
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRADUALLY COMPACTING LARGE LANGUAGE MOD-
ELS FOR REASONING LIKE A BOILING FROG

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated impressive reasoning capabili-
ties, but their substantial size often demands significant computational resources.
To reduce resource consumption and accelerate inference, it is essential to eliminate
redundant parameters without compromising performance. However, conventional
pruning methods that directly remove such parameters often lead to a dramatic drop
in model performance in reasoning tasks, and require extensive post-training to
recover the lost capabilities. In this work, we propose a gradual compacting method
that divides the compression process into multiple fine-grained iterations, applying
a Prune–Tune Loop (PTL) at each stage to incrementally reduce model size while
restoring performance with finetuning. This iterative approach—reminiscent of the
“boiling frog” effect—enables the model to be progressively compressed without
abrupt performance loss. Experimental results show that PTL can compress LLMs
to nearly half their original size with only lightweight post-training, while maintain-
ing performance comparable to the original model on reasoning tasks. Moreover,
PTL is flexible and can be applied to various pruning strategies, such as neuron
pruning and layer pruning, as well as different post-training methods, including
continual pre-training and reinforcement learning. Additionally, experimental re-
sults confirm the effectiveness of PTL on a variety of tasks beyond mathematical
reasoning, such as code generation, demonstrating its broad applicability.

1 INTRODUCTION

Large language models (LLMs) (OpenAI, 2023; Grattafiori et al., 2024; Team et al., 2023; 2024;
Yang et al., 2024) have demonstrated remarkable reasoning capabilities, achieving state-of-the-art
performance across a wide range of NLP tasks, including multi-step planning (Wang et al., 2024;
Hsiao et al., 2025; Wei et al., 2025), tool use (Shi et al., 2025; Qu et al., 2025; Luo et al., 2025),
collaboration in multi-agent settings (Tran et al., 2025; Guo et al., 2024), code generation (Jiang
et al., 2024; Huang et al., 2025), and facilitating scientific discovery (Zhang et al., 2024b; Chen
et al., 2025). However, the remarkable reasoning performance of LLMs often comes with a trade-off,
as they typically consist of billions of parameters and require substantial computational resources
(Goldstein et al., 2023; Musser, 2023). To mitigate these challenges, researchers have proposed
various approaches to reduce model size, such as knowledge distillation (Xu et al., 2024; Gu et al.,
2024; Zhang et al., 2025b), pruning (Ma et al., 2023; Men et al., 2024), and matrix approximation (Sy
et al., 2024; Ashkboos et al., 2024a). Nonetheless, most of these model compression methods result
in unstructured models (Ma et al., 2023; Ashkboos et al., 2024a) or require extensive post-training to
recover performance after compression (Ma et al., 2023; Ashkboos et al., 2024a; Men et al., 2024).

In this work, we propose a novel Prune-Tune Loop (PTL) method, designed to gradually compact
large language models through lightweight post-training, while preserving their original reasoning
capabilities. As shown in Figure 1, we divide the entire compacting process into multiple iterations,
each consisting of two steps: pruning, to remove parameters redundant to reasoning, and tuning, to
restore the model’s reasoning performance. By ensuring that each step introduces only minor changes,
any performance degradation is minimal and can be quickly recovered through lightweight training,
akin to the “boiling frog” effect where gradual changes avoid abrupt disruptions. Specifically, during
the pruning step, we focus on removing either neurons or layers that are redundant for reasoning. A
neuron refers to a column or row in the parameter matrices, while a layer corresponds to an entire
Transformer block (Vaswani et al., 2017), including both the attention mechanism and the feed-
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Figure 1: Prune–Tune Loop (PTL) mainly consists of three steps in each minimal iteration: 1⃝ identify
redundant reasoning parameters, including either redundant neurons or layers; 2⃝ prune the identified
redundant reasoning parameters; 3⃝ tune the pruned model through either continual pre-training
on CoT data or reinforcement learning using complex mathematical datasets. By introducing only
minor changes at each iteration, performance degradation remains minimal and quickly recoverable,
avoiding abrupt disruptions like the “boiling frog” effect.

forward network. Furthermore, a neuron or layer is considered redundant if its removal has minimal
effect on the embeddings produced by the LLM when processing reasoning-related sequences.
Meanwhile, during the tuning step, we apply either continual pre-training using Chain-of-Thought
(CoT) data (Wei et al., 2022) or reinforcement learning with complex mathematical data (Shao et al.,
2024) to recover model’s reasoning capability.

We conduct comprehensive experiments to evaluate the performance of PTL across various models
and tasks. Our compression method was evaluated on three widely used open-source models, Llama3-
8B (Grattafiori et al., 2024), Qwen2.5-7B (Yang et al., 2024), and Gemma2-9B (Team et al., 2024),
and we demonstrate that it can reduce each model to approximately 60% of its original size without
any loss in mathematical reasoning capability. Specifically, Llama3-8B is compressed from 8 billion
to 5 billion parameters, yielding a 30% reduction in FLOPs and a 224% increase in overall runtime
efficiency, while maintaining comparable accuracy on GSM8K (Cobbe et al., 2021) (from 54.7% to
52.5%), Minerva Math (Hendrycks et al., 2021) (from 16.0% to 18.5%), and MATH-500 (Lightman
et al., 2023) (from 14.6% to 16.1%). Likewise, Gemma2-9B is pruned from 9 billion to 5 billion
parameters, halving its FLOPs (50% of the original) and boosting runtime efficiency to 130%, with
performance essentially unchanged on GSM8K (from 70.0% to 70.6%), Minerva Math (from 29.1%
to 26.4%), and MATH-500 (from 26.9% to 26.2%). Furthermore, on the Llama3 compression
benchmark our approach outperforms all alternative baselines, and on the Gemma2 benchmark
it is the only method that preserves near-original performance after aggressive pruning. For the
Qwen2.5-7B model, we explored reinforcement learning-based approaches to recover performance
after compression. Experimental results show that only the model obtained via PTL is able to
restore performance comparable to that of the original model on GSM8K (from 85.7% to 84.9%),
Minerva Math (from 26.1% to 24.1%) and MATH-500 (from 61.0% to 61.2%). In contrast, other
compressed variants consistently fail to recover using reinforcement learning, i.e., performance is 0
on all datasets. In addition, experimental results confirm the effectiveness of PTL on a variety of tasks
beyond mathematical reasoning. On code generation tasks, we evaluate our method on Llama3-8B,
compressed the model to 5 billion parameters, and the performance on the MBPP benchmark (Austin
et al., 2021) with a slight drop (from 50% to 45%), while having 30% reduction in FLOPs and speed
up the model 2.56 times.

2 PRUNE-TUNE LOOP

To compact a large language model for reasoning, we aim to identify and remove redundant parameters
that do not contribute to its reasoning ability, and subsequently post-tune the model to restore any
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lost performance. In this section, we introduce a prune-tune loop as an efficient compacting method
that minimizes additional training cost.

2.1 REDUNDANT REASONING PARAMETER EXTRACTION

Without compromising generalizability, and inspired by prior pruning studies (Xia et al., 2023; Men
et al., 2024; Muralidharan et al., 2024), we primarily adopt two structured pruning approaches:
removing redundant neurons and pruning redundant layers.

Redundant Reasoning Neuron Extraction We define each neuron as one column or one row of a
parameter matrix and identify neurons that are NOT activated when LLMs doing reasoning tasks.
Formally, we denote each reasoning-related input sequence as x, and suppose the model has L layers.
Then the embedding and layerwise forward pass can be expressed as

h0(x) = Embed(x), hℓ(x) = fℓ
(
hℓ−1(x)

)
, ℓ = 1, . . . , L, (1)

where fℓ(·) denoted the parameter of LLM’s ℓ-th layer. A neuron N in layer ℓ is considered not
activated if its removal significantly alters the output of the layer. Specifically, we regard N as not
activated if ∥∥fℓ(hℓ−1(x)

)
− fℓ\N

(
hℓ−1(x)

)∥∥
2
≤ σ, (2)

where σ is a predefined threshold, and fℓ\N (·) denotes the layer’s output with neuron N removed.

Prior studies (Hou et al., 2023; Zhao et al., 2024) indicate that reasoning capabilities in large language
models are primarily attributed to the self-attention mechanism, suggesting that redundant reasoning
neurons rarely appear in this component. Additionally, the self-attention layer contains significantly
fewer parameters than the feed-forward layer (Grattafiori et al., 2024; Team et al., 2024), limiting its
potential for compression. Furthermore, pruning neurons in the self-attention layer is structurally
constrained, as it requires maintaining a consistent number of neurons across all attention heads or
eliminating entire heads (Ma et al., 2023). Therefore, we focus on pruning the feed-forward structure
rather than the self-attention mechanism.

Specifically, in the circumstance of neurons in the feed-forward structure, Equation 2 can be equiva-
lently transferred as∥∥fℓ(hℓ−1(x)

)
− fℓ\N

(
hℓ−1(x)

)∥∥
2

=
∥∥FFNℓ(x)− FFNℓ\N (x)

∥∥
2
∝ SiLU

(
Wgate(x)

)
·Wup(x) := ActNℓ (x),

(3)

where FFNℓ(·) denotes the feed-forward network of the ℓ-th layer, while Wup and Wgate correspond
to the up-projection and gating matrices, respectively. In other words, the change in the embedding
is proportional to the activation of the feed-forward network. Therefore, when inputting reasoning-
related input sequence x, redundant reasoning neurons are extracted through

RN := {N | ActNℓ (x) ≤ σneuron, ∀x, ℓ = 1, . . . , L}. (4)

Redundant Reasoning Layer Extraction In addition to pruning redundant reasoning neurons,
we adopt a structured layer pruning approach that identifies layers with minimal contribution to the
reasoning task. Formally, following Equation 2, the importance of a layer is quantified by the change
it induces in the embedding (Zhang et al., 2024a; Men et al., 2024). Specifically, the importance of
layer ℓ is measured by the L2 norm of the difference between its output and input embeddings, i.e.,∥∥fℓ(hℓ−1(x)

)
− hℓ−1(x)

∥∥
2
. (5)

Therefore, when inputting reasoning-related input sequence x, redundant reasoning layers are ex-
tracted through

RL := {ℓ |
∥∥fℓ(hℓ−1(x)

)
− hℓ−1(x)

∥∥
2
≤ σlayer, ∀x, ℓ = 1, . . . , L}. (6)
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Algorithm 1 Prune–Tune Loop

Input: Original reasoning language model LLM, reasoning task sequences x, thresholds
σneuron, σlayer, CoT training data DCoT , RL training data DRL max pruning rounds T .

1: // Compact the model until reach maximal rounds.
2: while t < T do
3: // Extract redundant parameters.
4: Extract redundant reasoning neuronsRN through Equation 4.
5: Extract redundant reasoning layersRL through Equation 6.
6: // Remove redundant parameters.
7: LLM← LLM⊖ {RN ∪RL}
8: // Recovery Tuning.
9: LLM← Continual Training(LLM,DCoT )

10: LLM← Reinformence Learning(LLM,DRL)
11: end while
Output: Compressed model LLM

2.2 RECOVERY TUNING

After removing redundant reasoning parameters, the model’s architecture is altered, which can
result in performance degradation across various tasks. To help the model’s parameters adapt to
the modified structure, post-training is essential to recover its original capabilities. We primarily
employ continual pre-training—a widely used recovery approach following model editing (Ma et al.,
2023; Muralidharan et al., 2024; Zhao et al., 2025). In addition, we leverage reinforcement learning,
commonly adopted in reasoning models, to further enhance the model’s reasoning abilities (Guo
et al., 2025; Zhang et al., 2025a).

Continual Pre-Training To restore the performance of the pruned model on reasoning tasks, we
perform post-training using a reasoning-focused corpus. Specifically, we utilize math questions
accompanied by corresponding CoT reasoning path (Wei et al., 2022), covering a wide range of
mathematical scenarios.

Reinforcement Learning Similar to RL training approach used with the base model (Zeng et al.,
2025), we apply GRPO (Shao et al., 2024) to further train the model on more challenging math
problems after pruning. Additionally, we adopt both standard format reward and accuracy reward,
without relying on complex reward design or elaborate control mechanisms.

2.3 PRUNE-TUNE LOOP

To enhance the effectiveness of pruning and enable a higher pruning ratio without requiring extensive
post-training, we propose a prune-tune loop for gradually compacting LLMs. The pruning process
is divided into multiple iterations, with model performance recovered at each step. Specifically,
each iteration consists of the following cycle: (1) extraction of redundant reasoning parameters,
(2) removal of redundant parameters, and (3) recovery fine-tuning. This prune-tune loop follows a
gradual, iterative approach—reminiscent of the “boiling frog” effect—that enables the model to be
progressively compressed, ultimately yielding a model with the desired parameter scale. Algorithm 1
provides s detailed illustration of the prune-tune loop compacting algorithm.

3 EXPERIMENT

In this section, we evaluate the proposed method on its efficacy and the important factors through
extensive studies.
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Table 1: Main results of PTL on LLaMA3-8B, Gemma2-9B, and Qwen2.5-7B. The number of FLOPs
and speedup are computed as averages over all questions in the respective datasets. All methods use
identical training data and hardware environments for recovery. Recovery time is measured in hours.
Baseline methods that fail to recover in the RL setting are denoted with “-” in the table.

Method GSM8K Minerva Math MATH-500 Recovery
Accu. #FLOPs Speedup Accu. #FLOPs Speedup Accu. #FLOPs Speedup

Continual Pre-Training Recovery
Llama3-8B 54.7 9.1 T 1.0 16.0 8.5 T 1.0 14.6 8.5 T 1.0 0
Shortgpt 42.7 6.4 T 2.1 × 15.1 6.0 T 1.8 × 15.6 6.0 T 1.8 × 16 H
Slicegpt 45.5 4.5 T 2.1 × 14.7 4.1 T 1.6 × 14.1 4.1 T 1.6 × 20 H
Prune-Once 44.6 5.8 T 2.6 × 14.2 5.4 T 2.1 × 14.7 5.4 T 2.1 × 12 H
PTL-Llama3-5B 52.5 6.3 T 2.6 × 18.5 5.9 T 2.1 × 16.1 5.9 T 2.1 × 12 H

Gemma2-9B 70.0 11.5 T 1.0 29.1 10.5 T 1.0 26.9 10.4 T 1.0 0
Shortgpt 55.3 7.6 T 1.6 × 19.8 6.8 T 1.4 × 19.3 6.7 T 1.4 × 27 H
Slicegpt 56.3 5.9 T 1.5 × 18.6 5.3 T 1.3 × 19.1 5.2 T 1.4 × 36 H
Prune-Once 58.7 6.5 T 1.3 × 18.9 6.0 T 1.3 × 18.2 5.9 T 1.2 × 20 H
PTL-Gemma2-5B 70.6 6.1 T 1.3 × 26.4 5.6 T 1.3 × 26.2 5.5 T 1.2 × 20 H

Reinforcement Learning Recovery
Qwen2.5-7B 85.7 9.0 T 1.0 26.1 8.2 T 1.0 61.0 8.2 T 1.0 0
Shortgpt 0 - - 0 - - 0 - - -
Slicegpt 0 - - 0 - - 0 - - -
Prune-Once 0 - - 0 - - 0 - - -
PTL-Qwen2.5-5B 84.9 4.9 T 1.2 × 24.1 4.5 T 1.4 × 61.2 4.5 T 1.4 × 64 H

3.1 EXPERIMENT SETUP

Datasets We primarily utilize two large-scale mathematical reasoning datasets: NuminaMath-
CoT (LI et al., 2024), which contains 860k diverse math problems ranging from high school exercises
to international olympiad-level questions formatted in a CoT style, and MetaMathQA (Yu et al., 2023),
comprising 390k problem-solution pairs enhanced through various data augmentation techniques to
promote diverse and robust reasoning pathways. These datasets are merged into a unified corpus for
redundant reasoning parameter extraction, where each question is concatenated with its corresponding
CoT answer to form a complete reasoning sequence. The same dataset is employed during the tuning
stage for recovery through continual pre-training. Additionally, when reinforcement learning is used
for recovery, we adopt Math-12k1, a challenging math dataset derived from (Lightman et al., 2023).

Backbone Models We evaluate three widely-used open-source LLMs as backbone models. Llama3-
8B (Grattafiori et al., 2024), Qwen2.5-7B (Yang et al., 2024) and Gemma2-9B (Team et al., 2024).

Baselines. We employ several state-of-the-art pruning methods as baselines and apply the same
post-training data and training procedure to the models after pruning. (i) ShortGPT (Men et al., 2024)
directly deletes the redundant layers in LLMs based on an importance score; (ii) SliceGPT (Ashkboos
et al., 2024b) replaces each weight matrix with a smaller dense matrix, reducing the embedding
dimension of the network; (iii) Prune-Once removes redundant parameters in a single step and
recovers the model using the same method as PTL.

Benchmarks To assess mathematical reasoning proficiency, we employ three benchmarks:
GSM8K (Cobbe et al., 2021), which contains 8.5k grade-school word problems requiring 2–8
steps of basic arithmetic; Minerva Math (Hendrycks et al., 2021), which fine-tunes PaLM (Chowd-
hery et al., 2022) on mathematical and scientific texts to produce LaTeX-formatted solutions in

1https://huggingface.co/datasets/hiyouga/math12k
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a few-shot setting; and MATH-500 (Lightman et al., 2023), a 500-question subset of the MATH
benchmark curated for rigorous, decontaminated evaluation.

Evaluation Metrics We use accuracy to evaluate the performance of the models on each dataset.
To assess the impact of model compaction, we also consider the number of floating-point operations
(FLOPs), which represents the total count of floating-point arithmetic operations, as well as the
speedup achieved. Additionally, we measure the post-training time to quantify the computational
cost associated with recovering the model’s reasoning capabilities after compression.

Implement Details For the continual pre-training recovery setting, we employed the LLaMA-
Factory library (Zheng et al., 2024), a widely adopted GitHub-hosted framework for efficient large-
model fine-tuning, to carry out all training procedures. Experiments are conduced on four 80GB
NVIDIA A100 GPUs, with learning rate as 8× 10−6, global batch size as 32, and max token as 1024.
Furthermore, to reduce memory consumption during training, we applied ZeRO Stage-2 optimization
and gradient checkpointing, both provided by the DeepSpeed library. For reinforcement learning
training, we use the EasyR1 (Zheng et al., 2025) framework built on verl (Sheng et al., 2024), with
specialized support for VLMs. Experiments are conducted using eight 140GB NVIDIA H200 GPUs
with a global batch size of 128, a rollout batch size of 128, a rollout temperature of 1.0, a consistent
learning rate of 1 × 10−6, and 8 rollouts. Additionally, to mitigate the risk of model overfitting
caused by repeated exposure to the same corpus, we uniformly partitioned the dataset into multiple
non-overlapping subsets of equal size.

3.2 MAIN RESULTS

Table 1 presents the performance of the compressed models obtained via PTL, alongside the original
models and those produced by baselines.

Table 2: Results of applying RL training
to compacted Qwen2.5-7B model in the
Continual pre-Training (CT) setting.

Model GSM8K Minerva

Qwen2.5-7B 85.7 26.1
CT-Qwen2.5-5B 70.9 15.8

↪→ + RL-Zero 86.9 34.2

PTL consistently outperforms other compacting
methods. As shown by accuracy, although our ap-
proach achieves a substantial reduction in parameter
count (around 40%), it maintains capabilities largely
comparable to the unpruned models and outperforms
other compression methods by a clear margin. For
GSM8K, PTL-Llama3-5B falls from 54.7% to 52.5%
after pruning the last two layers and 7000 neurons per
layer. By contrast, Shortgpt-Llama3-5B and Slicegpt-
Llama3-5B score just 42.7% and 45.5%, respectively.
On Minerva Math, PTL-Llama3-5B achieves 18.5%
vs. 16.0% originally. By comparison, other 5B base-
lines linger around 14–15%. On MATH-500, the accuracy of PTL-Llama3-5B rose from 16.0%
in the original model to 18.9%, representing a greater improvement than that achieved by the two
alternative pruning methods. For the Gemma2-9B, only our PTL-Gemma2-5B maintains performance
close to that of the original model across all three benchmarks (GSM8K: from 70.0% to 70.6%;
Minerva Math: from 29.1% to 26.4%; MATH-500: from 26.9% to 26.2%), whereas alternative
pruning techniques incur severe accuracy losses (GSM8K: from 70.0% to 51.4%/56.3%; Minerva
Math: from 29.1% to to 19.8%/18.6%; MATH-500: from 26.9% to 19.3%/19.1%).

For Qwen2.5-7B, we explore the use of reinforcement learning to recover the model’s performance
after compression. Notably, our PTL-Qwen2.5-7B is the only pruned model that is able to recover
performance comparable to—or even surpassing—that of the original model on GSM8K (from
85.7% to 84.9%), Minerva Math (from 26.1% to 24.1%), and MATH-500 (from 61.0% to 61.2%).
In contrast, models compressed using alternative pruning methods consistently fail during RL fine-
tuning, often producing incoherent or invalid outputs. This clearly demonstrates the scalability and
robustness of our pruning methodology. Moreover, we observe that models in the Qwen family
perform exceptionally well on several widely used mathematical reasoning benchmarks, making it
difficult to recover their original performance using only open-source datasets. However, as shown in
Table 2 by applying reinforcement learning on top of models processed through PTL under continual
pre-training setting, we are able to restore—and in some cases even surpass—the performance of the
original model (GSM8K: from 85.7% to 86.9%, Minerva Math: from 26.1% to 34.2%).
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Paco started with 17
cookies. He ate 14
cookies. He gave 13
cookies to his friend. So
he ate 14 - 13 = 1 more 
cookie than he gave to 
his friend. The answer is
1.

Question: There were 12 
students in the class. 10 
more students joined the 
class. How many 
students are there now?
Answer: There were 
originally 12 students. 
10 more students joined. 

Paco had 17 cookies. He ate 14 cookies and 
gave 13 of them to his friend. How many 
more cookies did he eat than those he gave 
to his friend?

Paco ate 14 cookies and
gave 13 to his friend. To 
find out how many more 
cookies he ate than those 
he gave to his friend, we 
subtract the number of 
cookies he gave away from
the number he ate:

14 (eaten) - 13 (given 
away) = 1

Paco ate
$\boxed{1}$ more cookie 
than he gave to his friend.

Input

Output from 
PTL-Gemma2-5B

Output from  
Gemma2-9B

Dan has $ 5. He bought a candy bar for $ 2 
and a chocolate for $ 3. How much money 
did he spend to buy chocolate than he did to 
buy candy bar?

Input

Output from 
PTL-Gemma2-5B

Dan spent $ 2 to buy a 
candy bar. He spent $ 3
to buy a chocolate. So he 
spent $ 3 - $ 2 = $ 1
more to buy chocolate 
than he did to buy candy 
bar. The answer is $ 1.

Question: There are 120 
students in a school. 40 
students are in the first 
grade, 30 students are in 
the second grade, and 50 
students are in the third 
grade. How many students 
are in the first and 
second grade?

Output from 
Gemma2-9B

Dan spent $3 on 
chocolate and $2 on 
candy bar. To find out 
how much more he 
spent on chocolate than 
on candy bar, we 
subtract the cost of 
the candy bar from the 
cost of the chocolate:

$3 (chocolate) - $2
(candy bar) = $1

So, Dan spent 
$\boxed{\$1}$ more 
on chocolate than he 
did on candy bar.

Figure 2: PTL-Gemma2-5B generates more structured CoT
and avoids producing meaningless output.
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Figure 3: PTL-Gemma2-9B’s perfor-
mance over a complete pruning cycle

PTL can speedup and requires minimal recovery time. In contrast to simplistic “pseudo-
compression” approaches that merely skip certain layers or modify inter-layer data flow patterns, our
pruning methodology achieves genuine model acceleration through substantive parameter reduction
that streamlines the data generation pipeline. This structural optimization enables significant compu-
tational acceleration in the model’s processing workflow. In terms of FLOPs, as shown in Table 1,
our PTL-Llama3-5B reduces computational cost by 30% relative to the original model, yielding an
overall runtime efficiency of 224% across the three datasets—surpassing Shortgpt-Llama3-5B (188%)
and Slicegpt-Llama3-5B (175%). Moreover, PTL-Gemma2-5B is the only model that maintains
its performance after aggressive pruning, with FLOPs reduced to 53% of the original and runtime
efficiency increased to 127%.

PTL is a lightweight and user-friendly solution. Unlike some pruning methods that produce
uneven parameter distributions and complicate deployment, our approach maintains consistent per-
layer parameter counts and adheres to the Hugging Face format, ensuring ease of use. It requires
minimal changes to the model’s generate function and keeps pruning logic separate from the model
architecture. This modularity improves scalability, broadens applicability across diverse models,
and removes framework-specific constraints, enabling seamless deployment without sacrificing
functionality.

In addition, we evaluate the pruned model on SQuAD (Rajpurkar et al., 2016), a commonsense
reasoning benchmark. The results are shown in Appendix A.1. Interestingly, although the models were
only recovered using the math reasoning task, their performance on other reasoning tasks—including
SQuAD—remains well-preserved, demonstrating the generalization ability of the compacted models.

3.3 CONCRETE EXAMPLES

To provide a general understanding of our compacted model, Figure 2 presents several concrete
examples comparing its outputs with those of the original model for the same questions. We find that
through the incorporation of CoT datasets in our training pipeline, the pruned model has acquired
enhanced reasoning capabilities while maintaining output structures consistent with our training
data format. For example, PTL-Gemma2-5B generates a more structured CoT, as demonstrated by
more formal equations and well-structured answers enclosed in \box{}. It also avoids producing
meaningless output, which is labeled in gray in the figure..

4 FURTHER ANALYSIS

4.1 ABLATION ANALYSIS

In this section, we present a more detailed analysis of the pruning process, examining it from three
principal perspectives: pruning iterations, pruning step size, and pruning order.
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Figure 4: The impact of varying pruning
step size on the model’s final performance.

Table 3: Impact of the relative ordering of pruning meth-
ods over a full pruning cycle on the final model perfor-
mance. “Lay-Neu” indicates pruning layers first, fol-
lowed by neurons. “Re-Neu-Lay” denotes alternating
between neuron and layer pruning. “Neu-Lay” refers to
pruning neurons first, then layers.

Orig. Lay-Neu Re-Neu-Lay Neu-Lay

GSM8K 70.0 69.1 68.7 70.6
Minerva Math 29.1 24.1 24.3 26.4
MATH-500 26.9 25.4 23.0 26.2

Pruning Iterations To rigorously evaluate the effectiveness and stability of our pruning method-
ology, we meticulously documented the capability evolution of the Gemma2-9B model throughout
an entire pruning cycle, as illustrated in Figure 3. The results reveal a notable phenomenon: during
the initial pruning iterations, the model’s performance exhibited measurable improvement (GSM8K:
from 70.0% to 77.6%; Minerva Math: from 29.1% to 29.3%; MATH-500: from 26.9% to 27.4%)
rather than degradation, attributable to the complementary fine-tuning process. Subsequently, as
parameter removal progressed, the model’s capability gradually declined before eventually stabilizing
at a level comparable to the original model.

Pruning Step Size To validate the stability of our pruning methodology, we conducted three
experimental trials with varying pruning step sizes (5%, 10%, and 20%) while maintaining identical
target model sizes. The experimental results, presented in Figure 4, demonstrate an inverse correlation
between pruning step size and final model performance - smaller pruning steps (5%) consistently
yield better preserved accuracy than larger steps (10%, 20%). Based on the empirical results, the
model pruned with 5% step achieves an average accuracy across the three datasets that is 9% higher
than the model pruned at 10% step and 14% higher than the model pruned at 20% step. However,
this performance advantage comes at the cost of requiring more iterative pruning cycles to achieve
the target model size, presenting a practical trade-off between computational efficiency and model
quality that practitioners need to consider.

Pruning Order To systematically evaluate the stability of our pruning methodology, we conducted
three experimental trials applying distinct pruning sequences (neuron-then-layer, layer-then-neuron,
and alternating neuron-layer pruning) while maintaining identical compression ratios. As demon-
strated in Table 3, the neuron-then-layer pruning sequence achieved best model performance. While
the other two approaches showed marginally inferior results, the performance differences were
statistically small. For these three models, the maximum difference in average accuracy across the
three datasets is only 6%. This consistent performance across all pruning sequences robustly validates
the architectural stability of our method.

In addition, we compare training the full model with training the pruned model at each iteration of
PTL to investigate whether the training data enhances reasoning capability rather than merely aiding
recovery. Further details are provided in Appendix A.2.

4.2 MORE TASK

Experiment Settings Besides mathematical reasoning tasks, we also explore PTL on coding
datasets. For this task, we use opc-sft-stage2 (subset of OpenCoder (Huang et al., 2025)) and the
python subset of StarCoder (Li et al., 2023) for neuron-level code generation ability probing and as
pretraining corpora. For language ability probing, we used the same text corpus as in the previous
experiment to maintain consistency and ensure comparability. To evaluate the compacted model’s
ability on coding tasks, we adopt MBPP (Austin et al., 2021), offering a set of about 1k problems
specifically designed for code generation. The experiment follows the typical pruning setting from
the previous experiment, and uses Llama3-8B as the backbone models here.
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Table 4: Result of PTL on MBPP (3-shot) under Llama3-8B.

Method Accu. #FLOPs Speedup Recovery

Llama3-8B 50.0 2.8 T 1.0 0
Shortgpt-Llama3-5B 11.7 2.0 T 2.1 × 14 H
PTL-Llama3-5B 45.0 1.9 T 2.6 × 12 H

Main Result Table 4 summarizes
the result of PTL under Llama3-8B
(Grattafiori et al., 2024). We can ob-
serve that our method also shows good
performance after rounds of Prune-
Tune Loop. Specifically, the accu-
racy on MBPP (with three shots) only
dropped about5% after pruning the
last two layers and 5000 neurons on
each remaining layer (over 30% pruning ratio). Overall, PTL excels in performance and accuracy on
coding tasks after certain pruning ratio.

5 RELATED WORK

LLM Reasoning LLMs have demonstrated outstanding performance across a broad spectrum
of NLP applications, including multi-step reasoning (Wang et al., 2024; Hsiao et al., 2025), tool
use (Shi et al., 2025; Qu et al., 2025), and collaboration in multi-agent settings (Tran et al., 2025;
Guo et al., 2024). Multi-step reasoning has gained considerable attention, with models such as
QimProving (Wang et al., 2024) and recent work by Hsiao et al. (2025) exploring how LLMs can
perform complex tasks requiring logical inference over multiple steps. These systems demonstrate
an impressive ability to plan, adapt, and resolve ambiguity across different domains, from natural
language understanding to complex decision-making tasks. Tool use is another area in which LLMs
have shown great potential. Recent work (Shi et al., 2025) has demonstrated how LLMs can learn to
interact with external tools, such as APIs and databases, to enhance their capabilities. Furthermore,
collaboration in multi-agent environments has been explored as a key aspect of LLMs’ reasoning
capabilities. Recent surveys (Tran et al., 2025) and studies (Guo et al., 2024) highlight the ability of
LLMs to function as part of a collaborative multi-agent system, where agents must coordinate and
communicate to solve problems. In the realm of code generation, LLMs have revolutionized the way
software is developed. Models like OpenCoder (Huang et al., 2025) have shown SOTA performance
in automatically generating and understanding code. Lastly, LLMs have played an important role in
scientific discovery.

LLM Compression LLMs, with billions of parameters, demand substantial computational re-
sources for training and inference (Goldstein et al., 2023; Musser, 2023), making deployment in
constrained environments challenging. To address this, various compression strategies have emerged.
Knowledge distillation trains a smaller “student” model to replicate a larger “teacher” model, achiev-
ing size reductions with minimal performance loss (Xu et al., 2024; Gu et al., 2024; Fang et al.,
2025; Lee et al., 2025; Zhang et al., 2025b). Pruning removes less important parameters or neu-
rons, effectively reducing model size (Ma et al., 2023; Men et al., 2024; Xia et al., 2023). Matrix
approximation techniques like low-rank factorization further compress models by approximating
weight matrices, offering promising gains in size and inference speed (Sy et al., 2024; Ashkboos et al.,
2024a). However, these methods often yield unstructured models or require significant post-training
fine-tuning to recover performance (Ma et al., 2023; Ashkboos et al., 2024a; Men et al., 2024).
Balancing compression with performance remains a key challenge.

6 CONCLUSION

In this work, we propose a progressive model compression framework that iteratively prunes redundant
parameters during the training loop. Our method achieves a compression ratio of 30% to 40%,
resulting in inference speedups ranging from 30% to 160%. Compared to baseline models, our
approach offers not only superior performance but also greater ease of use. Furthermore, we evaluate
our method on a code-related benchmark and show that it can be effectively transferred to the
domain of code understanding and generation. We provide a detailed exposition of the design
principles underlying our method and conduct extensive experiments to comprehensively analyze
its effectiveness. Our results confirm the method’s stability and effectiveness across a wide range of
hyperparameter settings.
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LLM USAGE

We used LLMs as general-purpose writing and debugging assistants. Specifically, LLMs were
employed to help polish the writing (e.g., improving sentence clarity, grammar, and flow) and
occasionally to assist with debugging minor implementation issues (e.g., identifying syntax errors or
suggesting code refactoring). However, all core ideas, research questions, methodological designs,
codebase implementations, experiments, and analyses were entirely conceived, developed, and
conducted by the authors. No part of the intellectual contribution, experimental framework, or
scientific reasoning was generated by an LLM.

LIMITATION

PTL has two primary limitations. First, we do not employ the performance on instruct-following tuned
model, as it does not guarantee that the model’s ability to follow instructions is fully preserved after
compression. Second, the current implementation only supports open-source models. Nevertheless,
its simplicity and efficiency make it promising for fast inference and lightweight deployment.

A APPENDIX

A.1 MORE TASKS

Table 5: Exact Match and F1 scores for different models and their PTL-pruned versions.

Gemma2-9B PTL-Gemma2-5B Llama3-8B PTL-Llama3-5B
Exact Match 27.4 28.2 27.3 37.2
F1 34.8 32.9 33.6 40.6

We evaluate the pruned model on SQuAD, a commonsense reasoning benchmark. The results are
shown below. Interestingly, although the models were only recovered using the math reasoning
task, their performance on other reasoning tasks—including SQuAD—remains well-preserved,
demonstrating the generalization ability of the compacted models.

A.2 TRAINING FULL MODEL

Table 6: Comparison of reasoning performance and model size between full model training (CoT
Full) and PTL pruned model training across iterations based on Gemma2-9B.

CoT Full Model PTL Pruned Model
Method GSM8K MATH Size Method GSM8K MATH Size

Original 70.0 29.6 9.2B Original 70.0 29.6 9.2B
CoT Full 1 77.6 30.0 9.2B PTL Iteration 1 75.6 29.0 8.8B
CoT Full 2 78.3 31.3 9.2B PTL Iteration 2 77.6 29.4 8.4B
CoT Full 3 77.2 31.0 9.2B PTL Iteration 3 74.1 28.9 7.9B
CoT Full 4 78.1 31.3 9.2B PTL Iteration 4 74.4 28.3 7.5B
CoT Full 5 77.1 31.6 9.2B PTL Iteration 5 74.7 27.9 7.0B
CoT Full 6 75.7 32.0 9.2B PTL Iteration 6 73.4 27.4 6.6B
CoT Full 7 78.0 32.5 9.2B PTL Iteration 7 69.3 26.3 6.2B
CoT Full 8 75.1 31.1 9.2B PTL Iteration 8 73.3 27.5 5.8B

We conduct a comparison between training the full model and training the pruned model in each
iteration of PTL based on Gemma2-9B. Table 6 shows that training on the full dataset indeed improves
performance, demonstrating the validity and high quality of the dataset. However, we also observe
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that the pruned model in each PTL iteration achieves performance that is comparable to the full
model, despite having a significantly smaller size. This highlights the effectiveness of our pruning
method, which maintains competitive performance while reducing model complexity.
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