For Kraken configurations, the number of Attention heads in
each layer is summed across all sub-layers. The context length was set at 1024 tokens. Models similar
in size were trained using the same learning rate schedule and for the same number of gradient steps.
More details about the training setup, required compute, and how each configuration was derived can
be found in Appendix A.1. Pertinent code including the TensorRT-LLM implementation is available
at https://github.com/rohan-bp/kraken.

Perplexity measurements for GPT-2 models are provided to add context to the results with the
caveat that all Kraken models were trained on OpenWebText but GPT-2 models were trained on the
closed-source WebText dataset. We would expect that all things equal, Kraken models will have lower
perplexity unless the GPT-2 models were subsequently fine-tuned on OpenWebText. Nonetheless,
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Table 1: Model configurations and perplexity on OpenWebText for Kraken models compared to
similarly sized GPT-2 models. Lower perplexity is better.

Model Layers Embedding
Dimension

Attention
Heads

Total
Params.

Validation
Perplexity

GPT-2 12 768 12 117M 20.64
Kraken 2-way 12 678 12 124M 18.89
Kraken 4-way 12 504 12 124.5M 18.56
Kraken 6-way 12 418 12 123.2M 19.22

GPT-2 Medium 24 1024 16 345M 14.87
Kraken 2-way 24 888 16 350M 14.40
Kraken 4-way 24 644 16 353.4M 14.71

GPT-2 Large 24 1280 20 762M 13.69
Kraken 4-way 24 960 16 761M 13.09

Table 2: Zero-Shot performance on SuperGLUE. ReCoRD uses the F1 score as the evaluation
metric. All other benchmarks use accuracy.

Model BoolQ RTE CB COPA ReCoRD WIC WSC MultiRC Average
GPT-2 48.38 51.99 41.07 62.0 71.07 49.53 43.27 53.47 52.6

Kraken 124M
(2-way)

53.85 54.15 44.64 68.0 72.42 49.53 36.54 56.89 54.5

Kraken 124M
(4-way)

50.15 53.79 41.07 67.0 71.47 50.31 37.5 57.16 53.56

Kraken 124M
(6-way)

47.92 56.68 8.93 69.0 70.69 50.16 53.85 53.82 51.38

GPT-2
Medium

58.53 53.07 42.86 68.0 79.43 50.0 41.35 52.58 55.73

Kraken 355M
(2-way)

60.06 51.62 41.07 69.0 80.04 50.0 35.58 56.91 55.54

Kraken 355M
(4-way)

61.68 55.23 35.71 72.0 79.01 50.0 36.54 57.2 55.92

GPT-2 Large 60.55 52.71 41.07 72.0 81.95 49.69 44.23 48.56 56.34
Kraken 760M

(4-way)
60.58 49.1 10.71 73.0 82.04 50.0 36.54 51.65 51.7

even when trained over a smaller number of tokens, Kraken models reach a similarly low perplexity
as standard Transformers.

4.2 Performance On SuperGLUE

We used the SuperGLUE benchmark suite (53) to evaluate performance on language tasks. All
benchmarks were scored on accuracy except for ReCoRD which uses the F1 Score instead. No
finetuning or training was performed for any combination of model and benchmark. Table 2 contains
results for Zero-Shot performance and Table 3 presents performance in the Three-Shot setting.
Scores were calculated using the Language Model Evaluation Harness (2) with the default choice
of prompts and scoring metrics for option lm-eval-SuperGLUE v1. As conveyed by these results,
Kraken largely preserves the language modeling capabilities of the standard Transformer architecture.
We expect that the gap between standard Transformers on language tasks will close further if we train
the models on higher quality data and using optimal choices for the various hyperparameters.

4.3 Evaluation platform

To measure improvements in inference latency, we used the TensorRT-LLM (15) library to create
engines and compare Kraken models with other widely used dense model architectures. The library
provides an interface to define popular Transformer models and bundles a collection of kernels,
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Table 3: Three-Shot performance on SuperGLUE. ReCoRD uses the F1 score as the evaluation
metric. All other benchmarks use accuracy.

Model BoolQ RTE CB COPA ReCoRD WIC WSC MultiRC Average
GPT-2 53.76 47.65 42.86 60.0 70.12 50.0 51.92 50.62 53.37

Kraken 124M
(2-way)

55.14 48.74 44.64 61.0 68.83 49.69 47.12 50.56 53.22

Kraken 124M
(4-way)

59.05 44.04 48.21 64.0 69.94 47.49 51.92 54.17 54.85

Kraken 124M
(6-way)

54.28 46.93 42.86 63.0 69.17 49.37 44.23 51.96 52.72

GPT-2
Medium

60.58 47.65 44.64 68.0 78.35 47.65 50.0 53.22 56.26

Kraken 355M
(2-way)

50.73 53.07 37.5 68.0 79.01 49.06 66.35 51.34 56.88

Kraken 355M
(4-way)

61.8 51.99 50.0 73.0 77.97 47.49 44.23 54.17 57.58

GPT-2 Large 60.58 51.99 39.29 70.0 81.05 47.81 60.58 51.53 57.85
Kraken 760M

(4-way)
55.75 53.79 42.86 68.0 81.03 45.77 62.5 53.47 57.9

Table 4: Configurations for the different model engines used to compare TTFT. For models of
similar sizes, hyperparameters are shared for the GPT-like and Parallel Attention + FeedForward
variants. 4-way denotes Kraken configurations used when evaluating tensor parallelism across 4
devices and likewise for 8-way.

Model
Size

Layers dModel Params.
Per

Layer

Attention
Heads

Kraken
4-way

dModel

4-way
Params.

Per
Layer

4-way
Atten-
tion

Heads

Kraken
8-way

dModel

8-way
Params.

Per
Layer

8-way
Atten-
tion

Heads
1.3B 24 2048 50.3M 16 1248 49.9M 12 960 59.0M 10
6.7B 32 4096 201.3M 32 2496 199.4M 24 1920 235.9M 20
13B 40 5140 317.0M 40 3120 311.5M 30 2304 339.7M 32
65B 80 8192 805.3M 64 4992 797.4M 39 3648 851.7M 38

175B 96 12288 1.81B 96 7424 1.76B 58 5472 1.92B 57

plugins, and other optimizations that can be used to create efficient TensorRT engines (containing
model weights) and serve them on systems with GPUs. All experiments were conducted on a 8 x
A100 GPU machine with NVSwitch and 40GB of HBM memory per GPU.

4.4 Speedup in Time To First Token

For comparisons with other model architectures, we build engines for standard, GPT-like config-
urations and GPT-J (54) like configurations as detailed in Table 4. The latter serves to contrast
our approach with one that runs the FFN in parallel with the Attention (10) (54). Such parallel
layers require only one AllReduce in a layer but unlike Kraken, the collective cannot be overlapped
with compute. For similarly sized models, the only difference is the embedding dimension for the
Kraken models. All configurations follow the convention where dModel is divided by the number of
Attention heads to calculate the size of each head. Other configuration parameters such as the number
of layers, maximum context length, and vocabulary size were the same. The Attention heads are per
sub-layer for Kraken models and parameter counts do not include biases and layer normalization.

There are two sets of engines, one for 4-way tensor parallelism and another for 8-way parallelism.
We also did not follow the earlier convention 3.2 of solving for the embedding dimension of a
Kraken model precisely. This is because the available optimizations in TensorRT-LLM are compati-
ble only with specific Attention head dimensions. To account for this, we handpicked embedding
dimensions that, given an equivalent GPT-like configuration, have about the same number of pa-
rameters while still being compatible with the available kernels. This was necessary for a fair
evaluation but in practice, the chosen embedding dimension should also account for the performance
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Figure 4: Speedup in Time To First Token over standard Transformers on a system that uses
NVSwitch and with 4-way parallelism. x-axis labels denote the size of the model followed by the
context length. Bar labels are in percentage improvement.
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Figure 5: Speedup in Time To First Token over standard Transformers on a system that uses
NVSwitch and with 8-way parallelism. x-axis labels denote the size of the model followed by the
context length. Bar labels are in percentage improvement.

of the computational kernels it would map to. Anthony et al. (4) discuss this, showing how model
hyperparameters can affect GEMM performance and consequently training efficiency.

Figure 4 shows the speedup in latency compared to GPT-like models on our evaluation platform and
with 4-way parallelism while Figure 5 depicts improvements for 8-way parallelism. Across a range of
model sizes and context lengths of 128 and 2048 tokens, using Kraken models can improve inference
latency by anywhere from 10.9% to 63.7%. These results are end-to-end and include the extra
fully-connected layer required by Kraken models. All results are normalized to the equivalent latency
for a similar GPT-3 like model and engines were generated with random weights and fp16 precision.
Latency in terms of milliseconds is reported in Appendix A.3. Importantly, our evaluation platform
uses NVSwitch and consequently has considerable inter-device bandwidth (600 GB/s) which means
communication can be relatively inexpensive. We expect that these gains will be more pronounced
on systems with less performant interconnects.

A more detailed evaluation on precisely which operators contribute to overall runtime is presented in
Section 4.5. In order to take advantage of the concurrent communication and compute that Kraken al-
lows, we extended TensorRT-LLM with the Overlap plugin that is described in Appendix A.2.

Each configuration was evaluated using the gptSessionBenchmark that is available as part of TensorRT-
LLM. We enabled the default set of optimizations which include GPT Attention plugin, Remove
Input Padding, and GEMM plugin. Experiments were run with a batch size of 1 but engines were
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built with a maximum batch size of 4, vocabulary size of 51,200 tokens, maximum input context
length of 2048, and maximum output length of 4096.

4.5 Runtime characterization
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Figure 6: Runtime characterization: 4-way parallelism. For each cluster on the x-axis, labels
denote the size of model followed by the context length.
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Figure 7: Runtime characterization: 8-way parallelism. For each cluster on the x-axis, labels
denote the size of model followed by the context length.

To provide more context to the performance gains presented in Figures 4 and 5, we characterize
the entire forward pass using the same experimental setting as Section 4.4. The runtime profiles
presented in Figures 6 and 7 were obtained using the profiler built into gptSessionBenchmark. Across
all model sizes and both context lengths, we find that a significant proportion of time is spent in
the AllReduce. As expected, this proportion increases for 8-way parallelism compared to 4-way
parallelism since each device works on a smaller fraction of the compute.

In some cases, such as for 175B models at context length 2048, some of the performance gains
come from the GEMMs requiring significantly more time for the GPT and GPT-J like configurations.
Despite these performance anomalies, in general, Kraken models spend a much smaller fraction
of runtime in inter-device communication leading to considerable performance and efficiency im-
provements. Note that the cost of the memory copies and synchronization necessary for the Overlap
plugin (Appendix A.2) are implicitly included in the Overlapped GEMM fraction. More precisely,
Overlapped GEMM is the time spent computing GEMM Wout, GEMM QKV , and other operations
in the Overlap plugin.
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5 Discussion and Limitations

Need for pretraining: Currently, our approach requires training Kraken models from scratch which
can be very resource intensive. Consequently, developing techniques to distill learned weights from
existing models possibly as part of the weight initialization scheme is a promising area of future
work. We also do not compare with more state-of-the-art Transformer training recipes or alternatives
because of limited access to GPU compute. Training larger, compute-optimal (25) Kraken models
on higher-quality datasets will permit evaluations on newer, more complex language modeling
benchmarks. The fixed degree of model parallelism also places restrictions on the optimal choice of
hardware to run a model on. For example, if we tried to deploy a model with 4-way parallelism on a
system with two or six devices, we would either need to run groups of two sub-layers together or
introduce more collectives. Either approach might negate most of the latency gains offered in the first
place.

Compatibility with standard Transformer improvements: Since Kraken models replicate the
Attention block by the degree of tensor parallelism, the size of the KV cache will also be larger than
that of an equivalent Transformer model. One way to mitigate the increased memory consumption
would be to replace Multi-Head Attention with either Multi-Query Attention (47) or Grouped Query
Attention (3). Similarly, many other improvements to the standard Transformer architecture are also
applicable to Kraken models such as RoPE embeddings (50) and RMSNorm (57). The architecture is
also compatible with "drop-in" replacements for Attention that are more efficient because of time-
complexity and/or sparsity (31) (9). Furthermore, we expect that the notion of parallelizing individual
layers of the model will also prove useful in large deep learning models that use constructions other
than Attention or MLPs (24). Incorporating a communication-aware approach to Neural Architecture
Search (8) for Transformers is another promising area of future work.

Applicability of existing optimizations: We expect that Kraken will be readily compatible with
many existing system-aware techniques used in deploying standard Transformers (56) (32) (1) (35).
For example, it provides an extra degree of freedom to the various partitioning strategies proposed
by Pope et al. (42). It is also compatible with techniques like FlashAttention (17), Speculative
Decoding (34), fusing Attention with the FFN (36), and PagedAttention (32).

Mixture-of-Experts and hybrid models: By virtue of its architecture, Kraken evokes a comparison
to Mixture-of-Experts (MoE) architectures such as the SwitchTransformer (21)(48). Layers in current
MoE models have a single Attention block and use a learned Router to direct each token to one
of a set of FeedForward Networks. Because the forward pass activates only a fixed fraction of
the parameters, MoE models can be much larger than dense Transformers while maintaining the
computational profile of inference. Nonetheless, serving them efficiently in multi-device settings is a
challenge: MoEs require dynamic routing and suffer from load balancing issues. For instance, Huang
et al. (26) find that the required All-to-All collectives can comprise a significant fraction of inference
latency. An interesting direction of future work would be to incorporate an inter-device IO-aware
approach in the construction of MoE models. In addition, recent work (52) has found that hybrid
architectures that combine Multi-Head Attention, State Space Models (SSMs) (24), and FFNs in the
same model perform better than models that use solely SSMs or MHA for the sequence-to-sequence
transformation. Similarly, Kraken layers can be combined with standard Transformer layers and pure
SSM layers to develop high-quality language models that are also efficient to run on hardware.
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Table 5: Pretraining compute and setup for each Kraken configuration
Model Layers Embedding

Dimension
Attention

Heads
Total

Params.
A100 GPU

Hrs
Initial

Learning
Rate

Kraken 2-way 12 678 12 124M 480 2.5e− 4
Kraken 4-way 12 504 12 124.5M 500 2.5e− 4
Kraken 6-way 12 418 12 123.2M 800 2.5e− 4

Kraken 2-way 24 888 16 350M 1000 1.5e− 4
Kraken 4-way 24 644 16 353.4M 1750 1.5e− 4

Kraken 4-way 24 960 16 761M 1800 1.5e− 4

A Appendix

A.1 Training setup and compute requirements

For all pretrained models presented in Section 4.1, we used a similarly sized GPT-3 (7) model’s
hyperparameters as the basis and followed the procedure outlined in Section 3.2 to calculate the
embedding dimension. We did not make an effort to optimize the codebase used for training which
builds off of nanoGPT (29). It is possible to replicate pretrained models by extending nanoGPT to
implement the new forward pass as described in Algorithm 1. The Adam optimizer was used to train
all models along with a cosine learning rate decay with linear warmup. Initial learning rates and the
approximate GPU hours required to train each configuration are presented in Table 5. All models
were trained for 300, 000 gradient steps. Only the 761M parameter model was trained on a node
with 80GB A100 GPU machines. The other configurations were trained on 40GB A100 machines
and consequently use many more gradient accumulation steps. This is why the largest model required
a similar number of GPU hours as the next largest.

Weights for all pretrained GPT-2 models used when evaluating SuperGLUE perfor-
mance (18) (45) (30) (59) (16) (5) (22) (6) (40) (46) (41) (33) in Section 4.2 were obtained from
HuggingFace. Since the focus of this work is on illustrating the efficiency gains and language
modeling capabilities, we do not implement any safeguards that will filter for biased and/or harmful
content. Initial experiments that tried various variations of the model architecture required about
another 1,000 hours of A100 compute.

A.2 Overlap plugin implementation

We used TensorRT-LLM version 0.12.0.dev2024073000 throughout the evaluation. CUDA allows
kernels to be launched on different streams and depending on resource availability, these kernels may
be executed in parallel. However, TensorRT does not support multi-stream execution across plugins.
We circumvented this limitation by implementing a Singleton that can manage a dedicated stream
and global memory meant for launching collectives. This allows different instances of the plugin to
launch and synchronize kernels on the same stream. Each instance of the plugin can either: trigger an
AllReduce op on a separate low-priority CUDA stream or synchronize the stream to ensure that a
previously launched AllReduce completes. The plugin also implements the functionality provided in
the existing GEMM plugin. This allows us to perform the following within the Multi-Head Attention
block:

1. The AllReduce is launched on a dedicated CUDA stream just before the GEMM used to
compute the Query, Key, and Value matrices (GEMM QKV 1) via the plugin

2. All intermediate compute is performed using existing kernels such as FlashAttention
3. The CUDA stream that the AllReduce op was placed on is synchronized after the GEMM

Wout 1, also via the Plugin

This approach allowed us to overlap the collective with all the computation required for Multi-Head
Attention and is the only addition to TensorRT-LLM aside from the definition of Kraken. However, it
also requires two extraneous memory copy operations that can be avoided if the library adds support
for multi-stream execution.
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Table 6: Inference latency in milliseconds for 4-way parallelism
Model Size Context Length Standard Parallel Attn. + FeedForward Kraken

1.3B 128 3.7 3.3 3.3
1.3B 2048 17.0 13.6 13.2

6.7B 128 8.3 7.0 5.8
6.7B 2048 48.2 42.1 38.0

13B 128 13.0 11.1 10.7
13B 2048 83.7 73.8 66.9

65B 128 12.7 11.2 8.5
65B 2048 84.6 79.5 63.8

175B 128 24.6 22.5 19.9
175B 2048 243.7 230.8 158.9

Table 7: Inference latency in milliseconds for 8-way parallelism
Model Size Context Length Standard Parallel Attn. + FeedForward Kraken

1.3B 128 4.3 3.4 3.2
1.3B 2048 15.9 11.7 9.7

6.7B 128 7.1 5.7 4.7
6.7B 2048 37.3 29.2 27.6

13B 128 10.7 8.4 6.7
13B 2048 58.8 46.9 42.6

65B 128 8.7 7.2 6.2
65B 2048 55.9 48.9 42.9

175B 128 16.9 14.4 12.4
175B 2048 125.1 114.7 98.0

A.3 Time To First Token in milliseconds

Table 6 contains the results from Figure 4 but in terms of milliseconds. Similarly, Table 7 presents
the results from Figure 5. For the 65B and 175B configurations, we ran into CUDA Out-of-Memory
errors when running full sized engines because each device has only 40GB of memory. To avoid
this, we reduce the number of layers to 1

4 the original number. Nonetheless, the relative latency
comparison should be unaffected because the runtimes of individual layers are identical.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the abstract and introduction clearly describe the work and refer only to
attained experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The Discussion and Limitations section goes over the limitations of this work
and contrasts it with several categories of related work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not make any theoretical claims about the efficacy of the
proposed architecture.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All pretrained models can be replicated by using the training recipe presented
in the Appendix along with the Algorithm in the Architecture section. The dataset used for
training as well as the codebase are both publicly available. Similarly, the TensorRT-LLM
comparison can be reproduced by extending the library to support the new model and then
implementing the Overlap plugin as described in the Appendix. More importantly, we have
also made pertinent code open-source.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Relevant code has been published online; details can be found in the Evaluation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the information necessary to train the models on OpenWebText, perform
the comparison using SuperGLUE, build TensorRT-LLM engines, and replicate results can
be found in the paper and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We did not have the compute resources to train several versions of the same
model configuration and report perplexity and SuperGLUE results with error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The number of GPU hours necessary to train the models is discussed in the
Appendix along with other details about the compute resources used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The Code of Ethics was reviewed carefully for full compliance.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]
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Justification: While the paper does present pretrained language models, the accompanying
societal impacts and necessary safeguards are no different from that of existing language
models. As such, we expect that existing mitigation strategies will be applicable to the ideas
presented in this paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: While this paper presents a few pretrained models, the focus is on the system-
level efficiency gains, not the downstream performance of the models. We have highlighted
this in the evaluation and Appendix.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets such as datasets and codebases are cited and urls are provided were
applicable.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, our code release is documented with a focus on being easy to reproduce.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The experiments in this work did not directly include data from crowdsourcing
or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: None of the experiments in this work involved human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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